EP0899320A1 - Procédé et unité d'hydrotraitement d'une charge pétrolière comprenant le craquage de l'ammoniac et le recyclage de l'hydrogène dans l'unité - Google Patents

Procédé et unité d'hydrotraitement d'une charge pétrolière comprenant le craquage de l'ammoniac et le recyclage de l'hydrogène dans l'unité Download PDF

Info

Publication number
EP0899320A1
EP0899320A1 EP98402040A EP98402040A EP0899320A1 EP 0899320 A1 EP0899320 A1 EP 0899320A1 EP 98402040 A EP98402040 A EP 98402040A EP 98402040 A EP98402040 A EP 98402040A EP 0899320 A1 EP0899320 A1 EP 0899320A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
effluent
unit
hydrogen sulfide
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98402040A
Other languages
German (de)
English (en)
Other versions
EP0899320B1 (fr
Inventor
Christian Streicher
Fabrice Lecomte
Christian Busson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0899320A1 publication Critical patent/EP0899320A1/fr
Application granted granted Critical
Publication of EP0899320B1 publication Critical patent/EP0899320B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/22Separation of effluents

Definitions

  • the invention relates to a method and a device for catalytic cracking of ammonia. contained in a gaseous or liquid fluid which comprises hydrogen sulphide, thus that the separation of the hydrogen produced by this cracking of ammonia and the use of this hydrogen in a process for hydrotreating a hydrocarbon feed containing sulfur and nitrogen.
  • Hydrotreatments Pressurized hydrogen treatments of liquid petroleum fractions (hydrotreatments) are well known and widely used methods to improve the properties of these cuts. These treatments make it possible in particular to convert the organic compounds containing hetero atoms (sulfur, nitrogen) in hydrocarbons and mineral compounds (hydrogen sulfide, ammonia), which can then easily be separated by simple operations such as stripping (distillation) and water washes. Greater concern for environmental protection leads to lowering the sulfur and nitrogen contents of petroleum products and therefore to increase the quantity of hydrogen necessary for the operation of hydrotreating units
  • Refiners are therefore required to send this product to the thermal stage of a unit Claus.
  • the combustion of ammonia at the thermal stage of a Claus unit is tricky. It sometimes requires more or less modifications equipment of the Claus unit. This combustion, when it is not performed correctly, can also cause many operational difficulties (clogging, corrosion of the Claus unit). Finally, it causes a dilution of the Claus unit detrimental to the performance of this unit.
  • An object of the invention is to allow recovery, at least partially at the level a hydrotreating unit, hydrogen present in the form of ammonia especially in acidic refinery waters.
  • the invention relates to a catalytic cracking process for ammonia present in a fluid containing hydrogen sulfide, in which introduces the fluid into a reaction zone comprising an appropriate catalyst, characterized in that the temperature of said reaction zone is from 1000 to 1400 ° C and in that the cracking effluent obtained at the outlet of said reaction zone is sent to a hydrogen recovery unit treating one or more high purge gases pressure of hydrotreating unit (s), after being possibly cooled and / or partially condensed and / or compressed and / or treated by an amine washing unit.
  • hydrotreating unit hydrotreating unit
  • This cracking process can be implemented in a hydrotreatment process.
  • the invention relates to a process for hydrotreating a hydrocarbon feed containing sulfur and nitrogen, in which the feed is hydrotreated in the presence of a catalyst in a hydrotreating zone (HDT), recovering a hydrotreated hydrocarbon product, a high pressure purge gas (12) comprising hydrogen, hydrogen sulfide and light hydrocarbons (C 5 -) and a first effluent containing water and sulfide ammonium, the first effluent is purified in a stripping zone so as to recover hydrogen sulfide and ammonia, the first effluent is introduced into a cracking zone comprising a catalyst, heated between 1000 and 1400 ° C., recovers a cracking effluent (9,11) comprising hydrogen sulfide, hydrogen and nitrogen resulting from the cracking of ammonia, the method being characterized in that said cracking effluent is cooled to a temperature a liquefies, a gaseous phase (11) comprising nitrogen, hydrogen and hydrogen s
  • the high pressure purge gas (12) originating of the hydrotreating zone can be introduced with said gaseous phase into the unit (20) extraction of hydrogen sulfide and recovering a hydrogen-rich gas sulfide and the gas phase substantially free of hydrogen sulfide.
  • the cracking effluent can be cooled to a temperature from 30 to 100 ° C in an E2 heat exchanger during a period of time at least equal to 1 second and preferably between I and 5 seconds.
  • the first effluent can be compressed to a pressure from 2 to 10 MPa compatible with the hydrogen sulphide extraction unit, before its introduction into the cracking zone.
  • the cooled cracking effluent can be compressed in the exchanger E2 at a pressure of 2 to 10 MPa, compatible with the hydrogen extraction unit sulfide.
  • the gaseous phase is recovered which is introduced into said hydrogen sulfide extraction unit and a phase aqueous liquid.
  • This aqueous liquid phase can advantageously be recycled in the stripping zone into which is introduced the effluent from the hydrotreatment zone which contains hydrogen sulfide and ammonia produced by the hydrotreatment unit, in the form of an aqueous solution of ammonium sulfide.
  • This solution is striped there and we can recover on the one hand purified water at the bottom of the stripping zone and on the other hand, head of the stripping zone, the gaseous effluent containing water vapor, hydrogen sulfide and ammonia which is sent to the cracking zone catalytic.
  • the invention relates to a unit for hydrotreating a hydrocarbon feed containing sulfur and nitrogen comprising a hydrotreatment reactor (HDT) which comprises a feed (1) with the feed, a feed (7) with hydrogen, a racking (2) of hydrotreated product, a racking (12) of purge gas, a racking (3) of an effluent containing water and ammonium sulfide, an extraction unit (20) of l hydrogen sulfide contained in the purge gas connected to the HDT reactor, said extraction unit comprising a line (14) for recovery of a product rich in hydrogen sulfide and a line (13) for recovery of a product poor in hydrogen sulphurized and rich in hydrogen, at least one hydrogen separator (SM) connected to the line (13) for recovering the product poor in hydrogen sulphurized and rich in hydrogen and at least one means (16) for recycling the recovered hydrogen connected to the hydrogen separator and the hy reactor drotreatment, the hydrotreatment unit being characterized in that it comprises a stripping means (SE) of the
  • the ammonia produced by the HDT unit is recovered by washing the effluent from the hydrotreatment reactor, in the form of an aqueous solution of ammonium sulphide sent by line 3 to a SE wastewater stripper.
  • This stripper can possibly also supplied, via line 4, with other wastewater similar from other units not shown in the figure.
  • the SE stripper produces purified water at the bottom, essentially free of ammonium sulphide which can be sent back to the HDT hydrotreating unit for washing with water reactor effluent, via a line 5, and possibly to other units via a line 6.
  • a gaseous effluent essentially consisting of water vapor and quantities substantially equal to hydrogen sulfide and ammonia.
  • the water content of the effluent gas is generally between 10 and 80%.
  • the effluent can be compressed in a K compressor to a sufficient pressure to allow it, after passing through an exchanger E1, a reactor F for cracking ammonia, an E2 exchanger and a separator tank C, to be admitted to the washing unit high pressure amines 20, treating the unit's high pressure purge gas HDT hydrotreatment.
  • this compression stage K placed here preferably before reactor F, can also be placed after reactor F, in E2 exchanger outlet.
  • the latter arrangement has the disadvantage of require compression of a larger gas volume, 1 mole of ammonia being dissociated in reactor F in 0.5 mole of nitrogen and 1.5 mole of hydrogen. It is also possible to compress the gaseous effluent to the pressure required for admission to the high pressure amine washing unit in two stages placed respectively before and after reactor F, as indicated above.
  • the compressed effluent is then sent by a line 8 to the reactor F, being possibly preheated in the exchanger El, before admission to reactor F well said.
  • Preheating can be carried out by any conventional means of heating like an oven, but also by heat exchange with the effluent at high temperature leaving reactor F.
  • Reactor F is the seat of the reaction zone where the cracking of ammonia into nitrogen and hydrogen, including an embodiment and the conditions for implementation are described in patent application FR 96 / 02.909 of the Applicant.
  • reaction effluent leaving reactor F via a line 9, at high temperature generally above 1000 ° C, is cooled in the exchanger E2 to a temperature allowing admission to the high pressure amine washing unit; this temperature is generally between 30 and 100 ° C, preferably between 40 and 60 ° C.
  • This reaction effluent is essentially composed of nitrogen and the resulting hydrogen of the decomposition of ammonia in reactor F, as well as hydrogen sulfide and water vapor present at the inlet and unreacted in reactor F.
  • this reaction effluent may contain traces of ammonia which have not been broken down in reactor F.
  • the residual ammonia content in the reaction effluent usually does not exceed 1% volume, and is preferably less than 0.2% volume.
  • the cooling of the reaction effluent can be carried out with a residence time in the exchanger E2, high enough to allow elemental sulfur from dissociation of part of the hydrogen sulfide in reactor F, to recombine entirely with the hydrogen present in hydrogen sulfide. Lack of catalyst allows in the E2 exchanger to avoid significant recombination of nitrogen and hydrogen to ammonia.
  • the effluent cooled at the outlet of E2 is therefore essentially free of elemental sulfur.
