EP0840708B1 - Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium - Google Patents

Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium Download PDF

Info

Publication number
EP0840708B1
EP0840708B1 EP97925101A EP97925101A EP0840708B1 EP 0840708 B1 EP0840708 B1 EP 0840708B1 EP 97925101 A EP97925101 A EP 97925101A EP 97925101 A EP97925101 A EP 97925101A EP 0840708 B1 EP0840708 B1 EP 0840708B1
Authority
EP
European Patent Office
Prior art keywords
adsorbent
zeolite
process according
adsorption
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97925101A
Other languages
German (de)
English (en)
Other versions
EP0840708A1 (fr
Inventor
Olivier Bomard
Jérôme JUTARD
Serge Moreau
Xavier Vigor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0840708A1 publication Critical patent/EP0840708A1/fr
Application granted granted Critical
Publication of EP0840708B1 publication Critical patent/EP0840708B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4067Further details for adsorption processes and devices using more than four beds using ten beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention relates to a process for the purification of gaseous mixtures based on hydrogen, polluted by various impurities, including carbon monoxide and at least one other impurity chosen from carbon dioxide and linear, branched or cyclic, saturated hydrocarbons. or C 1 -C 8 unsaturated.
  • the method of the invention allows in particular the improvement of conventional processes separation of PSA type hydrogen, or processes by adsorption by variation of pressure, using zeolites as an adsorbent.
  • PSA methods are have been shown to be very effective in separating gas mixtures and especially for production hydrogen or pure oxygen from gas mixtures contaminated with various impurities. PSA processes take advantage of the adsorption selectivity of a adsorbent given for one or more of the substances contaminants of the gas mixture to be purified.
  • adsorbent The choice of adsorbent is delicate: it depends on the one hand, the nature of the mixture to be treated. In good standing general adsorbents are selected based on ease of adsorbing and desorbing a compound particular. In fact, PSA processes involve the implementation of pressure cycles. In a first phase, the adsorbent bed ensures the separation of at least a constituent of the mixture by adsorption of this constituent on the adsorbent bed. In a second phase the adsorbent is regenerated by lowering the pressure. With each new cycle it is therefore essential that the desorption is effective and complete, so as to find a regenerated state identical to each new cycle. It is clear, however, that this facility to adsorb and then desorb a particular constituent of a gas mixture is a function of operating conditions particular of the PSA process envisaged and in particular of temperature and pressure conditions.
  • PSA processes intended for the production of oxygen which generally operate at adsorption pressures lower than 5.10 5 Pa
  • PSA processes intended for the production of hydrogen which can involve adsorption pressures between 5.10 5 and 70.10 5 Pa.
  • the mixture to be purified usually includes more than one impurity it's desirable that the adsorbent can adsorb then desorb, not just one, but many of these impurities.
  • the adsorption profile and selectivity of a given constituent are often influenced by the presence of other impurities in the gas mixture, and this, for example, due to possible competition or poisoning of the adsorbent.
  • the adsorption pressures involved in the cited prior art being generally much less than 5.10 5 Pa, do not correspond to those generally used for PSA processes for the production of hydrogen.
  • document US-A-3,430,418 proposes the combination of two types of adsorbent, the first which is an activated carbon ensuring the elimination of CH 4 , CO 2 and H 2 O, the second which is a zeolite of type A with calcium allowing the elimination of nitrogen and carbon monoxide.
  • first which is an activated carbon ensuring the elimination of CH 4 , CO 2 and H 2 O
  • second which is a zeolite of type A with calcium allowing the elimination of nitrogen and carbon monoxide.
  • the present invention is based on the discovery that the combination of a particular type of zeolite with at least one second adsorbent of the silica gel, activated carbon or prefilter type allows the elimination of impurities such as carbon monoxide, carbon dioxide, linear, branched or cyclic, saturated or unsaturated C 1 -C 8 hydrocarbons as well as nitrogen, from a gaseous mixture of hydrogen, while causing a significant increase in productivity.
  • productivity denotes the ratio of the volume of hydrogen produced, measured under normal conditions of temperature and pressure, per hour and per volume or weight of adsorbent.
  • the process of the invention is more particularly suitable for the removal of carbon monoxide from gaseous mixtures based on hydrogen containing, in addition, other impurities such as carbon dioxide or linear, branched or hydrocarbons. cyclic, saturated or unsaturated C 1 -C 8 , of the methane, ethane, butane, propane, benzene, toluene or xylene type. Likewise, the nitrogen gas optionally present in the gas mixture is separated from the hydrogen by adsorption on the particular adsorbent bed, used in the process of the invention.
  • the adsorbent constituting the third bed is chosen from among the zeolites, such as zeolite 5A.
  • the mixture gaseous contains carbon monoxide, carbon dioxide carbon, methane, nitrogen and hydrogen.
  • gas mixtures it is possible to cite gas mixtures from cracking units catalytic, thermal cracking units, catalytic reforming or hydrotreating units.
  • the purity of the hydrogen from the the invention is at least 99.999%, when the mixture gaseous to be purified contains more than 45% hydrogen gaseous. However, this purity can reach 99.999999% or more, depending on operating conditions and the amount of adsorbent used.
  • the purification of a gas mixture containing less than 45% hydrogen gas is not desirable since where it would require an excessive amount of adsorbent and an excessive size of the facilities so that achieve acceptable purity. It goes without saying that more the proportion of hydrogen in the gas mixture of is important, the more hydrogen recovered in exit from the adsorption zone will be pure. We consider that the process of the invention leads to the best results when the percentage of hydrogen in the gas mixture to be treated is at least 70%.
  • the adsorption zone is maintained at a pressure of between 5.10 5 and 70.10 5 Pa, when the gaseous mixture to be purified is brought into contact with said first and second adsorbents.
  • higher pressure does not harm the conduct of the purification.
  • pressures generally above 70.10 5 Pa are generally avoided.
  • Pressures below 5.10 5 Pa are not usually implemented for the production of hydrogen by adsorption of impurities on an adsorbent bed, and this for reasons of efficiency.
  • the pressure prevailing in the adsorption zone will be maintained at a value less than 50.10 5 Pa, better still less than 30.10 5 Pa.
  • the adsorption zone is maintained, preferably, above 5.10 5 Pa, preferably, above 15.10 5 Pa.
  • the temperature of the incoming gas mixture and the adsorption zone is not critical and is generally kept constant during the phase adsorption of impurities. Usually this temperature is between 0 and 50 ° C, preferably between 30 and 45 ° C during adsorption.
  • the first and second adsorbents are arranged so that the gas mixture passes through them one after the other. It has been found that the efficiency of the separation can be optimized by placing, at the entrance to the adsorption zone, the selective adsorbent at least carbon dioxide and C 1 -C 8 hydrocarbons and, at the outlet from the adsorption zone, the lithium faujasite type adsorbent intended to remove at least the CO.
  • a selective adsorbent of at least carbon dioxide and C 1 -C 8 hydrocarbons it is possible to use an activated carbon, a prefilter carbon, a silica gel or a mixture of these different adsorbents in any proportion.
  • an activated carbon a prefilter carbon, a silica gel or a mixture of these different adsorbents in any proportion.
  • silica gels which can be used according to the invention are those commonly used in the art. These gels are commercially available, in particular from SOLVAY (sorbead gels). Pre-filter coals are active carbon with high porosity and low density. Activated carbon and prefilter carbon are by example marketed by NORIT, CARBOTECH, CECA, PICA or CHEMVIRON.
  • the second adsorbent is advantageously a zeolite faujasite type exchanged at least 80% with lithium.
  • Zeolites are a group of hydrated natural or synthetic metallic aluminosilicates, most of which have a crystalline structure. Zeolites differ from each other in their chemical composition, their crystal structure and their physical properties. Schematically, the zeolite crystals consist of networks of nested SiO 4 and AlO 4 tetrahedra. A number of cations, for example cations of alkali and alkaline earth metals such as sodium, potassium, calcium and magnesium, included in the crystal lattice ensure the electrical neutrality of the zeolite.
  • the faujasite type zeolites also designated in the art by zeolite X are crystalline zeolites of formula: (0.9 ⁇ 0.2) M 2 / n O: Al 2 O 3 : 2.5 ⁇ 0.5 SiO 2 : yH 2 O in which M represents an alkali or alkaline earth metal, n is the valence of the metal M, and y takes any value between 0 and 8 depending on the nature of M and the degree of hydration of the zeolite.
  • Document US-A-2,882,244 relates to this particular type of zeolite.
  • the zeolites X are selected whose Si / Al ratio is less than 1.5. So preferred, this ratio is between 1 and 1.2 being understood that a value of 1 is more particularly recommended.
  • X zeolites are commercially available in particular, with the following companies: Bayer, UOP, CECA, Ueticon, Grace Davison or Tosoh. 13X zeolites offered by these distributors are, in particular, suitable as starting materials for preparation X zeolites exchanged with lithium usable according to the invention as an adsorbent.
  • the process of the invention is not limited to the use of commercial faujasites.
  • the use of a zeolite of greater or lesser porosity than that of industrial X zeolites currently commercially available is not excluded, for example.
  • the zeolites can be under the form of crystalline powders or agglomerates.
  • the zeolite agglomerates are obtained so conventional by implementing conventional methods agglomeration.
  • the agglomerated zeolite can, for example, be prepared by mixing a crystalline powder of zeolite with water and a binder (usually under powder form), then spray this mixture on zeolite agglomerates playing the role of germ agglomeration.
  • a binder usually under powder form
  • spraying the agglomerates of zeolite are subjected to a continuous rotation on themselves. This can be achieved by arranging the agglomerates in a rotating reactor about an axis of rotation, said axis of rotation being preferably tilted relative to the direction vertical.
  • agglomerates in the form of beads.
  • the agglomerates as well obtained are then subjected to cooking at a temperature between about 500 and 700 ° C, from preferably at a temperature close to 600 ° C.
  • a binder a person skilled in the art may use a clay such as kaolin, silica or alumina.
  • the agglomerated zeolite thus obtained which comprises a binder, can be used for the preparation of agglomerated zeolite without binder also usable in the process of the invention.
  • we can indeed cook subsequent zeolitic agglomerates with binder this by which, after crystallization, we obtain agglomerates zeolitics without binder.
  • the zeolites X which can be used as an adsorbent are subjected to a subsequent treatment aimed at introducing lithium cations into the crystal lattice. This is achieved by ion exchange, part of the M + cations initially contained in the zeolite being exchanged with lithium cations.
  • the combination of the first and second adsorbents described above leads to an improvement in the purification of the gaseous mixture of hydrogen and the overall productivity, when the second adsorbent is a faujasite X type zeolite exchanged at least 80% at lithium.
  • zeolite exchanged at least 80% with lithium is understood to mean a zeolite of which at least 80% of the AlO 2 - units are associated with lithium cations.
  • Faujasite-type zeolites exchanged for more than 90% lithium is more particularly preferred.
  • the expression activation of a zeolite is understood to mean its dehydration, that is to say the elimination of the water of hydration contained in the zeolite.
  • the partial pressure of the water in the gas in contact with the zeolite is less than approximately 4.10 4 Pa, preferably 1.10 4 Pa after activation.
  • One of these methods consists in subjecting the zeolite to a pressure of approximately 1.10 4 Pa to 1.10 6 Pa while passing a current of an inert gas through the bed of adsorbent made up of said zeolite and while heating said zeolite up to a temperature between 300 and 650 ° C at a temperature rise rate of about 0.1 to 40 ° C per minute.
  • the zeolite can be activated by maintaining it under a vacuum of about 1.10 4 Pa or less while heating the zeolite to a temperature of about 300 to 650 ° C without any need to resort to gas sweeping inert.
  • Another alternative is to activate the zeolite by a method using microwaves, as described in document US-A-4,322,394.
  • the first and second adsorbents in any weight ratio.
  • a weight ratio of the first selective adsorbent at least carbon dioxide and C 1 -C 8 hydrocarbons to the second zeolite adsorbent between 10/90 and 85/15 is particularly advantageous from the point of view of the efficiency of the purification and the overall productivity.
  • this ratio is ideally between 50/50 and 80/20, preferably between 60/40 and 80/20.
  • each bed of adsorbent is subjected to a cycle of treatment including a first phase of production of hydrogen, a second decompression phase and a third phase of recompression.
  • step a) it is preferable to opt for the purification of a gaseous mixture containing more than 70% of hydrogen and comprising as impurities nitrogen, methane, CO and CO 2 , which are will bring into contact with a bed of adsorbent consisting of activated carbon and faujasite exchanged at more than 90% with lithium, the weight ratio of activated carbon to faujasite preferably being between 50/50 and 80/20.
  • the adsorption zone is maintained at a temperature between 0 and 80 ° C.
  • the capacity of the adsorbent beds is limited by the maximum dimension that can be used either because of mechanical strength of individual particles adsorbent, either because of the maximum dimension that can use for shipping containers containing adsorbents. This is why the operation from 4 to 10 adsorbent beds arranged in parallel is a thing common in the art.
  • the phases of decompression and compression of different beds adsorbent are synchronized: it is in particular advantageous to introduce steps of equalization of pressure between two adsorbent beds, one of which beds being in decompression phase, the other in phase of recompression.
  • Beds 1 to 3 are respectively supplied with gas mixture to be purified via lines 11, 12 and 13.
  • the lines 11, 12 and 13 are each connected to a source of gas mixture 14 via a one and the same pipe 15 into which the lines 11, 12 and 13. Leaving the adsorption zones 1 to 3, the purified hydrogen is recovered via the pipes 16, 17 and 18.
  • Lines 16 to 18 all lead into a line 19 which brings the purified hydrogen from lines 16, 17 and 18, to a storage enclosure 21 via line 19. Part of the hydrogen produced is taken from line 19 via line 22 and brought up to the adsorbent bed 10 which is then at the end of recompression phase: we proceed to a pressure equalization between the adsorbent beds 1 to 3 in the production phase and the adsorbent bed 10 which is at the end of the treatment cycle.
  • the adsorption bed 6 is also in the phase of decompression. His pressure is lowered simply by evacuation of hydrogen via entry 28 of the zone adsorption 6. It is at this stage of decompression that place the desorption of the impurities adsorbed on the bed adsorbent.
  • the treatment cycle implemented is shown schematically figure 2. More precisely, one has represented on the figure 2, the evolution of the pressure within a bed adsorbent over time.
  • the adsorbent beds are filled activated carbon on the one hand and a zeolite on the other go.
  • the activated carbon used is of the type generally used in the various processes for the separation of hydrogen by adsorption by variation of the pressure (PSA / H 2 ).
  • the zeolite is zeolite 5A sold by the company Procatalysis under the reference 5APS.
  • the zeolite is zeolite 5A sold by the company Bayer under the reference Baylith K.
  • the zeolite used is a zeolite X 90% exchanged with lithium.
  • Baylith K R (Bayer) and 5APS R (Procatalysis) zeolites are A zeolites containing, as exchangeable cations, ions Na + and Ca 2+ , and, having pores with a size of approximately 5A.
  • Zeolite X exchanged at 90% with lithium is prepared as follows from a 13X faujasite with an Si / Al ratio of 1.25 and containing approximately 20% binder:
  • the zeolite exchanged with lithium obtained is characterized by the isothermal curve passing through the points marked ⁇ in Figure 3.
  • This isothermal curve was plotted at 20 ° C by volumetric analysis using of a Sorptomatic MS 190 device from FISONS after vacuum activation of the zeolite at 400 ° C for 8 hours.
  • this curve represents the variations in the nitrogen adsorption capacity expressed in cm 3 per gram as a function of the adsorption pressure (expressed in bars).
  • adsorption zeolites are activated under vacuum at 400 ° C for 8 hours.
  • the temperature of the adsorbent beds is maintained at 40 ° C.
  • the productivity P is defined here as the ratio of the volume of hydrogen produced, measured under normal conditions of temperature and pressure, per hour and per m 3 of adsorbent.
  • the yield R of the process corresponds to the ratio of volume of pure hydrogen produced, measured in normal temperature and pressure conditions, at volume of hydrogen contained in the effluent gas at purify, also measured under normal conditions of temperature and pressure.
  • comparative example 1 was chosen as a reference, that is to say that for this example the relative yields and productivity were fixed at 100: this example illustrates more precisely the purification of the mixture M1 described in table 1 in the presence of an adsorbent consisting of 70% by weight of activated carbon and 30% by weight of 5APS zeolite, the desorption pressure being fixed at 2.10 5 Pa and the adsorption pressure being 20.10 5 Pa.
  • the quantity Q of adsorbed nitrogen (expressed in cm 3 per gram) is plotted on the ordinate and the adsorption pressure (expressed in bars) on the abscissa.
  • the points concerning the zeolite exchanged with lithium of examples 1 to 3 are marked ⁇ ; the points concerning the zeolite A Baylith K R (Bayer) are marked 0 and the points concerning the zeolite A 5APS R (Procatalyse) are marked ⁇ .
  • the CO respiration of a zeolite X exchanged with lithium according to the invention is significantly higher than that of a type 5A zeolite classic.
  • the respiration of a zeolite is defined as the difference between the capacity adsorption of pure gas by this zeolite at pressure partial high, or adsorption pressure and capacity adsorption of said gas at low pressure, or pressure desorption, by said zeolite.
  • a pressure is obtained partial partial CO in adsorption phase (on zeolite) of about 0.69 bar and a pressure was evaluated about 0.24 bar during desorption phase.
  • the amount of CO adsorbed in the adsorption phase is approximately 18.3 Ncm 3 / g and approximately 11.1 Ncm 3 / g in the desorption phase, which corresponds to a respiration of approximately 7.2 Ncm 3 / g.
  • the quantity of CO adsorbed in the adsorption phase is approximately 35.9 Ncm 3 / g and approximately 25.2 Ncm 3 / g in desorption phase, which corresponds to a respiration of approximately 10.7 Ncm 3 / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

