EP0876851B1 - Optoelectronic grading device - Google Patents

Optoelectronic grading device Download PDF

Info

Publication number
EP0876851B1
EP0876851B1 EP98108295A EP98108295A EP0876851B1 EP 0876851 B1 EP0876851 B1 EP 0876851B1 EP 98108295 A EP98108295 A EP 98108295A EP 98108295 A EP98108295 A EP 98108295A EP 0876851 B1 EP0876851 B1 EP 0876851B1
Authority
EP
European Patent Office
Prior art keywords
classified
semiconductor material
slide face
silicon
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98108295A
Other languages
German (de)
French (fr)
Other versions
EP0876851A1 (en
Inventor
Matthäus Schantz
Franz Dr. Köppl
Dirk Dr. Flottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP0876851A1 publication Critical patent/EP0876851A1/en
Application granted granted Critical
Publication of EP0876851B1 publication Critical patent/EP0876851B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • B07C5/367Sorting apparatus characterised by the means used for distribution by means of air using a plurality of separation means
    • B07C5/368Sorting apparatus characterised by the means used for distribution by means of air using a plurality of separation means actuated independently
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/04Sorting according to size
    • B07C5/10Sorting according to size measured by light-responsive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • B07C5/367Sorting apparatus characterised by the means used for distribution by means of air using a plurality of separation means

Definitions

  • the invention relates to an apparatus and a method for optoelectronic classification of semiconductor material.
  • High purity Silicon is obtained, for example, by thermal decomposition more volatile and therefore simple via distillation processes silicon compounds to be cleaned, such as Trichlorosilane. It falls polycrystalline in the form of rods with typical diameters from 70 to 300 mm and lengths of 500 up to 2500 mm. A large part of the bars becomes production of crucible-drawn single crystals, of ribbons and foils or for the production of polycrystalline solar cell base material used. Because these products are made from high purity, molten Silicon are manufactured, it is necessary to use solid silicon to melt in crucibles.
  • the object of the invention is therefore a device and to provide a process in which the Disadvantages of the prior art can be avoided, in particular an apparatus and a method for classifying semiconductor material, especially of silicon make the semiconductor material with metal atoms as little as possible is contaminated, a good selectivity is set as little abrasion as possible and can not clog holes.
  • This task is surprisingly solved by the invention.
  • the figure shows a device according to the invention.
  • the invention relates to a device for optoelectronic Classifying semiconductor materials, characterized in that the device is a device for separating 2 and has a sliding surface 3, the angle of the sliding surface 3 is adjustable to the horizontal, the device in each case for separating 2 and the sliding surface 3 a surface have from the semiconductor material to be classified and a Radiation source 5 through its beam path 4 that to be classified Material falls and a shape detection device 6 that forwards the shape of the goods to be classified to a control unit 7, which controls at least one deflection device 8.
  • the device is preferably used to make it brittle Semiconductor materials such as silicon, germanium or gallium arsenide to classify according to grain sizes. Silicon is preferred classified with it. With this device, semiconductor material can also be separated into two or more grain size fractions.
  • the device is constructed in such a way that the goods to be classified 1 first on a device for separating and preferably for simultaneous conveying comes, which preferably a vibratory conveyor is.
  • This vibratory conveyor is preferred vibrated by which the break out Semiconductor material is separated and in the direction of the sliding surface 3 is transported.
  • Place the material on a conveyor device occasionally.
  • the angle of this sliding surface 3 is adjustable to the horizontal; it is depending on the coefficient of friction between Fragment and surface covering set so that the fragments preferably under the action of gravity slide. The angle is preferred in a range from 20 ° to 80 ° 30 ° to 70 ° set.
  • This device for separating 2 and preferably for conveying and the sliding surface 3 are designed so that the surfaces to be classified Semiconductor material with materials other than that too classifying semiconductor material comes into contact. This happens preferably by coating this device for separating 2 and preferably for conveying and the sliding surface 3 with the same semiconductor material as that that classifies shall be.
  • the device for separating 2 and the sliding surface 3 can also be made entirely of the corresponding semiconductor material be constructed. In the case of silicon, that is, with silicon be coated or consist of silicon.
  • On the The sliding surface align the particles so that you Center of gravity is as low as possible. That means, that in its free fall after passing the sliding surface 3 the largest projection surface facing the radiation source 5.
  • the Fall height between the sliding surface 3 and the deflection device 8 is preferably 5 cm to 20 cm, preferably 10 cm.
  • a radiation source 5 is in the middle of this drop distance and a shape detection device 6, which is Particles between the radiation source 5 and the shape detection device 6 moves.
  • the distance of the particle from the radiation source 5 is preferably 50 cm to 120 cm, particularly preferably 70 cm and the particle to the shape detection device 6 is preferably 5 cm to 12 cm, particularly preferably 6 cm.
  • the radiation source 5 is preferably a electromagnetic radiation source, such as a laser or a Lamp, the visible light in the range of 400 nm to 700 nm broadcasts. Electromagnetic rays in the infrared range, Radiated ultraviolet or X-ray range become.
  • the shape detection device 6 is concerned preferably a high-resolution sensor that is a camera can be to detect visible light, infrared rays, Ultraviolet rays or x-rays.
  • This Sensor is connected to a control unit 7 that the incoming Evaluates data.
  • This control unit 7 acts it is preferably a computer.
  • This control unit 7 controls at least one deflection device according to a predetermined program 8.
  • This recording system can consist of a control unit 7 and shape detection device 6 a certain grain size or capture a grain size range.
  • the deflector 8 With the deflector 8, the corresponding grain size or a grain size range detected, it is preferably a nozzle, from which gases or liquids are preferably expelled, the gases are preferably air or are inert gases, such as nitrogen, which operate with a pressure above normal pressure, preferably 3 to 10 bar, particularly preferably at 6 bar.
  • the liquids is preferably high-purity water, with a conductivity of preferably below 0.14 uS, particularly preferably of 0.08 ⁇ S ejected at a pressure of preferably 2 to 20 bar.
  • the deflection device 8 can be arranged alone be or consist of several nozzles arranged side by side, which are preferably in a row at a distance of preferably 3 to 15 mm, particularly preferably 9 mm if the particles are parallel through the beam path 4 the radiation source 5 fall.
  • the deflected particles with the desired grain size or the grain size range are preferred via a separating device 9 in a collecting container 10 collected and the undeflected particles are in one Collection container 11 collected.
  • the collection containers can at least inside a surface from the to be classified Have or consist of semiconductor material.
  • the two fanned out streams of goods can be detected by additional detection systems and deflection devices divided into further grain classes become. Classification according to surface parameters can also be used be made.
  • This separating device 9 is preferably on the surface provided or exists with the semiconductor material to be classified out of this.
  • Another object of the invention is a method for optoelectronic classification of semiconductor materials using the device according to the invention for optoelectronic classification, wherein the classified material on a device for separating 2, the semiconductor material to be classified on the surface has, is separated and via a sliding surface 3, the surface of the semiconductor material to be classified has, the angle of the sliding surface in the horizontal is adjustable, slides down so that the center of gravity of the Classified goods is as low as possible and in this orientation, after leaving the sliding surface 3, the beam path 4 one Radiation source 5 passes through a shape detection device 6 the shape of the classified material to a control unit 7 forwards, at least according to previously set criteria controls a deflection device 8, which deflects the classified material.
  • the crushed Well 1 in this case semiconductor material, in one Device for separating 2 conveyed to a sliding surface 3, whose angle depending on the coefficient of friction between to classify semiconductor material and surface covering so is set that the semiconductor material to be classified preferably slides down under the action of gravity.
  • the irregularly shaped semiconductor material is aligned in such a way that his focus is as possible comes to lie low, which means that it is its largest projection surface the sliding surface 3 turns.
  • the shredded material passes after leaving the sliding surface 3 the detection system consisting of radiation source 5 and shape detection device 6, the beam path 4 of the radiation source 5 and is used by a shape detection device 6 detects, preferably an optical resolution of 0.1 mm up to 20 mm and particularly preferably an optical resolution of Has 0.5 mm to 10 mm, the data obtained from a control unit 7 can be evaluated.
  • the semiconductor material to be classified passes the acquisition system with a duration of fall from 0.05 sec to 1 sec, particularly preferably from 0.1 sec to 0.2 sec.
  • At least a deflection device 8 controlled for example all too small semiconductor material particles with, for example, one Air jet deflects and thus deviates from the original Trajectory causes.
  • a separator 9 separates the two fractions, which are in separate collection containers 10 and 11 are collected.
  • the inventive method in connection with the inventive The device has the advantages of being contamination-free is classified; it will preferably be a range of 15 mm continuously measured up to 150 mm. But it can also be set that a range of, for example, 10 to 20 mm is detected or mixed a certain percentage of a certain grain size with the percentage of another certain grain size is detected. This allows sorting with adjustable lubrication can be set exactly as requested by the customer, since these need certain grain size ratios to the crucible fill from which, for example, the monocrystal is pulled becomes.
  • a preferred embodiment of the device according to the invention for optoelectronic classification has a working width of preferably 500 mm, an optical resolution of 0.5 mm and a nozzle grid of 8 mm nozzle spacing, which is a mass flow of 1t / h of a pile of different sized polysilicon fragments with a grain size of 30 mm classified.