  • the residence time of the reaction effluent in the exchanger E2 is at least equal to 1 second, preferably between 1 and 5 seconds.
  • reaction effluent would be cooled to a temperature slightly above the melting point of sulfur, i.e. temperature between 120 and 130 ° C. Elemental sulfur present in the effluent after this first stage could be recovered, in the form of liquid sulfur by decantation in a separating flask. The cooling of the reaction effluent as well rid of the elemental sulfur it contained can then be continued until the temperature required in a second stage.
  • the cooling of the reaction effluent may, depending on the final temperature reached in outlet of E2 and the water content of said effluent, cause partial condensation of the water present in this effluent. If such condensation occurs, the aqueous phase thus formed can be separated by decantation in the separator flask C.
  • a liquid aqueous phase can be recovered at the bottom of the flask C which may contain all residual ammonia present in the reaction effluent, as well as hydrogen sulphide dissolved in proportions substantially equivalent (in moles) to that of ammonia.
  • This aqueous phase can be returned by a line 10 to the stripper SE.
  • This system allows recycling of unreacted ammonia in oven F and therefore to obtain total destruction of the ammonia present in the acid waters supplying the stripper SE.
  • a gaseous phase is then recovered which consists solely of nitrogen, hydrogen and most of the hydrogen sulfide present in the reaction effluent, in molar proportions substantially equal to 2 H 2 S / 1 N 2/3 H 2, and a small amount of water vapor, generally less than 5 vol%, preferably less than 1% by volume, corresponding to the vapor pressure of water in the separator tank temperature vs.
  • This gas phase can then be sent by a line 11 to a unit 20 of high pressure amine wash treating the high pressure purge gas produced the HDT hydrotreating unit by a line 12.
  • This purge gas is essentially composed of hydrogen, hydrogen sulfide and hydrocarbons having mainly 1 with 5 carbon atoms, in varying proportions. It may also contain low contents, generally less than 5% vol, of other compounds such as nitrogen and water vapor.
  • the purge gas and the gas phase are mixed and washed with a solution of amines so as to extract the hydrogen sulphide from the gases. Washing with amines is generally carried out at the pressure of the purge gas, this pressure being generally between 2 to 10 MPa, preferably between 3 and 7 MPa, and at a temperature generally between 30 and 100 ° C, preferably between 40 and 60 ° C.
  • the amine unit then produces, under substantially equal pressure and temperature to those for washing, a washed gas essentially free of hydrogen sulfide and containing the major part of the other compounds of the treated gases.
  • the washed gas generally contains from 20 to 95% vol of hydrogen, preferably from 50 to 90% vol, with variable proportions of nitrogen, hydrocarbons from 1 to 5 carbon atoms and traces of water vapor (corresponding substantially to the vapor pressure of water at the temperature of said washing).
  • the amine unit also produces, under a pressure generally lower than that washing, preferably between 0.2 and 0.5 MPa abs. a gas rich in hydrogen sulfide, preferably containing at least 50% vol of hydrogen sulfide with varying proportions of hydrocarbons, which is usually sent, via a line 14, to a Claus unit.
  • the washed gas can then be sent via a line 13 to a recovery unit hydrogen.
  • This unit can be a cryogenic distillation, adsorption process or separation by membranes.
  • the washed gas being available under pressure relatively high a separation by membranes is preferably used such than the SM unit shown in the figure.
  • the washed gas can optionally be slightly cooled or reheated before being admitted to the permeation unit proper so as to be at the optimum temperature to separate hydrogen by gas permeation, this temperature being generally understood between 30 and 150 ° C, preferably between 50 and 100 ° C.
  • the SM unit then makes it possible to produce, on the one hand, a gas depleted in hydrogen (retentate), generally containing less than 50% vol of hydrogen, preferably from 5 to 30% theft with most of the other compounds present in said washed gas, under a pressure close to that of the washed gas; on the other hand a gas enriched in hydrogen (permeate), generally containing more than 90% vol, preferably more than 95% flight of hydrogen with varying proportions of the other compounds present in the washed gas, under a pressure lower than that of the washed gas, generally less than 2 MPa abs. and preferably between 0.5 and I MPa abs.
  • retentate gas depleted in hydrogen
  • permeate enriched in hydrogen
  • the retentate can then for example be sent via a line 15 to the gas network fuel from the refinery.
  • the permeate, recovered via line 16 can be mixed with the make-up hydrogen supplying the HDT hydrotreating unit, via a line 17.
  • One of the advantages of the process of the invention is that it allows total destruction of ammonia present in refinery wastewater, without any harmful release to the atmosphere.
  • Another advantage of the process of the invention lies in the fact that hydrogen sulfide present in the form of ammonium sulfide in refinery wastewater, can thus be sent to the Claus unit in a concentrated form, in particular free ammonia but also free of products (nitrogen and hydrogen) formed by the dissociation of this ammonia. This avoids combustion problems of ammonia in the Claus units and in particular to reduce the gas dilution of Claus.
  • Another advantage of the process lies in the possibility that it offers to recycle a part significant hydrogen present in the form of ammonia in the wastewater of refinery.
  • a last advantage of the process lies in its simplicity and in particular in the fact that it only requires the additional installation of a reduced number equipment, compared to those normally found in an equipped refinery hydrotreating units.
  • the amine washing units of the purge gas high pressure, hydrogen recovery by membrane on the high purge gas pressure SM and sewage stripping SE are normally present around the modern hydrotreating units.
  • the method of the invention can be installed generally without significant modification of these existing units. So it does require that the specific installation of compressor K, furnace F, exchangers E1 and E2, as well as the separator flask C.
  • This unit produces by line 3 waste water at a flow rate of 8173 kg / h and containing 0.6% by weight of ammonium sulphide.
  • This water is treated in a SE stripper, which is operated under a pressure of 0.2 MPa abs.
  • This stripper is further supplied, via line 4, with a flow rate of 132,550 kg / h of water containing 2% by weight of ammonium sulphide, coming from another refining unit.
  • the stripper produces at the head, at a temperature of 80 ° C., a gas containing 20% mol of water vapor, 40% mol of ammonia and 40% mol of hydrogen sulfide, at a flow rate of 2965 Nm 3 / h .
  • it produces purified water at a temperature of 119 ° C and at a flow rate of 137,548 kg / h.
  • the gas obtained at the top of the stripper should be sent to cremation or to a Claus unit when possible.
  • the hydrotreating unit is also supplied, by line 17, with a make-up gas rich in hydrogen. Most of this hydrogen is consumed chemically by hydrotreatment reactions. Another part is found in the purge gas high pressure produced by line 12, under a pressure of 4.6 MPa abs. This gas is desulphurized by washing with amines and then admitted via line 13 into a unit of hydrogen recovery by polyaramide membrane (Medal). We can thus recover most of the hydrogen present in the high pressure purge gas and recycle it via line 16 to the hydrotreating unit.
  • Table 1 shows the hydrogen balance of the hydrotreatment unit, as it usually occurs when the process of the invention is not implemented. Hydrogen balance of the hydrotreating unit in the absence of the process of the invention Add-on (17) HP bleed (12) Washed drain (13) Retentate (15) Permeate (16) Composition (% vol) H 2 91.93 79.48 81.10 47.26 98.77 C 1 + 6.65 15.35 15.66 43.99 0.87 N 2 1.36 3.18 3.24 8.75 0.36 H 2 S - 1.99 - - H 2 O - - - - NH 3 - - - - P (bar abs) 20 46 45 45 20 T (° C) 90 50 50 90 90 Flow (Nm 3 / h) 23536 8166 8003 2746 5257
  • the SE stripper is then supplied not only with 8,173 kg / h of waste water at 0.6% wt. ammonium sulfide from the HDT unit and 132,550 kg / h of water containing 2% of ammonium sulphide, but also, via line 10, by water condensed at separator tank C.
  • the flow rate of this condensed water is 473 kg / h and it contains 0.85% by weight of ammonium sulphide.
  • the stripper SE then produces at the head, under a pressure of 0.2 MPa abs.
  • This stripper produces purified water at a temperature of 119 ° C, with a flow rate of 138,016 kg / h.
  • the gas thus obtained at the top of the stripper SE is compressed in the compressor K to a pressure of 0.7 MPa abs. then reheated in the exchanger E1 to a temperature of 1000 ° C. This hot gas then feeds an oven F, produced according to the method described in application FR 96 / 02.909 of the Applicant.
  • the hot gas leaving the oven F is cooled in the exchanger E2 to a temperature of 50 ° C.
  • the residence time in the exchanger E2 is fixed at 2 s. This cooling causes most of the water vapor present in the gas leaving the oven to condense. It is this condensed water which is recovered at the level of the separator flask C and is returned by line 10 to the stripper SE.
  • the cracked gas thus recovered by line 11 is compressed to a pressure of 4.6 Mpa abs. in a second compressor K1, not shown in the figure, then mixed with the high-pressure purge gas leaving the HDT unit via line 12.
  • This gas mixture is washed in the amine washing unit 20 which produces through the line 13 a washed gas supplying the membrane separator SM at a pressure of 4.5 MPa.
  • the permeate from the SM unit is recycled to the hydrotreating unit.
  • Table 2 shows the hydrogen balance of the hydrotreatment unit when the process of the invention is implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Water Treatments (AREA)
  • Industrial Gases (AREA)

