EP0895211A1 - Installation de commande d'un ou plusieurs actionneurs - Google Patents

Installation de commande d'un ou plusieurs actionneurs Download PDF

Info

Publication number
EP0895211A1
EP0895211A1 EP98202523A EP98202523A EP0895211A1 EP 0895211 A1 EP0895211 A1 EP 0895211A1 EP 98202523 A EP98202523 A EP 98202523A EP 98202523 A EP98202523 A EP 98202523A EP 0895211 A1 EP0895211 A1 EP 0895211A1
Authority
EP
European Patent Office
Prior art keywords
control
relay
management module
command
installation according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98202523A
Other languages
German (de)
English (en)
Inventor
Bernard Jean-Pierre Grehant
Hervé Mongin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somfy SA
Original Assignee
Somfy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somfy SA filed Critical Somfy SA
Publication of EP0895211A1 publication Critical patent/EP0895211A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/30Electric signal transmission systems in which transmission is by selection of one or more conductors or channels from a plurality of conductors or channels

Definitions

  • the present invention relates to an installation of control of one or more actuators equipped with asynchronous electric motors with auxiliary winding and capacitor and with two directions of rotation and equipped limit switches opening at the end of race, from impulse control points capable of delivering signals of two polarities different for controlling motor rotation one way or the other and each linked by a single control wire with at least one management module associated with the actuator and equipped with means of recognition of the polarity of the received signals, means of processing these signals and means of switching of the motor supply.
  • FIG. 1 An example of a conventional device known in the art for controlling an actuator A1, such as a motor, is shown in Figure 1.
  • This device is able to respond to a general order which is best given by two wires G1, G2, to which a third G0 wire (not shown) is currently being added. Its wiring is difficult to achieve.
  • module which usually includes a microcontroller and his diet.
  • the device to be able recognize a general command at all times, it it must be permanently supplied with so that unnecessary consumption is created and it becomes necessary to use components having a MTBF (mean time before failure) very high. this is particularly disadvantageous considering that the actual use of the function is very low, namely a few ten seconds a day.
  • control module receives a full periodic signal in the absence of control so that the consumption of the components is permanent and that these are exposed to network surges and noise.
  • the object of the invention is to improve the devices already known.
  • the object of the invention is more particularly to carry out a control installation which is better protected from transient overvoltages and shocks that can occur in the network of electrical distribution.
  • the installation is characterized in that the module management includes means of connection to the source supply responsive to received control signal and in that the supply of said management module is held through said end switches race.
  • the control installation may include at least one local control point with at least one switch control whose output line is connected to the input of the management module to transmit the local control, said local control point having in addition a triac mounted in parallel at the point of command and whose trigger allows the taking into account an external general command, consisting for example at a general control point with at least one control switch whose output line is connected to the triac trigger of the control point local.
  • the management module includes at least two relays acting on contacts allowing motor supply by phase depending on the command generated by said command points.
  • each relay is mounted in series with a diode, said diodes being antiparallel, a capacitor being mounted in parallel to relays and diodes, this capacitor is charging to activate one of the relays when the relay activation threshold is reached.
  • each relay has a capacitor in parallel and a transistor in series with a resistor, each transistor being connected to the input of the local control via a resistor and a diode to allow rapid discharge of capacitors when the transistors conduct, thus triggering the corresponding relay and interrupting the command activated.
  • the management module can be mounted in a point of control, in a junction box or be integrated to the actuator.
  • One of the advantages of the invention is that in the absence from a command from the command point, the management is not powered so that no energy is consumed by the installation.
  • Installation includes an SL1F one-touch control point, a BG management module and an actuator A1, such as a motor, and lines N for neutral, P for phase, CG for general control and CL for local order.
  • the control point is connected to the phase P, at the general order CG and issues its local control on the CL line.
  • the management module BG is connected to phase P, at the control point SL1F via line CL and neutral N.
  • the actuator is to him connected to the BG management module by the lines connected to contacts P1 and P2.
  • This engine control installation 1 includes a general control point 10, a local control 20 and a management module 30.
  • the impulse control point 10 shown in the figure 2 includes two control contacts PUSH UP 11 and DOWN 12, each of being mounted in series with a diode 14, 15, these diodes being antiparallel, and a control contact STOP 13 to stop the movement of the motor 1.
  • the point also includes a command output General CG linked to the local control point 20.
  • This local control point 20 also includes two MONTEE 21 impulse control contacts and DESCENT 22, each of them being mounted in series with a diode 24, 25, these diodes being antiparallel, and a STOP 23 control contact to stop the movement of the motor 1.
  • This control point 20 comprises furthermore a local control output CL connected to the management module 30.
