EP0870157B1 - Method of operating a gas-turbine-powered generating set using low-calorific-value fuel - Google Patents

Method of operating a gas-turbine-powered generating set using low-calorific-value fuel Download PDF

Info

Publication number
EP0870157B1
EP0870157B1 EP96940973A EP96940973A EP0870157B1 EP 0870157 B1 EP0870157 B1 EP 0870157B1 EP 96940973 A EP96940973 A EP 96940973A EP 96940973 A EP96940973 A EP 96940973A EP 0870157 B1 EP0870157 B1 EP 0870157B1
Authority
EP
European Patent Office
Prior art keywords
fuel
calorific
low
gas
value fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96940973A
Other languages
German (de)
French (fr)
Other versions
EP0870157A1 (en
Inventor
Rolf Dr. Althaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP0870157A1 publication Critical patent/EP0870157A1/en
Application granted granted Critical
Publication of EP0870157B1 publication Critical patent/EP0870157B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the invention relates to a method for operating a gas turbine group with low calorific Fuel, the gas turbine group consisting essentially of one Compressor, a combustion chamber, a turbine and a generator exists and wherein the low calorific fuel is compressed by means of a fuel compressor becomes.
  • US 5,451,160 describes a burner for the combustion of gases various heating values.
  • the burner includes an inner part that acts as Pilot burner acts and an outer, concentrically surrounding the pilot burner Main burner.
  • Pilot burner acts and an outer, concentrically surrounding the pilot burner Main burner.
  • the invention has for its object in a method for operating a Gas turbine group with low-calorie fuel of the type mentioned Stabilize combustion of fuels with low calorific values.
  • the essence of the invention is therefore that when the gas turbine group is started up in one Part of the combustion air is mixed with low-calorific fuel in a stoichiometric manner is so that a stable flame arises that at the latest after reaching the nominal speed and the synchronization the amount of low calorie Fuel is lowered so far that it is just over-stoichiometric Ratio is reached and that in the remaining combustion air flow the remaining low-calorie fuel to achieve the desired load is added.
  • a gas turbine group is shown schematically, consisting essentially from a compressor 40, a gas turbine 41 and a generator 46, the are connected via a shaft 42 and a combustion chamber 43.
  • a fuel compressor 48 for Compression of low calorific, gaseous fuel arranged.
  • the compressor 40 air is sucked in via an air supply 44, compressed and the compressed air is passed into the combustion chamber 43.
  • the Combustion air fuel in the form of additional fuel 45 (pilot gas or liquid fuel) or from compressed low-calorific fuel 11 and the fuel-air mixture burned.
  • the smoke gases produced are introduced into the gas turbine 41, where they are expanded and part of the Energy of the flue gases is converted into turning energy. This turning energy is driven via shaft 42 to drive generator 46 and compressor 40 used.
  • the still hot exhaust gases are discharged via a line 47.
  • a burner 1 of the combustion chamber 43 consists essentially of one central fuel lance 2, an inner tube 3 and an outer tube 4, which are arranged concentrically to an axis of symmetry 8.
  • On the downstream The end of the fuel lance 2 is a fuel nozzle, not shown arranged for the injection of liquid fuel.
  • the liquid fuel is directed to the fuel nozzle via the fuel lance.
  • an annular channel 5 is formed, via the low calorific gas, to which high calorific gas is added depending on the calorific value can be introduced as pilot gas 10 into the combustion chamber 43.
  • an annular channel formed by a partition into an inner sub-channel 21 and an outer Subchannel 22 is divided.
  • the ratio of the partial cross sections of the partial channels 21, 22 can be set, whereby the low-calorie fuel is also divided accordingly can.
  • the combustion air is also in two Partial air flows 9a and 9b divided.
  • Flows through the inner sub-channel 21 Partial fuel flow 11a of the low calorific fuel, through the outer Subchannel 22 flows a partial fuel stream 11b of the low calorific fuel.
  • the sub-streams 11a, 11b are different, not shown Valves regulated.
  • Swirl bodies 7 are arranged at the downstream end of the channel 6, which is the mixing of fuel 10, 11 and combustion air 9a, 9b support.
  • the fuel quantity M is plotted in percent on the ordinate.
  • On the abscissa is the speed from point A to point B, and from point B to Point C plotted the load.
  • the speed is zero and increases to point B where the nominal speed is reached, for example 3600 revolutions per minute for 60 hearts.
  • the transient start-up process is carried out with low-calorific gas 11 a, which is supplied through the inner subchannel 21.
  • the system compressor 40 and turbine 41 begins to convert the amount of heat supplied into the combustion chamber 43 into power in the upper third of the nominal speed B.
  • the drive power from the generator 46 and thus also the temperature in the combustion chamber 43 can be reduced, which results in a reduction in the amount of low-calorie fuel 11a at point D.
  • the system compressor 40 and turbine 41 is in thermal equilibrium.
  • the connection of the second partial fuel stream 11 b of the low calorific Fuel via the outer subchannel 22 takes place before or after the synchronization.
  • the fuel quantity of the first partial fuel stream 11a is so lower far enough to maintain a stable flame. This will make the difference between the required fuel for the selected load point and the Maximum amount of fuel in the first partial fuel stream 11 a.
  • the second Partial fuel flow 11b is thus also the largest possible amount of fuel available, which leads to stable operation even when the exterior is switched on Burner subchannel 22 leads.
  • Fuel 12 in the center can additionally fuel 12 in the center to be injected into the flame. This is done using liquid fuel via the fuel lance 2 or by means of pilot gas 10 via the channel 5 of the burner.
  • the amount of fuel 12 is small and is usually below five percent of the amount of fuel supplied.
  • the burner 1 is arranged in a combustion chamber 43.
  • Combustion air 9 is fed into a dome 24 and from there it is led to the downstream end of the burner 1 via air channels 25 running in the flow direction.
  • the air duct is not divided into an outer and an inner area.
  • the burner 1 is here also divided by means of partition walls 28 in the flow direction alternately into radially widening air ducts 25 and fuel ducts 21 ′, 22 ′, the fuel ducts in turn being subdivided into a ring by the partition wall 20.
  • the low calorific gas 11a and 11b is guided around the burner via annular channels 26 and 27 which surround the burner 1 and is fed into the inner fuel channel 21 'and the outer fuel channel 22' via openings 29, 30.
  • the low-calorific fuel is fed in when starting and operating the burner as described above.
  • the combustion air is not subdivided into a ring
  • the low-calorific gas 11 a supplied through the inner subchannel 21 essentially only mixes with the combustion air in the center of the burner, corresponding to FIG Combustion air 9 mixed, creates a rich mixture at least in the center of the burner and thus a stable combustion. A flame thus arises in the interior of the combustion chamber which, if no fuel 11b is supplied via the outer fuel channel 22 ', is enveloped with combustion air 9.
  • No swirl bodies 7 are arranged in the burner from FIG. 4.
  • the mixing of combustion air 9 and fuel 11 a, 11 b takes place through a curvature of the partition wall 28 at the downstream end of the burner 1. This creates a swirl when it emerges from the burner, which mixes fuel and combustion air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

