EP0887841B1 - Lampe à halogénure métallique avec enveloppe céramique - Google Patents

Lampe à halogénure métallique avec enveloppe céramique Download PDF

Info

Publication number
EP0887841B1
EP0887841B1 EP98110787A EP98110787A EP0887841B1 EP 0887841 B1 EP0887841 B1 EP 0887841B1 EP 98110787 A EP98110787 A EP 98110787A EP 98110787 A EP98110787 A EP 98110787A EP 0887841 B1 EP0887841 B1 EP 0887841B1
Authority
EP
European Patent Office
Prior art keywords
discharge vessel
inner part
metal
halide lamp
vessel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98110787A
Other languages
German (de)
English (en)
Other versions
EP0887841A3 (fr
EP0887841A2 (fr
Inventor
Roland Hüttinger
Stefan Dr. Jüngst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP0887841A2 publication Critical patent/EP0887841A2/fr
Publication of EP0887841A3 publication Critical patent/EP0887841A3/fr
Application granted granted Critical
Publication of EP0887841B1 publication Critical patent/EP0887841B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/361Seals between parts of vessel
    • H01J61/363End-disc seals or plug seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr

Definitions

  • the present application is closely related to the following applications: internal reference 97P5540, 97P5541, 97-1-001, 93-1-430.
  • the invention relates to a metal halide lamp with ceramic discharge vessel according to the preamble of claim 1.
  • a metal halide lamp with ceramic discharge vessel according to the preamble of claim 1.
  • Such a lamp is in EP 0 215 524 A disclosed.
  • These are in particular lamps with a discharge vessel, the operating temperature is relatively high, and in the order of up to 1000 ° C.
  • a metal halide lamp with a ceramic discharge vessel in which a two-part implementation in an elongated stopper capillary is sealed by means of glass solder at the discharge-distal end of the plug.
  • the outer part of the bushing is made of permeable Material (niobium pin), the inner part of halide-resistant material (for example, tungsten or molybdenum pin).
  • the inner part can according to Fig. 2 have a sheath made of another halide-resistant metal.
  • Another possibility is to wrap the pin with a helical part (FIG. 8).
  • the concept presented in this document is only suitable for smaller powers up to a maximum of 150 W.
  • Fig. 1 indicated a lamp with a power of 70 W, the implementation of which is a molybdenum pin with a diameter of 0.7 mm.
  • a metal halide lamp with ceramic discharge vessel is known in which the electrode itself within a long plug part ( Fig. 4 ) is encased by a sleeve of alumina. As a result, the ignition behavior of the lamp is improved.
  • the diameter of the electrode shaft is specified there as 1.2 mm.
  • the discharge vessel is a metal halide lamp with ceramic discharge vessel made of alumina, wherein the discharge vessel has two ends which are closed with ceramic plugs, each containing a long drawn capillary tube (hereinafter referred to as plug capillary), and through this plug capillary an electrically conductive feedthrough which is based on the discharge of an inner pin-shaped part and an outer part, is passed vacuum-tight.
  • the bushing is sealed on the outside of the plug by glass solder.
  • An electrode with its shaft, which projects into the interior of the discharge vessel, is fastened to the bushing on the inside.
  • the inner part of the bushing is a pin of a halide-resistant metal whose diameter is at most 0.4 mm, and which is surrounded by a tubular sheath of ceramic or metallic material (hereinafter called casing tube).
  • the material of this ceramic jacket tube contains aluminum. Preferably it consists of alumina (Al 2 O 3). But aluminum nitride (AlN) or aluminum oxynitride (AlON) can also be used, as these materials are particularly resistant to halides. Tungsten is particularly suitable as the metallic material.
  • the jacket tube can also be combined in particular of a plurality of ceramic and / or metallic parts.
  • the outer part of the bushing is sealed with glass solder via its length in the plug capillary.