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Sorting Of Articles (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Silicon Compounds (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum optoelektronischen Klassieren von Halbleitermaterial.The invention relates to an apparatus and a method for optoelectronic classification of semiconductor material.

Für die Herstellung von Solarzellen oder elektronischen Bauelementen, wie beispielsweise Speicherelementen oder Mikroprozessoren, wird hochreines Halbleitermaterial benötigt. Die gezielt eingebrachten Dotierstoffe sind die einzigen Verunreinigungen, die ein derartiges Material im günstigsten Fall aufweisen sollte. Man ist daher bestrebt, die Konzentrationen schädlicher Verunreinigungen so niedrig wie möglich zu halten. Häufig wird beobachtet, daß bereits hochrein hergestelltes Halbleitermaterial im Verlauf der weiteren Verarbeitung zu den Zielprodukten erneut kontaminiert wird. So werden immer wieder aufwendige Reinigungsschritte notwendig, um die ursprüngliche Reinheit zurückzuerhalten. Fremdmetallatome, die in das Kristallgitter des Halbleitermaterials eingebaut werden, stören die Ladungsverteilung und können die Funktion des späteren Bauteils vermindern oder zu dessen Ausfall führen. Infolgedessen sind insbesondere Kontaminationen des Halbleitermaterials durch metallische Verunreinigungen zu vermeiden. Dies gilt insbesondere für Silicium, das in der Elektronikindustrie mit deutlichem Abstand am häufigsten als Halbleitermaterial eingesetzt wird. Hochreines Silicium erhält man beispielsweise durch thermische Zersetzung leicht flüchtiger und deshalb einfach über Destillationsverfahren zu reinigender Siliciumverbindungen, wie beispielsweise Trichlorsilan. Es fällt dabei polykristallin in Form von Stäben mit typischen Durchmessern von 70 bis 300 mm und Längen von 500 bis 2500 mm an. Ein großer Teil der Stäbe wird zur Produktion von tiegelgezogenen Einkristallen, von Bändern und Folien oder zur Herstellung von polykristallinem Solarzellengrundmaterial verwendet. Da diese Produkte aus hochreinem, schmelzflüssigem Silicium hergestellt werden, ist es notwendig, festes Silicium in Tiegeln aufzuschmelzen. Um diesen Vorgang möglichst effektiv zu gestalten, müssen großvolumige, massive Siliciumstücke, wie beispielsweise die erwähnten polykristallinen Stäbe, vor dem Aufschmelzen zerkleinert werden. Dies ist üblicherweise immer mit einer oberflächlichen Verunreinigung des Halbleitermaterials verbunden, weil die Zerkleinerung mit metallischen Brechwerkzeugen, wie Backen- oder Walzenbrechern, Hämmern oder Meißeln, erfolgt.For the production of solar cells or electronic components, such as memory elements or microprocessors, high-purity semiconductor material is required. The targeted introduced dopants are the only impurities which should have such a material in the best case. It is therefore endeavored to make the concentrations more harmful Keep contaminants as low as possible. Frequently observed that already highly pure semiconductor material in the course of further processing to the target products is contaminated again. In this way, time and again become complex Cleaning steps necessary to restore the original purity. Foreign metal atoms that are in the crystal lattice of the Semiconductor material are installed, disrupt the charge distribution and can reduce the function of the later component or lead to its failure. As a result, in particular Contamination of the semiconductor material by metallic impurities to avoid. This is especially true for silicon, that in the electronics industry at a clear distance is most often used as a semiconductor material. High purity Silicon is obtained, for example, by thermal decomposition more volatile and therefore simple via distillation processes silicon compounds to be cleaned, such as Trichlorosilane. It falls polycrystalline in the form of rods with typical diameters from 70 to 300 mm and lengths of 500 up to 2500 mm. A large part of the bars becomes production of crucible-drawn single crystals, of ribbons and foils or for the production of polycrystalline solar cell base material used. Because these products are made from high purity, molten Silicon are manufactured, it is necessary to use solid silicon to melt in crucibles. To make this process as effective as possible to design, large-volume, massive pieces of silicon, such as for example, the polycrystalline rods mentioned before Melt can be crushed. This is usually always the case with a superficial contamination of the semiconductor material connected because the crushing with metallic Breaking tools, such as jaw or roller crushers, hammers or Chisels, done.