In the method proposed, the gas-turbined-powered generating set consists essentially of a compressor, a combustion chamber, a turbine and a generator. The low-calorific-value fuel is compressed by a fuel compressor. When the generating set is started up, low-calorific-value fuel (11a) is mixed with part of the combustion air (9, 9a) in more than stoichiometric proportions so that a stable flame is produced. At the latest when the nominal speed (B) has been reached and synchronization has been achieved, the rate of flow of the fuel (11a) is reduced until the proportions are just more than stoichiometric. The rest of the fuel (11b) is mixed in with the rest of the combustion air (9, 9b) to give the required charge.

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren zum Betrieb einer Gasturbogruppe mit niederkalorischem Brennstoff, wobei die Gasturbogruppe im wesentlichen aus einem Verdichter, einer Brennkammer, einer Turbine und einem Generator besteht und wobei der niederkalorische Brennstoff mittels eines Brennstoffverdichters verdichtet wird.The invention relates to a method for operating a gas turbine group with low calorific Fuel, the gas turbine group consisting essentially of one Compressor, a combustion chamber, a turbine and a generator exists and wherein the low calorific fuel is compressed by means of a fuel compressor becomes.

Stand der TechnikState of the art

Derartige Verfahren sind bekannt. Im Gegensatz zu Gasturbinen, welche mit herkömmlichen mittel- oder hochkalorischen Brennstoffen wie Erdgas oder Oel mit einem Heizwert von 40 MJ/kg oder mehr betrieben werden, stellt bei Gasturbinen, welche einen niederkalorischen Brennstoff mit einem Heizwert in der Grössenordnung unter 10 MJ/kg verwenden, die Stabilisation der Verbrennung ein Problem dar. Besonders bei Heizwerten unterhalb 3 MJ/kg (≡ 700 kcal/mn 3) wird die Flamme instabil.Such methods are known. In contrast to gas turbines, which are operated with conventional medium or high calorific fuels such as natural gas or oil with a calorific value of 40 MJ / kg or more, gas turbines which use a low calorific fuel with a calorific value in the order of less than 10 MJ / kg , the stabilization of the combustion is a problem. The flame becomes unstable, especially with heating values below 3 MJ / kg (≡ 700 kcal / m n 3 ).

Die US 5,451,160 beschreibt einen Brenner für die Verbrennung von Gasen mit verschiedensten Heizwerten. Der Brenner beinhaltet einen inneren Teil, der als Pilotbrenner fungiert und einen äusseren, den Pilotbrenner konzentrisch umschliessenden Hauptbrenner. Bei Betrieb des Pilot- und Hauptbrenners mit niederkalorischen Gasen stellt jedoch die Stabilität der Flamme ein Problem dar und es besteht die Gefahr der Löschung der Flamme. US 5,451,160 describes a burner for the combustion of gases various heating values. The burner includes an inner part that acts as Pilot burner acts and an outer, concentrically surrounding the pilot burner Main burner. When operating the pilot and main burner with low calorific Gases, however, pose a problem with the stability of the flame there is a risk of extinguishing the flame.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren zum Betrieb einer Gasturbogruppe mit niederkalorischem Brennstoff der eingangs genannten Art die Verbrennung von Brennstoffen mit geringen Heizwerten zu stabilisieren.The invention has for its object in a method for operating a Gas turbine group with low-calorie fuel of the type mentioned Stabilize combustion of fuels with low calorific values.

Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht. According to the invention, this is achieved by the features of the first claim.

Kern der Erfindung ist es also, dass beim Anfahren der Gasturbogruppe in einen Teil der Verbrennungsluft niederkalorischer Brennstoff überstöchiometrisch zugemischt wird, so dass eine stabile Flamme entsteht, dass spätestens nach Erreichen der Nenndrehzahl und der Synchronisation die Menge des niederkalorischen Brennstoffes so weit abgesenkt wird, dass gerade noch ein überstöchiometrisches Verhältnis erreicht wird und dass in den restlichen Verbrennungsluftstrom der restliche niederkalorische Brennstoff zur Erreichung der gewünschten Last zugemischt wird.The essence of the invention is therefore that when the gas turbine group is started up in one Part of the combustion air is mixed with low-calorific fuel in a stoichiometric manner is so that a stable flame arises that at the latest after reaching the nominal speed and the synchronization the amount of low calorie Fuel is lowered so far that it is just over-stoichiometric Ratio is reached and that in the remaining combustion air flow the remaining low-calorie fuel to achieve the desired load is added.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass die Gasturbogruppe im wesentlichen alleine mit niederkalorischem Brennstoff betrieben werden kann. Dadurch wird die Wirtschaftlichkeit von Gasturbinen die mit niederkalorischen Stoffen mit geringsten Heizwerten betrieben werden erhöht.The advantages of the invention can be seen, inter alia, in the fact that the gas turbine group operated essentially alone with low-calorific fuel can be. This makes the economy of gas turbines lower calorific Fabrics operated with the lowest calorific values are increased.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In den Zeichnungen sind Ausführungsbeispiele der Erfindung schematisch dargestellt.Exemplary embodiments of the invention are shown schematically in the drawings.

Es zeigen:

Fig. 1
eine schematische Darstellung einer Gasturbogruppe;
Fig. 2
einen Teilquerschnitt durch einen Brenner der Gasturbogruppe;
Fig. 3
eine schematische Darstellung des Betriebsverfahrens der Gasturbogruppe;
Fig. 4
eine Brennkammer mit Brenner der Gasturbogruppe;
Fig. 5
einen Teilquerschnitt durch den Brenner aus Fig. 4;
Fig. 6
eine Teilabwicklung des Brenners aus Fig.4;
Fig. 7
Draufsicht auf den Brenneraustritt vom Brennraum aus.
Show it:
Fig. 1
a schematic representation of a gas turbine group;
Fig. 2
a partial cross section through a burner of the gas turbine group;
Fig. 3
a schematic representation of the operating method of the gas turbine group;
Fig. 4
a combustion chamber with a burner of the gas turbine group;
Fig. 5
a partial cross section through the burner of Fig. 4;
Fig. 6
a partial processing of the burner from Figure 4;
Fig. 7
Top view of the burner outlet from the combustion chamber.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Only the elements essential for understanding the invention are shown.

Weg zur Ausführung der ErfindungWay of carrying out the invention

In Fig. 1 ist schematisch eine Gasturbogruppe dargestellt, im wesentlichen bestehend aus einem Verdichter 40, einer Gasturbine 41 und einem Generator 46, die über eine Welle 42 verbunden sind, sowie einer Brennkammer 43. Zwischen Verdichter und 40 und Generator 46 ist zusätzlich ein Brennstoffverdichter 48 zur Verdichtung von niederkalorischem, gasförmigen Brennstoff angeordnet. Selbstverständlich kann die Brennstoffverdichtung auch auf beliebige andere Weise erfolgen. Im Verdichter 40 wird Luft über eine Luftzuführung 44 angesaugt, komprimiert und die verdichtete Luft in die Brennkammer 43 geleitet. Dort wird der Verbrennungsluft Brennstoff in der Form von Zusatzbrennstoff 45 (Pilotgas oder flüssiger Brennstoff) oder von verdichtetem niederkalorischen Brennstoff 11 zugeführt und das Brennstoff-Luft-Gemisch verbrannt. Die entstandenen Rauchgase werden in die Gasturbine 41 eingeleitet, wo sie entspannt werden und ein Teil der Energie der Rauchgase in Drehenergie umgewandelt wird. Diese Drehenergie wird über die Welle 42 zum Antrieb des Generators 46 und des Verdichters 40 verwendet. Die noch heissen Abgase werden über eine Leitung 47 abgeführt.In Fig. 1, a gas turbine group is shown schematically, consisting essentially from a compressor 40, a gas turbine 41 and a generator 46, the are connected via a shaft 42 and a combustion chamber 43. Between Compressor and 40 and generator 46 is also a fuel compressor 48 for Compression of low calorific, gaseous fuel arranged. Of course can fuel compression in any other way respectively. In the compressor 40, air is sucked in via an air supply 44, compressed and the compressed air is passed into the combustion chamber 43. There the Combustion air fuel in the form of additional fuel 45 (pilot gas or liquid fuel) or from compressed low-calorific fuel 11 and the fuel-air mixture burned. The smoke gases produced are introduced into the gas turbine 41, where they are expanded and part of the Energy of the flue gases is converted into turning energy. This turning energy is driven via shaft 42 to drive generator 46 and compressor 40 used. The still hot exhaust gases are discharged via a line 47.

