EP0865566B1 - Systeme de distribution d'un moteur a combustion interne - Google Patents

Systeme de distribution d'un moteur a combustion interne Download PDF

Info

Publication number
EP0865566B1
EP0865566B1 EP96946071A EP96946071A EP0865566B1 EP 0865566 B1 EP0865566 B1 EP 0865566B1 EP 96946071 A EP96946071 A EP 96946071A EP 96946071 A EP96946071 A EP 96946071A EP 0865566 B1 EP0865566 B1 EP 0865566B1
Authority
EP
European Patent Office
Prior art keywords
rotating body
shaft
intermediate member
gear mechanism
valve gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96946071A
Other languages
German (de)
English (en)
Other versions
EP0865566A2 (fr
Inventor
Erwin Korostenski
Armin Bertsch
Reiner Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0865566A2 publication Critical patent/EP0865566A2/fr
Application granted granted Critical
Publication of EP0865566B1 publication Critical patent/EP0865566B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34413Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using composite camshafts, e.g. with cams being able to move relative to the camshaft

Definitions

  • the invention relates to a valve train of an internal combustion engine and, in particular, to a valve train of an internal combustion engine, in which a rotating body, preferably a cam, on a shaft, preferably the camshaft, can be rotated cyclically during the rotation of the shaft, in order thereby to provide variable valve control.
  • a rotating body preferably a cam
  • a shaft preferably the camshaft
  • FIG. 23 An adjustment mechanism disclosed in this patent application is shown in FIG. 23 and comprises a camshaft 100 with an axis of rotation 500 on which a cam 200 is mounted. Also mounted on the camshaft 100 is an inner eccentric 300, on the outer surface 320 of which is eccentric to the axis of rotation 500, an outer eccentric 400 is mounted.
  • the inner eccentric 300 and the outer eccentric 400 can be rotated via an inner eccentric toothed ring 340 and an outer eccentric toothed ring 440, as a result of which an intermediate member 490 mounted on an eccentric outer surface of the outer eccentric 400 can be displaced in a plane perpendicular to the axis of rotation 500 relative to the camshaft 100.
  • Intermediate member 490 is drivingly coupled to cam 200 and camshaft 100.
  • an axial pin 800 which is rotatably mounted in the camshaft 100 as the first transmission element 800, engages with a sliding block lug 810, which is made of the same material as the axial pin 800, into a first groove 600, which is designed as a sliding guide and is formed in the intermediate member 490.
  • One of the first groove 600 diametrically Opposing second groove 700 of the intermediate member 490 is in engagement with a sliding block flag 910, which is made of the same material with a second axial pin 900, which is rotatably mounted in a bore 110 of the cam 200.
  • the rotation of the camshaft 1 is transmitted via the first axial pin 100 through its flag 110 and the first groove 600 to the intermediate member 490 and from there via the second groove 700 and the flag 910 of the second axial pin 900 to cam 200.
  • the intermediate member 490 is located in a concentric position to the camshaft 100, the cam 200 rotates synchronously with the camshaft 100.
  • a further disadvantage of this arrangement results from the fact that the tilting moment of the intermediate member 490 does not guarantee its parallelism with the cam 200. This can have the result that there is not always surface contact between the sliding block flags 810 and 910 of the axial pins 800 and 900 and the grooves 600 and 700 of the intermediate member 490, but under certain circumstances edge contact. This significantly increases wear in this area.
  • the object of the invention is to further develop the prior art described above in such a way that the friction between the components moving towards one another and thus the wear of these components is reduced with a minimal overall volume.
  • the valve train according to the invention of an internal combustion engine has a shaft having an axis of rotation, a rotating body which is rotatably mounted with respect to the shaft, and an intermediate element which surrounds the shaft and is arranged in the axial direction next to the rotatable rotating body and can be rotated with respect to the shaft and with the shaft via a first sliding guide and a first transmission element and is drivingly connected to the rotating body via a second sliding guide and a second transmission element.
  • a third sliding guide is provided between the rotating body and the intermediate member, which is a support between the rotating body and the intermediate member and at the same time enables a relative movement between the rotating body and the intermediate member in a direction perpendicular to the axis of rotation.
  • This third sliding guide serves to transfer the tilting moment generated by the transmission of the rotary motion to the Include pontic.