Abstract

On décrit dans un procédé d'hydrotraitement (HDT) d'une charge (1) pétrolière contenant du soufre et de l'azote, le craquage catalytique de l'ammoniac, produit par le procédé d'hydrotraitement, dans un four (F), le refroidissement (E2) de l'effluent de craquage, l'extraction de l'hydrogène sulfuré dans une unité (20) de lavage aux amines et la séparation (SM) de l'hydrogène de l'effluent en résultant. L'hydrogène récupéré est recyclé dans l'unité d'hydrotraitement (HDT) par un conduit (17). <IMAGE>

Description

L'invention concerne un procédé et un dispositif de craquage catalytique d'ammoniac contenu dans un fluide gazeux ou liquide qui comprend de l'hydrogène sulfuré, ainsi que la séparation de l'hydrogène produit par ce craquage d'ammoniac et l'utilisation de cet hydrogène dans un procédé d'hydrotraitement d'une charge hydrocarbonée contenant du soufre et de l'azote.
L'art antérieur est illustré par les brevets suivants : US-A-3,627,470, US-A-4,272,357, US-A-3,365,374 et US-A-4,806,233.
Les traitements à l'hydrogène sous pression des coupes pétrolières liquides (hydrotraitements) sont des procédés bien connus et largement utilisés pour améliorer les propriétés de ces coupes. Ces traitements permettent en particulier de convertir les composés organiques contenant des hétéro - atomes (soufre, azote) en hydrocarbures et en composés minéraux (hydrogène sulfuré, ammoniac), ces derniers pouvant ensuite aisément être séparés par des opérations simples telles que des stripages (distillations) et des lavages à l'eau. Un souci accru de protection de l'environnement conduit à abaisser les teneurs en soufre et en azote des produits pétroliers et donc à augmenter la quantité d'hydrogène nécessaire au fonctionnement des unités d'hydrotraitement.
La disponibilité de l'hydrogène en raffinerie étant limitée, les raffineurs sont conduits à minimiser les pertes en hydrogène au niveau de ces unités d'hydrotraitement. Or ces unités, de par leur conception, produisent toujours un gaz de purge à haute pression, sous une pression généralement comprise entre 20 et 100 bar (1 bar = 0,1MPa), relativement riche en hydrogène puisque la teneur en hydrogène de ce type de gaz est généralement supérieure à 50 %. On est donc amené dans les unités modernes d'hydrotraitement à mettre en place une unité de récupération de l'hydrogène résiduel présent sur ce gaz de purge haute pression.
Différentes techniques peuvent à priori être utilisées pour séparer et récupérer cet hydrogène, telles que la distillation cryogénique, l'adsorption ou la perméation gazeuse sur membrane. C'est cependant cette dernière qui est mise en oeuvre préférentiellement pour traiter les gaz de purge haute pression des unités d'hydrotraitement. Une telle mise en oeuvre est aujourd'hui bien connue de l'homme de l'art. On peut par exemple en trouver une description dans "Hydrogen membrane applications and design" par G.L. Poffenbarger, AIChE Spring Natl. Meet. (Houston), 2 - 6 avril 1989, Preprint n° 61 b, incorporée comme référence.
Lors des opérations d'hydrotraitement, l'azote contenu dans les molécules organiques est transformé en ammoniac (NH3). Cet ammoniac est éliminé par lavage à l'eau qui, par suite de la présence d'hydrogène sulfuré (H2S), fournit une solution aqueuse de sulfure d'ammonium. Jusqu'à présent, la solution aqueuse, après avoir été concentrée en H2S et NH3 par stripage (distillation), était envoyée à l'incinération. Ceci n'est plus admis actuellement pour des raisons qui touchent à l'environnement (pollution par SO2 et oxydes d'azote).
Les raffineurs sont donc amenés à envoyer ce produit dans l'étage thermique d'une unité Claus. Cependant la combustion de l'ammoniac au niveau de l'étage thermique d'une unité Claus est délicate. Elle nécessite parfois des modifications plus ou moins importantes des équipements de l'unité Claus. Cette combustion, lorsqu'elle n'est pas effectuée correctement, peut également provoquer de nombreuses difficultés opératoires (bouchage, corrosion de l'unité Claus). Elle provoque enfin une dilution des gaz de l'unité Claus préjudiciable aux performances de cette unité.
Il a été décrit, dans une demande de brevet de la demanderesse FR 96 02909 incorporée comme référence, un procédé et un dispositif de craquage de l'ammoniac présent dans un gaz contenant de l'hydrogène sulfuré.
Un objet de l'invention est de permettre une récupération, au moins partielle au niveau d'une unité d'hydrotraitement, de l'hydrogène présent sous forme d'ammoniac notamment dans les eaux acides de raffineries.
Plus précisément l'invention concerne un procédé de craquage catalytique de l'ammoniac présent dans un fluide contenant de l'hydrogène sulfuré, dans lequel on introduit le fluide dans une zone réactionnelle comportant un catalyseur approprié, caractérisé en ce que la température de ladite zone réactionnelle est de 1000 à 1400 °C et en ce que l'effluent de craquage obtenu en sortie de ladite zone réactionnelle est envoyé vers une unité de récupération d'hydrogène traitant un (des) gaz de purge haute pression d'unité(s) d'hydrotraitement, après avoir été éventuellement refroidi et/ou partiellement condensé et/ou comprimé et/ou traité par une unité de lavage aux amines.
Ce procédé de craquage peut être mis en oeuvre dans un procédé d'hydrotraitement.
De manière plus détaillée, l'invention concerne un procédé d'hydrotraitement d'une charge hydrocarbonée contenant du soufre et de l'azote, dans lequel on hydrotraite la charge en présence d'un catalyseur dans une zone d'hydrotraitement (HDT), on récupère un produit hydrocarboné hydrotraité, un gaz de purge (12) haute pression comprenant de l'hydrogène, de l'hydrogène sulfuré et des hydrocarbures légers (C5-) et un premier effluent contenant de l'eau et du sulfure d'ammonium, on purifie le premier effluent dans une zone de stripage de manière à récupérer de l'hydrogène sulfuré et de l'ammoniac, on introduit le premier effluent dans une zone de craquage comportant un catalyseur, chauffée entre 1000 et 1400 °C, on récupère un effluent de craquage (9,11) comprenant de l'hydrogène sulfuré, de l'hydrogène et de l'azote résultant du craquage de l'ammoniac, le procédé étant caractérisé en ce que l'on refroidit ledit effluent de craquage à une température adéquate, on récupère une phase gazeuse (11) comprenant de l'azote, de l'hydrogène et de l'hydrogène sulfuré, on introduit ladite phase gazeuse dans une unité (20) d'extraction de l'hydrogène sulfuré, on fait passer la phase gazeuse ainsi sensiblement débarrassée de l'hydrogène sulfuré dans une unité de récupération (SM) d'hydrogène et on recycle au moins en partie l'hydrogène récupéré dans la zone d'hydrotraitement (HDT).
Selon une caractéristique de l'invention, le gaz de purge (12) haute pression provenant de la zone d'hydrotraitement peut être introduit avec ladite phase gazeuse dans l'unité (20) d'extraction de l'hydrogène sulfuré et on récupère un gaz riche en hydrogène sulfuré et la phase gazeuse sensiblement débarrassée de l'hydrogène sulfuré.
Selon une autre caractéristique, on peut refroidir l'effluent de craquage à une température de 30 à 100 °C dans un échangeur de chaleur E2 durant une période de temps au moins égale à 1 seconde et de préférence comprise entre I et 5 secondes.