Nach Fig.2 besteht ein Brenner 1 der Brennkammer 43 im wesentlichen aus einer zentralen Brennstofflanze 2, einem inneren Rohr 3 und einen äusseren Rohr 4, welche konzentrisch zu einer Symmetrieachse 8 angeordnet sind. Am stromabwärtigen Ende der Brennstofflanze 2 ist eine nicht näher dargestellte Brennstoffdüse zur Eindüsung von flüssigem Brennstoff angeordnet. Der flüssige Brennstoff wird dabei über die Brennstofflanze zur Brennstoffdüse geleitet. Durch die Brennstofflanze 2 und das innere Rohr 3 wird ein ringförmiger Kanal 5 gebildet, über den niederkaloriges Gas, dem je nach Heizwert hochkaloriges Gas zugemischt werden kann, als Pilotgas 10 in die Brennkammer 43 eingeleitet wird. Durch das innere Rohr 3 und das äussere Rohr 4 wird ein ringförmiger Kanal gebildet, der über eine Trennwand in einen innerern Teilkanal 21 und einen äusserem Teilkanal 22 unterteilt wird. Durch die radiale Position der Trennwand 20 kann das Verhältnis der Teilquerschnitte der Teilkanäle 21, 22 eingestellt werden, wodurch der niederkalorische Brennstoff ebenfalls entsprechend aufgeteilt werden kann. Durch die Trennwand 20 wird die Verbrennungsluft ebenfalls in zwei Teilluftströme 9a und 9b unterteilt. Durch den inneren Teilkanal 21 strömt ein Teilbrennstoffstrom 11a des niederkalorischen Brennstoffes, durch den äusseren Teilkanal 22 strömt ein Teilbrennstoffstrom 11b des niederkalorischen Brennstoffes. Die Teilströme 11a, 11b werden dabei durch verschiedene, nicht dargestellte Ventile geregelt. Am stromabwärtigen Ende des Kanales 6 sind Drallkörper 7 angeordnet, welche die Durchmischung von Brennstoff 10, 11 und Verbrennungsluft 9a, 9b unterstützen.According to Figure 2, a burner 1 of the combustion chamber 43 consists essentially of one central fuel lance 2, an inner tube 3 and an outer tube 4, which are arranged concentrically to an axis of symmetry 8. On the downstream The end of the fuel lance 2 is a fuel nozzle, not shown arranged for the injection of liquid fuel. The liquid fuel is directed to the fuel nozzle via the fuel lance. Through the Fuel lance 2 and the inner tube 3, an annular channel 5 is formed, via the low calorific gas, to which high calorific gas is added depending on the calorific value can be introduced as pilot gas 10 into the combustion chamber 43. Through the inner tube 3 and the outer tube 4 is an annular channel formed by a partition into an inner sub-channel 21 and an outer Subchannel 22 is divided. Due to the radial position of the partition 20 the ratio of the partial cross sections of the partial channels 21, 22 can be set, whereby the low-calorie fuel is also divided accordingly can. Through the partition 20, the combustion air is also in two Partial air flows 9a and 9b divided. Flows through the inner sub-channel 21 Partial fuel flow 11a of the low calorific fuel, through the outer Subchannel 22 flows a partial fuel stream 11b of the low calorific fuel. The sub-streams 11a, 11b are different, not shown Valves regulated. Swirl bodies 7 are arranged at the downstream end of the channel 6, which is the mixing of fuel 10, 11 and combustion air 9a, 9b support.

In Fig. 3 ist auf der Ordinate die Brennstoffmenge M in Prozent aufgetragen. Auf der Abszisse ist vom Punkt A zum Punkt B die Drehzahl, und vom Punkt B zum Punkt C die Last aufgetragen. Im Punkt A ist die Drehzahl gleich Null und steigt bis zum Punkt B an, wo die Nenndrehzahl erreicht wird, beispielsweise 3600 Umdrehungen pro Minute für 60 Herz.3, the fuel quantity M is plotted in percent on the ordinate. On the abscissa is the speed from point A to point B, and from point B to Point C plotted the load. At point A, the speed is zero and increases to point B where the nominal speed is reached, for example 3600 revolutions per minute for 60 hearts.