L'invention concerne un procédé pour la purification de mélanges gazeux à base d'hydrogène, pollués par diverses impuretés, dont du monoxyde de carbone et au moins une autre impureté choisie parmi le dioxyde de carbone et les hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C1-C8.
Le procédé de l'invention permet notamment le perfectionnement des procédés conventionnels de séparation de l'hydrogène de type PSA, ou procédés par adsorption par variation de la pression, utilisant des zéolites en tant qu'adsorbant.
La production d'hydrogène de grande pureté est d'un grand intérêt sur le plan industriel, celui-ci étant largement utilisé dans de nombreux procédés de synthèses tels que l'hydrocraquage, la production de méthanol, la production d'oxoalcools et les procédés d'isomérisation. Dans la technique antérieure, les procédés PSA se sont révélés très efficaces pour la séparation de mélanges gazeux et notamment pour la production d'hydrogène ou d'oxygène pur à partir de mélanges gazeux contaminés par diverses impuretés. Les procédés PSA mettent à profit la sélectivité d'adsorption d'un adsorbant donné pour une ou plusieurs des substances contaminantes du mélange gazeux à purifier.
Le choix de l'adsorbant est délicat : il dépend d'une part de la nature du mélange à traiter. En règle générale les adsorbants sont sélectionnés en fonction de leur facilité à adsorber et à désorber un composé particulier. De fait, les procédés PSA impliquent la mise en oeuvre de cycles de pression. Dans une première phase, le lit d'adsorbant assure la séparation d'au moins un constituant du mélange par adsorption de ce constituant sur le lit d'adsorbant. Dans une deuxième phase l'adsorbant est régénéré par abaissement de la pression. A chaque nouveau cycle il est donc essentiel que la désorption soit efficace et complète, de manière à retrouver un état régénéré identique à chaque nouveau cycle. Il est clair cependant que cette facilité à adsorber puis désorber un constituant particulier d'un mélange gazeux est fonction des conditions opératoires particulières du procédé PSA envisagé et notamment des conditions de températures et de pression.
Une distinction doit donc être faite entre les procédés PSA destinés à la production d'oxygène, lesquels fonctionnent généralement à des pressions d'adsorption inférieures à 5.105 Pa, et les procédés PSA destinés à la production d'hydrogène, lesquels peuvent mettre en jeu des pressions d'adsorption comprises entre 5.105 et 70.105 Pa.
Toutefois, dans la mesure où le mélange à purifier comprend généralement plus d'une impureté, il est souhaitable que l'adsorbant puisse adsorber puis désorber, non pas une seule, mais plusieurs de ces impuretés.
Or, le profil et la sélectivité d'adsorption d'un constituant donné sont souvent influencés par la présence, dans le mélange gazeux, d'autres impuretés, et ceci, par exemple, en raison d'une éventuelle compétition ou d'un empoisonnement de l'adsorbant.
Ces différentes considérations rendent compte de la complexité du problème de l'optimisation des procédés PSA par amélioration de l'adsorbant.
Des études récentes ont montré que dans le cas de mélanges contenant de l'azote, de l'oxygène, de l'hydrogène, du méthane et de l'argon ou de l'hélium, les zéolites échangées au lithium permettent une nette amélioration des performances. Il résulte notamment des différents travaux de recherche effectués, que les critères de sélection à prendre en compte pour le choix de l'adsorbant sont sa capacité d'adsorption de l'azote, sa sélectivité azote/oxygène, sa résistance mécanique (le tassement de l'adsorbant devant être possible sur une certaine hauteur, sans écrasement) et la perte de charge occasionnée, et ceci naturellement dans le cas de mélanges gazeux comprenant à la fois de l'azote et de l'oxygène en vue d'une purification de l'oxygène.
On se reportera, par exemple, aux documents US-A-5,152,813 et US-A-5,258,058, ainsi qu'à la demande de brevet EP-A-0 297 542 lesquels décrivent l'utilisation de zéolites de type X échangées au lithium dans des procédés PSA destinés à la production d'oxygène.
L'enseignement de ces documents n'est cependant pas généralisable à la purification de mélanges gazeux contenant des impuretés du type du monoxyde de carbone, du dioxyde de carbone ou des hydrocarbures en C1-C8 dont la présence modifie le profil d'adsorption de l'azote par la zéolite. Or, ces impuretés sont les plus fréquemment rencontrées dans les unités PSA de purification de l'hydrogène.
D'autre part, les pressions d'adsorption mises en jeu dans l'art antérieur cité, étant généralement bien inférieures à 5.105 Pa, ne correspondent pas à celles utilisées généralement pour les procédés PSA de production d'hydrogène.
Et de fait, concernant la production d'hydrogène à partir d'un mélange gazeux à base d'hydrogène contenant à titre d'impuretés CO, CO2, CH4, NH3, H2S, N2 et H2O, le document US-A-3,430,418 propose la combinaison de deux types d'adsorbant, le premier qui est un charbon actif assurant l'élimination de CH4, CO2 et H2O, le second qui est une zéolite de type A au calcium permettant l'élimination de l'azote et du monoxyde de carbone. De façon à améliorer les performances des procédés PSA de production de l'hydrogène, et notamment, en vue d'obtenir un meilleur rendement en hydrogène, l'on a jusqu'à présent joué essentiellement sur le nombre et la disposition des lits d'adsorbants fonctionnant en parallèle. Les documents US-A-4,381,189 et FR-A-2,330,433 illustrent notamment une telle démarche.
La présente invention repose sur la découverte que l'association d'un type particulier de zéolite avec au moins un second adsorbant de type gel de silice, charbon actif ou charbon préfiltre permet l'élimination d'impuretés du type du monoxyde de carbone, du dioxyde de carbone, des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C1-C8 ainsi que de l'azote, à partir d'un mélange gazeux d'hydrogène, tout en entraínant une augmentation significative de la productivité. Tel qu'il est utilisé ici, le terme productivité désigne le rapport du volume d'hydrogène produit, mesuré dans les conditions normales de température et de pression, par heure et par volume ou poids d'adsorbant.
Plus précisément, l'invention a trait à un procédé pour la séparation de l'hydrogène contenu dans un mélange gazeux pollué par du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C1-C8, comprenant la mise en contact dans une zone d'adsorption du mélange gazeux à purifier avec au moins:
  • un premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures en C1-C8,
  • et un second adsorbant qui est une zéolite du type faujasite échangée à au moins 80% au lithium et dont le rapport Si/Al est inférieur à 1,5, pour éliminer au moins le monoxyde de carbone (CO).
Le procédé de l'invention est plus particulièrement approprié à l'élimination du monoxyde de carbone à partir de mélanges gazeux à base d'hydrogène contenant, en outre, d'autres impuretés telles que du dioxyde de carbone ou des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C1-C8, du type méthane, éthane, butane, propane, benzène, toluène ou xylène. De même, l'azote gazeux éventuellement présent dans le mélange gazeux, est séparé de l'hydrogène par adsorption sur le lit d'adsorbant particulier, mis en oeuvre dans le procédé de l'invention. Avantageusement, au moins une partie et, préférentiellement, la majeure partie de l'azote éventuellement présent dans le mélange gazeux à purifier est éliminée par adsorption sur un troisième lit d'adsorbant placé ou interposé, c'est-à-dire pris en "sandwich", entre le lit dudit premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures C1-C8, et le lit dudit second adsorbant destiné à éliminer principalement le CO. De préférence, on choisit l'adsorbant constituant le troisième lit parmi les zéolites, telle la zéolite 5A.
Selon un mode de réalisation préféré, le mélange gazeux contient du monoxyde de carbone, du dioxyde de carbone, du méthane, de l'azote et de l'hydrogène.
Comme mélanges gazeux pouvant convenir, on peut citer les mélanges gazeux issus d'unités de craquage catalytique, d'unités de craquage thermique, d'unités de reformage catalytique ou d'unités d'hydrotraitement.
La pureté de l'hydrogène issu du procédé de l'invention est d'au moins 99,999%, lorsque le mélange gazeux à purifier comprend plus de 45% d'hydrogène gazeux. Cette pureté peut atteindre cependant jusqu'à 99,999999 % ou plus, suivant les conditions opératoires mises en jeu et la quantité d'adsorbant utilisée. La purification d'un mélange gazeux contenant moins de 45% d'hydrogène gazeux n'est pas souhaitable, dans la mesure où il nécessiterait une quantité excessive d'adsorbant et une taille démesurée des installations de façon à pouvoir atteindre une pureté acceptable. Il va sans dire que plus la proportion d'hydrogène dans le mélange gazeux de départ est importante, plus l'hydrogène récupéré en sortie de la zone d'adsorption sera pur. On considère que le procédé de l'invention conduit aux meilleurs résultats lorsque le pourcentage d'hydrogène dans le mélange gazeux à traiter est d'au moins 70% .