Selon une première variante du procédé, on peut comprimer le premier effluent à une pression de 2 à 10 MPa compatible avec l'unité d'extraction de l'hydrogène sulfuré, avant son introduction dans la zone de craquage.
Selon une deuxième variante du procédé, au lieu de comprimer le premier effluent d'hydrotraitement, on peut comprimer l'effluent de craquage refroidi dans l'échangeur E2 à une pression de 2 à 10 MPa, compatible avec l'unité d'extraction de l'hydrogène sulfuré.
Selon une troisième variante, on peut à la fois comprimer en partie le premier effluent d'hydrotraitement avant la zone de craquage et en partie l'effluent de craquage refroidi dans l'échangeur E2 avant d'en extraire l'hydrogène sulfuré.
Selon une autre caractéristique du procédé, on peut séparer par décantation au moins partiellement l'eau contenue dans l'effluent de craquage, on récupère la phase gazeuse que l'on introduit dans ladite unité d'extraction de l'hydrogène sulfuré et une phase liquide aqueuse.
Cette phase liquide aqueuse peut être avantageusement recyclée dans la zone de stripage dans laquelle est introduit l'effluent de la zone d'hydrotraitement qui contient de l'hydrogène sulfuré et l'ammoniac produit par l'unité d'hydrotraitement, sous la forme d'une solution aqueuse de sulfure d'ammonium. Cette solution y est stripée et on peut récupérer d'une part de l'eau purifiée en fond de la zone de stripage et d'autre part, en tête de la zone de stripage, l'effluent gazeux contenant de la vapeur d'eau, de l'hydrogène sulfuré et de l'ammoniac que l'on envoie dans la zone de craquage catalytique.
L'invention concerne une unité d'hydrotraitement d'une charge hydrocarbonée contenant du soufre et de l'azote comprenant un réacteur d'hydrotraitement (HDT) qui comporte une alimentation (1) en la charge, une alimentation (7) en hydrogène, un soutirage (2) de produit hydrotraité, un soutirage (12) de gaz de purge, un soutirage (3) d'un effluent contenant de l'eau et du sulfure d'ammonium, une unité d'extraction (20) de l'hydrogène sulfuré contenu dans le gaz de purge connecté au réacteur HDT, ladite unité d'extraction comportant une ligne (14) de récupération d'un produit riche en hydrogène sulfuré et une ligne (13) de récupération d'un produit pauvre en hydrogène sulfuré et riche en hydrogène, au moins un séparateur (SM) d'hydrogène raccordé à la ligne (13) de récupération du produit pauvre en hydrogène sulfuré et riche en hydrogène et au moins un moyen (16) de recyclage de l'hydrogène récupéré raccordé au séparateur d'hydrogène et au réacteur d'hydrotraitement, l'unité d'hydrotraitement étant caractérisé en ce qu'elle comporte un moyen de stripage (SE) de l'effluent raccordé au soutirage (3), au moins un réacteur de craquage catalytique de l'effluent stripé adapté à opérer entre 1000 et 1400 °C raccordé au moyen (SE) de stripage, au moins un moyen de refroidissement (E2) de l'effluent craqué contenant de l'hydrogène, au moins un compresseur (K) en amont du réacteur de craquage ou en aval du moyen de refroidissement (E2) et une ligne de sortie (11) d'une phase gazeuse raccordée à l'unité (20) d'extraction de l'hydrogène sulfuré.
L'invention sera mieux comprise au vu de la figure qui représente un mode préféré de réalisation de l'invention et qui illustre la combinaison d'une unité d'hydrotraitement, d'un dispositif de craquage catalytique de l'ammoniac et le recyclage de l'hydrogène en résultant.
On considère une unité d'hydrotraitement HDT, traitant, en présence d'un catalyseur, une charge d'hydrocarbures liquides contenant une certaine proportion de soufre et d'azote, amenée par une ligne 1. Cette unité produit par une ligne 2 une coupe d'hydrocarbures hydrotraitée, dont la teneur en soufre et en azote est réduite.
L'ammoniac produit par l'unité HDT est récupéré par lavage à l'eau de l'effluent du réacteur d'hydrotraitement, sous forme d'une solution aqueuse de sulfure d'ammonium envoyée par une ligne 3 vers un stripeur d'eaux usées SE. Ce stripeur peut éventuellement être alimenté également, via une ligne 4, par d'autres eaux usées similaires provenant d'autres unités non représentées sur la figure. Le stripeur SE produit en fond une eau purifiée, essentiellement exempte de sulfure d'ammonium qui peut être renvoyée vers l'unité d'hydrotraitement HDT pour effectuer le lavage à l'eau de l'effluent du réacteur, via une ligne 5, et éventuellement vers d'autres unités via une ligne 6.
En tête du stripeur SE on récupère via une ligne 7, sous une pression généralement comprise entre 0,1 et 0,5 MPa abs. et à une température généralement comprise entre 50 et 150 °C, un effluent gazeux essentiellement constitué de vapeur d'eau et de quantités sensiblement égales d'hydrogène sulfuré et d'ammoniac. Le teneur en eau de l'effluent gazeux est généralement comprise entre 10 et 80 %.
L'effluent peut être comprimé dans un compresseur K jusqu'à une pression suffisante pour lui permettre, après passage dans un échangeur E1, un réacteur F de craquage de l'ammoniac, un échangeur E2 et un ballon séparateur C, d'être admis à l'unité de lavage aux amines haute pression 20, traitant le gaz de purge haute pression de l'unité d'hydrotraitement HDT. Il est bien entendu que cet étage de compression K, placé ici préférentiellement avant le réacteur F, peut également être placé après le réacteur F, en sortie de l'échangeur E2. Ce dernier arrangement offre cependant l'inconvénient de nécessiter la compression d'un volume gazeux plus important, 1 mole d'ammoniac étant dissociée dans le réacteur F en 0,5 mole d'azote et 1,5 mole d'hydrogène. Il est également possible d'effectuer la compression de l'effluent gazeux jusqu'à la pression requise pour son admission à l'unité de lavage aux amines haute pression en deux étapes placées respectivement avant et après le réacteur F, comme indiqué ci-dessus.
L'effluent comprimé est ensuite envoyé par une ligne 8 vers le réacteur F, en étant éventuellement préchauffé dans l'échangeur El, avant admission dans le réacteur F proprement dit. Le préchauffage peut être effectué par tout moyen conventionnel de chauffage comme un four, mais aussi par échange de chaleur avec l'effluent à haute température quittant le réacteur F.
Le réacteur F est le siège de la zone réactionnelle où s'effectue le craquage de l'ammoniac en azote et en hydrogène, dont un mode de réalisation et les conditions de mise en oeuvre sont décrits dans la demande de brevet FR 96/02.909 de la Demanderesse.
L'effluent réactionnel quittant le réacteur F par une ligne 9, à haute température généralement supérieure à 1000 °C, est refroidi dans l'échangeur E2 jusqu'à une température permettant son admission dans l'unité de lavage aux amines haute pression ; cette température est généralement comprise entre 30 et 100 °C, préférentiellement comprise entre 40 et 60 °C.
Cet effluent réactionnel est essentiellement composé de l'azote et l'hydrogène résultant de la décomposition de l'ammoniac dans le réacteur F, ainsi que de l'hydrogène sulfuré et de la vapeur d'eau présents à l'entrée et n'ayant pas réagi dans le réacteur F. En outre cet effluent réactionnel peut contenir des traces d'ammoniac n'ayant pas été décomposé dans le réacteur F. Compte tenu des taux élevés de conversion réalisés dans le réacteur F la teneur en ammoniac résiduel dans l'effluent réactionnel n'excède habituellement pas 1 % volume, et est préférentiellement inférieure à 0,2 % volume.