Um einen sicheren Start der Gasturbogruppe zu gewährleisten, wird der transiente Anfahrprozess mit niederkalorischem Gas 11a gefahren, das durch den inneren Teilkanal 21 zugeführt wird. Dadurch dass das zum Starten benötigte niederkalorische Gas mit einer kleineren Luftmenge, d.h. mit dem Teilluftstrom 9a, bedingt durch den kleineren Querschnitt des Teilkanals 21, zugeführt wird, entsteht ein fetteres Gemisch und somit eine stabile Verbrennung.
Da auch hier aufgrund der relativ kleinen Teilkanalquerschnitte nur relativ kleine, nicht dargestellte Ventile zur Regelung des Brennstoffmassenflusses verwendet werden müssen, kann dadurch auch hier eine sehr schnelle Regelung erfolgen, was schnelle Temperaturkorrekturen erlaubt. Aus diesen Temperaturkorrekturen ergibt sich der Buckel beim Punkt D. Beim Hochfahren der Gasturbogruppe beginnt das System Verdichter 40 und Turbine 41 im oberen Drittel der Nenndrehzahl B die in der Brennkammer 43 zugeführte Wärmemenge in Leistung umzusetzen. Dadurch kann die Antriebsleistung vom Generator 46 und damit auch die Temperatur in der Brennkammer 43 reduziert werden, was eine Reduktion der Menge des niederkalorischen Brennstoffes 11a beim Punkt D zur Folge hat. Bei Nenndrehzahl B ist dann das System Verdichter 40 und Turbine 41 im thermischen Gleichgewicht.
In order to ensure a safe start of the gas turbine group, the transient start-up process is carried out with low-calorific gas 11 a, which is supplied through the inner subchannel 21. The fact that the low-calorific gas required for starting is supplied with a smaller amount of air, ie with the partial air flow 9a, due to the smaller cross section of the partial duct 21, results in a richer mixture and thus a stable combustion.
Since here too, because of the relatively small subchannel cross sections, only relatively small valves (not shown) have to be used to regulate the fuel mass flow, very rapid regulation can also take place here, which allows rapid temperature corrections. The hump at point D results from these temperature corrections. When the gas turbine group is started up, the system compressor 40 and turbine 41 begins to convert the amount of heat supplied into the combustion chamber 43 into power in the upper third of the nominal speed B. As a result, the drive power from the generator 46 and thus also the temperature in the combustion chamber 43 can be reduced, which results in a reduction in the amount of low-calorie fuel 11a at point D. At rated speed B, the system compressor 40 and turbine 41 is in thermal equilibrium.

Nach dem Erreichen der Nenndrehzahl im Punkt B erfolgt die Synchronisation der Gasturbogruppe mit dem Netz, in das die im Generator 46 erzeugte elektrische Energie eingespeist werden soll. After reaching the nominal speed in point B, the synchronization takes place Gas turbine group with the network into which the electrical generated in generator 46 Energy is to be fed.

Das Zuschalten des zweiten Teilbrennstoffstromes 11 b des niederkalorischen Brennstoffes über den äusseren Teilkanal 22 erfolgt vor oder nach der Synchronisation. Die Brennstoffmenge des ersten Teilbrennstoffstromes 11a ist dabei so weit abzusenken, dass eine stabile Flamme erhalten bleibt. Dadurch wird die Differenz zwischen dem benötigten Brennstoff für den gewählten Lastpunkt und der Brennstoffmenge des ersten Teilbrennstoffstromes 11 a maximal. Dem zweiten Teilbrennstoffstrom 11b steht somit ebenfalls eine grösstmögliche Brennstoffmenge zur Verfügung, was zu einem stabilen Betrieb auch bei zugeschaltetem äusseren Brenner-Teilkanal 22 führt.The connection of the second partial fuel stream 11 b of the low calorific Fuel via the outer subchannel 22 takes place before or after the synchronization. The fuel quantity of the first partial fuel stream 11a is so lower far enough to maintain a stable flame. This will make the difference between the required fuel for the selected load point and the Maximum amount of fuel in the first partial fuel stream 11 a. The second Partial fuel flow 11b is thus also the largest possible amount of fuel available, which leads to stable operation even when the exterior is switched on Burner subchannel 22 leads.

Zwischen Punkt B, der Null-Last, und Punkt C, maximaler Last, wird die GesamtMenge des niederkalorischen Brennstoffes 11a und 11b im wesentlichen linear zur Last eingestellt.Between point B, the zero load, and point C, the maximum load, the total amount of the low calorific fuel 11a and 11b essentially linear set to load.

Zur weiteren Stabilisierung der mit niederkalorischem Brennstoff 11a und 11 b erzeugten Flamme in der Brennkammer 43 kann zusätzlich Brennstoff 12 ins Zentrum der Flamme eingedüst werden. Dies geschieht mittels flüssigem Brennstoff über die Brennstofflanze 2 oder mittels Pilotgas 10 über den Kanal 5 des Brenners. Die Menge des Brennstoffes 12 ist klein und liegt üblicherweise unterhalb fünf Prozent der zugeführten Brennstoffmenge.To further stabilize those generated with low-calorie fuel 11a and 11b Flame in the combustion chamber 43 can additionally fuel 12 in the center to be injected into the flame. This is done using liquid fuel via the fuel lance 2 or by means of pilot gas 10 via the channel 5 of the burner. The amount of fuel 12 is small and is usually below five percent of the amount of fuel supplied.