Nach den üblichen Verfahren der Zerkleinerung von Halbleitermaterialien mit mechanischen Werkzeugen, wie Brechern oder Hämmern, liegt das Halbleitermaterial in verschiedenen Stückgrößen vor. Zahlreiche Halbleitermaterialien, wie vor allem Polysilicium, müssen für den Schmelzvorgang aus verfahrenstechnischen Gründen in einer bestimmten Stückgrößenverteilung vorliegen. Da mit dem Halbleitermaterial keine Verunreinigungen in den Tiegel gelangen dürfen, müssen sowohl an das Brechverfahren als auch an das Klassierverfahren ganz besondere Anforderungen derart gestellt werden, daß keine Kontamination mit Fremdatomen stattfindet, die aus metallischen Werkzeugen stammen, wie z.B. Siebvorrichtungen DE-4-113 093. Somit schließen sich übliche Siebvorrichtungen, die im Handel erhältlich sind, aus. Beim Sieben etwa auf einem Schwungsieb aus Metall führt der harte und scharfkantige Siliciumbruch zu einem starken Abrieb auf dem Siebboden und damit zu einer nicht akzeptierbaren Verunreinigung der Siliciumoberfläche, die den Einsatz von aufwendigen Reinigungsverfahren erfordert. Deshalb werden heute Siebböden aus Silicium eingesetzt. Diese Maßnahme bedingt jedoch wegen der hohen Bruchgefahr der Siliciumbauteile einen hohen Aufwand bei der Nachrüstung. Ein weiterer Nachteil der Siebverfahren ist die hohe Verstopfungsgefahr der Siebe, die in der unregelmäßigen Kornform der Siliciumbruchteile begründet ist.According to the usual methods of comminuting semiconductor materials with mechanical tools such as crushers or hammers, is the semiconductor material in different piece sizes in front. Numerous semiconductor materials, especially polysilicon, must for the melting process from process engineering Reasons in a certain piece size distribution. There no contamination in the crucible with the semiconductor material must reach both the crushing process and such special requirements for the classification process that no contamination with foreign atoms takes place, that come from metallic tools, e.g. Screening devices DE-4-113 093. This closes conventional screening devices, which are commercially available. At about seven the hard and sharp-edged one carries a swing screen made of metal Silicon breakage leads to severe abrasion on the sieve bottom and thus unacceptable contamination of the silicon surface, the use of elaborate cleaning processes required. Therefore, sieve trays made of silicon are used today. However, this measure requires because of the high risk of breakage the silicon components a lot of effort when retrofitting. Another disadvantage of the screening process is the high one Risk of clogging of the sieves in the irregular grain shape of the silicon fractions is justified.

Aus diesen Gründen wurde der Einsatz von sieblosen Klassierverfahren, wie etwa das Stromklassieren, untersucht. Da die geforderten Trennschnitte im Bereich von Zentimetern liegen, scheidet ein Windsichten aus, weil die hierzu erforderlichen hohen Luftgeschwindigkeiten in Verbindung mit dem kantigen Siebgut eine hohe Abrasion an der Apparatur verursachen. Stromklassieren in Wasser weist diesen Nachteil nur in geringem Maß auf, doch führt hier die unregelmäßige Kornform des Siliciumbruchs zu einem sehr unscharfen Trennschnitt, weil z.B. blättchenförmige Siliciumteilchen aufgrund ihrer niedrigen Sinkgeschwindigkeit in das Feingut geschwemmt werden, obwohl sie in bezug auf ihre geometrischen Abmessungen zu einer gröberen Kornklasse zählen. Außerdem gestaltet sich bei diesem Naßklassierverfahren der kontinuierliche Gutaustrag sehr schwierig.For these reasons, the use of screenless classification methods, such as current classification. Because the required Separation cuts are in the range of centimeters a wind sighting, because the required high Air speeds in connection with the angular screenings cause high abrasion on the equipment. Current classification in water this disadvantage is only slight, but here the irregular grain shape of the silicon fracture leads to a very fuzzy separating cut, because e.g. leaflet-shaped Silicon particles due to their low sink rate be washed up in the fines, even though they are related to their geometric dimensions to a coarser grain class counting. In addition, this wet classification process is designed the continuous good discharge very difficult.

Somit weisen alle vorbeschriebenen Klassierverfahren entscheidende Nachteile auf, da sie entweder das Siebgut kontaminieren, zur Verstopfung neigen oder eine ungenügende Trennschärfe aufweisen.Thus, all the classification methods described above have decisive ones Disadvantages because they either contaminate the screenings, are prone to constipation or inadequate selectivity exhibit.

Die Aufgabe der Erfindung besteht deshalb darin, eine Vorrichtung und ein Verfahren zur Verfügung zu stellen, bei dem die Nachteile des Standes der Technik vermieden werden, insbesondere eine Vorrichtung und ein Verfahren zum Klassieren von Halbleitermaterial, insbesondere von Silicium, zur Verfügung zu stellen, bei dem das Halbleitermaterial möglichst wenig mit Metallatomen kontaminiert wird, eine gute Trennschärfe eingestellt werden kann, möglichst wenig Abrieb vorhanden ist und keine Löcher verstopfen können. Diese Aufgabe wird überraschenderweise durch die Erfindung gelöst.The object of the invention is therefore a device and to provide a process in which the Disadvantages of the prior art can be avoided, in particular an apparatus and a method for classifying semiconductor material, especially of silicon make the semiconductor material with metal atoms as little as possible is contaminated, a good selectivity is set as little abrasion as possible and can not clog holes. This task is surprisingly solved by the invention.