En règle générale, dans le cadre de l'invention, la zone d'adsorption est maintenue à une pression comprise entre 5.105 et 70.105 Pa, lors de la mise en contact du mélange gazeux à purifier avec lesdits premier et second adsorbants. Cependant une pression supérieure ne nuit pas à la conduite de la purification. Toutefois, dans un souci d'économie d'énergie et en raison du coût élevé d'installations résistant à la pression, on évite généralement les pressions situées au-dessus de 70.105 Pa. Des pressions inférieures à 5.105 Pa ne sont habituellement pas mises en oeuvre pour la production d'hydrogène par adsorption des impuretés sur un lit d'adsorbant, et ceci pour des raisons d'efficacité. De préférence, la pression régnant dans la zone d'adsorption sera maintenue à une valeur inférieure à 50.105 Pa, mieux encore inférieure à 30.105 Pa. De même, la zone d'adsorption est maintenue, de préférence, au-dessus de 5.105 Pa, préférentiellement, au-dessus de 15.105 Pa.
La température du mélange gazeux entrant et de la zone d'adsorption n'est pas déterminante et est généralement maintenue constante pendant la phase d'adsorption des impuretés. D'ordinaire cette température est comprise entre 0 et 50°C, préférablement entre 30 et 45°C pendant l'adsorption.
Dans la zone d'adsorption, les premier et second adsorbants sont disposés de telle sorte que le mélange gazeux les traverse l'un après l'autre. On a constaté que l'efficacité de la séparation pouvait être optimisée en plaçant, à l'entrée de la zone d'adsorption, l'adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en C1-C8 et, en sortie de la zone d'adsorption, l'adsorbant de type faujasite au lithium destiné à éliminer au moins le CO.
Ce résultat peut s'expliquer du fait que l'efficacité d'adsorption de la zéolite de type faujasite se trouve augmentée une fois les impuretés de type hydrocarbures en C1-C8 et dioxyde de carbone arrêtées par le premier adsorbant.
En tant qu'adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en C1-C8, on peut utiliser un charbon actif, un charbon préfiltre, un gel de silice ou un mélange de ces différents adsorbants dans une proportion quelconque. Lorsque l'on choisit un tel mélange, il est préférable de disposer les différents constituants du mélange, dans la zone d'adsorption, sous forme de couches séparées de façon à ce que le mélange gazeux vienne tour à tour au contact de chaque couche.
Les gels de silice utilisables selon l'invention sont ceux couramment utilisés dans la technique. Ces gels sont disponibles dans le commerce notamment auprès de SOLVAY (gels sorbead). Les charbons préfiltres sont des charbons actifs de forte porosité et de faible densité. Les charbons actifs et charbons préfiltres sont par exemple commercialisés par NORIT, CARBOTECH, CECA, PICA ou CHEMVIRON.
Le second adsorbant est avantageusement une zéolite de type faujasite échangée à au moins 80% au lithium.
Les zéolites sont un groupe d'alumino-silicates métalliques naturels ou synthétiques hydratés dont la plupart présentent une structure cristalline. Les zéolites diffèrent les unes des autres de par leur composition chimique, leur structure cristalline et leurs propriétés physiques. De façon schématique, les cristaux de zéolite sont constitués de réseaux de tétrahèdres de SiO4 et de AlO4 imbriqués. Un certain nombre de cations, par exemple des cations de métaux alcalins et alcalinoterreux tels que le sodium, le potassium, le calcium et le magnésium, inclus dans le réseau cristallin assurent la neutralité électrique de la zéolite.
Les zéolites de type faujasite, également désignées dans la technique par zéolite X sont des zéolites cristallines de formule : (0,9 ± 0,2) M 2/n O : Al2O3: 2,5 ± 0,5 SiO2 : yH2O dans laquelle M représente un métal alcalin ou alcalinoterreux, n est la valence du métal M, et y prend une valeur quelconque entre 0 et 8 suivant la nature de M et le degré d'hydratation de la zéolite. Le document US-A-2,882,244 a trait à ce type particulier de zéolite.
On sélectionne, selon l'invention, les zéolites X dont le rapport Si/Al est inférieur à 1,5. De manière préférée, ce rapport est compris entre 1 et 1,2 étant entendu qu'une valeur de 1 est plus particulièrement recommandée.
Les zéolites X sont disponibles dans le commerce notamment, auprès des sociétés suivantes : Bayer, UOP, CECA, Ueticon, Grace Davison ou Tosoh. Les zéolites 13X proposées par ces distributeurs sont, notamment, appropriées comme matériaux de départ pour la préparation des zéolites X échangées au lithium utilisables selon l'invention en tant qu'adsorbant.
Cela étant, le procédé de l'invention n'est pas limité à l'utilisation de faujasites commercialisées. L'emploi d'une zéolite de porosité plus ou moins élevée que celle des zéolites X industrielles actuellement disponibles dans le commerce n'est par exemple pas exclu.
Selon l'invention, les zéolites peuvent être sous la forme de poudres cristallines ou d'agglomérats. Les agglomérats de zéolites sont obtenus de façon conventionnelle par mise en oeuvre de procédés classiques d'agglomération. La zéolite agglomérée peut, par exemple, être préparée par mélange d'une poudre cristalline de zéolite avec de l'eau et un liant (généralement sous forme de poudre), puis pulvérisation de ce mélange sur des agglomérats de zéolites jouant le rôle de germe d'agglomération. Pendant la pulvérisation les agglomérats de zéolite sont soumis à une rotation continue sur eux-mêmes. Ceci peut être réalisé en disposant les agglomérats dans un réacteur en rotation sur lui-même autour d'un axe de rotation, ledit axe de rotation étant préférablement incliné par rapport à la direction verticale. Par ce procédé, couramment désigné dans la technique par procédé "boule de neige" on obtient des agglomérats sous forme de billes. Les agglomérats ainsi obtenus sont ensuite soumis à une cuisson à une température comprise entre environ 500 et 700°C, de préférence à une température voisine de 600°C. Comme exemple de liant, l'homme du métier pourra recourir à une argile telle que du kaolin, de la silice ou de l'alumine. La zéolite agglomérée ainsi obtenue, laquelle comprend un liant, peut servir à la préparation de zéolite agglomérée sans liant également utilisable dans le procédé de l'invention. De façon à convertir le liant en phase zéolitique, on peut procéder en effet à la cuisson ultérieure des agglomérats zéolitiques avec liant, ce par quoi, après cristallisation, on obtient des agglomérats zéolitiques sans liant.
Selon l'invention, les zéolites X utilisables en tant qu'adsorbant sont soumises à un traitement ultérieur visant à introduire des cations lithium au sein du réseau cristallin. Ceci est réalisé par échange d'ions, une partie des cations M+ initialement contenus dans la zéolite étant échangée par des cations lithium.
La combinaison des premier et second adsorbants décrits ci-dessus conduit à une amélioration de la purification du mélange gazeux d'hydrogène et de la productivité globale, lorsque le second adsorbant est une zéolite de type faujasite X échangée à au moins 80% au lithium.
On entend par zéolite échangée à au moins 80% au lithium, une zéolite dont au moins 80% des motifs AlO2 - sont associés à des cations lithium.
Tout procédé connu de l'état de la technique permettant d'aboutir à une zéolite de type faujasite échangée à au moins 80% au lithium peut être mis en oeuvre.
Les zéolites de type faujasite échangées à plus de 90% au lithium sont plus particulièrement préférées.
Avant utilisation des zéolites au lithium, une activation de celles-ci est nécessaire. Selon l'invention, on entend par activation d'une zéolite sa déshydratation, c'est-à-dire l'élimination de l'eau d'hydratation contenue dans la zéolite. En règle générale, on fait en sorte que la pression partielle de l'eau dans le gaz au contact de la zéolite soit inférieure à environ 4.104 Pa, de préférence 1.104 Pa après activation. Les procédés d'activation des zéolites sont connus dans la technique. L'une de ces méthodes consiste à soumettre la zéolite à une pression d'environ 1.104 Pa à 1.106 Pa tout en faisant passer un courant d'un gaz inerte au travers du lit d'adsorbant constitué de ladite zéolite et tout en chauffant ladite zéolite jusqu'à une température comprise entre 300 et 650°C à une vitesse de montée en température d'environ 0,1 à 40°C par minute. En variante, on peut activer la zéolite en la maintenant sous un vide d'environ 1.104 Pa ou inférieur tout en chauffant la zéolite jusqu'à une température d'environ 300 à 650°C sans nul besoin de recourir au balayage par un gaz inerte. Une autre alternative consiste à activer la zéolite par un procédé utilisant des micro-ondes, tel que décrit dans le document US-A-4,322,394.
Pour la mise en oeuvre du lit d'adsorbant, on peut a priori combiner les premier et second adsorbants dans un rapport pondéral quelconque. Néanmoins, on a pu constaté qu'un rapport pondéral du premier adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en C1-C8 au second adsorbant de type zéolite compris entre 10/90 et 85/15 est particulièrement avantageux du point de vue de l'efficacité de la purification et de la productivité globale. De façon empirique, on a pu observer que ce rapport est idéalement compris entre 50/50 et 80/20, de préférence entre 60/40 et 80/20.