In Fig. 4 und den weiteren Fig. 5, 6 und 7 ist der Brenner 1 in einer Brennkammer 43 angeordnet. Verbrennungsluft 9 wird in einen Dom 24 geleitet und von dort über in Strömungsrichtung verlaufende Luftkanäle 25 zum stromabwärtigen Ende des Brenners 1 geführt. Im Gegensatz zu Fig. 2 ist hier der Luftkanal nicht in einen äusseren und einen inneren Bereich unterteilt. Der Brenner 1 ist jedoch auch hier mittels Trennwänden 28 in Strömungsrichtung abwechselnd in sich radial erweitemde Luftkanäle 25 und Brennstoffkanäle 21', 22' unterteilt, wobei die Brennstoffkanäle wiederum durch die Trennwand 20 ringförmig unterteilt sind. Das niederkalorische Gas 11a und 11b wird über ringförmige Kanäle 26 und 27, die den Brenner 1 umschliessen, um den Brenner herumgeführt und in den inneren Brennstoffkanal 21' und den äusseren Brennstoffkanal 22' über Oeffnungen 29, 30 eingespeist. Die Einspeisung des niederkalorischen Brennstoffes beim Starten und Betrieb des Brenners erfolgt dabei wie oben beschrieben. Obwohl hier die Verbrennungsluft nicht ringförmig unterteilt ist, vermischt sich das durch den inneren Teilkanal 21 zugeführte niederkalorische Gas 11 a im wesentlichen nur mit der Verbrennungsluft im Zentrum des Brenners, entsprechend Fig. 2. Dadurch dass sich das niederkalorische Gas 11a nur mit einem Teil der Verbrennungsluft 9 vermischt, entsteht zumindest im Zentrum des Brenners ein fetteres Gemisch und somit eine stabile Verbrennung. Es entsteht im Inneren des Brennraumes somit eine Flamme, die falls über den äusseren Brennstoffkanal 22' kein Brennstoff 11b zugeführt wird, mit Brennluft 9 umhüllt wird.
Beim Brenner aus Fig. 4 sind keine Drallkörper 7 angeordnet. Die Vermischung von Brennluft 9 und Brennstoff 11 a, 11 b erfolgt durch eine Krümmung der Trennwand 28 beim stromabwärtigen Ende des Brenners 1. Dadurch wird beim Austritt aus dem Brenner ein Drall erzeugt, der Brennstoff und Brennluft durchmischt.
4 and the further FIGS. 5, 6 and 7, the burner 1 is arranged in a combustion chamber 43. Combustion air 9 is fed into a dome 24 and from there it is led to the downstream end of the burner 1 via air channels 25 running in the flow direction. In contrast to FIG. 2, the air duct is not divided into an outer and an inner area. However, the burner 1 is here also divided by means of partition walls 28 in the flow direction alternately into radially widening air ducts 25 and fuel ducts 21 ′, 22 ′, the fuel ducts in turn being subdivided into a ring by the partition wall 20. The low calorific gas 11a and 11b is guided around the burner via annular channels 26 and 27 which surround the burner 1 and is fed into the inner fuel channel 21 'and the outer fuel channel 22' via openings 29, 30. The low-calorific fuel is fed in when starting and operating the burner as described above. Although here the combustion air is not subdivided into a ring, the low-calorific gas 11 a supplied through the inner subchannel 21 essentially only mixes with the combustion air in the center of the burner, corresponding to FIG Combustion air 9 mixed, creates a rich mixture at least in the center of the burner and thus a stable combustion. A flame thus arises in the interior of the combustion chamber which, if no fuel 11b is supplied via the outer fuel channel 22 ', is enveloped with combustion air 9.
No swirl bodies 7 are arranged in the burner from FIG. 4. The mixing of combustion air 9 and fuel 11 a, 11 b takes place through a curvature of the partition wall 28 at the downstream end of the burner 1. This creates a swirl when it emerges from the burner, which mixes fuel and combustion air.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. Es können auch mehrere Trennwände eingebaut werden, um die Teilkanäle weiter zu unterteilen. Dadurch kann eine exakte Anpassung an die jeweiligen Verhältnisse erreicht werden.Of course, the invention is not limited to that shown and described Embodiment limited. Multiple partitions can also be installed to further subdivide the subchannels. This allows an exact Adaptation to the respective conditions can be achieved.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennerburner
22
Brennstofflanzefuel lance
33
inneres Rohrinner tube
44
äusseres Rohrouter tube
55
Kanal für PilotgasChannel for pilot gas
77
Drallkörperswirler
88th
Symmetrieachseaxis of symmetry
9,9a,9b9,9a, 9b
Verbrennungsluftcombustion air
1010
Pilotgaspilot gas
11a, 11b11a, 11b
niederkalorisches Gaslow calorific gas
1212
Brennstofffuel
2020
Trennwand partition wall
2121
innerer Teilkanalinner subchannel
21'21 '
innerer Brennstoffkanalinner fuel channel
2222
äusserer Teilkanalouter subchannel
22'22 '
äusserer Brennstoffkanalouter fuel channel
2323
Brennkammerwandcombustion chamber wall
2424
Domcathedral
2525
Luftkanalair duct
2626
Ringkanal für 11aRing channel for 11a
2727
Ringkanal für 11bRing channel for 11b
2828
Trennwandpartition wall
2929
Oeffnung von 26 nach 21'Opening from 26 to 21 '
3030
Oeffnung von 27 nach 22'Opening from 27 to 22 '
4040
Verdichtercompressor
4141
Gasturbinegas turbine
4242
Wellewave
4343
Brennkammercombustion chamber
4444
Luftzuführungair supply
4545
Zusatzbrennstoffadditional fuel
4646
Generatorgenerator
4747
Abgasleitungexhaust pipe
4848
Brennstoffverdichterfuel compressor
AA
Drehzahl-NullpunktSpeed Zero
BB
Nenndrehzahl / Last-NullpunktNominal speed / load zero point
CC
Voll-LastFull load
DD
Scheitel-PunktCrown point