Le refroidissement de l'effluent réactionnel peut être effectué avec un temps de séjour dans l'échangeur E2, suffisamment élevé pour permettre au soufre élémentaire, issu de la dissociation d'une partie de l'hydrogène sulfuré dans le réacteur F, de se recombiner intégralement avec l'hydrogène présent en hydrogène sulfuré. L'absence de catalyseur permet dans l'échangeur E2 d'éviter une recombinaison significative de l'azote et de l'hydrogène en ammoniac. L'effluent refroidi en sortie de E2 est donc essentiellement exempt de soufre élémentaire. A cet effet le temps de séjour de l'effluent réactionnel dans l'échangeur E2 est au moins égal à 1 seconde, préférentiellement compris entre 1 et 5 secondes.
Il est clair qu'un refroidissement plus rapide de l'effluent réactionnel serait possible mais nécessiterait alors d'effectuer ce refroidissement en 2 étapes, non représentées sur le schéma de la figure. Dans la première étape l'effluent réactionnel serait refroidi jusqu'à une température légèrement supérieure au point de fusion du soufre, soit une température comprise entre 120 et 130 °C. Le soufre élémentaire présent dans l'effluent après cette première étape pourrait être récupéré, sous forme de soufre liquide par décantation dans un ballon séparateur. Le refroidissement de l'effluent réactionnel ainsi débarrassé du soufre élémentaire qu'il contenait peut alors être poursuivi jusqu'à la température requise dans une deuxième étape.
Le refroidissement de l'effluent réactionnel peut, selon la température finale atteinte en sortie de E2 et la teneur en eau dudit effluent, provoquer une condensation partielle de l'eau présente dans cet effluent. Si une telle condensation se produit, la phase aqueuse ainsi formée peut être séparée par décantation dans le ballon séparateur C.
On récupère en fond du ballon C une phase aqueuse liquide pouvant contenir la totalité de l'ammoniac résiduel présent dans l'effluent réactionnel, ainsi que de l'hydrogène sulfuré dissout dans des proportions sensiblement équivalentes (en moles) à celle de l'ammoniac. Cette phase aqueuse peut être renvoyée par une ligne 10 au stripeur SE. Ce système permet de recycler l'ammoniac n'ayant pas réagi dans le four F et donc d'obtenir une destruction totale de l'ammoniac présent dans les eaux acides alimentant le stripeur SE.
En tête du ballon C on récupère alors une phase gazeuse constituée uniquement de l'azote, l'hydrogène et l'essentiel de l'hydrogène sulfuré présent dans l'effluent réactionnel, dans des proportions molaires sensiblement égales à 2 H2S/ 1 N2/ 3 H2, ainsi que d'une faible quantité de vapeur d'eau, généralement inférieure à 5 % vol, préférentiellement inférieure à 1 % vol, correspondant à la tension de vapeur de l'eau à la température du ballon séparateur C.
Cette phase gazeuse peut alors être envoyée par une ligne 11 vers une unité 20 de lavage aux amines haute pression traitant le gaz de purge haute pression que produit l'unité d'hydrotraitement HDT par une ligne 12. Ce gaz de purge est essentiellement composé d'hydrogène, d'hydrogène sulfuré et d'hydrocarbures ayant principalement de 1 à 5 atomes de carbone, dans des proportions variables. Il peut également contenir des faibles teneurs, généralement inférieures à 5 % vol, d'autres composés tels que l'azote et la vapeur d'eau.
Dans l'unité 20 d'amines le gaz de purge et la phase gazeuse sont mélangés et lavés par une solution d'amines de manière à extraire l'hydrogène sulfuré des gaz. Le lavage aux amines est en règle générale effectué à la pression du gaz de purge, cette pression étant généralement comprise entre 2 à 10 MPa, préférentiellement comprise entre 3 et 7 MPa, et à une température généralement comprise entre 30 et 100° C, préférentiellement comprise entre 40 et 60 °C.
L'unité d'amines produit alors, sous une pression et une température sensiblement égales à celles du lavage, un gaz lavé essentiellement exempt d'hydrogène sulfuré et contenant la majeure partie des autres composés des gaz traités. Le gaz lavé contient généralement de 20 à 95 % vol d'hydrogène, préférentiellement de 50 à 90 % vol, avec des proportions variables d'azote, d'hydrocarbures de 1 à 5 atomes de carbone et des traces de vapeur d'eau (correspondant sensiblement à la tension de vapeur de l'eau à la température dudit lavage).
L'unité d'amines produit également, sous une pression généralement inférieure à celle du lavage, préférentiellement comprise entre 0,2 et 0,5 MPa abs. un gaz riche en hydrogène sulfuré, contenant préférentiellement au moins 50 % vol d'hydrogène sulfuré avec des proportions variables d'hydrocarbures, qui est généralement envoyé, via une ligne 14, vers une unité Claus.
Le gaz lavé peut alors être envoyé via une ligne 13 vers une unité de récupération d'hydrogène. Cette unité peut être un procédé de distillation cryogénique, d'adsorption ou de séparation par membranes. Le gaz lavé étant disponible sous une pression relativement élevée on utilise préférentiellement une séparation par membranes telle que l'unité SM représentée sur la figure. Le gaz lavé peut éventuellement être légèrement refroidi ou réchauffé avant d'être admis dans l'unité de perméation proprement dite de manière à se trouver à la température optimale pour séparer l'hydrogène par perméation gazeuse, cette température étant généralement comprise entre 30 et 150 °C, préférentiellement comprise entre 50 et 100 °C.
L'unité SM permet alors de produire d'une part un gaz appauvri en hydrogène (rétentat), contenant généralement moins de 50 % vol d'hydrogène, préférentiellement de 5 à 30 % vol avec la majeure partie des autres composés présents dans ledit gaz lavé, sous une pression proche de celle du gaz lavé ; d'autre part un gaz enrichi en hydrogène (perméat), contenant généralement plus de 90 % vol, préférentiellement plus de 95 % vol d'hydrogène avec des proportions variables des autres composés présents dans le gaz lavé, sous une pression inférieure à celle du gaz lavé, généralement inférieure à 2 MPa abs. et préférentiellement comprise entre 0,5 et I MPa abs.
Le rétentat peut alors par exemple être envoyé via une ligne 15 vers le réseau de gaz combustible de la raffinerie. Le perméat, récupéré via une ligne 16, peut être mélangé avec l'hydrogène d'appoint alimentant l'unité d'hydrotraitement HDT, par une ligne 17.
L'un des avantages du procédé de l'invention est de permettre une destruction totale de l'ammoniac présent dans les eaux usées de raffinerie, sans aucun rejet nocif à l'atmosphère.
Un autre avantage du procédé de l'invention réside dans le fait que l'hydrogène sulfuré présent sous la forme de sulfure d'ammonium dans les eaux usées de raffinerie, peut être ainsi envoyé vers l'unité Claus sous une forme concentrée, notamment exempte d'ammoniac mais également exempte des produits (azote et hydrogène) formés par la dissociation de cet ammoniac. Ceci permet d'éviter les problèmes liés à la combustion de l'ammoniac dans les unités Claus et en particulier de réduire la dilution du gaz de Claus.