  • the support provided in this way relieves the high-speed bearing between the intermediate link and the external eccentric. Instead, the support against this tilting moment takes place between the rotating body and the intermediate member, which have only a low relative speed to one another.
  • the free tilting moment is supported in the valve train according to the invention via the large-area bearing between the rotating body and the shaft, at which only low relative speeds also occur and which is therefore only slightly loaded. This significantly reduces the overall friction loss in the system. In addition, the holding torque of the external eccentric is significantly reduced.
  • the third sliding guide can be designed such that a groove is provided in the rotating body, into which a web formed on the intermediate member engages.
  • the groove extends in the circumferential direction of the rotating body, wherein it is interrupted by an opening through which the intermediate member with the web can be inserted in the radial direction.
  • an intermediate disk can be accommodated in the groove in addition to the web.
  • the intermediate member also abuts in the area in which the groove is interrupted.
  • the free tilting moment is supported at the bearing point between the rotating body and the shaft, it is advantageous to make this bearing point particularly wide.
  • the rotating body can be widened in the area of the bearing surface in the direction of the axis of rotation and have dimensions, which are wider than at least a portion of the outer contour of the rotating body.
  • the first transmission element comprises a radial pin which is inserted substantially perpendicular to the axis of rotation in a corresponding bore in the shaft, the radial pin being slidably received in a recess in a sliding block which is pivotally mounted in a bearing seat of the intermediate member.
  • the use of the radial pin has the advantage that when the force is introduced from the shaft into the intermediate member, the tilting moment is reduced, as a result of which the total tilting moment that occurs is reduced.
  • the radial pin can take over the axial fixation of the rotating body and the intermediate member on the shaft.
  • the second transmission element can comprise an axial pin mounted parallel to the axis of rotation in a bore of the rotating body.
  • the washer can have an interruption which ensures free access to the axial pin, the washer on the opposite side of the interruption having a flattened portion which rests on the sliding block and acts as an anti-rotation device for the washer.
  • the side faces of the slide flag can extend to one or both sides of the axial pin beyond the circumference of its cylindrical shaft, so that the axial pin has an L-shape or T-shape together with the slide flag. This results in an enlarged contact surface of the sliding stone flag and thus a reduction in the surface pressure towards the groove of the intermediate member and, in the case of a T-shape, a symmetrical introduction of force.
  • the bore of the rotary body in which the axial pin is mounted can be closed on the side facing away from the intermediate member and the shaft can have a longitudinal bore and one or more shaft oil bores extending from the longitudinal bore to the outer surface of the shaft.
  • a rotating body oil bore can be arranged so that oil from the longitudinal bore of the shaft via the shaft oil bore and the rotary body oil bore into the bore for mounting the axial pin between them and the closed end of this bore, whereby the axial pin through the oil pressure is firmly pressed against the end wall in the groove of the intermediate link. This improves the sliding behavior of the sliding stone flag in the groove.
  • a common inner eccentric can be provided for two adjacent rotating bodies.
  • the radial pin can have a shoulder which, when assembled, can be brought into engagement with part of the inner eccentric, so that the radial pin is fixed in position in the shaft and the pin is prevented from moving out of the shaft by positive engagement.
  • the shaft is preferably a camshaft and the rotating body is a cam for actuating a gas exchange valve.
  • This provides an extremely compact device for variable valve control.
  • the intermediate member can be designed so that its outer contour does not project beyond the outer contour of the cam in any operating position. This enables the use of this embodiment in bucket tappet motors.
  • a first embodiment of a valve train with an adjusting mechanism for providing variable valve control for internal combustion engines is explained below with reference to FIGS. 1-17.
  • a rotary body 10 designed as a cam is rotatably mounted on a shaft 1 designed as a camshaft, which is rotated at half the crankshaft speed during operation of the internal combustion engine, preferably by the crankshaft of the internal combustion engine (not shown).