Claims (4)

  1. Method of operating a gas turbine group with low calorific value fuel, whereby the gas turbine group essentially comprises a compressor (40), a combustion chamber (43), a turbine (41) and a generator (46) and whereby the low calorific value fuel is compressed by means of a fuel compressor (48), characterized in that low calorific value fuel (11a) in excess of the stoichiometric quantity is mixed into part of the combustion air (9, 9a) during the starting of the gas turbine group so that a stable flame appears, in that after the attainment of the rated rotational speed (B) and synchronization, at the latest, the quantity of low calorific value fuel (11a) is reduced to such an extent that a ratio is attained which is just over the stoichiometric ratio and in that the rest of the low calorific value fuel (11b) is mixed into the rest of the combustion airflow (9, 9b) in order to attain the desired load.
  2. Method according to Claim 1, characterized in that fuel (12) is sprayed into the centre of the combustion air (9, 9a).
  3. Method according to Claim 1, characterized in that the combustion air is subdivided into at least two partial airflows (9a, 9b) before entry into the combustion chamber.
  4. Method according to Claim 1, characterized in that the first partial airflow (9a) is surrounded by the second partial airflow (9b).
EP96940973A 1995-12-29 1996-12-16 Method of operating a gas-turbine-powered generating set using low-calorific-value fuel Expired - Lifetime EP0870157B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19549140A DE19549140A1 (en) 1995-12-29 1995-12-29 Method for operating a gas turbine group with low-calorific fuel
DE19549140 1995-12-29
PCT/CH1996/000441 WO1997024561A1 (en) 1995-12-29 1996-12-16 Method of operating a gas-turbine-powered generating set using low-calorific-value fuel

Publications (2)

Publication Number Publication Date
EP0870157A1 EP0870157A1 (en) 1998-10-14
EP0870157B1 true EP0870157B1 (en) 2002-11-06

Family

ID=7781642

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96940973A Expired - Lifetime EP0870157B1 (en) 1995-12-29 1996-12-16 Method of operating a gas-turbine-powered generating set using low-calorific-value fuel

Country Status (7)