Un autre avantage du procédé réside dans la possibilité qu'il offre de recycler une part importante de l'hydrogène présent sous la forme d'ammoniac dans les eaux usées de raffinerie.
Enfin un dernier avantage du procédé réside dans sa simplicité et notamment dans le fait qu'il ne nécessite que l'installation supplémentaire d'un nombre réduit d'équipements, par rapport à ceux existant normalement dans une raffinerie équipée d'unités d'hydrotraitement. En effet les unités de lavage aux amines du gaz de purge haute pression, de récupération d'hydrogène par membrane sur le gaz de purge haute pression SM et de stripage des eaux usées SE sont normalement présentes autour des unités d'hydrotraitement modernes. Le procédé de l'invention peut être installé généralement sans modification importante de ces unités existantes. Il ne nécessite donc que l'installation spécifique du compresseur K, du four F, des échangeurs E1 et E2, ainsi que du ballon séparateur C.
L'exemple comparatif suivant illustre l'invention.
On considère une unité d'hydrotraitement qui traite une charge d'hydrocarbures liquides sous un débit de 162,4 tonnes/h. Cette charge contient 2,12 % poids de soufre et 0,057 % poids d'azote. Cette unité permet de convertir 98 % du soufre entrant dans l'unité en H2S et 14 % de l'azote en NH3 en présence d'un catalyseur conventionnel.
Cette unité produit par la ligne 3 une eau usée sous un débit de 8173 kg/h et contenant 0,6 % poids de sulfure d'ammonium. On traite cette eau dans un stripeur SE, qui est opéré sous une pression de 0,2 MPa abs. Ce stripeur est en outre alimenté, par la ligne 4, par un débit de 132550 kg/h d'une eau contenant 2 % poids de sulfure d'ammonium, provenant d'une autre unité de raffinage. Le stripeur produit en tête, à une température de 80 °C, un gaz contenant 20 % mol de vapeur d'eau, 40 % mol d'ammoniac et 40 % mol d'hydrogène sulfuré, sous un débit de 2965 Nm3/h. En fond il produit une eau purifiée à une température de 119 °C et sous un débit de 137548 kg/h.
Lorsque le procédé de l'invention n'est pas mis en place le gaz obtenu en tête du stripeur doit être renvoyé vers l'incinération ou vers une unité Claus lorsque c'est possible.
L'unité d'hydrotraitement est en outre alimentée, par la ligne 17, par un gaz d'appoint riche en hydrogène. La majeure partie de cet hydrogène est consommée chimiquement par les réactions d'hydrotraitement. Une autre partie se retrouve dans le gaz de purge haute pression produit par la ligne 12, sous une pression de 4,6 MPa abs. Ce gaz est désulfuré par lavage aux amines puis admis par la ligne 13 dans une unité de récupération d'hydrogène par membrane en polyaramide (Medal). On peut ainsi récupérer la majeure partie de l'hydrogène présent dans le gaz de purge haute pression et le recycler via la ligne 16 vers l'unité d'hydrotraitement.
Le tableau 1 montre le bilan en hydrogène de l'unité d'hydrotraitement, tel qu'il se présente habituellement lorsque le procédé de l'invention n'est pas mis en place.
Bilan hydrogène de l'unité d'hydrotraitement en l'absence du procédé de l'invention
Appoint (17) Purge HP (12) Purge lavée (13) Rétentat (15) Perméat (16)
Composition (%vol)
H2 91,93 79,48 81,10 47,26 98,77
C1+ 6,65 15,35 15,66 43,99 0,87
N2 1,36 3,18 3,24 8,75 0,36
H2S - 1,99 - -
H2O - - - -
NH3 - - - -
P (bar abs) 20 46 45 45 20
T(°C) 90 50 50 90 90
Débit (Nm3/h) 23536 8166 8003 2746 5257
On peut voir sur ce tableau que 80 % de l'hydrogène présent dans le gaz de purge haute pression sont récupérées grâce à l'unité à membrane. La quantité d'hydrogène ainsi récupérée représente 19,35 % de l'hydrogène alimentant l'unité d'hydrotraitement (appoint + perméat). L'hydrogène perdu dans le rétentat ne représente que 4,84 % de cette alimentation en hydrogène.
Sur cette même unité on installe maintenant les équipements (compresseurs K et K1 (non représenté), four F, échangeurs E1 et E2 et ballon séparateur C) permettant de mettre en oeuvre le procédé de l'invention.
Le stripeur SE est alors alimenté non seulement par 8173 kg/h d'eau usée à 0,6 %pds de sulfure d'ammonium provenant de l'unité HDT et par 132550 kg/h d'eau contenant 2 % pds de sulfure d'ammonium, mais également, via la ligne 10, par l'eau condensée au ballon séparateur C. Le débit de cette eau condensée est de 473 kg/h et elle contient 0,85 % poids de sulfure d'ammonium. Le stripeur SE produit alors en tête, sous une pression de 0,2 MPa abs. et à une température de 80 °C, un gaz contenant 40 % mol d'hydrogène sulfuré, 40 % mol d'ammoniac et 20 % mol de vapeur d'eau, avec un débit de 2968 Nm'/h. Ce stripeur produit en fond une eau purifiée à une température de 119° C, avec un débit de 138016 kg/h.
Le gaz ainsi obtenu en tête du stripeur SE est comprimé dans le compresseur K jusqu'à une pression de 0,7 MPa abs. puis réchauffé dans l'échangeur E1 jusqu'à une température de 1000 °C. Ce gaz chaud alimente alors un four F, réalisé suivant le mode décrit dans la demande FR 96/02.909 de la Demanderesse. Le gaz chaud quittant le four F est refroidi dans l'échangeur E2 jusqu'à une température de 50 °C. Le temps de séjour dans l'échangeur E2 est fixé à 2 s. Ce refroidissement provoque la condensation de la majeure partie de la vapeur d'eau présente dans le gaz en sortie du four. C'est cette eau condensée qui est récupérée au niveau du ballon séparateur C et est renvoyée par la ligne 10 au stripeur SE. On récupère également au niveau du ballon séparateur C, par la ligne 11, un débit de 3566 Nm3/h d'un gaz sous une pression de 0,6 MPa abs. dont la composition est donnée au tableau 2 ci-après (gaz craqué). Le taux de décomposition de l'ammoniac observé en sortie de E2 est de 99,85 %. Aucune décomposition notable d'hydrogène sulfuré ne peut être observée après le refroidissement dans E2.
Le gaz craqué ainsi récupéré par la ligne 11 est comprimé jusqu'à une pression de 4,6 Mpa abs. dans un second compresseur K1, non représenté sur la figure, puis mélangé au gaz de purge haute pression quittant l'unité HDT par la ligne 12. Ce mélange de gaz est lavé dans l'unité 20 de lavage aux amines qui produit par la ligne 13 un gaz lavé alimentant sous une pression de 4,5 MPa le séparateur à membrane SM. Comme précédemment le perméat de l'unité SM est recyclé vers l'unité d'hydrotraitement. Le tableau 2 montre le bilan hydrogène de l'unité d'hydrotraitement lorsque le procédé de l'invention est mis en place.
Bilan hydrogène de l'unité d'hydrotraitement avec le procédé de l'invention
Appoint (17) Purge HP (12) Gaz craqué (11) Gaz lavé (13) Rétentat (15) Perméat (16)
Composition (%vol)
H2 91,93 79,48 49,88 79,71 45,39 98,29
C1+ 6,65 15,35 - 12,08 33,06 0,71
N2 1,36 3,18 16,60 8,21 21,54 0,99
H2S - 1,99 33,26 - -
H2O - - 0,26 - -
NH3 - - - - -
P(bar abs) 20 46 6 45 45 20
T(°C) 90 50 50 50 90 90
Débit (Nm3/h) 21989 8166 3566 10374 3644 6730
On peut voir sur le tableau 2 que la quantité d'hydrogène récupérée par l'unité à membranes SM représente cette fois 24,65 % de l'alimentation en hydrogène (appoint + perméat) de l'unité d'hydrotraitement, avec toujours un taux de récupération de 80 % au niveau de l'unité à membrane proprement dite. La récupération de l'hydrogène provenant du craquage de l'ammoniac permet notamment, par rapport au cas précédent, de réduire de 6,6 % la consommation d'hydrogène d'appoint.