  • an inner eccentric 91 is provided, which is rotatably fixed by a bearing block 92 to a cylinder head 93, which is only indicated.
  • An outer eccentric 90 is rotatably mounted on an outer surface of the inner eccentric 91 that is eccentric to the axis of rotation D.
  • the inner eccentric 91 is rotatable via an inner eccentric ring gear 91A, while the outer eccentric 90 is rotatable by means of an outer eccentric ring gear 90A which is mounted coaxially with the axis of rotation D and which engages with a lug 90B in a groove 90C of the outer eccentric.
  • an intermediate member 20 which is rotatably mounted on an eccentric outer surface of the outer eccentric 90.
  • the intermediate member 20 takes one to the axis of rotation D. coaxial position or a position in which its axis of rotation is offset from the axis of rotation D of the camshaft 1.
  • the intermediate member 20 is drivingly connected to the camshaft 1 and the cam 10, so that rotation of the camshaft 1 is transmitted to the cam 10 via the intermediate member 20. If, depending on the position of the outer eccentric 90 and the inner eccentric 91, the rotation of the intermediate member 20 is concentric with the rotation of the camshaft 1, the cam 10 rotates synchronously with the camshaft 1. If the outer eccentric 90 and / or the inner eccentric 91 moves accordingly, this Intermediate member 20 shifted radially out of its concentric position to the camshaft 1, so with each revolution there is a cyclical speed increase or speed reduction of the rotational speed of the cam 10 compared to that of the camshaft 1.
  • the drive connection of the camshaft 1 to the intermediate member 20 takes place via a radial pin 40 which is inserted into a corresponding radial bore 4 of the camshaft 1.
  • the camshaft 1 has a longitudinal bore 2 and the radial bore 4 has a depth that is greater than the sum of the camshaft radius and the radius of the longitudinal bore 2.
  • the radial pin 40 has a cylindrical section 42 which is fully inserted into the camshaft 1 and a substantially rectangular section 43 which projects from the camshaft 1.
  • a shoulder 41 is formed between the cylindrical section 42 and the rectangular section 43.
  • the shoulder 41 is designed with a radius corresponding to the curvature of the surface of the camshaft 1 (see Fig. 12). This ensures surface contact and enables the formation of a lubricating film.
  • the rectangular section 43 is slidably surrounded by a recess 51 of a sliding block 50.
  • the sliding block 50 has the shape of a cylinder segment flattened on two sides, the two rounded side surfaces 52, 53 being shell segments of a cylinder which are connected to one another by an end surface 54.
  • the recess 51 is open on the side opposite the end face 54 and has two sliding surfaces 55, 56 for sliding contact with two opposing surfaces of the rectangular section 43 of the radial pin 40 and two shoulders 57, 58 for contacting a third surface of the rectangular section 43 of the radial pin 40.
  • a recess 59 is formed between the shoulders 57, 58 in order to facilitate the assembly of the radial pin 40. Namely, if the diameter of the cylindrical portion 42 of the radial pin 40 is smaller than at least the larger of the two cross-sectional edges 44, 45 of its substantially rectangular section 43, the radial pin 40 can be inserted into the shaft 1 due to the recess 59 through the recess 51 lying in overlap with the radial bore 4.
  • the rectangular section 43 of the radial pin 40 and the recess 51 of the sliding block 50 are matched to one another in terms of their dimensions so that the sliding block 50 can slide over the rectangular section 43.
  • the intermediate member 20 has a bearing seat 22 which is open on the side facing the cam 10.
  • the concave side walls 25, 26 of the bearing seat 22 adjoining the open side are designed corresponding to the radius of the side surfaces 52, 53 of the sliding block 50, so that the sliding block 50 which can be inserted into the bearing seat 22 through the open side of the bearing seat 22 pivots with respect to the intermediate member 20 can be.
  • An end face 27 of the bearing seat 22 serves to abut the sliding block 50.
  • a recess 27A provided in the end face 27 enables the radial pin 40 to be inserted during assembly.
  • a groove 23 is formed, into which a sliding block lug 71 engages, which is made of the same material with an axial pin 70.
  • the axial pin 70 is rotatably mounted in a bore 13 in the cam 10 which is closed at one end and extends parallel to the axis of rotation D.
  • a rotary body oil bore 19 provided in the cam 10 is at least temporarily in overlap with a shaft oil bore 3 of the camshaft 1 and opens with its opposite end in the bore 13 in a region between the end of the axial pin 70 facing away from the sliding stone flag 71 and the closed end of the bore 13.