Country Link
US (1) US6148603A (en)
EP (1) EP0870157B1 (en)
JP (1) JP4103965B2 (en)
CN (1) CN1119569C (en)
AU (1) AU1028697A (en)
DE (2) DE19549140A1 (en)
WO (1) WO1997024561A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6935117B2 (en) 2003-10-23 2005-08-30 United Technologies Corporation Turbine engine fuel injector
JP4068546B2 (en) * 2003-10-30 2008-03-26 株式会社日立製作所 Gas turbine power generation facility and operation method thereof
EP1614967B1 (en) * 2004-07-09 2016-03-16 Siemens Aktiengesellschaft Method and premixed combustion system
EP1645807A1 (en) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Burner to burn a low BTU fuel gas and method to use such a burner
EP1659339A1 (en) 2004-11-18 2006-05-24 Siemens Aktiengesellschaft Method of starting up a burner
US8104285B2 (en) * 2005-09-30 2012-01-31 Ansaldo Energia S.P.A. Gas turbine equipped with a gas burner and axial swirler for the burner
JP5115372B2 (en) * 2008-07-11 2013-01-09 トヨタ自動車株式会社 Operation control device for gas turbine
EP2312215A1 (en) * 2008-10-01 2011-04-20 Siemens Aktiengesellschaft Burner and Method for Operating a Burner
US8490406B2 (en) * 2009-01-07 2013-07-23 General Electric Company Method and apparatus for controlling a heating value of a low energy fuel
DE102009038845A1 (en) * 2009-08-26 2011-03-03 Siemens Aktiengesellschaft Swirl vane, burner and gas turbine
DE102009038848A1 (en) * 2009-08-26 2011-03-03 Siemens Aktiengesellschaft Burner, in particular for gas turbines
US8355819B2 (en) 2010-10-05 2013-01-15 General Electric Company Method, apparatus and system for igniting wide range of turbine fuels
EP2551470A1 (en) * 2011-07-26 2013-01-30 Siemens Aktiengesellschaft Method for starting a stationary gas turbine
US9182124B2 (en) * 2011-12-15 2015-11-10 Solar Turbines Incorporated Gas turbine and fuel injector for the same
US20170191428A1 (en) * 2016-01-05 2017-07-06 Solar Turbines Incorporated Two stream liquid fuel lean direct injection
US10234142B2 (en) * 2016-04-15 2019-03-19 Solar Turbines Incorporated Fuel delivery methods in combustion engine using wide range of gaseous fuels
US10731570B2 (en) * 2017-05-31 2020-08-04 Pratt & Whitney Canada Corp. Reducing an acoustic signature of a gas turbine engine
US20210010675A1 (en) * 2019-07-08 2021-01-14 Opra Technologies Bv Nozzle and fuel system for operation on gas with varying heating value
GB202219380D0 (en) 2022-12-21 2023-02-01 Rolls Royce Plc Gas turbine operating conditions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE101457C (en) *
DE1137266B (en) * 1960-06-02 1962-09-27 Siemens Ag Process and device for the combustion of gas mixtures containing low levels of methane, in particular mine weather
GB1317727A (en) * 1969-07-02 1973-05-23 Struthers Scient International Gas turbine engine
DD101457A1 (en) * 1972-12-20 1973-11-05
US4202169A (en) * 1977-04-28 1980-05-13 Gulf Research & Development Company System for combustion of gases of low heating value
US4253301A (en) * 1978-10-13 1981-03-03 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4653278A (en) * 1985-08-23 1987-03-31 General Electric Company Gas turbine engine carburetor
JPS63194111A (en) * 1987-02-06 1988-08-11 Hitachi Ltd Combustion method for gas fuel and equipment thereof
GB8911806D0 (en) * 1989-05-23 1989-07-12 Rolls Royce Plc Gas turbine engine fuel control system with enhanced relight capability
JP3133066B2 (en) * 1991-04-25 2001-02-05 シーメンス アクチエンゲゼルシヤフト Burner burner for combusting coal gas and other fuels with low harmful emissions, especially for gas turbines
US5907949A (en) * 1997-02-03 1999-06-01 United Technologies Corporation Starting fuel control method for a turbine engine

Also Published As

Publication number Publication date
WO1997024561A1 (en) 1997-07-10
DE59609859D1 (en) 2002-12-12
CN1119569C (en) 2003-08-27
US6148603A (en) 2000-11-21
AU1028697A (en) 1997-07-28
EP0870157A1 (en) 1998-10-14
JP4103965B2 (en) 2008-06-18
DE19549140A1 (en) 1997-07-03
JP2000502771A (en) 2000-03-07
CN1206455A (en) 1999-01-27

Similar Documents

Publication Publication Date Title
EP0870157B1 (en) Method of operating a gas-turbine-powered generating set using low-calorific-value fuel
DE60017426T2 (en) ADJUSTABLE LEAF-OPERATED PREMIUM COMBUSTION CHAMBER
DE69828916T2 (en) Low emission combustion system for gas turbine engines
DE3889301T2 (en) Combustion chamber to reduce pollutant emissions from gas turbines.
EP1812756B1 (en) Burner starting method
DE3432971C2 (en)
EP0767345B1 (en) Process for operating a power plant
EP0781967B1 (en) Annular combustion chamber for gas turbine
DE60125441T2 (en) Multi-stage, multi-level combustion system for gas turbine
EP0029619B1 (en) Gas-turbine combustor with premixing-prevaporizing elements
DE69724502T2 (en) Gas turbine combustor
DE69724031T2 (en) Premix combustion chamber with lean direct injection and low NOx emissions
EP0976982B1 (en) Method of operating the combustion chamber of a liquid-fuel gas turbine
DE69405281T2 (en) Premix combustion chamber with concentric ring channels
DE69024081T2 (en) Method of combustion with gas premix and a combustion device for carrying out the method
EP2116766B1 (en) Burner with fuel lance
DE60114912T2 (en) Method and apparatus for reducing emissions of a gas turbine engine
DE2417147C2 (en) Combustion chamber arrangement for gas turbines
DE69117468T2 (en) Twin combustion chamber and its function
EP0576697B1 (en) Combustor chamber for a gas turbine
DE2901098C2 (en)
CH618780A5 (en)
EP1990578A1 (en) Gas turbine with water injection
DE10326720A1 (en) Burner for a gas turbine combustor
US4351156A (en) Combustion systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH FR GB LI NL

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 20011005

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

REF Corresponds to:

Ref document number: 59609859

Country of ref document: DE

Date of ref document: 20021212

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM (SWITZERLAND) LTD

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030227

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081216

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081212

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081216

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091216