  • a subsequent region of the inner part of the passage over a length which is at least a small part of the length (about 1 to 2 mm) of the jacket tube enclosed, sealed by glass solder It has been found to be essential for a long life, that the inner part is such a thin pin that it survives the thermal cycling well despite the lack of adaptation to the thermal behavior of the aluminum-containing material without cracks and cracks in the ceramic as well as in Glass solder occur. As a result, the corrosion-prone niobium of the outer part is reliably protected.
  • the power of the lamp is between 150 and 400 W, but smaller powers are possible.
  • a stop device for the jacket tube is mounted on the discharge side, which is intended to prevent a downward displacement during the melting process.
  • This may consist of a bend of the inner part, a transverse piece of wire, a weld bead or similar. consist.
  • a long step at the end of the electrode shaft can also be used as a stop device. It is important to avoid that the jacket tube is overheated by the hot electrode.
  • the jacket tube should have the smallest possible axial distance (typically between 0.1 and 0.5 mm) to the outer part (niobium pin). According to the claim, the distance between the jacket tube and the shaft of the electrode is at least 0.5 mm, preferably more than 1 mm, for the above reasons.
  • the jacket tube consists of at least two axially successively arranged sections.
  • the small gap between the outer and inner portions stops the flow of the glass solder.
  • the inner end of the outer portion of the jacket tube thus defines the Einschmelzfur for the glass solder on the outside Casing pipe.
  • the glass solder is unintentionally sucked into the interior of the casing tube until it is carried out.
  • the strong capillary forces in the jacket tube can then suck the glass solder forward to the vicinity of the electrode.
  • a very particular advantage of a two-part axial jacket tube is that the outer portion of the jacket tube also acts as a barrier for this internal glass solder.
  • the inner, high temperature loaded section of the jacket tube is thus always free of solder glass.
  • the outer part of the implementation discharge side has a holding means for the inner part, in particular a step, a transverse slot or a blind hole.
  • the entire outer part of the passage is formed as a tube (in particular of niobium).
  • the diameter of the inner part is significantly (more than 50%) smaller than the diameter of the outer part.
  • the diameter of the inner part is so dimensioned that the current density through the inner part is a maximum of 80 A / mm 2 .
  • the current density through the inner part is a maximum of 80 A / mm 2 .
  • the jacket tube is constructed in one or two parts from concentric tubes. Its length is preferably on the order of at least 60%, preferably 80 to 90%, of the length of the inner part of the bushing to have its ends free for the electrical connections.
  • the dead volume in the front region of the inner part of the passage is advantageously filled by a close-fitting helix of tungsten or molybdenum.
  • the present invention uses a two-part bushing made up of an outer part adapted to thermal expansion to the alumina ceramic (in particular a niobium pin or tube, but also the use of tantalum is possible), which is covered and sealed with glass solder, and an inner part Part which is resistant to halogenides and which is only partially covered and sealed with glass solder at its outer end.
  • the inner part is a very thin wire made of molybdenum or, in particular, of the higher-melting tungsten.
  • the tungsten may have a rhenium additive, either as an alloy or as a plating on the surface. The rhenium enhances the high temperature strength and corrosion resistance of tungsten.
  • the inner part is connected on one side to the outer part (niobium pin) and on the other side to the electrode.
  • a jacket tube is drawn, consisting of one or more thin aluminum-containing capillary tubes whose outer diameter is as equal as possible to that of the outer part.
  • the considerable dead volume in the annular gap of the stopper capillary, in which filling components can condense is reduced.
  • the smallest possible annular gap causes an improvement in the melting by glass solder.
  • the outer diameter of the jacket tube leaves only a capillary gap to the stopper capillary. The gap is about 30 microns wide.
  • the outer diameter of the jacket tube can be chosen to be just the inside diameter of the stopper capillary (to a few microns), thereby minimizing the dead volume.