  • This local control point 20 also comprises a single phase alternative P phase input, and a triac 26 mounted in parallel with the control contacts 21, 22 and 23 and the trigger of which is connected to the outlet of general command CG of the general control point 10.
  • the triac 26 trigger resistances are not shown to simplify the figure.
  • the operation of the motor 1 can be controlled either by local control point 20 or by general control point 10, and several local control can be ordered in parallel by a single general control point.
  • the operation of the local control point is the following: by the use of the control contacts 21, 22, 23 and diodes 24 and 25, the control output local CL respectively transmits a climb command during the positive half-waves of phase P feed, a descent order during negative phase alternations or a stop order, the contact 23 in this case connecting the CL output to positive and negative alternations of phase P. If a general command is given, then the triac 26 will cause the same operation as the contacts of command 11, 12, 13 via the general command output CG.
  • the management module 30 comprises two elements of RM, RD switching, e.g. current relays continuous acting on rm, rd contacts connected respectively on each of the supply lines P1, P2 of the two windings of motor 1, the motor being supplied with single-phase AC between P1 and N for the ascent and between P2 and N for the descent.
  • RD switching e.g. current relays continuous acting on rm, rd contacts connected respectively on each of the supply lines P1, P2 of the two windings of motor 1, the motor being supplied with single-phase AC between P1 and N for the ascent and between P2 and N for the descent.
  • FIG. 4 represents a first embodiment particularly simple management block. Of FCM up and FCD down limit switches are connected to line P1 for the climb and P2 for the descent, and the engine 1 is represented by a phase shift capacitor C1 and two windings 2 and 3. In this figure, a thermal switch CT allowing to cut the power of the motor 1 in case overheating is also shown.
  • two parallel branches comprising relays RD1, RM1 followed in series by diode D2D, respectively D2M, these two diodes being antiparalleles, are mounted in parallel with a capacitor C, the whole being in series with a resistance RP relative to the input of the control local CL.
  • the capacitor C charges or discharges at a voltage equal to the average mains voltage, positive or negative according to local control CL, divided by potentiometric ratio (RP, RD1) or (RP, RM1) across equivalent resistance RP // RD1 or RP // RM1. This charging voltage must be above the threshold relay activation.
  • the relay supply RM1 is maintained through FCM, C1, FCD and the diode D1M.
  • the order on the CL entry must however be maintained for some time to allow the engine to leave its end position and therefore allow the down limit switch FCD to close.
  • the motor then remains supplied as long that the FCM mounted limit switch is not not reached.
  • FCM rise, no more current flows in the diode D1M, and the current being below the threshold RM1 relay trip, rm1 contact opens then and the power supply to the engine is cut off.
  • FIG. 5 represents another embodiment of the management module.
  • This mode has the advantage of faster reaction to a STOP command thanks to the short circuiting of C1M or C1D by TM or TD.
  • the engine is shown diagrammatically by a phase shift capacitor C1 and two windings 2, 3, and limit switches (FCM for the climb and FCD for the descent) are connected to the lines P1 and P2 respectively.
  • a thermal switch CT cuts power to engine in case of overheating.
  • the management module similar to the module shown in Figure 3, has two low relays voltage RM2 and RD2 actuating contacts rm2 and rd2 located respectively on each of the lines supply P1, P2 of the two motor windings.
  • a C1M or C1D capacitor is placed in parallel with each relay RM2, RD2 so as to ensure the continuity of the holding current for a period from the sector, around 20 ms.
  • the time constant of the RM2 * CM product is typically 40 to 60 ms.
  • a D3M or D3D diode in series with an R3M resistor or R3D are used to allow rapid discharge of capacitors C1D and C1M. This discharge occurs at across resistors R2M, respectively R2D.
  • the resistance values are selected so that the discharge lasts less than 10 ms.
  • the operation of the management module is comparable to the operation described above for positive alternations.
  • diode D2D, relay RD2, resistor R1D, the capacitor C1D and diode D3M This current in the diode D3M has the effect of making the transistor TM conductor and therefore quickly discharge the capacitor C1M across resistor R2M, if the C1M capacitor was charged.
  • the charge of capacitor C1D slows the growth of the voltage across relay RD2, and you will have to wait some time, about 100 ms, so that the current relay RD2 has been reached and the contact rd2 is closed.
  • the values of the different components can be easily determined by a person skilled in the art taking mainly into account characteristics of the actuator controlled, for example of the motor.
  • the invention is not limited to the modes of execution described but variations are possible in the protection claimed. For example, place and place of relay, it is possible to use semiconductor devices or other devices equivalent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Elle commande un ou plusieurs actionneurs (A1) équipés d'interrupteurs de fin de course, à partir de points de commande impulsionnels (SL1F) capables de délivrer des signaux (CL) de deux polarités différentes pour la commande de l'actionneur dans un sens ou dans l'autre et reliés chacun par un fil de commande à au moins un module de gestion (BG) associé à l'actionneur et équipé de moyens de reconnaissance de la polarité des signaux reçus, de moyens de traitement de ces signaux et de moyens de commutation de l'alimentation. Le module de gestion (BG) comprend en outre des moyens de connexion à la source d'alimentation réagissant au signal (CL) de commande reçu et l'alimentation dudit module de gestion est maintenue à travers lesdits interrupteurs de fin de course. <IMAGE>