De façon à produire de l'hydrogène en continu, il est connu de disposer en parallèle un certain nombre de lits d'adsorbant que l'on soumet en alternance à un cycle d'adsorption avec compression adiabatique et de désorption avec décompression.
De telles installations sont notamment mises en oeuvre dans les procédés PSA d'adsorption par variation de la pression. Le cycle de traitement auquel est soumis chaque lit d'adsorbant comprend les étapes consistant à :
  • a) faire passer un mélange gazeux à base d'hydrogène pollué par du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures en C1-C8 dans une zone d'adsorption comprenant, au moins:
    • un premier lit d'adsorbant constitué d'un premier adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en C1-C8 et:
    • un second lit d'adsorbant constitué d'un second adsorbant qui est une zéolite de type faujasite échangée à au moins 80% au lithium dont le rapport Si/Al est inférieur à 1,5 pour éliminer au moins le CO;
  • b) désorber le monoxyde de carbone et l'autre ou les autres impuretés adsorbées sur lesdits premier et second adsorbants par instauration d'un gradient de pression et abaissement progressif de la pression dans ladite zone d'adsorption de façon à récupérer le monoxyde de carbone et l'autre ou les autres impuretés par l'entrée de ladite zone d'adsorption; et
  • c) remonter en pression ladite zone d'adsorption par introduction d'un courant d'hydrogène pur par la sortie de la zone d'adsorption.
  • Ainsi, chaque lit d'adsorbant est soumis à un cycle de traitement comprenant une première phase de production d'hydrogène, une seconde phase de décompression et une troisième phase de recompression.
    Il est clair qu'en ajustant les conditions opératoires de l'étape a) conformément aux modes de réalisation préférés décrits ci-dessus, on aboutit à une amélioration des rendement et productivité ainsi qu'à une amélioration de la pureté de l'hydrogène récupéré en sortie. Ainsi, on optera, de préférence, pour la purification d'un mélange gazeux contenant plus de 70% d'hydrogène et comprenant à titre d'impuretés de l'azote, du méthane, du CO et du CO2, que l'on mettra en contact avec un lit d'adsorbant constitué de charbon actif et de faujasite échangée à plus de 90% au lithium, le rapport pondéral du charbon actif à la faujasite étant préférablement compris entre 50/50 et 80/20.
    De manière préférée, la zone d'adsorption est maintenue à une température comprise entre 0 et 80°C.
    La capacité des lits d'adsorbant est limitée par la dimension maximale qui peut être utilisée soit à cause de la résistance mécanique des particules individuelles d'adsorbant, soit à cause de la dimension maximale qu'on peut utiliser pour l'expédition des récipients contenant les adsorbants. C'est pourquoi, le fonctionnement de 4 à 10 lits d'adsorbants disposés en parallèle est chose courante dans la technique.
    De façon à optimiser les procédés PSA, les phases de décompression et de compression des différents lits d'adsorbant sont synchronisées : il est notamment avantageux d'introduire des étapes d'égalisation de pression entre deux lits d'adsorbant, l'un de ces deux lits étant en phase de décompression, l'autre en phase de recompression.
    L'invention est décrite maintenant en référence aux exemples de réalisation 1 et 2 et aux figures annexées.
  • La figure 1 représente, de façon schématique, une installation pour la mise en oeuvre d'un procédé PSA de production d'hydrogène, comprenant dix lits d'adsorbant 1 à 10.
  • La figure 2 représente l'évolution de la pression au sein d'une zone d'adsorption au cours d'un cycle de traitement de purification d'un mélange gazeux à base d'hydrogène par un procédé PSA.
  • La figure 3 représente les variations de la capacité d'adsorption de diverses zéolites en fonction de la pression d'adsorption.
  • La figure 4 représente des variations de la capacité d'adsorption d'une zéolite de type X échangée au lithium selon l'invention (courbe LiX) et d'une zéolite 5A classique (courbe 5A) en fonction de la pression d'adsorption.
  • Sur la figure 1, seules les conduites par lesquelles circule l'hydrogène, à un instant donné, ont été représentées. Plus précisément, à l'instant considéré les lits 1 à 3 sont en phase de production, les lits 4 à 7 sont en phase de décompression et les lits 8 à 10 sont en phase de recompression.
    Les lits 1 à 3 sont respectivement alimentés en mélange gazeux à purifier via les conduites 11, 12 et 13. Les conduites 11, 12 et 13 sont chacune reliées à une source de mélange gazeux 14 par l'intermédiaire d'une seule et même conduite 15 dans laquelle débouchent les conduites 11, 12 et 13. En sortie des zones d'adsorption 1 à 3, l'hydrogène purifié est récupéré via les conduites 16, 17 et 18.
    Les conduites 16 à 18 débouchent toutes trois dans une conduite 19 qui amène l'hydrogène purifié, issu des conduites 16, 17 et 18, vers une enceinte de stockage 21 via la conduite 19. Une partie de l'hydrogène produit est prélevée sur la conduite 19 via la conduite 22 et amenée jusqu'au lit d'adsorbant 10 lequel est alors en fin de phase de recompression : on procède ainsi à une égalisation de pression entre les lits d'adsorbant 1 à 3 en phase de production et le lit d'adsorbant 10 lequel est en fin de cycle de traitement.
    Pendant ce même temps, on opère à une égalisation de pression des lits d'adsorbant 4 et 8 d'une part et 4 et 9 d'autre part. Pour ce faire, les entrées respectives des zones d'adsorption 4, 8 et 9 sont hermétiquement fermées. Les lits d'adsorbants 4 et 8 sont mis en communication l'un avec l'autre via une conduite 23. Le lit d'adsorbant 4 entrant en phase de décompression est encore sous une pression d'hydrogène relativement élevée, alors que le lit d'adsorbant 8 qui est en début de phase de recompression est à une pression bien inférieure. Suite à la différence de pression existant entre les lits d'adsorbant 4 et 8, l'hydrogène est entraíné du lit d'adsorbant 4 vers le lit d'adsorbant 8, ce qui contribue à la recompression du lit d'adsorbant 8 et à la décompression concomitante du lit d'adsorbant 4. La conduite 23 débouche plus précisément dans des conduites 24 et 25, la conduite 24 étant reliée au lit d'adsorbant 8 et la conduite 25 étant reliée au lit d'adsorbant 9. Ainsi, par l'intermédiaire des conduites 23 et 25 les lits d'adsorbant 4 et 9 sont également mis en communication l'un avec l'autre : on procède de fait simultanément à une égalisation de pression des lits d'adsorbant 4 et 8 d'une part et 4 et 9 d'autre part.
    De la même manière, on opère une égalisation de pression entre les lits d'adsorbant 5 et 7, ces deux lits étant mis en communication l'un avec l'autre par l'intermédiaire d'une conduite 26. Là encore, dans la mesure où la pression régnant au sein du lit d'adsorbant 5 est supérieure à la pression régnant au sein de la zone d'adsorption 7, l'hydrogène s'écoule du lit d'adsorbant 5 vers le lit d'adsorbant 7. On aboutit ainsi à une égalisation de pression. Néanmoins, dans la mesure où les lits d'adsorbants 5 et 7 sont l'un en cours de décompression et l'autre en fin de phase de décompression, on souhaite, non pas égaliser les pressions de ces zones d'adsorption mais au contraire abaisser la pression régnant dans la zone d'adsorption 7 par rapport à la pression régnant dans la zone d'adsorption 5. Ceci est réalisé en laissant s'évacuer l'excès d'hydrogène de la zone d'adsorption 7 via l'entrée 27 de la zone d'adsorption 7.
    Le lit d'adsorption 6 est également en phase de décompression. Sa pression est abaissée simplement par évacuation de l'hydrogène via l'entrée 28 de la zone d'adsorption 6. C'est à ce stade de décompression qu'a lieu la désorption des impuretés adsorbées sur le lit d'adsorbant.
    Exemples
    Dans les exemples qui suivent on réalise la purification de deux mélanges gazeux M1 et M2 dont les compositions sont indiquées dans le tableau 1 ci-dessous.
    Dans ce tableau, les pourcentages sont des pourcentages volumiques.
    CH4 (%) CO(%) CO2(%) N2 (%) H2(%)
    M1 3 3 22 2 70
    M2 3 3 22 0 72
    Pour ce faire, on utilise une installation analogue à celle décrite en référence à la figure 1, comprenant 10 lits d'adsorbant.
    Le cycle de traitement mis en oeuvre est schématisé figure 2. Plus précisément, on a représenté sur la figure 2, l'évolution de la pression au sein d'un lit d'adsorbant au cours du temps.
    Dans tous les cas, les lits d'adsorbant sont garnis de charbon actif d'une part et d'une zéolite d'autre part.
    Le charbon actif utilisé est du type de ceux généralement mis en oeuvre dans les différents procédés de séparation de l'hydrogène par adsorption par variation de la pression (PSA/H2).
    Dans le cas des exemples comparatifs 1, 3 et 4, la zéolite est la zéolite 5A vendue par la société Procatalyse sous la référence 5APS.
    Dans le cas de l'exemple comparatif 2, la zéolite est la zéolite 5A vendue par la société Bayer sous la référence Baylith K.
    Dans le cas des exemples 1 à 3 conformes à l'invention, la zéolite utilisée est une zéolite X échangée à 90% au lithium.
    Les zéolites Baylith K R (Bayer) et 5APS R (Procatalyse) sont des zéolites A contenant en tant que cations échangeables des ions Na+ et Ca2+, et, présentant des pores d'une taille d'environ 5A.