  • Camshaft 1 can be ensured that the rotating body oil bore 19 is located in relation to the camshaft 1 in connection with the shaft oil bore 3 over the entire rotational range of the cam 10. In this way it is ensured that an oil pressure prevailing in the longitudinal bore 2 of the camshaft 1 is applied to the end face of the axial pin 70 and the sliding block lug 71 presses against the end wall 24 of the groove 23 of the intermediate member 20 in order to play between the sliding block lug 71 and the To dampen groove 23 when changing systems.
  • the diameter of the pin of the axial pin 70 is preferably smaller than the width of the sliding block lug 21 or the groove 23.
  • the length of the pin of the axial pin 70 is preferably larger than half the width of the cam 1.
  • the intermediate member 20 has on the end face which has the open side of the groove 23 and the open side of the bearing seat 22, a web 21 which extends substantially in the circumferential direction and is interrupted by the groove 23 and the open side of the bearing seat 22.
  • the web 21 can be inserted by radial insertion into a groove 11 which is formed on the side of the cam 10 facing the intermediate member 20.
  • the groove 11 extends essentially in the circumferential direction and is interrupted by an opening 12 which enables the web 21 to be inserted radially.
  • the depth of the groove 11 and the thickness of the web 21 are coordinated so that a tilting moment of the intermediate member 20 can be absorbed and at the same time a radial displacement and a rotation of the intermediate member 20 relative to the cam 10 is possible.
  • the groove 11 of the cam 10 is delimited on its side facing the intermediate member 20 by a web 17 which extends essentially in the circumferential direction and which is also interrupted by the opening 12. In order to enlarge the contact surface for collecting the tilting moment, this web 17 deviates from the circumferential direction in a central region 18 in the region of the line DD in FIG. 3. In this area, the web 17 is raised with respect to the bottom of the groove 11, for example by virtue of the fact that in the central region 18 the upper edges of the web 17 run parallel to one another on both sides of the bore for the camshaft 1.
  • the bottom of the groove 28 formed on the intermediate member 20 by the web 21 is lowered in a corresponding central region 29 with respect to the upper edge of the web 21, for example in that in this central region 29 the bottom portions of the groove 28 have a changed radius of curvature.
  • the axial pin 70 is inserted with its cylindrical shaft into the bore 13 of the cam 10.
  • the sliding block 50 is inserted into the bearing seat 22 from the open side thereof.
  • the intermediate member 20 is inserted with its web 21 into the groove 11 from the side of the cam 10 opposite the bore 13 and thus the cam tip.
  • the sliding stone flag 71 enters the groove 23.
  • the intermediate member 20 and the cam 10 are axially fixed to each other.
  • the unit thus produced from the intermediate link and cam is pushed onto the camshaft and the recess in the sliding block 50 is brought into overlap with the radial bore 4 in the camshaft 1.
  • the radial pin 40 is inserted through the recess 51 into the radial bore 4.
  • the Pre-assembled eccentric unit with the outer eccentric 90, the inner eccentric 91 and the eccentric sprockets 90A, 91A is pushed onto the camshaft and the outer eccentric 90 is inserted into the bearing seat of the intermediate link 20.
  • the inner eccentric 91 covers part of the radial bore 4 and thus secures the radial pin 40 against wandering out.
  • FIGS. 18-20 differs from the first embodiment described above only in that the groove 11 of the cam 10, in addition to the web 21 of the intermediate member 20, receives an intermediate disk 60 which serves for this purpose to enlarge the contact surface for the intermediate member 20, in particular in the region of the opening 12 on the cam 10.
  • the intermediate disk 60 is essentially ring-shaped and has a flattened portion 62 toward the cam tip, which provides free passage for the axial pin 70 and acts as an anti-rotation device.
  • an interruption 61 is provided which provides free passage for the sliding block 50.
  • FIG. 21 shows a third embodiment in which a common inner eccentric 91 is provided for two cams 10A, 10B.
  • an adjustment unit is provided on both sides of the camshaft bearing, so that a subsequent insertion of the eccentric is not possible.
  • local recesses are provided on the eccentrics in order to insert the radial pin in the case of a complete preassembly unit comprising cams 10A, 10B, the two intermediate members 20 and the eccentrics through the recesses 51 in the respective sliding blocks 50 into the corresponding radial bores 4 of the camshaft 1 to be able to introduce.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Claims (18)