Description

La présente invention concerne une installation de commande d'un ou plusieurs actionneurs équipés de moteurs électriques asynchrones à bobinage auxiliaire et condensateur et à deux sens de rotation et équipés d'interrupteurs de fin de course s'ouvrant en fin de course, à partir de points de commande impulsionnels capables de délivrer des signaux de deux polarités différentes pour la commande de la rotation du moteur dans un sens ou dans l'autre et reliés chacun par un unique fil de commande à au moins un module de gestion associé à l'actionneur et équipé de moyens de reconnaissance de la polarité des signaux reçus, de moyens de traitement de ces signaux et de moyens de commutation de l'alimentation du moteur.
Un exemple de dispositif conventionnel connu dans l'art antérieur pour la commande d'un actionneur A1, comme un moteur, est représenté à la figure 1. Ce dispositif est capable de répondre à un ordre de commande générale qui est donnée au mieux par deux fils G1, G2, auxquels s'ajoute actuellement un troisième fil G0 (non-représenté). Ainsi, son câblage est difficile à réaliser. En outre, afin de permettre la reconnaissance des ordres de commande générale, la gestion des ordres locaux et de priorités et l'introduction de temporisations lors d'une inversion du sens de la marche sont effectués par un module électronique, module qui comprend généralement un micro-contrôleur et son alimentation. Le dispositif devant pouvoir reconnaítre à tout instant une commande générale, il est nécessaire qu'il soit alimenté en permanence de sorte qu'une consommation inutile est créée et qu'il devient nécessaire d'utiliser des composants ayant un MTBF (mean time before failure) très élevé. Ceci est particulièrement désavantageux en considérant que l'utilisation effective de la fonction est très faible, à savoir quelques dizaine de secondes par jour.
En outre, les normes relatives aux surtensions transitoires rapides et ondes de choc pouvant être supportés par les systèmes raccordés au réseau de distribution électrique industrielle ou domestique (CEI 1000-4-4 et CEI 1000-4-5) sont très sévères.
Une autre installation de commande similaire est déjà connue du document FR 2 550 356. Ce document décrit en particulier une installation de commande d'un ensemble d'actionneurs équipée de moteurs électriques à deux sens de rotation, à partir de points de commande impulsionnels capables de délivrer des signaux de deux polarités différentes pour la commande de la rotation du moteur dans un sens ou dans l'autre. Ces points de commande sont reliés chacun par un unique fil de commande à au moins un module de commande ou de gestion associé à l'actionneur et équipé de moyens de reconnaissance de la polarité des signaux reçus, de moyens de traitement de ces signaux et de moyens de commutation de l'alimentation du moteur.
Dans cet état de la technique le module de commande reçoit un signal périodique complet en l'absence de commande de sorte que la consommation des composants est permanente et que ceux-ci sont exposés aux surtensions et parasites du réseau.
Le but de l'invention est d'améliorer les dispositifs de commande déjà connus.
L'invention a plus particulièrement pour but de réaliser une installation de commande qui est mieux protégée des surtensions transitoires et des ondes de chocs pouvant se produire dans le réseau de distribution électrique.
L'installation est caractérisée en ce que le module de gestion comprend des moyens de connexion à la source d'alimentation réagissants au signal de commande reçu et en ce que l'alimentation dudit module de gestion est maintenue à travers lesdits interrupteurs de fin de course.
L'installation de commande peut comprendre au moins un point de commande locale avec au moins un interrupteur de commande dont la ligne de sortie est reliée à l'entrée du module de gestion pour transmettre la commande locale, ledit point de commande locale ayant en outre un triac monté en parallèle au point de commande et dont la gâchette permet la prise en compte d'une commande générale externe, consistant par exemple en un point de commande générale avec au moins un interrupteur de commande dont la ligne de sortie est reliée à la gâchette du triac du point de commande locale.
Selon un mode d'exécution particulier de l'installation de commande, le module de gestion comprend au moins deux relais agissant sur des contacts permettant l'alimentation du moteur par la phase en fonction de la commande générée par lesdits points de commande.
Selon un autre mode d'exécution particulier de l'installation de commande, chaque relais est monté en série avec une diode, lesdites diodes étant antiparallèles, un condensateur étant monté en parallèle aux relais et aux diodes, ce condensateur se chargeant pour enclencher l'un des relais lorsque le seuil d'enclenchement du relais est atteint.