  • the plug can be made in one piece, but also in several parts. For example, in a manner known per se, a plug capillary can be surrounded by an annular plug part.
  • the outer part is completely melted into the glass solder via its length in the plug capillary tube, the tungsten wire (and the jacket tube) over a length of about 1 to 2 mm at its outer end. It is important that the niobium pin is completely covered by glass solder because of the corrosive attack of the filling on niobium.
  • the advantage of the inner part is that even with the use of relatively thick Niobstiften (up to 2 mm), only a thin molybdenum or tungsten wire is melted with. As a result, stresses caused by the imperfect adjustment of the coefficient of thermal expansion between molybdenum and Al 2 O 3 , greatly reduced since the absolute extent is small. As is known, niobium, unlike tungsten or molybdenum, is well adapted to the thermal expansion of alumina.
  • Tungsten is advantageous as a wire material over molybdenum, especially if the electrode is relatively short (shorter than the inner part). Because of the lower melting point of molybdenum (compared to tungsten), the danger is greater that the weld and the molybdenum pin behind the weld will be overheated by the proximity to the hot electrode. This would cause the weld to dislodge or cause the molybdenum pin to soften and bend under the weight of the electrode causing the electrode touches the wall of the discharge vessel and locally overheated. In addition, tungsten is more corrosion resistant than molybdenum.
  • tungsten is much better suited than molybdenum, since molybdenum reacts with bromine.
  • an integral piece of tungsten wire can be used, which takes over both the task of the inner part of the implementation and the electrode shaft. This can be dispensed with a welded joint.
  • the cross section of a 0.4 mm thick wire allows a starting current of up to about 10 A. This corresponds to a maximum current density of 80 A / mm 2 . Only above this value does a critical ohmic heating occur. Thus, the present invention enables a lamp power of up to 400 W.
  • the sheath of the inner part is a concentric double tube made of ceramic. This has manufacturing advantages. Furthermore, the material of the inner and outer part of the jacket tube may also be slightly different (for example, alumina with different doping).
  • FIG. 1 schematically a metal halide lamp with a power of 150 W is shown. It consists of a lamp axis defining cylindrical outer bulb 1 made of quartz glass, the two sides squeezed (2) and socketed (3).
  • the axially arranged discharge vessel 4 made of Al 2 O 3 ceramic is cylindrical or bulbous and has two ends 6. It is held in the outer bulb 1 by means of two power supply lines 7, which are connected to the base parts 3 via foils 8.
  • the power supply lines 7 are welded to bushings 9, 10, which are each fitted in an end plug 12 at the end 6 of the discharge vessel.
  • the plug part is designed as an elongated capillary tube 12 (plug capillary). The end 6 of the discharge vessel and the stopper capillary 12 are directly sintered together.
  • the bushings 9, 10 each consist of two parts.
  • the outer part 13 is designed as a niobium pin and protrudes into about a quarter of the length of the capillary tube 12 into this.
  • the inner part 14 extends within the capillary tube 12 towards the discharge volume. It holds electrodes 16 on the discharge side, consisting of an electrode shaft 15 made of tungsten and a coil 17 pushed on the discharge end.
  • the inner part 14 of the leadthrough is welded to the electrode shaft 15 as well as to the outer part 13 of the leadthrough.
  • the filling of the discharge vessel is in addition to an inert ignition gas, such as argon, from mercury and additives to metal halides.
  • an inert ignition gas such as argon
  • the use of a metal halide filling without mercury, with a high pressure is selected for the ignition gas xenon.
  • a passage 9 is a system consisting of a niobium pin as the outer part 13 with a diameter of 1.1 mm and a thin tungsten pin (diameter 0.25 mm) as the inner part 14, on the two well-fitting as a casing tube Al 2 O 3 Kapillarrschreibchen 20th , 21 are pushed.
  • the outer tube 21 has an outer diameter of 1.1 mm and an inner diameter of 0.62 mm