  1. Mécanisme d'entraînement pour soupapes d'un moteur à combustion interne
    - avec un arbre (1) comprenant un axe de rotation (D),
    - avec un corps de rotation (10) logé de façon rotative par rapport à l'arbre (1) et
    - avec un élément intermédiaire (20) entourant l'arbre (1), cet élément étant arrangé en direction axiale à côté du corps de rotation rotatif (10) rotatif par rapport à l'arbre (1) et lié de façon entraînante avec l'arbre (1) par un premier guidage à glissement (15) et un premier élément de transmission (40, 50) et avec le corps de rotation (10) par un deuxième guidage à glissement (16) et un deuxième élément de transmission (70) ,
    caractérisé en ce qu'entre le corps de rotation (10) et l'élément intermédiaire (20) est prévu un troisième guidage à glissement (30) formant un appui entre le corps de rotation (10) et l'élément intermédiaire (20) qui rend en même temps possible un mouvement relatif entre le corps de rotation (10) et l'élément intermédiaire (20) dans une direction perpendiculaire à l'axe de rotation (D) et que le troisième guidage à glissement (30) comprend un guidage emboîtant à rainure et languette (11, 21) entre le corps de rotation (10) et la languette (21).
  2. Mécanisme d'entraînement pour soupapes selon la revendication 1, caractérisé en ce qu'une rainure (11) est prévue dans le corps de rotation (10) et qu'une languette (21) est formée sur l'élément intermédiaire (20).
  3. Mécanisme d'entraînement pour soupapes selon la revendication 2, caractérisé en ce que la rainure (11) s'étend le long de la circonférence du corps de rotation (10) et que la rainure est interrompue par une ouverture (12), par laquelle l'élément intermédiaire (20) avec la languette (21) est introduisible en direction radiale.
  4. Mécanisme d'entraînement pour soupapes selon la revendication 3, caractérisé en ce qu'une languette (17) du corps de rotation (10) limitant la rainure (11) est surhaussée par rapport au fond de la rainure (11) dans une zone centrale (18) et qu'un fond d'une rainure (28) formée par la languette (21) est abaissé par rapport au bord supérieur de la languette (21) dans une zone centrale (29) correspondante à la zone centrale (18).
  5. Mécanisme d'entraînement pour soupapes selon la revendication 4, caractérisé en ce que les bords supérieurs de la languette (17) sont parallèles l'un par rapport à l'autre de tous les deux côtés de l'alésage pour l'arbre (1) dans la zone centrale (18) et que les portions du fond de la rainure (28) dans la zone centrale (29) ont un rayon de courbure modifié par rapport aux autres portions de la rainure (28).
  6. Mécanisme d'entraînement pour soupapes selon les revendications 1 à 5, caractérisé en ce que la rainure (11) reçoit à côté de la languette (21) un disque intermédiaire (60) qui offre un élargissement de la surface de contact pour l'élément intermédiaire (20).
  7. Mécanisme d'entraînement pour soupapes selon la revendication 6, caractérisé en ce que le disque intermédiaire (60) est essentiellement annulaire, comporte sur un côté une interruption (61) et est pourvu du côté vis-à-vis de l'interruption d'un aplatissement (62) qui forme un assurage contre rotation du disque intermédiaire (60).
  8. Mécanisme d'entraînement pour soupapes selon une des revendications précédentes, caractérisé en ce que le corps de rotation (10) comporte une surface d'appui (14) vers l'arbre (1), cette surface étant plus large en direction de l'axe de rotation (D) par rapport à au moins une portion du contour externe du corps de rotation (10).
  9. Mécanisme d'entraînement pour soupapes selon une des revendications précédentes, caractérisé en ce que le premier élément de transmission (40, 50) comprend une tige radiale (40), introduite dans l'arbre (1) de façon essentiellement perpendiculaire à l'axe de rotation (D), que la tige radiale (40) est contenue de façon coulissante dans un évidement (51) d'une tête coulissante (50) et que la tête coulissante (50) est logée de façon pivotable dans un siège (22) de l'élément intermédiaire (20).
  10. Mécanisme d'entraînement pour soupapes selon la revendication 9, caractérisé en ce que le fixage axiale du corps de rotation (10) et de l'élément intermédiaire (20) sur l'arbre (1) se fait par la tige radiale (40).
  11. Mécanisme d'entraînement pour soupapes selon une des revendications précédentes, caractérisé en ce que le deuxième élément de transmission (70) comprend une tige axiale (70) logée parallèlement à l'axe de rotation (D) dans un alésage (13) du corps de rotation (10).
  12. Mécanisme d'entraînement pour soupapes selon la revendication 11, caractérisé en ce que l'une des extrémités de la tige axiale (70) est pourvue d'une queue (71) comportant deux parois parallèles et qui s'engage dans une rainure (23) de l'élément intermédiaire (20), les parois s'étendant en direction de la rainure (23) vers un ou l'autre des deux côtés de la tige axiale (70) outre sa circonférence, de manière que la tige axiale (70) présente avec la queue (71) de la tête coulissante une forme d L ou T.
  13. Mécanisme d'entraînement pour soupapes selon la revendication 11 ou 12, caractérisé en ce que l'alésage (13) dans le corps de rotation (10) est fermé du côté qui n'est pas orienté vers l'élément intermédiaire (20), que l'arbre (1) comporte un alésage longitudinal (2) et au moins un alésage de passage d'huile pour l'arbre (3) s'entendant de l'alésage longitudinal (2) à la surface extérieure de l'arbre (1) et que le corps de rotation (10) comporte un alésage de passage d'huile pour le corps de rotation (19), à travers lequel de l'huile provenant de l'alésage longitudinal (2) passant à travers l'alésage de passage d'huile pour l'arbre (3) peut arriver dans l'alésage (13) entre son extrémité fermée et la tige axiale (70), de sorte que la tige axiale (70) est pressée en fort contact avec la face (24) de la rainure (23).
  14. Mécanisme d'entraînement pour soupapes selon une des revendications précédentes, caractérisé en ce que l'élément intermédiaire (20) est logé de façon rotative sur un excentrique périphérique (90) qui est logé de façon rotative sur une surface excentrique périphérique d'un excentrique intérieur (91) rotatif sur l'arbre (1).
  15. Mécanisme d'entraînement pour soupapes selon la revendication 14, caractérisé en ce que pour deux corps de rotation adjacents (10A, 10B) est prévu un excentrique intérieur commun (91).
  16. Mécanisme d'entraînement pour soupapes selon la revendication 14 ou 15, dans la mesure où celles-ci se réfèrent aux revendications 8 à 12, caractérisé en ce que la tige radiale (40) comporte un gradin (41) engageable en état assemblé dans une partie de l'excentrique intérieur (91) de sorte à être fixé en ce qui concerne sa position dans l'arbre (1) .
  17. Mécanisme d'entraînement pour soupapes selon une des revendications précédentes, caractérisé en ce que l'arbre (1) est un arbre à cames et le corps de rotation (10) une came pour actionner une soupape d'échange du gaz.
  18. Mécanisme d'entraînement pour soupapes selon la revendication 17, caractérisé en ce que le contour externe de l'élément intermédiaire (20) ne dépasse dans aucune position d'exercice le contour extérieur du corps de rotation (10).
EP96946071A 1995-12-12 1996-12-11 Systeme de distribution d'un moteur a combustion interne Expired - Lifetime EP0865566B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19546366 1995-12-12
DE19546366A DE19546366C2 (de) 1995-12-12 1995-12-12 Ventiltrieb einer Brennkraftmaschine
PCT/DE1996/002382 WO1997021909A2 (fr) 1995-12-12 1996-12-11 Systeme de distribution d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP0865566A2 EP0865566A2 (fr) 1998-09-23
EP0865566B1 true EP0865566B1 (fr) 2000-04-05