Selon une variante de l'installation de commande, chaque relais comporte en parallèle un condensateur et un transistor en série avec une résistance, chaque transistor étant relié à l'entrée de la commande locale par l'intermédiaire d'une résistance et d'une diode pour permettre la décharge rapide des condensateurs lorsque les transistors conduisent, déclenchant ainsi le relais correspondant et interrompant la commande activée.
Le module de gestion peut être monté dans un point de commande, dans une boíte de dérivation ou être intégré à l'actionneur.
L'un des avantages de l'invention est qu'en l'absence d'une commande issue du point de commande, le module de gestion n'est pas alimenté de sorte qu'aucune énergie n'est consommée par l'installation.
L'invention sera mieux comprise à l'aide de la description de différents modes d'exécution de celle-ci et des figures qui s'y rapportent.
  • La figure 1 est une représentation schématique d'un dispositif conventionnel de l'art antérieur.
  • La figure 2 est une représentation schématique d'une installation de commande selon l'invention.
  • La figure 3 est un schéma d'ensemble d'une installation de commande selon l'invention.
  • La figure 4 est un schéma du circuit d'un premier mode de réalisation d'un module de gestion selon l'invention.
  • La figure 5 est un schéma du circuit d'un deuxième mode de réalisation d'un module de gestion selon l'invention.
  • Le principe de l'installation selon l'invention est décrit en référence à la figure 2. L'installation comprend un point de commande impulsionnel SL1F, un module de gestion BG et un actionneur A1, tel qu'un moteur, et les lignes N pour le neutre, P pour la phase, CG pour la commande générale et CL pour la commande locale. Le point de commande est relié à la phase P, à la commande générale CG et délivre sa commande locale sur la ligne CL. Le module de gestion BG est relié à la phase P, au point de commande SL1F par la ligne CL et au neutre N. L'actionneur est quant à lui relié au module de gestion BG par les lignes d'alimentation branchées sur les contacts P1 et P2.
    Une installation selon l'invention de commande d'un moteur 1 est décrite maintenant en référence à la figure 3. Cette installation de commande du moteur 1 comprend un point de commande générale 10, un point de commande locale 20 et un module de gestion 30.
    Le point de commande impulsionnel 10 représenté à la figure 2 comprend deux contacts de commande impulsionnels MONTEE 11 et DESCENTE 12, chacun d'entre eux étant monté en série avec une diode 14, 15, ces diodes étant antiparallèles, et un contact de commande STOP 13 pour arrêter le mouvement du moteur 1. Le point de commande comporte également une sortie de commande générale CG reliée au point de commande locale 20. Ce point de commande locale 20 comprend lui aussi deux contacts de commande impulsionnels MONTEE 21 et DESCENTE 22, chacun d'entre eux étant monté en série avec une diode 24, 25, ces diodes étant antiparallèles, et un contact de commande STOP 23 pour arrêter le mouvement du moteur 1. Ce point de commande 20 comporte en outre une sortie de commande locale CL reliée au module de gestion 30.
    Ce point de commande locale 20 comprend encore une entrée de phase P alternative monophasée, et un triac 26 monté en parallèle aux contacts de commande 21, 22 et 23 et dont la gâchette est reliée à la sortie de commande générale CG du point de commande générale 10. Les résistances de la gâchette du triac 26 ne sont pas représentées de manière à simplifier la figure.
    Ainsi, le fonctionnement du moteur 1 peut être commandé soit par le point de commande locale 20 soit par le point de commande générale 10, et plusieurs points de commande locale peuvent être commandée en parallèle par un seul et même point de commande générale.
    Le fonctionnement du point de commande locale est le suivant: par l'utilisation des contacts de commande 21, 22, 23 et des diodes 24 et 25, la sortie de commande locale CL transmet respectivement un ordre de montée pendant les alternances positives de la phase P d'alimentation, un ordre de descente pendant les alternances négatives de la phase ou un ordre d'arrêt, le contact 23 reliant dans ce cas la sortie CL aux alternances positives et négatives de la phase P. Si une commande générale est donnée, alors le triac 26 provoquera le même fonctionnement que les contacts de commande 11, 12, 13 par la sortie de commande générale CG.
    Le module de gestion 30 comprend deux éléments de commutation RM, RD, par exemple des relais à courant continu agissant sur des contacts rm, rd branchés respectivement sur chacune des lignes d'alimentation P1, P2 des deux enroulements du moteur 1, le moteur étant alimenté en alternatif monophasé entre P1 et N pour la montée et entre P2 et N pour la descente. En reliant l'entrée de la commande locale CL sur des alternances positives de la phase P par le point de commande 20, on provoque, d'un part, l'alimentation d'un élément (non représenté) court-circuitant le relais RD et, d'autre part, l'alimentation progressive et unidirectionnelle du relais RM.