    La zéolite 5APS R qui se présente sous la forme de produits d'extrusion d'un diamètre de 1,6 mm et 3,2 mm est en outre caractérisée par :
    • une perte au feu comprise entre 1 et 1,5%, à 550°C;
    • une masse volumique apparente comprise entre 0,69 et 0,73 g/cm3;
    • une chaleur spécifique de 0,23 kcal.kg-1.°C-1;
    • une chaleur d'adsorption de l'eau d'au plus 1000 kcal/kg;
    • une adsorption statique de l'eau comprise entre 17,0 et 19 g d'eau pour 100 g d'adsorbant à une humidité relative de 10%; et
    • une adsorption statique de l'eau comprise entre 20 et 22 g d'eau pour 100 g d'adsorbant à une humidité relative de 60%.
    La zéolite X échangée à 90% au lithium est préparée de la façon suivante au départ d'une faujasite 13X présentant un rapport Si/Al de 1,25 et contenant environ 20% de liant :
    Au travers d'une colonne garnie de 1 kg de cette faujasite, on fait percoler une solution aqueuse 1,94 N de chlorure de lithium contenant 60 mmol/l de chlorure de sodium, dont on a préalablement ajusté le pH à 8, par addition de lithine. Lors de cette opération, la colonne est maintenue à une température de 95°C.
    La zéolite échangée au lithium obtenue est caractérisée par la courbe isotherme passant par les points marqués □ de la Figure 3. Cette courbe isotherme a été tracée à 20°C par analyse volumétrique au moyen d'un appareil Sorptomatic MS 190 de chez FISONS après activation sous vide de la zéolite à 400°C pendant 8 heures.
    Plus précisément, cette courbe représente les variations de la capacité d'adsorption de l'azote exprimée en cm3 par gramme en fonction de la pression d'adsorption (exprimée en bars).
    Avant leur mise en place dans les différentes zones d'adsorption les zéolites sont activées sous vide à 400°C pendant 8 heures.
    On dispose le charbon actif en entrée de la zone d'adsorption, la zéolite de type faujasite échangée au lithium étant disposée en sortie de ladite zone d'adsorption de telle sorte que ces deux adsorbants forment deux couches superposées distinctes.
    La température des lits d'adsorbant est maintenue à 40°C.
    Plusieurs expériences sont alors réalisées pour tester l'efficacité du procédé de l'invention; dans ces expériences on modifie les valeurs des pressions d'adsorption (atteinte en fin de phase de compression) et de désorption (atteinte en fin de phase de décompression) et on détermine les rendement et productivité résultants.
    La productivité P est définie ici comme le rapport du volume d'hydrogène produit, mesuré dans les conditions normales de température et de pression, par heure et par m3 d'adsorbant.
    Le rendement R du procédé correspond au rapport du volume d'hydrogène pur produit, mesuré dans les conditions normales de température et de pression, au volume d'hydrogène contenu dans le gaz effluent à purifier, également mesuré dans les conditions normales de température et de pression.
    Dans les exemples ci-dessous les rendements et productivités rapportés dans les tableaux 2 et 3 sont des rendements et productivités relatifs.
    De fait, l'exemple comparatif 1 a été choisi comme référence, c'est-à-dire que pour cet exemple les rendement et productivité relatifs ont été fixés à 100: cet exemple illustre plus précisément la purification du mélange M1 décrit au tableau 1 en présence d'un adsorbant constitué de 70% en poids de charbon actif et de 30% en poids de zéolite 5APS, la pression de désorption étant fixée à 2.105 Pa et la pression d'adsorption étant de 20.105 Pa.
    Par conséquent, dans le cas de tous les autres exemples, les rendements et productivités relatifs Rr et Pr sont respectivement donnés par les équations :
    Figure 00180001
    où R et P sont tels que définis ci-dessus et Rc1 et Pc1 sont respectivement les rendement et productivité réels déterminés dans le cas de l'exemple comparatif 1.
    Les résultats obtenus dans le cas des exemples comparatifs ont été rapportés dans le tableau 2 ci-dessous en fonction des conditions de pression sélectionnées, et des rapports massiques charbon actif/zéolite utilisés :
    Ex. comparatif Zéolite Rapport massique charbon actif/zéolite Mélange gazeux à purifier Pression d'adsorption (bars) Pression de désorption (bars) Rendement relatif Productivité relative
    1 5APS 70/30 M1 20 2 100 100
    2 Baylith K 70/30 M1 20 2 96,1 98
    3 5APS 75/25 M2 23 1,6 100 100
    4 5APS 75/25 M2 33 1,6 100 100
    Les résultats obtenus en utilisant la zéolite échangée au lithium conformément au procédé de l'invention ont été recueillis dans le tableau 3 dans le cas des trois exemples suivants :
    Ex. Rapport massique charbon actif/zéolite au Li Mélange gazeux à purifier Pression d'adsorption (bars) Pression de désorption (bars) Rendement relatif Productivité relative
    1 70/30 M1 20 2 103,5 113,4
    2 75/25 M2 23 1,6 101,7 112,3
    3 75/25 M2 33 1,6 101,6 111,3
    Dans le cas des exemples 1 à 3 la pureté de l'hydrogène produit était de 99,999%.
    Il résulte clairement de ces résultats que la combinaison de charbon actif et de zéolite X échangée au lithium conduit à de meilleures valeurs du rendement et de la productivité.
    Sur la figure 3 annexée, sont représentées les courbes isothermes de variation de la capacité d'adsorption de l'azote dans le cas de chacune des zéolites étudiées dans les exemples 1 à 3 et les exemples comparatifs 1 à 4, en fonction de la pression d'adsorption.
    Sur ces courbes, on a porté la quantité Q d'azote adsorbée (exprimée en cm3 par gramme) en ordonnées et la pression d'adsorption (exprimée en bars) en abscisses. Les points concernant la zéolite échangée au lithium des exemples 1 à 3 sont marqués □ ; les points concernant la zéolite A Baylith K R (Bayer) sont marqués 0 et les points concernant la zéolite A 5APSR (Procatalyse) sont marqués ▵.
    Ces courbes ont été tracées à 20°C par analyse volumétrique au moyen d'un appareil Sorptomatic MS 190 de chez FISONS après activation sous vide des zéolites à 400°C pendant 8 heures.
    Il résulte clairement de ces courbes que la capacité d'adsorption de la zéolite au lithium est supérieure. De même, la capacité d'adsorption de la zéolite Baylith K commercialisée par Bayer est plus importante que celle de la zéolite 5 APS.
    Or, à la lumière des résultats obtenus précédemment, les rendement et productivité obtenus dans les procédés PSA de production de l'hydrogène sont les meilleurs pour la zéolite X échangée au lithium et les moins bons dans le cas de la zéolite A Baylith K commercialisée par Bayer.
    On démontre ainsi que la capacité d'adsorption d'une zéolite pour l'azote, jusqu'à présent considérée comme un critère important pour le choix de la zéolite la plus efficace, est sans relation directe avec les rendement et productivité finalement obtenus dans les procédés PSA de production de l'hydrogène.
    Sur la figure 4, sont représentées les courbes isothermes de variation de la capacité d'adsorption du monoxyde de carbone (CO) d'une zéolite de type faujasite échangée à 87% au lithium selon l'invention (courbe LiX) et d'une zéolite 5A (courbe 5A).
    Sur ces courbes, on a porté la quantité Q de monoxyde de carbone (CO) adsorbée (exprimée en Ncm3/g) en ordonnées et la pression d'adsorption (exprimée en bars) en abscisses; ces mesures ont été réalisées à 30°C.
    Ces courbes isothermes montrent clairement que la zéolite X échangée au lithium (LiX) a, pour une pression donnée, une capacité d'adsorption pour le monoxyde de carbone beaucoup plus élevée que la zéolite classique de type 5A.
    De même, on constate que la respiration en CO d'une zéolite X échangée au lithium selon l'invention est nettement supérieure à celle d'une zéolite de type 5A classique. En effet, la respiration d'une zéolite est définie comme la différence entre la capacité d'adsorption d'un gaz pur par cette zéolite à la pression partielle haute, ou pression d'adsorption et la capacité d'adsorption dudit gaz à la pression basse, ou pression de désorption, par ladite zéolite.
    D'où, pour une pression d'adsorption de 23 bar, une pression de désorption de 1,6 bar et un gaz ayant une teneur en CO de 3% environ, on obtient une pression partielle moyenne de CO en phase d'adsorption (sur zéolite) d'environ 0,69 bar et on a évalué une pression d'environ 0,24 bar en phase de désorption.
    De là, pour une zéolite classique de type 5A, la quantité de CO adsorbée en phase d'adsorption est d'environ 18,3 Ncm3/g et d'environ 11,1 Ncm3/g en phase de désorption, ce qui correspond à une respiration d'environ 7,2 Ncm3/g.
    De manière analogue, pour une zéolite X échangée au lithium conforme à l'invention, la quantité de CO adsorbée en phase d'adsorption est d'environ 35,9 Ncm3/g et d'environ 25,2 Ncm3/g en phase de désorption, ce qui correspond à une respiration d'environ 10,7 Ncm3/g.
    Il apparaít donc immédiatement qu'utiliser une zéolite échangée au lithium à la place d'une zéolite classique de type 5A permet d'obtenir, de manière surprenante, une respiration pour le monoxyde de carbone (CO) améliorée d'environ 48%.
    On démontre ainsi, de façon convaincante, l'intérêt industriel et commercial du procédé de la présente invention.