Family

ID=7779901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96946071A Expired - Lifetime EP0865566B1 (fr) 1995-12-12 1996-12-11 Systeme de distribution d'un moteur a combustion interne

Country Status (6)

Country Link
US (1) US5979381A (fr)
EP (1) EP0865566B1 (fr)
AT (1) ATE191540T1 (fr)
AU (1) AU1869597A (fr)
DE (2) DE19546366C2 (fr)
WO (1) WO1997021909A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365508A (en) * 2000-08-08 2002-02-20 Mechadyne Internat Plc Variable valve timing mechanism
JP4078051B2 (ja) * 2001-08-29 2008-04-23 本田技研工業株式会社 動弁用被動回転部材及びカムの結合体
DE102004030773A1 (de) * 2004-06-25 2006-01-19 Bayerische Motoren Werke Ag Ventiltrieb einer Brennkraftmaschine
US20080017150A1 (en) * 2004-09-15 2008-01-24 Yamaha Hatsudoki Kabushiki Kaisha Variable Valve Drive Device, Engine, and Motorcycle
DE102004056191B4 (de) * 2004-11-20 2008-08-28 Mahle Ventiltrieb Gmbh Nockenwelle für insbesondere Kraftfahrzeugmotoren
GB2424257A (en) * 2005-03-18 2006-09-20 Mechadyne Plc Single cam phaser camshaft with adjustable connections between the inner shaft and associated cam lobes
DE102008062041A1 (de) * 2008-12-12 2010-06-17 Thyssenkrupp Presta Teccenter Ag Verstellbare Nockenwellenanordnung
US8109246B2 (en) * 2009-03-09 2012-02-07 GM Global Technology Operations LLC Camshaft damping mechanism and method of assembly
DE102009035120A1 (de) 2009-07-29 2011-02-03 Neumayer Tekfor Holding Gmbh Nockenwelle
DE102011051480B4 (de) 2011-06-30 2014-11-20 Thyssenkrupp Presta Teccenter Ag Nockenwelle mit axial verschiebbarem Nockenpaket