    Le fonctionnement est similaire pour les alternances négatives de la phase P. En reliant CL à celles-ci, le relais RM est court-circuité par un élément (non-représenté), et le relais RD est alimenté progressivement de manière unidirectionnelle.
    La figure 4 représente un premier mode de réalisation particulièrement simple du bloc de gestion. Des interrupteurs de fin course montée FCM et descente FCD sont branchés sur la ligne P1 pour la montée et P2 pour la descente, et le moteur 1 est schématisé par un condensateur de déphasage C1 et deux enroulements 2 et 3. Sur cette figure, un interrupteur thermique CT permettant de couper l'alimentation du moteur 1 en cas de surchauffe est également représenté.
    Dans ce mode de réalisation, deux branches parallèles comportant les relais RD1, RM1 suivis en série d'une diode D2D, respectivement D2M, ces deux diodes étant antiparallèles, sont montées en parallèle avec un condensateur C, le tout étant en série avec une résistance RP par rapport à l'entrée de la commande locale CL.
    A travers un générateur de Thévenin équivalent, le condensateur C se charge ou se décharge à une tension égale à la tension moyenne du secteur, positive ou négative selon la commande locale CL, divisée par le rapport potentiométrique (RP,RD1) ou (RP,RM1) à travers une résistance équivalente RP//RD1 ou RP//RM1. Cette tension de charge doit être supérieure au seuil d'enclenchement du relais.
    Lorsque l'entrée commande locale CL est reliée, par l'intermédiaire d'un point de commande tel que décrit précédemment, aux alternances positives de la phase P, il y aura passage du courant à travers la résistance RP, la diode D2M, le relais RM1 et le condensateur C va se charger. Dès que le courant d'enclenchement du relais RM1 est atteint, le contact rm1 est alors fermé.
    Dès fermeture du contact rm1, l'alimentation du relais RM1 est maintenue à travers FCM, C1, FCD et la diode D1M. L'ordre sur l'entrée CL doit cependant être maintenu un certain temps pour permettre au moteur de quitter sa position de fin de course et par conséquent permettre à l'interrupteur de fin de course descente FCD de se fermer. Le moteur reste ensuite alimenté tant que l'interrupteur de fin de course montée FCM n'est pas atteint. Dès l'ouverture de cet interrupteur de fin de course montée FCM, plus aucun courant ne passe dans la diode D1M, et le courant étant en dessous du seuil de déclenchement du relais RM1, le contact rm1 s'ouvre alors et l'alimentation du moteur est coupée.
    Si l'entrée CL est reliée aux alternances négatives de la phase P, le fonctionnement du module de gestion est comparable au fonctionnement décrit ci-dessus pour les alternances positives. Il y a alors passage de courant dans le relais RD1, la diode D2D et le condensateur C se charge sous une polarité opposée à celle du cas précédent.
    De manière similaire, dès que le courant d'enclenchement du relais RD1 est atteint, le contact rd1 est fermé et l'alimentation du relais RD1 est maintenue à travers FCD, C1, FCM et la diode D1D. L'ordre sur l'entrée CL doit être maintenu un certain temps pour permettre au moteur de quitter sa position de fin de course et par conséquent à l'interrupteur de fin de course montée FCM de se fermer. Le moteur reste ensuite alimenté tant que l'interrupteur de fin de course descente FCD n'est pas atteint. Dès l'ouverture de cet interrupteur FCD, plus aucun courant ne passe dans la diode D1D, et le courant étant en dessous du seuil de déclenchement du relais RD1, le contact rd1 s'ouvre et l'alimentation du moteur est coupée.
    Un seul relais peut être actionné à la fois et la commutation de l'un à l'autre n'est pas instantanée. Le choix des valeurs des résistances RPM et RPD dépend des valeurs du courant de maintien des relais et de la valeur de la tension disponible sur la phase non-alimentée du moteur 1. Par conséquent, si le système est destiné à alimenter un grand nombre de moteurs différents, ce choix peut s'avérer délicat.
    La figure 5 représente un autre mode de réalisation du module de gestion. Ce mode présente l'avantage d'une réaction plus rapide à une commande STOP grâce à la mise en court-circuit de C1M ou C1D par TM ou TD. Comme dans la figure 3, le moteur est schématisé par un condensateur de déphasage C1 et deux enroulements 2, 3, et des interrupteurs de fin de course (FCM pour la montée et FCD pour la descente) sont branchés sur les lignes P1 et P2 respectivement. De même, un interrupteur thermique CT coupe l'alimentation du moteur en cas de surchauffe.