  • the inner tube 20 has an outer diameter of 0.58 and an inner diameter of 0.3 mm.
  • the total length of the capillary tube 12 is about 17 mm, that of the tungsten pin 14 about 15 mm, and that of the electrode about 5 mm with a diameter of the shaft 15 of 0.5 mm.
  • the niobium pin is ground on the discharge side a step 22.
  • the tungsten pin 14 is fixed with a resistance weld 19.
  • the step is so high that it gives the tungsten pin 14 sufficient guidance so that it sits exactly in the middle. This is important so that the entire system is centrally aligned and can be well inserted into the two-piece jacket tube (capillary tubes 20, 21).
  • the electrode shaft 15 On the discharge side of the tungsten pin is welded in the same way to the electrode shaft 15, wherein also the electrode shaft 15 has a step for the same reasons as above.
  • the niobium pin 13 is inserted about 3 mm deep into the stopper capillary 12 and sealed by means of glass solder 18.
  • the jacket tubes 20, 21 terminate close to the niobium pin (distance 0.1-0.5 mm), so that the glass solder can easily wet this gap, and so the niobium is completely covered and thus the beginning of the inner part (1 to 2 mm) still from the glass solder is covered.
  • a stop device In order to prevent the tubes from sliding downwards by gravity during vertical melting, they must be held in position by a stop device. This is solved in this case by a curved deflection 23 of the tungsten pin.
  • the end of the tungsten pin 14 may also be bent into a helix. Preferably, one to two turns suffice.
  • the niobium pin 13 has a diameter of 1.3 mm.
  • the tungsten pin 14 has a diameter of 0.35 mm.
  • the inner capillary tube 20 has an outer diameter of 0.8 mm, the outer capillary tube 21 has an outer diameter of 1.2 mm.
  • the total length of the tungsten pin is 14.5 mm, that of the electrode 3.5 mm with a diameter of 0.7 mm.
  • the distance of the capillary tubes 20, 21 from the niobium pin and from the electrode is 0.5 mm in each case.
  • the capillary tube 12 of the plug has a length of about 18 mm.
  • the niobium pin sits in it about 2.5 mm deep.
  • the niobium pin 13 has on the discharge side a blind hole 24 in which the tungsten pin 14 is inserted and welded.
  • the stopping device here is a piece of wire 25, which is attached to the tungsten pin in the vicinity of the discharge-side end of the tungsten pin transversely to the lamp axis. It has been found that the jacket tube should not have direct contact with the electrode, because the heat load may otherwise lead to a reaction of the alumina with the components of the filling. Therefore, in general, a minimum distance of the capillary tubes to the electrode of at least 0.5 is recommended. Preferably, the distance is greater than 1 mm.
  • the stop device may also be a flattening or bead of sweat or the like. be on tungsten feedthrough pin.
  • niobium tube As the outer part.
  • the inner diameter of the niobium tube is chosen so that the inner part (tungsten pin) fits well into the inner bore of the tube.
  • Fig. 4 shows a further embodiment of an end region of a discharge vessel with a power of 70 W is shown.
  • a simply designed jacket tube 30 (outer diameter 0.6 mm) encloses a tungsten pin 31 with a diameter of 0.2 mm.
  • the three-part jacket tube is formed from two axially successively arranged outer sections 30a, 30b and an inner helical part 34.
  • the short outermost portion 30b serves as a barrier to penetration of the glass solder 18.
  • the tungsten pin 31 is fixed to a step 32 of the electrode shaft 33.
  • the step 32 which is at least 0.5 mm high, simultaneously serves as a stop device for the middle section 30a of the jacket tube 30.
  • the dead volume in the area near the discharge before the long inner middle section 30a of the jacket tube 30 is filled by the coil section 34 made of molybdenum.
  • the outer part is here a niobium tube 13 'with a bore 29, in the front end of the tungsten pin 31 is inserted as an inner part and welded there.
  • the tungsten pin extends over the entire length of the niobium tube and is welded thereto at one end of the niobium tube.
  • the jacket tube is either a sleeve of alumina or a helix of rhenium doped tungsten.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Claims (12)