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644408B2 (ja) * 1991-03-29 1997-08-25 アーウィン コロステンスキー 内燃機関の連続可変バルブタイミング機構
JP3177532B2 (ja) * 1992-01-27 2001-06-18 株式会社ユニシアジェックス 内燃機関の吸排気弁駆動制御装置
ES2119503T3 (es) * 1994-12-13 1998-10-01 Erwin Korostenski Accionamiento de valvula de un motor de combustion interna.
DE19502836C2 (de) * 1995-01-30 2000-02-24 Erwin Korostenski Brennkraftmaschine

Also Published As

Publication number Publication date
WO1997021909A2 (fr) 1997-06-19
EP0865566A2 (fr) 1998-09-23
WO1997021909A3 (fr) 1997-08-07
DE19546366C2 (de) 2002-01-17
AU1869597A (en) 1997-07-03
DE19546366A1 (de) 1997-06-19
US5979381A (en) 1999-11-09
DE59604914D1 (de) 2000-05-11
ATE191540T1 (de) 2000-04-15

Similar Documents

Publication Publication Date Title
DE3617140C2 (fr)
DE4404708C2 (de) Ventilsteuer-Vorrichtung für einen Verbrennungskraftmotor
DE69105265T2 (de) Nockensteuerungen.
DE3117707C2 (fr)
DE19623818C5 (de) Dreh- oder Winkelphasen-Steuervorrichtung
DE102009048621B4 (de) Ventiltrieb für Gaswechselventile mit Verspannung von Grundnockenwelle und Nockenträger in Umfangs- oder Drehrichtung
DE19680481C2 (de) Variabler Ventiltrieb
DE102010004591B4 (de) Gebauter Nockenträger für Ventiltrieb
EP3088701B1 (fr) Piston doté de pivots et machine à piston à double vilebrequins
DE3883547T2 (de) Selbsttätige spielnachstellvorrichtung.
DE19757504B4 (de) Gebaute Nockenwelle für eine Brennkraftmaschine
DE4210143A1 (de) Ventilantrieb fuer eine brennkraftmaschine
DE19942110A1 (de) Ventilstößel für einen dreidimensionalen Nocken und verstellbare Ventilbetätigungsvorrichtung mit diesem Ventilstößel
EP0865566B1 (fr) Systeme de distribution d'un moteur a combustion interne
DE68925342T2 (de) Ventilantriebsvorrichtung für Brennkraftmaschine
DE19961759A1 (de) Ventilbetätigungssystem für eine Brennkraftmaschine
EP0797726B1 (fr) Mecanisme de distribution pour moteur a combustion interne
DE69110642T2 (de) Ventilsteuerung-Kontrollsystem für Verbrennungsmotor.
WO1999056008A1 (fr) Element d'appui pour un basculeur d'un mecanisme de distribution d'un moteur a combustion interne
DE4135257A1 (de) Vorrichtung zur betaetigung der ventile in verbrennungsmotoren mittels umlaufender nocken
DE102008010225B4 (de) Variables Ventilsteuerzeitventilhubsystem
DE69007728T2 (de) Ventiltriebvorrichtung für Brennkraftmaschine.
DE19502836C2 (de) Brennkraftmaschine
DE69112071T2 (de) Verbesserungen von antriebsverbindungen zwischen zwei sich drehenden körpern.
DE10109234A1 (de) Variable Ventilvorrichtung eines Verbrennungsmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980703

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19980924

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20000405

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000405

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000405

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000405

REF Corresponds to:

Ref document number: 191540

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59604914

Country of ref document: DE

Date of ref document: 20000511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000705

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20000405

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060630

Year of fee payment: 10

Ref country code: AT

Payment date: 20060630

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061211