    Claims (14)

    1. Procédé pour la séparation de l'hydrogène contenu dans un mélange gazeux pollué par du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C1-C8, comprenant la mise en contact dans une zone d'adsorption du mélange gazeux à purifier avec, au moins:
      un premier adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en C1-C8 et,
      un second adsorbant qui est une zéolite de type faujasite échangée à au moins 80% au lithium dont le rapport Si/Al est inférieur à 1,5.
    2. Procédé selon la revendication 1, caractérisé en ce que le mélange gazeux à purifier contient plus de 45% d'hydrogène gazeux et, de préférence, plus de 70%.
    3. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que le mélange gazeux comprend, en outre, de l'azote à titre d'impureté.
    4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le mélange gazeux est un mélange comportant de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane et de l'azote.
    5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la zone d'adsorption est maintenue sous une pression comprise entre 5.105 et 70.105 Pa, de préférence entre 15.105 et 30.105 Pa.
    6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le mélange gazeux à purifier est, tout d'abord, mis en contact avec le premier adsorbant sélectif du dioxyde de carbone et des hydrocarbures en C1-C8, puis dans un deuxième temps avec le second adsorbant de type faujasite au lithium.
    7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le premier adsorbant sélectif du dioxyde de carbone et des hydrocarbures en C1-C8 est un charbon actif, un charbon préfiltre, un gel de silice ou un mélange de ceux-ci, de préférence un charbon actif.
    8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le second adsorbant est une zéolite de type faujasite échangée à au moins 90% au lithium.
    9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le second adsorbant est une zéolite de type faujasite dont le rapport Si/Al est compris entre 1 et 1,2, et est, de préférence, égal à 1.
    10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'au moins une partie de l'azote est adsorbé sur au moins un lit d'un troisième adsorbant placé entre les lits de premier et second adsorbants.
    11. Procédé selon la revendication 10, caractérisé en ce que ledit troisième adsorbant est une zéolite, de préférence une zéolite de type 5A.
    12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le rapport pondéral du premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures en C1-C8 au second adsorbant de type faujasite est compris entre 10/90 et 85/15, de préférence entre 50/50 et 80/20.
    13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend la mise en oeuvre d'un cycle de traitement comprenant les étapes consistant à :
      a) faire passer un mélange gazeux à base d'hydrogène pollué par au moins du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures en C1-C8 dans une zone d'adsorption comprenant, au moins:
      un premier lit d'adsorbant constitué d'un premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures en C1-C8 et,
      un second lit d'adsorbant constitué d'un second adsorbant qui est une zéolite de type faujasite échangée à au moins 80% au lithium dont le rapport Si/Al est inférieur à 1,5;
      b) désorber le monoxyde de carbone et l'autre ou les autres impuretés adsorbées sur lesdits au moins premier et second adsorbants par instauration d'un gradient de pression et abaissement progressif de la pression dans ladite zone d'adsorption de façon à récupérer le monoxyde de carbone et l'autre ou les autres impuretés par l'entrée de ladite zone d'adsorption; et
      c) remonter en pression ladite zone d'adsorption par introduction d'un courant d'hydrogène pur par la sortie de la zone d'adsorption.
    14. Procédé selon la revendication 13, caractérisé en ce qu'à l'étape a) la zone d'adsorption est maintenue sous une pression comprise entre 5.105 et 70.105 Pa, de préférence entre 15.105 et 30.105 Pa, et à une température comprise entre 0 et 80°C.
    EP97925101A 1996-05-24 1997-05-16 Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium Expired - Lifetime EP0840708B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9606516 1996-05-24
    FR9606516A FR2749004B1 (fr) 1996-05-24 1996-05-24 Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolithe x echangee au lithium
    PCT/FR1997/000878 WO1997045363A1 (fr) 1996-05-24 1997-05-16 Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x echangee au lithium