  1. Lampe aux halégénures métalliques ayant une enceinte (4) de décharge en céramique en oxyde d'aluminium, dans laquelle l'enceinte de décharge a deux extrémités (6) qui sont fermées par des bouchons en céramique qui comportent respectivement un tube (12) capillaire s'étirant en longueur désigné, dans ce qui suit, par capillaire de bouchon, et dans laquelle il passe à travers ces capillaires (12) de bouchon, une traversée (9, 10) conductrice de l'électricité qui, rapportée à la décharge, est constituée d'une partie (14) intérieure en forme de tige et d'une partie (13) extérieure, la traversée étant rendue étanche à l'extérieure par de la brasure pour du verre, dans laquelle il est fixé sur la traversée une électrode (16) ayant une hampe (15) qui pénètre à l'intérieur de l'enceinte de décharge, dans laquelle la partie (14) intérieure est une tige en un métal résistant aux halogénures, dont le diamètre est au maximum de 0,4 4 mm et qui est entourée d'une enveloppe (20, 21) tubulaire désignée, dans ce qui suit, par tube enveloppe, en un matériau métallique ou céramique qui contient de l'aluminium, dans laquelle la partie (13) extérieure est rendue étanche, au moyen de la brasure (18) pour du verre, au moins sur sa longueur se trouvant dans le bouchon et sur une zone venant ensuite de la partie (14) intérieure sur une longueur qui comprend au moins une petite partie de la longueur du tube (20, 21) enveloppe,
    caractérisée en ce que le tube (20, 21, 30) enveloppe est à une distance minimum de 0,5 mm de la hampe de l'électrode.
  2. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que la partie (14) intérieure est en tungstène auquel est ajouté éventuellement du rhénium et en ce que la partie (13) extérieure est en niobium.
  3. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que le tube (20, 21 ; 30) enveloppe s'étend sur au moins 60% de la longueur de la partie (14) intérieure.
  4. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que le tube enveloppe est constitué de plusieurs sections axiales.
  5. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce qu'un dispositif (23, 25) d'arrêt du tube (20, 21 ; 30) d'enveloppe est mis sur la partie intérieure du côté de la décharge.
  6. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que le tube (20, 21 ; 30) d'enveloppe est à une distance de plus 1 mm de la hampe de l'électrode.
  7. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que la partie (13) extérieure de la traversée est un tube (13') dans l'alésage (29) duquel la partie (14) intérieure est maintenue.
  8. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que la partie (13) extérieure de la traversée est une tige qui a du côté de la décharge un moyen de maintien de la partie (14) intérieure, notamment un épaulement (22), une fente ou un trou (24) borgne.
  9. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que la partie (14) intérieure est en tungstène, le remplissage contenant comme halogène plus de 10% en mol de brome.
  10. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que le diamètre de la partie (14) intérieure représente moins de 50% du diamètre de la partie (13) extérieure.
  11. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que le diamètre de la partie (14) intérieure est tel que la densité du courant passant dans la partie intérieure est au maximum de 80 A/mm2.
  12. Lampe aux halégénures métalliques ayant une enceinte de décharge en céramique suivant la revendication 1, caractérisée en ce que le tube (20, 21 ; 30) enveloppe est constitué en une partie ou en deux parties de tubes concentriques.
EP98110787A 1997-06-27 1998-06-12 Lampe à halogénure métallique avec enveloppe céramique Expired - Lifetime EP0887841B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19727430 1997-06-27
DE19727430A DE19727430A1 (de) 1997-06-27 1997-06-27 Metallhalogenidlampe mit keramischem Entladungsgefäß