Die Figur zeigt eine erfindungsgemäße Vorrichtung.The figure shows a device according to the invention.

Gegenstand der Erfindung ist eine Vorrichtung zum optoelektronischen Klassieren von Halbleitermaterialien, dadurch gekennzeichnet, daß die Vorrichtung eine Vorrichtung zum Vereinzeln 2 und eine Gleitfläche 3 aufweist, wobei der Winkel der Gleitfläche 3 zur Horizontalen verstellbar ist, wobei jeweils die Vorrichtung zum Vereinzeln 2 und die Gleitfläche 3 eine Oberfläche aus dem zu klassierenden Halbleitermaterial aufweisen sowie eine Strahlenquelle 5 durch deren Strahlengang 4 das zu klassierende Material fällt und eine Formerfassungsvorrichtung 6, die die Form des Klassierguts an eine Kontrolleinheit 7 weiterleitet, die zumindest eine Ablenkvorrichtung 8 steuert. The invention relates to a device for optoelectronic Classifying semiconductor materials, characterized in that the device is a device for separating 2 and has a sliding surface 3, the angle of the sliding surface 3 is adjustable to the horizontal, the device in each case for separating 2 and the sliding surface 3 a surface have from the semiconductor material to be classified and a Radiation source 5 through its beam path 4 that to be classified Material falls and a shape detection device 6 that forwards the shape of the goods to be classified to a control unit 7, which controls at least one deflection device 8.

Die Vorrichtung wird vorzugsweise dazu genutzt, sprödharte Halbleitermaterialien, wie Silicium, Germanium oder Galliumarsenid nach Korngrößen zu klassieren. Bevorzugt wird Silicium damit klassiert. Mit dieser Vorrichtung kann Halbleitermaterial auch in zwei oder mehrere Korngrößenfraktionen getrennt werden.The device is preferably used to make it brittle Semiconductor materials such as silicon, germanium or gallium arsenide to classify according to grain sizes. Silicon is preferred classified with it. With this device, semiconductor material can also be separated into two or more grain size fractions.