    Publications (2)

    Publication Number Publication Date
    EP0840708A1 EP0840708A1 (fr) 1998-05-13
    EP0840708B1 true EP0840708B1 (fr) 1999-08-11

    Family

    ID=9492456

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97925101A Expired - Lifetime EP0840708B1 (fr) 1996-05-24 1997-05-16 Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium

    Country Status (6)

    Country Link
    US (1) US5912422A (fr)
    EP (1) EP0840708B1 (fr)
    AU (1) AU3035997A (fr)
    DE (1) DE69700400T2 (fr)
    FR (1) FR2749004B1 (fr)
    WO (1) WO1997045363A1 (fr)

    Families Citing this family (36)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2766476B1 (fr) 1997-07-22 1999-09-03 Ceca Sa Adsorbant zeolitique ameliore pour la separation des gaz de l'air et son procede d'obtention
    FR2771943B1 (fr) * 1997-12-05 2000-01-14 Air Liquide Procede de purification de fluides inertes par adsorption sur zeolite lsx
    US6171370B1 (en) 1998-03-04 2001-01-09 Tosoh Corporation Adsorbent for separating gases
    FR2792220B1 (fr) * 1999-04-19 2001-06-15 Air Liquide Procede psa mettant en oeuvre un adsorbant a resistance intrinseque favorable a la cinetique d'adsorption
    US6340382B1 (en) * 1999-08-13 2002-01-22 Mohamed Safdar Allie Baksh Pressure swing adsorption process for the production of hydrogen
    FR2799991B1 (fr) * 1999-10-26 2002-10-11 Air Liquide Procede de production d'hydrogene utilisant un adsorbant carbone a parametres de dubinin selectionnes
    US6302943B1 (en) 1999-11-02 2001-10-16 Air Products And Chemicals, Inc. Optimum adsorbents for H2 recovery by pressure and vacuum swing absorption
    US6503299B2 (en) 1999-11-03 2003-01-07 Praxair Technology, Inc. Pressure swing adsorption process for the production of hydrogen
    FR2806072B1 (fr) * 2000-03-07 2002-06-07 Air Liquide Charbon actif ameliore par traitement a l'acide et son utilisation pour separer des gaz
    EP1142622B1 (fr) * 2000-04-04 2006-06-21 Tosoh Corporation Procédé de séparation par adsorption de dioxyde de carbone
    DE60129626T2 (de) 2000-04-20 2008-05-21 Tosoh Corp., Shinnanyo Verfahren zum Reinigen von einem Wasserstoff enthaltenden Gasgemisch
    FR2811241B1 (fr) * 2000-07-07 2002-12-13 Ceca Sa Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
    US6691702B2 (en) 2000-08-03 2004-02-17 Sequal Technologies, Inc. Portable oxygen concentration system and method of using the same
    US6651658B1 (en) 2000-08-03 2003-11-25 Sequal Technologies, Inc. Portable oxygen concentration system and method of using the same
    US6483001B2 (en) * 2000-12-22 2002-11-19 Air Products And Chemicals, Inc. Layered adsorption zone for hydrogen production swing adsorption
    WO2002051524A1 (fr) * 2000-12-25 2002-07-04 Sumitomo Seika Chemicals Co., Ltd. Procede de separation de gaz hydrogene
    US6964692B2 (en) * 2001-02-09 2005-11-15 General Motors Corporation Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
    US6692545B2 (en) * 2001-02-09 2004-02-17 General Motors Corporation Combined water gas shift reactor/carbon dioxide adsorber for use in a fuel cell system
    FR2835201B1 (fr) * 2002-01-25 2004-04-09 Inst Francais Du Petrole Integration de la reduction du catalyseur d'un procede de conversion catalytique et de la regeneration des masses adsorbantes intervenant dans la purification de l'hydrogene necessaire a la reduction
    FR2836065B1 (fr) * 2002-02-15 2004-04-02 Air Liquide Traitement des melanges hydrogene/hydrocarbures sur adsorbants regeneres a haute pression
    US6610124B1 (en) * 2002-03-12 2003-08-26 Engelhard Corporation Heavy hydrocarbon recovery from pressure swing adsorption unit tail gas
    FR2837722B1 (fr) * 2002-03-26 2004-05-28 Air Liquide Procede psa de purification par adsorption d'un gaz pauvre en hydrogene
    EP1590079B1 (fr) * 2002-12-24 2014-03-26 Praxair Technology, Inc. Procede et appareil de purification d'hydrogene
    US20050098034A1 (en) * 2003-11-12 2005-05-12 Gittleman Craig S. Hydrogen purification process using pressure swing adsorption for fuel cell applications
    US20050137443A1 (en) * 2003-12-19 2005-06-23 Gorawara Jayant K. Regenerative removal of trace carbon monoxide
    US7179324B2 (en) * 2004-05-19 2007-02-20 Praxair Technology, Inc. Continuous feed three-bed pressure swing adsorption system
    US8148885B2 (en) * 2004-12-30 2012-04-03 E. I. Du Pont De Nemours And Company Methods of conditioning getter materials
    US8173995B2 (en) 2005-12-23 2012-05-08 E. I. Du Pont De Nemours And Company Electronic device including an organic active layer and process for forming the electronic device
    US7608133B2 (en) * 2006-02-27 2009-10-27 Honeywell International Inc. Lithium-exchanged faujasites for carbon dioxide removal
    US20110126709A1 (en) * 2009-12-02 2011-06-02 Uop Llc Use of calcium exchanged x-type zeolite for improvement of refinery off-gas pressure swing adsorption
    US8491704B2 (en) 2011-01-11 2013-07-23 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
    US8496733B2 (en) 2011-01-11 2013-07-30 Praxair Technology, Inc. Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes
    US8551217B2 (en) 2011-01-11 2013-10-08 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
    US8435328B2 (en) 2011-01-11 2013-05-07 Praxair Technology, Inc. Ten bed pressure swing adsorption process operating in normal and turndown modes
    CN112239215B (zh) * 2019-07-17 2022-05-27 中国石油化工股份有限公司 Scm-27分子筛、其制造方法及其用途
    KR20230019445A (ko) 2020-05-22 2023-02-08 누맷 테크놀로지스, 인코포레이티드 연료 전지에 사용되는 수소를 정화하는 방법