Publications (3)

Publication Number Publication Date
EP0887841A2 EP0887841A2 (fr) 1998-12-30
EP0887841A3 EP0887841A3 (fr) 1999-10-06
EP0887841B1 true EP0887841B1 (fr) 2010-02-17

Family

ID=7833876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98110787A Expired - Lifetime EP0887841B1 (fr) 1997-06-27 1998-06-12 Lampe à halogénure métallique avec enveloppe céramique

Country Status (7)

Country Link
US (1) US6075314A (fr)
EP (1) EP0887841B1 (fr)
JP (1) JPH1173921A (fr)
CN (1) CN1165956C (fr)
AT (1) ATE458265T1 (fr)
CA (1) CA2241698A1 (fr)
DE (2) DE19727430A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067488A1 (fr) * 2000-03-08 2001-09-13 Japan Storage Battery Co., Ltd. Lampe a decharge electrique
EP1160831B1 (fr) 2000-05-30 2003-08-06 Japan Storage Battery Co., Ltd. Lampe à décharge
US6621219B2 (en) * 2000-12-28 2003-09-16 General Electric Company Thermally insulating lead wire for ceramic metal halide electrodes
JP3759498B2 (ja) * 2001-03-30 2006-03-22 松下電器産業株式会社 自動車前照灯用メタルハライドランプ
EP1296356B1 (fr) * 2001-09-13 2014-03-05 Ushiodenki Kabushiki Kaisha Lampe à décharge à très haute pression du type à arc court
US6774566B2 (en) * 2001-09-19 2004-08-10 Toshiba Lighting & Technology Corporation High pressure discharge lamp and luminaire
JP2003132839A (ja) 2001-10-30 2003-05-09 Matsushita Electric Ind Co Ltd メタルハライドランプ
US6744206B2 (en) * 2002-02-25 2004-06-01 Matsushita Electric Industrial Co., Ltd. Metal halide lamp with reduced change in color temperature
CN1314074C (zh) * 2002-03-20 2007-05-02 松下电器产业株式会社 金属卤化物灯
DE10214777A1 (de) * 2002-04-03 2003-10-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
DE10256389A1 (de) * 2002-12-02 2004-06-09 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Metallhalogenidlampe mit keramischem Entladungsgefäß
US6774547B1 (en) 2003-06-26 2004-08-10 Osram Sylvania Inc. Discharge lamp having a fluted electrical feed-through
US6856079B1 (en) 2003-09-30 2005-02-15 Matsushita Electric Industrial Co., Ltd. Ceramic discharge lamp arc tube seal
EP1730766B1 (fr) * 2004-02-23 2013-03-27 OSRAM GmbH Systeme d'electrodes pour lampe a decharge gazeuse haute pression
US20060108928A1 (en) * 2004-11-24 2006-05-25 Patent-Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh Process for producing a supply conductor for a lamp, and supply conductor for a lamp, as well as lamp having a supply conductor
US7362053B2 (en) * 2005-01-31 2008-04-22 Osram Sylvania Inc. Ceramic discharge vessel having aluminum oxynitride seal region
US7823353B2 (en) * 2005-11-22 2010-11-02 Masonite Corporation Door, method of making door, and stack of doors
US7511429B2 (en) * 2006-02-15 2009-03-31 Panasonic Corporation High intensity discharge lamp having an improved electrode arrangement
DE202007007688U1 (de) * 2007-05-31 2008-07-10 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
DE102007046899B3 (de) * 2007-09-28 2009-02-12 W.C. Heraeus Gmbh Stromdurchführung durch Keramikbrenner in Halogen-Metalldampflampen
US8415883B2 (en) * 2007-12-26 2013-04-09 General Electric Company Miniature ceramic metal halide lamp having a thin leg
EP2081214A1 (fr) * 2008-01-18 2009-07-22 Flowil International Lighting (HOLDING) B.V. Lampe de décharge haute pression pour unité d'électrode
US9486298B2 (en) 2011-07-28 2016-11-08 3M Innovative Properties Company Cartridge for dispensing a dental substance and method of assembling the cartridge