Die Vorrichtung ist so aufgebaut, daß das zu klassierende Gut 1 zuerst auf eine Vorrichtung zum Vereinzeln und vorzugsweise zum gleichzeitigen Fördern kommt, die bevorzugt eine Schwingfördereinrichtung ist. Diese Schwingfördereinrichtung wird vorzugsweise in Schwingungen versetzt, durch die der Bruch aus Halbleitermaterial vereinzelt wird und in Richtung der Gleitfläche 3 transportiert wird. Es ist jedoch auch möglich, das Material schon vereinzelt auf eine Fördervorrichtung zu legen. Der Winkel dieser Gleitfäche 3 ist zur Horizontalen verstellbar; er wird in Abhängigkeit vom Reibungskoeffizienten zwischen Bruchstück und Oberflächenbelag so eingestellt, daß die Bruchstücke vorzugsweise unter Wirkung der Schwerkraft nach unten gleiten. Der Winkel wird in einem Bereich von 20° bis 80° vorzugsweise 30° bis 70° eingestellt. Diese Vorrichtung zum Vereinzeln 2 und vorzugsweise zum Fördern und die Gleitfläche 3 sind so aufgebaut, daß an ihren Oberflächen das zu klassierende Halbleitermaterial nicht mit anderen Materialien als dem zu klassierenden Halbleitermaterial in Berührung kommt. Dies geschieht vorzugsweise durch eine Beschichtung dieser Vorrichtung zum Vereinzeln 2 und vorzugsweise zum Fördern und der Gleitfläche 3 mit demselben Halbleitermaterial wie das, das klassiert werden soll. Die Vorrichtung zum Vereinzeln 2 und die Gleitfläche 3 können auch vollständig aus dem entsprechenden Halbleitermaterial aufgebaut sein. Im Falle von Silicium, also mit Silicium beschichtet sein oder aus Silicium bestehen. Auf der Gleitfläche richten sich die Teilchen derart aus, daß ihr Schwerpunkt möglichst niedrig zu liegen kommt. Das bedeutet, daß sie bei ihrem freien Fall nach Passieren der Gleitfläche 3 der Strahlenquelle 5 die größte Projektionsfläche zuwenden. Die Fallhöhe zwischen der Gleitfläche 3 und der Ablenkvorrichtung 8 beträgt vorzugsweise 5 cm bis 20 cm, bevorzugt 10 cm. In ungefähr der Mitte dieser Fallstrecke sind eine Strahlenquelle 5 und eine Formerfassungsvorrichtung 6 angeordnet, wobei sich das Teilchen zwischen der Strahlenquelle 5 und der Formerfassungsvorrichtung 6 bewegt. Der Abstand des Teilchens zur Strahlenquelle 5 beträgt vorzugsweise 50 cm bis 120 cm, besonders bevorzugt 70 cm und des Teilchens zur Formerfassungsvorrichtung 6 beträgt vorzugsweise 5 cm bis 12 cm, besonders bevorzugt 6 cm. Bei der Strahlenquelle 5 handelt es sich vorzugsweise um eine elektromagnetische Strahlenquelle, wie einen Laser oder eine Lampe, die sichtbares Licht im Bereich von 400 nm bis 700 nm ausstrahlt. Es können auch elektromagnetische Strahlen im Infrarotbereich, Ultraviolettbereich oder Röntgenbereich ausgestrahlt werden. Bei der Formerfassungsvorrichtung 6 handelt es sich vorzugsweise um einen hochauflösenden Sensor, der eine Kamera sein kann, zur Erfassung von sichtbaren Licht, Infrarotstrahlen, Ultraviolettstrahlen oder Röntgenstrahlen. Dieser Sensor ist mit einer Kontrolleinheit 7 verbunden, die die eingehenden Daten auswertet. Bei dieser Kontrolleinheit 7 handelt es sich vorzugsweise um einen Rechner. Diese Kontrolleinheit 7 steuert nach einem vorgegebenen Programm zumindest eine Ablenkvorrichtung 8. Dabei kann dieses Erfassungssystem aus Kontrolleinheit 7 und Formerfassungsvorrichtung 6 eine bestimmte Korngröße oder einen Korngrößenbereich erfassen. Mit der Ablenkvorrichtung 8, die die entsprechende Korngröße oder einen Korngrößenbereich erfaßt, handelt es sich vorzugsweise um eine Düse, aus der vorzugsweise Gase oder Flüssigkeiten ausgestoßen werden, wobei es sich bei den Gasen vorzugsweise um Luft oder auch um inerte Gase, wie Stickstoff handelt, die mit einem Druck oberhalb des Normaldrucks, vorzugsweise mit 3 bis 10 bar, besonders bevorzugt mit 6 bar ausgestoßen werden. Bei den Flüssigkeiten wird vorzugsweise hochreines Wasser, mit einem Leitwert von vorzugsweise unter 0.14 uS, besonders bevorzugt von 0,08 uS mit einem Druck von vorzugsweise 2 bis 20 bar ausgestoßen. In einer besonderen Ausführung wird ein zu großes Teilchen mit einem Wasserstrahl von vorzugsweise 1500 bar bis 5000 bar, besonders bevorzugt von 3500 bar beaufschlagt und dabei zerkleinert. Die Ablenkvorrichtung 8 kann allein angeordnet sein oder aus mehreren nebeneinander angeordneten Düsen bestehen, die vorzugsweise in einer Reihe in einem Abstand von vorzugsweise 3 bis 15 mm, besonders bevorzugt von 9 mm angeordnet sind, wenn die Teilchen parallel durch den Strahlengang 4 der Strahlenquelle 5 fallen. Die abgelenkten Teilchen mit der gewünschten Korngröße oder dem Korngrößenbereich werden vorzugsweise über eine Trennvorrichtung 9 in einem Auffangbehälter 10 gesammelt und die nicht abgelenkten Teilchen werden in einem Auffangbehälter 11 gesammelt. Die Auffangbehälter können zumindest in ihrem Inneren eine Oberfläche aus dem zu klassierenden Halbleitermaterial aufweisen oder aus diesem bestehen. Die beiden aufgefächerten Gutsströme können durch weitere Erfassungssysteme und Ablenkvorrichtungen in weitere Kornklassen aufgeteilt werden. Desgleichen kann eine Klassierung nach Oberflächenparametern vorgenommen werden. Es wäre auch möglich, durch die Anordnung von weiteren Trennvorrichtungen 9 eine Gutsauftrennung in mehrere Kornklassen zu erreichen, wobei die Auffächerung der Flugbahn mit verschieden starken Ablenkeinwirkungen, vorzugsweise mit verschieden starken Luftstößen erfolgt. Diese Trennvorrichtung 9 ist auf der Oberfläche vorzugsweise mit dem zu klassierenden Halbleitermaterial versehen oder besteht aus diesem.The device is constructed in such a way that the goods to be classified 1 first on a device for separating and preferably for simultaneous conveying comes, which preferably a vibratory conveyor is. This vibratory conveyor is preferred vibrated by which the break out Semiconductor material is separated and in the direction of the sliding surface 3 is transported. However, it is also possible that Place the material on a conveyor device occasionally. The angle of this sliding surface 3 is adjustable to the horizontal; it is depending on the coefficient of friction between Fragment and surface covering set so that the fragments preferably under the action of gravity slide. The angle is preferred in a range from 20 ° to 80 ° 30 ° to 70 ° set. This device for separating 2 and preferably for conveying and the sliding surface 3 are designed so that the surfaces to be classified Semiconductor material with materials other than that too classifying semiconductor material comes into contact. this happens preferably by coating this device for separating 2 and preferably for conveying and the sliding surface 3 with the same semiconductor material as that that classifies shall be. The device for separating 2 and the sliding surface 3 can also be made entirely of the corresponding semiconductor material be constructed. In the case of silicon, that is, with silicon be coated or consist of silicon. On the The sliding surface align the particles so that you Center of gravity is as low as possible. That means, that in its free fall after passing the sliding surface 3 the largest projection surface facing the radiation source 5. The Fall height between the sliding surface 3 and the deflection device 8 is preferably 5 cm to 20 cm, preferably 10 cm. In about A radiation source 5 is in the middle of this drop distance and a shape detection device 6, which is Particles between the radiation source 5 and the shape detection device 6 moves. The distance of the particle from the radiation source 5 is preferably 50 cm to 120 cm, particularly preferably 70 cm and the particle to the shape detection device 6 is preferably 5 cm to 12 cm, particularly preferably 6 cm. The radiation source 5 is preferably a electromagnetic radiation source, such as a laser or a Lamp, the visible light in the range of 400 nm to 700 nm broadcasts. Electromagnetic rays in the infrared range, Radiated ultraviolet or X-ray range become. The shape detection device 6 is concerned preferably a high-resolution sensor that is a camera can be to detect visible light, infrared rays, Ultraviolet rays or x-rays. This Sensor is connected to a control unit 7 that the incoming Evaluates data. This control unit 7 acts it is preferably a computer. This control unit 7 controls at least one deflection device according to a predetermined program 8. This recording system can consist of a control unit 7 and shape detection device 6 a certain grain size or capture a grain size range. With the deflector 8, the corresponding grain size or a grain size range detected, it is preferably a nozzle, from which gases or liquids are preferably expelled, the gases are preferably air or are inert gases, such as nitrogen, which operate with a pressure above normal pressure, preferably 3 to 10 bar, particularly preferably at 6 bar. With the liquids is preferably high-purity water, with a conductivity of preferably below 0.14 uS, particularly preferably of 0.08 µS ejected at a pressure of preferably 2 to 20 bar. In a special version, a particle that is too large with a water jet of preferably 1500 bar to 5000 bar, particularly preferably pressurized by 3500 bar and thereby crushed. The deflection device 8 can be arranged alone be or consist of several nozzles arranged side by side, which are preferably in a row at a distance of preferably 3 to 15 mm, particularly preferably 9 mm if the particles are parallel through the beam path 4 the radiation source 5 fall. The deflected particles with the desired grain size or the grain size range are preferred via a separating device 9 in a collecting container 10 collected and the undeflected particles are in one Collection container 11 collected. The collection containers can at least inside a surface from the to be classified Have or consist of semiconductor material. The two fanned out streams of goods can be detected by additional detection systems and deflection devices divided into further grain classes become. Classification according to surface parameters can also be used be made. It would also be possible to go through the arrangement of further separation devices 9 a good separation to achieve in several grain classes, the fanning out the trajectory with varying degrees of deflection, preferably with different strong air blasts. This separating device 9 is preferably on the surface provided or exists with the semiconductor material to be classified out of this.