Claims (11)

  1. Procédé d'hydrotraitement d'une charge hydrocarbonée contenant du soufre et de l'azote, dans lequel on hydrotraite la charge en présence d'un catalyseur dans une zone d'hydrotraitement (HDT), on récupère un produit hydrocarboné hydrotraité, un gaz de purge (12) haute pression comprenant de l'hydrogène, de l'hydrogène sulfuré et des hydrocarbures légers (C5-) et un premier effluent contenant de l'eau et du sulfure d'ammonium, on purifie le premier effluent dans une zone de stripage (SE) de manière à récupérer de l'hydrogène sulfuré et de l'ammoniac, on introduit le premier effluent dans une zone de craquage comportant un catalyseur, chauffée entre 1000 et 1400 °C, on récupère un effluent de craquage (9,11) comprenant de l'hydrogène sulfuré, de l'hydrogène et de l'azote résultant du craquage de l'ammoniac, le procédé étant caractérisé en ce que l'on refroidit ledit effluent de craquage à une température adéquate, on récupère une phase gazeuse (11) comprenant de l'azote, de l'hydrogène et de l'hydrogène sulfuré, on introduit ladite phase gazeuse dans une unité (20) d'extraction de l'hydrogène sulfuré, on fait passer la phase gazeuse ainsi sensiblement débarrassée de l'hydrogène sulfuré dans une unité de récupération (SM) d'hydrogène et on recycle au moins en partie l'hydrogène récupéré dans la zone d'hydrotraitement (HDT).
  2. Procédé selon la revendication 1, dans lequel le gaz de purge (12) haute pression provenant de la zone d'hydrotraitement est introduit dans l'unité (20) d'extraction de l'hydrogène sulfuré et on récupère un gaz riche en hydrogène sulfuré et la phase gazeuse sensiblement débarrassée de l'hydrogène sulfuré.
  3. Procédé selon l'une des revendications 1 et 2, dans lequel on refroidit l'effluent de craquage à une température de 30 à 100 °C dans un échangeur de chaleur E2 durant une période de temps au moins égale à 1 seconde et de préférence comprise entre 1 et 5 secondes.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel on comprime le premier effluent à une pression de 2 à 10 MPa compatible avec l'unité d'extraction de l'hydrogène sulfuré, avant son introduction dans la zone de craquage.
  5. Procédé selon l'une des revendications 1 à 4, dans lequel on comprime l'effluent de craquage refroidi dans l'échangeur E2 à une pression de 2 à 10 MPa compatible avec l'unité d'extraction de l'hydrogène sulfuré.
  6. Procédé selon l'une des revendications 1 à 5, dans lequel l'unité d'extraction de l'hydrogène sulfuré est une unité d'extraction aux amines haute pression.
  7. Procédé selon l'une des revendications 1 à 6, dans lequel l'unité de récupération d'hydrogène est une unité de perméation par membrane.
  8. Procédé selon l'une des revendications 1 à 7, dans lequel on sépare par décantation au moins en partie l'eau contenue dans l'effluent de craquage, on récupère la phase gazeuse que l'on introduit dans ladite unité d'extraction de l'hydrogène sulfuré et une phase liquide aqueuse.
  9. Procédé selon la revendication 8, dans lequel ladite phase liquide aqueuse est recyclée dans la zone de stripage.
  10. Unité d'hydrotraitement d'une charge hydrocarbonée contenant du soufre et de l'azote comprenant un réacteur d'hydrotraitement (HDT) qui comporte une alimentation (1) en la charge, une alimentation (17) en hydrogène, un soutirage (2) de produit hydrotraité, un soutirage (12) de gaz de purge, un soutirage (3) d'un effluent contenant de l'eau et du sulfure d'ammonium, une unité d'extraction (20) de l'hydrogène sulfuré contenu dans le gaz de purge connecté au réacteur (HDT), ladite unité d'extraction comportant une ligne (14) de récupération d'un produit riche en hydrogène sulfuré et une ligne (13) de récupération d'un produit pauvre en hydrogène sulfuré et riche en hydrogène, au moins un séparateur (SM) d'hydrogène raccordé à la ligne (13) de récupération du produit pauvre en hydrogène sulfuré et riche en hydrogène et au moins un moyen (16) de recyclage de l'hydrogène récupéré raccordé au séparateur d'hydrogène et au réacteur d'hydrotraitement, l'unité d'hydrotraitement étant caractérisé en ce qu'elle comporte un moyen de stripage (SE) de l'effluent raccordé au soutirage (3), au moins un réacteur de craquage catalytique de l'effluent stripé adapté à opérer entre 1000 et 1400 °C raccordé au moyen (SE) de stripage, au moins un moyen de refroidissement (E2) de l'effluent craqué contenant de l'hydrogène, au moins un compresseur (K) en amont du réacteur de craquage ou en aval du moyen de refroidissement (E2), et une ligne de sortie (11) d'une phase gazeuse raccordée à l'unité (20) d'extraction de l'hydrogène sulfuré.
  11. Unité selon la revendication 10, dans laquelle un séparateur de phases est interposé entre le moyen de refroidissement E2 et l'unité (20) d'extraction, comprenant une ligne (10) de recyclage d'une phase liquide dans le moyen de stripage et la ligne de sortie (11) d'une phase gazeuse connectée à ladite unité (20) d'extraction d'hydrogène sulfuré.
EP98402040A 1997-08-25 1998-08-12 Procédé et unité d'hydrotraitement d'une charge pétrolière comprenant le craquage de l'ammoniac et le recyclage de l'hydrogène dans l'unité Expired - Lifetime EP0899320B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9710679A FR2767529B1 (fr) 1997-08-25 1997-08-25 Procede et unite d'hydrotraitement d'une charge petroliere comprenant le craquage de l'ammoniac et le recyclage de l'hydrogene dans l'unite
FR9710679 1997-08-25

Publications (2)

Publication Number Publication Date
EP0899320A1 true EP0899320A1 (fr) 1999-03-03
EP0899320B1 EP0899320B1 (fr) 2002-11-06

Family

ID=9510520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402040A Expired - Lifetime EP0899320B1 (fr) 1997-08-25 1998-08-12 Procédé et unité d'hydrotraitement d'une charge pétrolière comprenant le craquage de l'ammoniac et le recyclage de l'hydrogène dans l'unité

Country Status (6)