    Le module de gestion, de manière similaire au module représenté à la figure 3, comporte deux relais basse tension RM2 et RD2 actionnant des contacts rm2 et rd2 situés respectivement sur chacune des lignes d'alimentation P1, P2 des deux enroulements du moteur. Un condensateur C1M ou C1D est placé en parallèle à chaque relais RM2, RD2 de manière à assurer la continuité du courant de maintien pendant une période du secteur, de l'ordre de 20 ms. La constante de temps du produit RM2*CM vaut typiquement 40 à 60 ms. Une diode D3M ou D3D en série avec une résistance R3M ou R3D sont utilisés pour permettre la décharge rapide des condensateurs C1D et C1M. Cette décharge se produit à travers les résistances R2M, respectivement R2D. De préférence, les valeurs des résistances sont sélectionnées de manière à ce que la décharge dure moins de 10 ms.
    Lorsque l'entrée commande locale CL est reliée, par l'intermédiaire d'un point de commande tel que décrit précédemment, aux alternances positives de la phase P, il y aura passage du courant à travers la diode D2M, le relais RM2, le condensateur C1M et la diode D3D. Ce courant à travers la diode D3D a pour effet de rendre le transistor TD conducteur et par conséquent de décharger rapidement le condensateur C1D à travers la résistance R2D, si le condensateur était chargé. En même temps, la charge du condensateur C1M ralentit la croissance de la tension aux bornes du relais RM2, et il faudra attendre un certain temps, environ 100 ms, pour que le courant d'enclenchement du relais RM2 soit atteint et que le contact rm2 soit fermé.
    A la fermeture du contact rm2, l'alimentation du relais RM2 est maintenue à travers FCM, C1, FCD et la diode D1M. L'ordre sur l'entrée CL doit donc toujours être maintenu un certain temps pour permettre au moteur de quitter sa position de fin de course et à l'interrupteur de fin de course descente FCD de se fermer. Le moteur reste ensuite alimenté tant que l'interrupteur de fin de course montée FCM n'est pas atteint. Dès l'ouverture de cet interrupteur de fin de course montée FCM, plus aucun courant ne passe dans la diode D1M, et le courant étant en dessous du seuil de déclenchement du relais RM2, le contact rm2 s'ouvre alors et l'alimentation du moteur est coupée.
    Si l'entrée CL est reliée aux alternances négatives de la phase, le fonctionnement du module de gestion est comparable au fonctionnement décrit ci-dessus pour les alternances positives. Il y a alors passage de courant dans la diode D2D, le relais RD2, la résistance R1D, le condensateur C1D et la diode D3M. Ce courant dans la diode D3M a pour effet de rendre le transistor TM conducteur et par conséquent de décharger rapidement le condensateur C1M à travers la résistance R2M, si le condensateur C1M était chargé. En même temps, la charge du condensateur C1D ralentit la croissance de la tension aux bornes du relais RD2, et il faudra attendre un certain temps, environ 100 ms, pour que le courant d'enclenchement du relais RD2 soit atteint et que le contact rd2 soit fermé.
    Dès la fermeture du contact rd2, l'alimentation du relais RD2 est maintenue à travers FCD, C1, FCM et la diode D1D. L'ordre sur l'entrée CL doit être maintenu un certain temps pour permettre au moteur de quitter sa position de fin de course et à l'interrupteur de fin de course montée FCM de se fermer. Le moteur reste ensuite alimenté tant que l'interrupteur de fin de course descente FCD n'est pas atteint. Dès l'ouverture de cet interrupteur FCD, plus aucun courant ne passe dans la diode D1D, et le courant étant en dessous du seuil de déclenchement du relais RD2, le contact rd2 s'ouvre et l'alimentation du moteur est coupée.
    Si pendant que le relais RM2 est alimenté, CL étant relié à des alternances positives de la phase, l'entrée CL est en plus reliée à la phase P à la fois sur des alternances positives et négatives, l'alternance négative de la phase P provoque le passage d'un courant à travers la diode D4D, le relais RD2, le condensateur CD, les diodes D2D et D3M. Le courant ne permet pas d'atteindre le seuil d'enclenchement du relais RD2, mais, en revanche, la conduction de la diode D3M provoque la conduction du transistor TM, ce qui a pour conséquence la décharge du condensateur CM: le contact rm2 s'ouvre et le moteur s'arrête. Un appui sur une commande de descente pendant une montée provoque donc l'équivalent d'un stop avant que l'ordre de descente ne soit pris en compte, c'est-à-dire dès qu'une alimentation suffisante du relais RD2 est atteinte. Le même phénomène se produit lors d'un appui sur une commande de montée pendant une descente.
    Les valeurs des différents composants (résistances, condensateurs) peuvent être facilement déterminés par un homme du métier en tenant compte principalement des caractéristiques de l'actionneur commandé, par exemple du moteur.
    L'invention n'est pas limitée aux modes d'exécution décrits mais des variations sont possibles dans le cadre de la protection revendiquée. Par exemple, en lieu et place de relais, il est possible d'utiliser des dispositifs à semi-conducteurs ou d'autres dispositifs équivalents.