Ein weiterer Gegenstand der Erfindung, ist ein Verfahren zum optoelektronischen Klassieren von Halbleitermaterialien mittels der erfindungsgemäßen Vorrichtung zum optoelektronischen Klassieren, wobei das Klassiergut auf einer Vorrichtung zum Vereinzeln 2, die das zu klassierende Halbleitermaterial an der Oberfläche aufweist, vereinzelt wird und über eine Gleitfläche 3, die das zu klassierende Halbleitermaterial an der Oberfläche aufweist, wobei der Winkel der Gleitfläche in der Horizontalen verstellbar ist, nach unten gleitet, so daß der Schwerpunkt des Klassiergutes möglichst niedrig liegt und in dieser Ausrichtung, nach Verlassen der Gleitfläche 3, den Strahlengang 4 einer Strahlenquelle 5 passiert, wobei eine Formerfassungsvorrichtung 6 die Form des Klassierguts an eine Kontrolleinheit 7 weiterleitet, die nach vorher eingestellten Kriterien zumindest eine Ablenkvorrichtung 8 steuert, die das Klassiergut ablenkt. Another object of the invention is a method for optoelectronic classification of semiconductor materials using the device according to the invention for optoelectronic classification, wherein the classified material on a device for separating 2, the semiconductor material to be classified on the surface has, is separated and via a sliding surface 3, the surface of the semiconductor material to be classified has, the angle of the sliding surface in the horizontal is adjustable, slides down so that the center of gravity of the Classified goods is as low as possible and in this orientation, after leaving the sliding surface 3, the beam path 4 one Radiation source 5 passes through a shape detection device 6 the shape of the classified material to a control unit 7 forwards, at least according to previously set criteria controls a deflection device 8, which deflects the classified material.

Bei dem bevorzugten erfindungsgemäßen Verfahren wird das zerkleinerte Gut 1, in diesem Fall Halbleitermaterial, in eine Vorrichtung zum Vereinzeln 2 zu einer Gleitfläche 3 befördert, deren Winkel in Abhängigkeit vom Reibungskoeffizienten zwischen zu klassierenden Halbleitermaterial und Oberflächenbelag so eingestellt wird, daß das zu klassierende Halbleitermaterial vorzugsweise unter Wirkung der Schwerkraft nach unten gleitet. Dabei erfolgt eine Ausrichtung des unregelmäßig geformten Halbleitermaterials in der Art, daß sein Schwerpunkt möglichst niedrig zu liegen kommt, das bedeutet, daß es seine größte Projektionsfläche der Gleitfläche 3 zuwendet. In dieser Ausrichtung passiert das zerkleinerte Gut nach Verlassen der Gleitfläche 3 das Erfassungssystem, das aus Strahlenquelle 5 und Formerfassungsvorrichtung 6 besteht, den Strahlengang 4 der Strahlenquelle 5 und wird dabei von einer Formerfassungsvorrichtung 6 erfaßt, die vorzugsweise eine optische Auflösung von 0,1 mm bis 20 mm und besonders bevorzugt eine optische Auflösung von 0,5 mm bis 10 mm hat, wobei die gewonnenen Daten von einer Kontrolleinheit 7 ausgewertet werden. Das zu klassierende Halbleitermaterial passiert das Erfassungsystem mit einer Falldauer von 0,05 sec bis 1 sec, besonders bevorzugt von 0,1 sec bis 0,2 sec. Je nach Abweichung der gemessenen Längenausdehnung beziehungsweise Projektionsfläche des zu klassierenden Halbleitermaterials gegenüber dem eingestellten Trennkriterium wird zumindest eine Ablenkvorrichtung 8 angesteuert, die zum Beispiel alle zu kleinen Halbleitermaterial-Teilchen mit zum Beispiel einem Luftstrahl ablenkt und damit eine Abweichung von der ursprünglichen Flugbahn bewirkt. Eine Trennvorrichtung 9 trennt die beiden Fraktionen, die in getrennten Auffangbehältern 10 und 11 gesammelt werden.In the preferred method according to the invention, the crushed Well 1, in this case semiconductor material, in one Device for separating 2 conveyed to a sliding surface 3, whose angle depending on the coefficient of friction between to classify semiconductor material and surface covering so is set that the semiconductor material to be classified preferably slides down under the action of gravity. The irregularly shaped semiconductor material is aligned in such a way that his focus is as possible comes to lie low, which means that it is its largest projection surface the sliding surface 3 turns. In this direction the shredded material passes after leaving the sliding surface 3 the detection system consisting of radiation source 5 and shape detection device 6, the beam path 4 of the radiation source 5 and is used by a shape detection device 6 detects, preferably an optical resolution of 0.1 mm up to 20 mm and particularly preferably an optical resolution of Has 0.5 mm to 10 mm, the data obtained from a control unit 7 can be evaluated. The semiconductor material to be classified passes the acquisition system with a duration of fall from 0.05 sec to 1 sec, particularly preferably from 0.1 sec to 0.2 sec. Depending on the deviation of the measured linear expansion or Projection area of the semiconductor material to be classified compared to the set separation criterion, at least a deflection device 8 controlled, for example all too small semiconductor material particles with, for example, one Air jet deflects and thus deviates from the original Trajectory causes. A separator 9 separates the two fractions, which are in separate collection containers 10 and 11 are collected.