Country Link
US (1) US6096195A (fr)
EP (1) EP0899320B1 (fr)
CA (1) CA2243626A1 (fr)
DE (1) DE69809159T2 (fr)
ES (1) ES2186985T3 (fr)
FR (1) FR2767529B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147926A (zh) * 2020-09-10 2020-12-29 四机赛瓦石油钻采设备有限公司 一种井口气回收装置集中控制***及其控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR022239A1 (es) * 1999-01-11 2002-09-04 Texaco Development Corp Recuperacion de gas de purga de unidades de hidrotratamiento e hidrocraqueo
FR2837273B1 (fr) * 2002-03-15 2004-10-22 Inst Francais Du Petrole Procede d'elimination au moins partielle de depots carbones dans un echangeur de chaleur
EP1694798B1 (fr) * 2003-12-05 2012-08-01 ExxonMobil Research and Engineering Company Procede d'extraction acide d'une charge hydrocarbonee
BRPI0610659B1 (pt) * 2005-04-06 2017-12-12 Cabot Corporation A method for producing at least one gas comprising at least hydrogen gas
MX2009002055A (es) * 2006-08-31 2009-03-09 Fluor Tech Corp Sistemas y metodos de solventes de azufre con base en hidrocarburos.
CN101590364B (zh) * 2009-07-07 2012-05-23 贵州赤天化股份有限公司 对合成氨弛放气与贮罐气进行氢回收的方法及装置
US9914888B2 (en) 2015-08-03 2018-03-13 Uop Llc Processes for treating a hydrocarbon stream
CN111717888A (zh) * 2020-06-23 2020-09-29 山东同智创新能源科技股份有限公司 一种应用于化工粗氨废气处理替代焚烧的资源化工艺及***
US11952541B2 (en) * 2021-10-12 2024-04-09 Uop Llc Process for hydrotreating a feed stream comprising a biorenewable feedstock with treatment of an off-gas stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365374A (en) * 1967-06-07 1968-01-23 Chevron Res H2s recovery by absorption and plural distillation
US3627470A (en) * 1968-12-23 1971-12-14 Universal Oil Prod Co Combination of a hydrocarbon conversion process with a water treating process for recovery of ammonia and sulfur
US4272357A (en) * 1976-03-29 1981-06-09 Mobil Oil Corporation Desulfurization and demetalation of heavy charge stocks
US4806233A (en) * 1987-08-28 1989-02-21 Uop Inc. Method of separating a hot hydrocarbonaceous stream

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752252A (en) * 1970-07-03 1973-08-14 Aisin Seiki Method and apparatus for control of a vehicle constant speed mechanism
DE3362083D1 (en) * 1982-07-29 1986-03-20 Linde Ag Process and apparatus for separating a gas mixture
US4629553A (en) * 1985-07-31 1986-12-16 Exxon Research And Engineering Company Hydrofining process
US5024750A (en) * 1989-12-26 1991-06-18 Phillips Petroleum Company Process for converting heavy hydrocarbon oil
FR2745806B1 (fr) * 1996-03-08 1998-04-10 Inst Francais Du Petrole Procede de craquage de l'ammoniac present dans un gaz contenant de l'hydrogene sulfure
US5720872A (en) * 1996-12-31 1998-02-24 Exxon Research And Engineering Company Multi-stage hydroprocessing with multi-stage stripping in a single stripper vessel
US5925235A (en) * 1997-12-22 1999-07-20 Chevron U.S.A. Inc. Middle distillate selective hydrocracking process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365374A (en) * 1967-06-07 1968-01-23 Chevron Res H2s recovery by absorption and plural distillation
US3627470A (en) * 1968-12-23 1971-12-14 Universal Oil Prod Co Combination of a hydrocarbon conversion process with a water treating process for recovery of ammonia and sulfur
US4272357A (en) * 1976-03-29 1981-06-09 Mobil Oil Corporation Desulfurization and demetalation of heavy charge stocks
US4806233A (en) * 1987-08-28 1989-02-21 Uop Inc. Method of separating a hot hydrocarbonaceous stream

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147926A (zh) * 2020-09-10 2020-12-29 四机赛瓦石油钻采设备有限公司 一种井口气回收装置集中控制***及其控制方法

Also Published As

Publication number Publication date
ES2186985T3 (es) 2003-05-16
EP0899320B1 (fr) 2002-11-06
US6096195A (en) 2000-08-01
DE69809159D1 (de) 2002-12-12
CA2243626A1 (fr) 1999-02-25
FR2767529A1 (fr) 1999-02-26
DE69809159T2 (de) 2003-03-20
FR2767529B1 (fr) 1999-10-08

Similar Documents

Publication Publication Date Title
EP1890961B1 (fr) Procede pour la production simultanee d&#39;hydrogene et de monoxyde de carbone
CA2239758C (fr) Procede de degazolinage d&#39;un gaz contenant des hydrocarbures condensables
EP0829453B1 (fr) Procédé et dispositif de traitement d&#39;un gaz contenant de l&#39;hydrogène sulfuré et du dioxyde de soufre comportant une étape d&#39;appauvrissement en soufre du solvant recyclé
FR2848121A1 (fr) Procede de traitement d&#39;un gaz naturel acide
CA2514087C (fr) Procede de capture des mercaptans contenus dans une charge gazeuse
EP1526165A1 (fr) Production de carburants liquides par un enchaínement de procédés de traitement d&#39;une charge solide hydrocarbonée
EP0899320B1 (fr) Procédé et unité d&#39;hydrotraitement d&#39;une charge pétrolière comprenant le craquage de l&#39;ammoniac et le recyclage de l&#39;hydrogène dans l&#39;unité
EP0665046B1 (fr) Procédé de prétraitement d&#39;un gaz natural contenant de hydrogène sulfuré
FR2897066A1 (fr) Procede d&#39;extraction de l&#39;hydrogene sulfure contenu dans un gaz hydrocarbone.
EP2878589A1 (fr) Procédé flexible pour le traitement de solvant, tel que le monoéthylène glycol, utilise dans l&#39;extraction du gaz naturel
JP2002534582A (ja) 脱歴、ガス化、及び水素化処理の統合方法
EP1451269A1 (fr) Procede d&#39;hydrotraitement de distillats moyens en deux etapes comprenant deux boucles de recyclage d&#39;hydrogene
CA2443009A1 (fr) Procede de desacidification d`un gaz naturel
EP1063275B1 (fr) Procédé d&#39;hydrotraitement d&#39;un distillat moyen dans deux zones comprenant une zone intermédiaire de stripage
CA2215157C (fr) Procede de deshydratation et de degazolinage d&#39;un gaz, comportant deux etapes complementaires de regeneration du solvant
EP2379445B1 (fr) Procede de valorisation de l&#39;event d&#39;un de-aerateur associe a une production de gaz de synthese et installation pour sa mise en oeuvre
EP0829452B1 (fr) Procédé et dispositif de traitement d&#39;un gaz contenant de l&#39;hydrogène sulfuré et de l&#39;anhydride sulfureux, comportant une étape d&#39;élimination du soufre par réfroidissement de l&#39;effluent gazeux
FR2896509A1 (fr) Procede de capture des mercaptans contenus dans un gaz naturel par concentration.
EP0832039B1 (fr) Procede et dispositif de traitement d&#39;un gaz contenant de l&#39;hydrogene sulfure, comportant une etape d&#39;elimination du soufre cristallise par refroidissement
EP1916024A1 (fr) Unité et procédé de traitement d&#39;eaux issues de procédés de raffinage
EP0922669A1 (fr) Procédé de récupération du soufre à haute pression
EP1436362A1 (fr) Procede d&#39;hydrodesulfuration comprenant une section de stripage et une section de fractionnement sous vide
CA2127629C (fr) Procede de traitement de produit issu du reformage catalytique
WO2013076433A1 (fr) Procédé de traitement d&#39;effluent gazeux en tête de distillation atmosphérique
FR2507200A1 (fr) Procede de desulfuration de courants d&#39;hydrocarbures liquides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990903

AKX Designation fees paid

Free format text: DE ES GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011218

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69809159

Country of ref document: DE

Date of ref document: 20021212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2186985

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030730

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030806

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030831

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030901

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040812

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050812

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040813