    Claims (9)

    1. Installation de' commande d'un ou plusieurs actionneurs équipés de moteurs électriques asynchrones (1) à bobinage auxiliaire et condensateur et à deux sens de rotation équipés d'interrupteurs de fin de course (FCM,FCD) s'ouvrant en fin de course, à partir de points de commande impulsionnels (10,20) capables de délivrer des signaux (CL) de deux polarités différentes pour la commande de la rotation du moteur (1) dans un sens ou dans l'autre et reliés chacun par un fil de commande à au moins un module de gestion (30) associé à l'actionneur et équipé de moyens de reconnaissance (RM,RD) de la polarité des signaux (CL) reçus, de moyens de traitement de ces signaux et de moyens de commutation (rm,rd) de l'alimentation du moteur, caractérisée en ce que le module de gestion (30) comprend des moyens de connexion à la source d'alimentation réagissant au signal (CL) de commande reçu et en ce que l'alimentation dudit module de gestion (30) est maintenue à travers lesdits interrupteurs de fin de course.
    2. Installation de commande selon la revendication 1, caractérisée en ce qu'elle comprend au moins un point de commande locale (20) ayant au moins un interrupteur de commande (21,22,23) dont la ligne de sortie (CL) est reliée à l'entrée du module de gestion (30) pour transmettre la commande locale, ledit point de commande locale (20) ayant en outre un triac (26) monté en parallèle au point de commande (21,22,23) dont la gâchette permet la prise en compte d'une commande générale externe.
    3. Installation de commande selon la revendication 2, caractérisée en ce qu'elle comprend un point de commande générale (10) ayant au moins un interrupteur de commande (11,12,13) dont la ligne de sortie (CG) est reliée à la gâchette du triac (26) du point de commande locale (20).
    4. Installation de commande selon l'une des revendications 1 à 3, caractérisée en ce que les moyens de connexion comprennent au moins deux relais (RM,RD;RM1,RD1;RM2,RD2) agissant sur des contacts (rm,rd;rm1,rd1;rm2,rd2) permettant l'alimentation du moteur (1) par la phase (P) en fonction de la commande générée par lesdits points de commande (10,20).
    5. Installation de commande selon la revendication 4, caractérisée en ce que chaque relais (RM1,RD1) est monté en série avec une diode (D2M,D2D), lesdites diodes étant antiparallèles, un condensateur (C) étant monté en parallèle aux relais (RM1,RD1) et aux diodes (D2M,D2D), ledit condensateur (C) se chargeant pour enclencher l'un desdits relais (RM1,RD1) lorsque le seuil d'enclenchement dudit relais est atteint.
    6. Installation de commande selon la revendication 4, caractérisée en ce que chaque relais (RM2,RD2) comporte en parallèle un condensateur (C1M,C1D) se chargeant pour enclencher l'un desdits relais (RM1,RD1) lorsque le seuil d'enclenchement dudit relais est atteint et un transistor (TM,TD) en série avec une résistance (R2M,R2D), chaque transistor (TM,TD) étant relié à l'entrée de la commande locale (CL) par l'intermédiaire d'une résistance (R3M,R3D) et d'une diode (D3M,D3D) pour permettre la décharge rapide des condensateurs (C1M,C1D) lorsque les transistors (TM,TD) conduisent, déclenchant ainsi le relais (RM2,RD2) correspondant et interrompant la commande activée.
    7. Installation selon l'une des revendications 1 à 6, caractérisée en ce que le module de gestion (30) est monté dans l'un des points de commande (20).
    8. Installation selon l'une des revendications 1 à 6, caractérisée en ce que le module de gestion (30) est monté dans une boíte de dérivation.
    9. Installation selon l'une des revendications 1 à 6, caractérisée en ce que le module de gestion (30) est intégré à l'actionneur.
    EP98202523A 1997-07-29 1998-07-28 Installation de commande d'un ou plusieurs actionneurs Withdrawn EP0895211A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9709628 1997-07-29
    FR9709628 1997-07-29

    Publications (1)

    Publication Number Publication Date
    EP0895211A1 true EP0895211A1 (fr) 1999-02-03

    Family

    ID=9509752

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98202523A Withdrawn EP0895211A1 (fr) 1997-07-29 1998-07-28 Installation de commande d'un ou plusieurs actionneurs

    Country Status (1)