Das erfindungsgemäße Verfahren in Verbindung mit der erfindungsgemäßen Vorrichtung hat die Vorteile, daß kontaminationsfrei klassiert wird; es wird vorzugsweise ein Bereich von 15 mm bis 150 mm stufenlos erfaßt. Es läßt sich aber auch so einstellen, daß ein Bereich von zum Beispiel 10 bis 20 mm erfaßt wird oder ein bestimmter Prozentsatz einer bestimmten Korngröße vermischt mit dem Prozentsatz einer anderen bestimmten Korngröße erfaßt wird. Somit können Sortierungen mit einstellbarer Verschmierung genau nach Wunsch der Abnehmer eingestellt werden, da diese bestimmte Korngrößenverhältnisse brauchen, um den Tiegel zu füllen, aus dem zum Beispiel der Monokristall gezogen wird.The inventive method in connection with the inventive The device has the advantages of being contamination-free is classified; it will preferably be a range of 15 mm continuously measured up to 150 mm. But it can also be set that a range of, for example, 10 to 20 mm is detected or mixed a certain percentage of a certain grain size with the percentage of another certain grain size is detected. This allows sorting with adjustable lubrication can be set exactly as requested by the customer, since these need certain grain size ratios to the crucible fill from which, for example, the monocrystal is pulled becomes.

Beispielexample

Eine bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung zum optoelektronischen Klassieren weist eine Arbeitsbreite von vorzugsweise 500 mm, eine optische Auflösung von 0,5 mm und ein Düsenraster von 8 mm Düsenabstand auf, die einen Mengenstrom von 1t/h eines Haufwerks verschieden großer Polysilicium-Bruchstücke mit einer Trennkorngröße von 30 mm trennscharf klassiert.A preferred embodiment of the device according to the invention for optoelectronic classification has a working width of preferably 500 mm, an optical resolution of 0.5 mm and a nozzle grid of 8 mm nozzle spacing, which is a mass flow of 1t / h of a pile of different sized polysilicon fragments with a grain size of 30 mm classified.

Claims (7)

  1. Apparatus for the optoelectronic classification of semiconductor materials, characterized in that the apparatus has a separating device 2 and a slide face 3, the angle of the slide face 3 to the horizontal being adjustable, and the separating device 2 and the slide face 3 each having a surface made of the semiconductor material to be classified, and a radiation source 5, through the beam path 4 of which the material to be classified falls, and a shape recognition device 6, which transmits the shape of the material to be classified to a control unit 7, which controls at least one diverter device 8.
  2. Apparatus according to Claim 1, characterized in that the angle of the slide face 3 is 20° to 80°.
  3. Apparatus according to Claim 1 or 2, characterized in that the surface of the separating device 2 and of the slide face 3 consists of silicon.
  4. Method for the optoelectronic classification of semiconductor materials, characterized in that the material to be classified is separated on a separating device 2, which has the semiconductor material to be classified on its surface, and slides downward over a slide face 3, which has the semiconductor material to be classified on its surface, the angle of the slide face to the horizontal being adjustable, so that the centre of gravity of the material to be classified lies as low as possible and, after leaving the slide face, in this alignment passes the beam path of a radiation source 5, a shape recognition device 6 transmitting the shape of the material to be classified to a control unit 7, which in accordance with preset criteria controls at least one diverter device 8 which diverts the material to be classified.
  5. Method for the optoelectronic classification of semiconductor materials according to Claim 4, characterized in that the angle of the slide face is set within a range from 20° to 80°.
  6. Method for the optoelectronic classification of semiconductor materials according to Claim 4 or 5, characterized in that the semiconductor material to be classified is silicon.
  7. Method for the optoelectronic classification of semiconductor materials according to one or more of Claims 4 to 6, characterized in that semiconductor material which is too large is additionally comminuted using a water jet.
EP98108295A 1997-05-09 1998-05-07 Optoelectronic grading device Expired - Lifetime EP0876851B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19719698A DE19719698A1 (en) 1997-05-09 1997-05-09 Optoelectronic classifying device
DE19719698 1997-05-09

Publications (2)

Publication Number Publication Date
EP0876851A1 EP0876851A1 (en) 1998-11-11
EP0876851B1 true EP0876851B1 (en) 2001-12-05

Family

ID=7829145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98108295A Expired - Lifetime EP0876851B1 (en) 1997-05-09 1998-05-07 Optoelectronic grading device

Country Status (7)

Country Link
US (1) US6040544A (en)
EP (1) EP0876851B1 (en)
JP (1) JPH10314680A (en)
KR (1) KR100293799B1 (en)
CN (1) CN1198966A (en)
DE (2) DE19719698A1 (en)
TW (1) TW397713B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074905B2 (en) 2006-04-06 2011-12-13 Wacker Chemie Ag Method and device for comminuting and sorting polysilicon

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513476C2 (en) * 1998-01-09 2000-09-18 Svante Bjoerk Ab Device and method for sorting granules
DE19839024A1 (en) * 1998-08-27 2000-03-09 Wacker Chemie Gmbh Air classifiers for polysilicon
DE19840200A1 (en) 1998-09-03 2000-03-09 Wacker Chemie Gmbh Classifier
DE19914998A1 (en) * 1999-04-01 2000-10-12 Wacker Chemie Gmbh Vibratory conveyor and method for promoting silicon breakage
DE10123304A1 (en) * 2001-05-14 2002-12-05 Trienekens Ag Line for automatic sorting of waste includes station with compressed air jets for ballistic separation of film from heavier particles
US8021483B2 (en) * 2002-02-20 2011-09-20 Hemlock Semiconductor Corporation Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
EP1553214B1 (en) * 2002-02-20 2011-11-23 Hemlock Semiconductor Corporation Flowable chips and methods for using them
KR100480319B1 (en) * 2002-05-14 2005-04-06 한잠기계(주) Rice-selecting device by color light intensity
ES2393954T3 (en) * 2005-05-17 2013-01-02 Visys Nv Hopper for sorting device and sorting device provided with such hopper
DE102005026419B4 (en) * 2005-06-08 2011-01-05 Mühlbauer Ag Method and device for geometric measurement of flat bodies
JP4918771B2 (en) * 2005-09-26 2012-04-18 住友電気工業株式会社 Particle classifying device and adhesive containing particles classified by the device
DE102006016324A1 (en) * 2006-04-06 2007-10-25 Wacker Chemie Ag Apparatus and method for flexibly classifying polycrystalline silicon fragments
US8620059B2 (en) * 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging
CN102781595A (en) * 2009-11-24 2012-11-14 戈达·文卡塔·拉玛那 Device for sorting contaminants from minerals, and method thereof
DE102010039752A1 (en) * 2010-08-25 2012-03-01 Wacker Chemie Ag Polycrystalline silicon and process for its preparation
CN102553830B (en) * 2011-12-16 2014-12-03 东南大学 Laser scanning sorting machine
DE102013218003A1 (en) * 2013-09-09 2015-03-12 Wacker Chemie Ag Classifying polysilicon
DE102015209589A1 (en) * 2015-05-26 2016-12-01 Wacker Chemie Ag Apparatus for conveying a product stream of polysilicon or polysilicon granules
BR102017026974A2 (en) * 2017-12-14 2019-06-25 Gabriel Gelli Checchinato AUTOMOTIVE FILLING MECHANISM OF VESSELS WITH VARIED SIZES
CN109029252B (en) * 2018-06-20 2020-12-01 Oppo广东移动通信有限公司 Object detection method, object detection device, storage medium, and electronic apparatus
JP7274836B2 (en) * 2018-09-03 2023-05-17 Jx金属株式会社 Processing method of electronic and electrical equipment parts waste
RU2751604C1 (en) * 2020-09-23 2021-07-15 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Method for automatic control of process of sorting potato tubers, vegetable roots and vegetables
CN114160441B (en) * 2021-12-08 2023-12-26 中环艾能(高邮)能源科技有限公司 Solar polycrystalline silicon wafer detection system
CN114458886B (en) * 2022-01-25 2023-08-01 江苏经贸职业技术学院 General intelligent sorting equipment of commercial and trade stream