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3373591D1 (en) * 1982-12-30 1987-10-15 Philips Nv High-pressure sodium discharge lamp
NL8502509A (nl) * 1985-09-13 1987-04-01 Philips Nv Hogedrukkwikdampontladingslamp.
DE3636110A1 (de) * 1986-10-23 1988-04-28 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Einschmelzung fuer eine hochdruckentladungslampe
DE4132530A1 (de) * 1991-09-30 1993-04-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe kleiner leistung
US5424609A (en) * 1992-09-08 1995-06-13 U.S. Philips Corporation High-pressure discharge lamp
EP0587238B1 (fr) * 1992-09-08 2000-07-19 Koninklijke Philips Electronics N.V. Lampe à décharge à haute pression
DE4242122A1 (de) * 1992-12-14 1994-06-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer vakuumdichten Abdichtung zwischen einem keramischen und einem metallischen Partner, insbesondere zur Anwendung bei der Herstellung eines Entladungsgefäßes für eine Lampe, sowie damit hergestellte Entladungsgefäße und Lampen
US5430353A (en) * 1993-07-22 1995-07-04 General Electric Company Lamp inlead assembly having a formed foil arrangement
DE4327535A1 (de) * 1993-08-16 1995-02-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe mit keramischem Entladungsgefäß
BR9506154A (pt) * 1994-04-13 1996-04-16 Philips Electronics Nv Lâmpada de halogeneto de metal de alta pressão

Also Published As

Publication number Publication date
CN1204138A (zh) 1999-01-06
JPH1173921A (ja) 1999-03-16
EP0887841A3 (fr) 1999-10-06
EP0887841A2 (fr) 1998-12-30
US6075314A (en) 2000-06-13
CN1165956C (zh) 2004-09-08
DE59814435D1 (de) 2010-04-01
CA2241698A1 (fr) 1998-12-27
ATE458265T1 (de) 2010-03-15
DE19727430A1 (de) 1999-01-07

Similar Documents

Publication Publication Date Title
EP0887841B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0602530B1 (fr) Procédé pour fabriquer un joint étanche au vide pour un récipient céramique et une lampe à décharge
EP0607149B1 (fr) Procede pour la fabrication d'une lampe a decharge a halogenure de metal avec recipient de decharge en ceramique
EP0570772B1 (fr) Lampe à décharge à haute pression
EP0887839B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0887840B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0602529B1 (fr) Lampe de décharge à haute pression ayant un récipient céramique de décharge
EP1817790B1 (fr) Lampe a decharge haute pression
DE9422090U1 (de) Keramisches Entladungsgefäß
EP2020018B1 (fr) Lampe à décharge à haute pression
DE69403176T2 (de) Elektrische Lampe
DE60130204T2 (de) Hochdruckentladungslampe
EP0472100A2 (fr) Lampe à décharge à haute pression
DE10026802A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
DE4327535A1 (de) Hochdruckentladungslampe mit keramischem Entladungsgefäß
EP1351278B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP1372184A2 (fr) Système d'électrodes pour une lampe aux halogénures métalliques et lampe équipée d'un tel système
EP1434252A2 (fr) Lampe à halogéne métallique avec enveloppe céramique, système d'électrodes pour une telle lampe et procédé pour fabriquer un tel système
DE202004013922U1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
WO2008145472A2 (fr) Lampe à décharge haute pression
DE10226762A1 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE20210400U1 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
EP1958239A2 (fr) Lampe a decharge haute pression comprenant une enceinte de decharge ceramique
DE4202971A1 (de) Hochdruckgasentladungslampe fuer gleichstrombetrieb
DE19529465A1 (de) Hochdruckentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Free format text: 6H 01J 61/36 A, 6H 01J 61/82 B, 6H 01J 61/12 B

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991105

AKX Designation fees paid

Free format text: AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20011207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59814435

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100612

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110617

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110819

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110713

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59814435

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

BERE Be: lapsed

Owner name: OSRAM G.M.B.H.

Effective date: 20120630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59814435

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814435

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630