    Country Link
    EP (1) EP0895211A1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2006016243A1 (fr) * 2004-08-10 2006-02-16 Somfy Sas Actionneur electrique de volet roulant avec interface de commande a contacts electriques a ouverture

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2550356A1 (fr) * 1983-08-04 1985-02-08 Marchal Equip Auto Installations de commande multiplexee d'organes alimentes en courant electrique alternatif, tels que des lampes et moteurs
    US4499463A (en) * 1981-07-28 1985-02-12 Somfy Apparatus for controlling electrical receivers occupying at least two states
    US5444339A (en) * 1993-06-11 1995-08-22 Harmonic Design, Inc. Mini-blind actuator

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4499463A (en) * 1981-07-28 1985-02-12 Somfy Apparatus for controlling electrical receivers occupying at least two states
    FR2550356A1 (fr) * 1983-08-04 1985-02-08 Marchal Equip Auto Installations de commande multiplexee d'organes alimentes en courant electrique alternatif, tels que des lampes et moteurs
    US5444339A (en) * 1993-06-11 1995-08-22 Harmonic Design, Inc. Mini-blind actuator

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2006016243A1 (fr) * 2004-08-10 2006-02-16 Somfy Sas Actionneur electrique de volet roulant avec interface de commande a contacts electriques a ouverture
    FR2874291A1 (fr) * 2004-08-10 2006-02-17 Somfy Sas Actonneur electrique de volet roulant presentant une interface de commande munie de contacts electriques a ouverture

    Similar Documents

    Publication Publication Date Title
    CA1294326C (fr) Controleur electronique alimente pendant les periodes inactives de commutation du secteur
    EP0911953B1 (fr) Dispositif pour la commande d&#39;un démarreur de véhicule automobile
    EP0246976B1 (fr) Dispositif d&#39;alimentation électrique des circuits auxiliaires d&#39;une automobile en régime temporaire de surtension
    FR2474105A1 (fr) Branchement pour dispositif electrique de demarrage
    FR2630271A1 (fr) Dispositif d&#39;alimentation electrique sous tension elevee du circuit auxiliaire d&#39;un vehicule automobile
    EP0445015B1 (fr) Dispositif de commutation de vitesse pour moteur électrique
    FR2465341A1 (fr) Appareil et procede de protection d&#39;un moteur electrique
    EP0194921A1 (fr) Moteur électrique comportant un dispositif de protection à thermistances contre les surintensités
    EP0895211A1 (fr) Installation de commande d&#39;un ou plusieurs actionneurs
    EP0054446B1 (fr) Moteur électrique asynchrone, dispositif de commande de l&#39;alimentation d&#39;un tel moteur, et circulateur comportant un tel moteur
    FR2620280A1 (fr) Dispositif d&#39;alimentation electrique en surtension
    FR2514711A1 (fr) Dispositif d&#39;assistance de direction pour vehicule automobile
    FR2757220A1 (fr) Perfectionnements aux procedes et aux systemes pour la commande de l&#39;arret automatique d&#39;un demarreur de vehicule automobile
    EP0614259B1 (fr) Interrupteur différentiel de protection contre les courants de défaut et les surtensions
    EP0066513A1 (fr) Circuit de commande du moteur électrique d&#39;un ventilateur destiné au refroidissement d&#39;un moteur à combustion interne
    FR2466890A1 (fr) Dispositif de branchement pour des appareils utilisateurs electriques
    EP1462645B1 (fr) Dispositif de commande d&#39;un démarreur d&#39;un véhicules automobiles
    EP0097586B1 (fr) Montage de protection contre les surcharges d&#39;un moteur à courant continu et à champ constant
    EP1227590A1 (fr) Procédé et dispositif d&#39;élaboration d&#39;une tension d&#39;alimentation nécessaire au pilotage d&#39;un interrupteur électronique
    EP1093213B1 (fr) Pompe à démarrage à vitesse maximale
    FR2668662A1 (fr) Procede de protection d&#39;un moteur electrique contre les surcharges.
    EP0034547B1 (fr) Dispositif pour contrôler le fonctionnement d&#39;une installation à panneau solaire
    FR2655490A3 (fr) Appareil de commande a circuit d&#39;alimentation en basse tension, en particulier thermostat.
    EP0290314B1 (fr) Circuit de commande pour appareils de télécommande électriques, notamment télérupteurs, et appareils incorporant ce circuit
    EP0141698B1 (fr) Circuit de détection de courant à faible dissipation de puissance active et circuit de commande d&#39;un dispositif électronique équipé d&#39;un tel circuit de détection

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990308

    AKX Designation fees paid

    Free format text: AT BE CH DE ES FR GB IT LI NL SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SOMFY

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SOMFY SAS

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20080404