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143770A (en) * 1976-06-23 1979-03-13 Hoffmann-La Roche Inc. Method and apparatus for color recognition and defect detection of objects such as capsules
GB2142426B (en) * 1983-06-30 1986-09-17 Gunsons Sortex Ltd Sorting machine and method
GB2151018B (en) * 1983-12-06 1987-07-22 Gunsons Sortex Ltd Sorting machine and method
US4624367A (en) * 1984-04-20 1986-11-25 Shafer John L Method and apparatus for determining conformity of a predetermined shape related characteristics of an object or stream of objects by shape analysis
SE8803116L (en) * 1988-09-06 1990-03-07 Agec Ab METHOD AND APPARATUS FOR SIZING OF TARGETS
US5165548A (en) * 1990-04-23 1992-11-24 Hemlock Semiconductor Corporation Rotary silicon screen
DE4113093C2 (en) * 1990-04-23 1998-08-27 Hemlock Semiconductor Corp Apparatus and method for the size separation of silicon pieces suitable for semiconductor applications
JPH0473932A (en) * 1990-07-16 1992-03-09 Fujitsu Ltd Semiconductor manufacturing apparatus
US5260576A (en) * 1990-10-29 1993-11-09 National Recovery Technologies, Inc. Method and apparatus for the separation of materials using penetrating electromagnetic radiation
DE4321261A1 (en) * 1992-06-29 1994-02-24 Strebel Engineering Kleindoett Optical shape testing system e.g. for diameter of rotationally-symmetric screw - feeds separated components along inclined path to accelerate components under gravity and tests in free-flight path between flash lamp and high-resolution light-barrier-type camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074905B2 (en) 2006-04-06 2011-12-13 Wacker Chemie Ag Method and device for comminuting and sorting polysilicon

Also Published As

Publication number Publication date
EP0876851A1 (en) 1998-11-11
TW397713B (en) 2000-07-11
KR19980086789A (en) 1998-12-05
DE59802292D1 (en) 2002-01-17
KR100293799B1 (en) 2001-09-17
JPH10314680A (en) 1998-12-02
CN1198966A (en) 1998-11-18
DE19719698A1 (en) 1998-11-12
US6040544A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
EP0876851B1 (en) Optoelectronic grading device
EP1842595B1 (en) Method and device for comminuting and sorting polysilicon
EP0983804A1 (en) Classifying arrangement
EP1754539B1 (en) Fluidized bed jet mill and process for comminuting of silicon
EP0982081B1 (en) Pneumatic classification for polysilicon
EP2055395B1 (en) Method and device for sieving out particles
AT398915B (en) METHOD FOR SEPARATING A MIXTURE OF SOLID PARTICLES IN INDIVIDUAL FRACTIONS, AND SYSTEM FOR IMPLEMENTING THE METHOD
EP1645333A1 (en) Device and method for low-contaminating, automatic breaking of silicon fragments
EP1295650B1 (en) Plant for cleaning wood containing material
EP3043929B1 (en) Classification of polycrystalline silicon
EP3310499B1 (en) Process for the mechanical classifying of polysilicon
DE102012220422A1 (en) Packaging of polycrystalline silicon
DE69203356T2 (en) Low contamination work surface for the production of silicon of semiconductor devices.
DE3037594A1 (en) METHOD FOR CONTROLLING OR REGULATING SORTING PLANTS
EP0482683A1 (en) Method and apparatus for separating a flow of bulk material into fractions of different grain size
EP3554723B1 (en) Separating device for polycrystalline silicon
EP0774302B1 (en) Method and device for separating a material comprising particles of different form, size and/or density in at least two components
DE2219179A1 (en) METHOD AND APPARATUS FOR SORTING AND CLASSIFYING A COLLECTION OF SOLID PARTICLES OF DIFFERENT SIZE, COMPOSITION AND SPECIFIC WEIGHT
DE102023102854B3 (en) Device and method for flexible classification of poly- and/or monocrystalline silicon
EP0995500B1 (en) Classification of semiconductor material
EP3900849B1 (en) Optical sorting system for sorting granular particles
DE3734270A1 (en) Impact-head crusher having two rotors
DD283259A7 (en) DEVICE FOR SEPARATING MATERIAL MATERIAL
DE4233360A1 (en) Grinder with sorter and crusher esp. for electronic scrap - has delivery and distributing section following crusher housing with sorter working directly on ground product
DD272960A3 (en) DEVICE AND METHOD FOR SEPARATING PARTICLES OF DIFFERENT END SPEED SPEED

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001024

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REF Corresponds to:

Ref document number: 59802292

Country of ref document: DE

Date of ref document: 20020117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170526

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59802292

Country of ref document: DE