    Family Cites Families (38)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2882244A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
    US3150942A (en) * 1959-10-19 1964-09-29 Chemical Construction Corp Method of purifying a hydrogen gas stream by passing said gas in series through 13x and 4a or 5a molecular sieves
    US3140933A (en) * 1960-12-02 1964-07-14 Union Carbide Corp Separation of an oxygen-nitrogen mixture
    US3430418A (en) * 1967-08-09 1969-03-04 Union Carbide Corp Selective adsorption process
    FR2070387A5 (fr) * 1969-12-03 1971-09-10 Air Liquide
    US3986849A (en) * 1975-11-07 1976-10-19 Union Carbide Corporation Selective adsorption process
    US4077779A (en) * 1976-10-15 1978-03-07 Air Products And Chemicals, Inc. Hydrogen purification by selective adsorption
    US4153428A (en) * 1977-08-30 1979-05-08 Union Carbide Corporation Prepurification of toluene dealkylation effluent gas
    US4322394A (en) * 1977-10-31 1982-03-30 Battelle Memorial Institute Adsorbent regeneration and gas separation utilizing microwave heating
    US4381189A (en) * 1981-10-27 1983-04-26 Union Carbide Corporation Pressure swing adsorption process and system
    DE3143993A1 (de) * 1981-11-05 1983-05-11 Bayer Ag, 5090 Leverkusen Molekularsieb-zeolith fuer die gewinnung von wasserstoff mit der druckwechsel-adsorptions-technik
    US4696680A (en) * 1985-10-03 1987-09-29 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption
    JPS634824A (ja) * 1986-06-24 1988-01-09 Tosoh Corp 不純ガス吸着床
    US4859217A (en) * 1987-06-30 1989-08-22 Uop Process for separating nitrogen from mixtures thereof with less polar substances
    US4813980A (en) * 1987-10-16 1989-03-21 Air Products And Chemicals, Inc. Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
    US5234472A (en) * 1987-11-16 1993-08-10 The Boc Group Plc Separation of gas mixtures including hydrogen
    US4963339A (en) * 1988-05-04 1990-10-16 The Boc Group, Inc. Hydrogen and carbon dioxide coproduction
    US4957514A (en) * 1989-02-07 1990-09-18 Air Products And Chemicals, Inc. Hydrogen purification
    US4964888A (en) * 1989-12-27 1990-10-23 Uop Multiple zone adsorption process
    US5013334A (en) * 1990-01-09 1991-05-07 Uop Methane purification by pressure swing adsorption
    US5203888A (en) * 1990-11-23 1993-04-20 Uop Pressure swing adsorption process with multiple desorption steps
    US5096470A (en) * 1990-12-05 1992-03-17 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
    US5133785A (en) * 1991-02-26 1992-07-28 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures by selective adsorption
    US5203887A (en) * 1991-12-11 1993-04-20 Praxair Technology, Inc. Adsorbent beds for pressure swing adsorption operations
    US5152813A (en) * 1991-12-20 1992-10-06 Air Products And Chemicals, Inc. Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite
    US5258060A (en) * 1992-09-23 1993-11-02 Air Products And Chemicals, Inc. Adsorptive separation using diluted adsorptive phase
    US5354346A (en) * 1992-10-01 1994-10-11 Air Products And Chemicals, Inc. Purge effluent repressurized adsorption process
    US5268023A (en) * 1992-10-05 1993-12-07 Air Products And Chemicals, Inc. Nitrogen adsorption with highly Li exchanged X-zeolites with low Si/Al ratio
    US5258058A (en) * 1992-10-05 1993-11-02 Air Products And Chemicals, Inc. Nitrogen adsorption with a divalent cation exchanged lithium X-zeolite
    US5294247A (en) * 1993-02-26 1994-03-15 Air Products And Chemicals, Inc. Adsorption process to recover hydrogen from low pressure feeds
    US5529610A (en) * 1993-09-07 1996-06-25 Air Products And Chemicals, Inc. Multiple zeolite adsorbent layers in oxygen separation
    US5464467A (en) * 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
    JP3462560B2 (ja) * 1994-03-04 2003-11-05 日本パイオニクス株式会社 水素ガスの精製方法
    FR2718979B1 (fr) * 1994-04-20 1996-06-07 Air Liquide Procédé de redémarrage d'un récipient de purification d'hydrogène par adsorption, et son application au traitement de certains gaz contenant de l'hydrogène.
    FR2722426B1 (fr) * 1994-07-18 1996-08-23 Air Liquide Procede de separation d'azote d'un melange gazeux par adsorption
    US5531808A (en) * 1994-12-23 1996-07-02 The Boc Group, Inc. Removal of carbon dioxide from gas streams
    US5674311A (en) * 1995-10-20 1997-10-07 Praxair Technology, Inc. Adsorption process and system using multilayer adsorbent beds
    FR2743507B1 (fr) * 1996-01-16 1998-03-06 Air Liquide Procede pour la separation de melanges d'oxygene et d'azote utilisant un adsorbant a porosite amelioree

    Also Published As

    Publication number Publication date
    DE69700400T2 (de) 2000-03-23
    EP0840708A1 (fr) 1998-05-13
    FR2749004A1 (fr) 1997-11-28
    US5912422A (en) 1999-06-15
    FR2749004B1 (fr) 1998-07-10
    DE69700400D1 (de) 1999-09-16
    AU3035997A (en) 1998-01-05
    WO1997045363A1 (fr) 1997-12-04

    Similar Documents

    Publication Publication Date Title
    EP0840708B1 (fr) Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium
    WO2002004096A1 (fr) Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
    CA2411144C (fr) Procede de purification de gaz de synthese
    EP0785020B1 (fr) Procédé pour la séparation de mélanges d'oxygène et d'azote utilisant un adsorbant à porosité améliorée
    EP0855209B1 (fr) Procédé psa de purification de l'hydrogène
    RU2401799C2 (ru) Способ очистки газов
    EP0930089B1 (fr) Procédé de purification par adsorption de l'air avant distillation cryogenique
    EP0827771A1 (fr) Procédé pour la séparation de mélanges gazeux contenant de l'oxygène et de l'azote
    JP3553568B2 (ja) 酸素・窒素混合ガスより窒素分離するための吸着剤とそれを用いた窒素製造方法
    EP1062022B1 (fr) Decarbonatation de flux gazeux au moyen d'adsorbants zeolitiques
    EP1120149A1 (fr) Procédé de purification d'un gaz par adsorption des impuretés sur plusieurs charbons actifs
    EP1446223B1 (fr) Un procede de purification de l'air utilisant un adsorbant zeolitique au barium et calcium
    EP2272581A1 (fr) Procédé de séparation de CO2 par adsorption modulée en pression sur un solide carbone poreux préparé par nanomoulage
    EP2661314A1 (fr) Composition zeolitique adaptee a l'epuration d'air
    EP1095701A1 (fr) Procédé de production d'hydrogène utilisant un adsorbant carboné à paramètres de dubinin sélectionnés
    EP1476243B1 (fr) Traitement des melanges hydrogene/hydrocarbures sur adsorbants regeneres a haute pression
    EP0421875B1 (fr) Procédé d'activation thermique de zéolites par percolation de gaz chaud
    EP1070539A1 (fr) Adsorbant à sélectivité améliorée pour la séparation des gaz
    WO2014191640A1 (fr) Unité de purification avec adsorbeur multi-lits
    FR2739304A1 (fr) Procede et dispositif d'epuration d'air comprime, procede et installation de distillation d'air les utilisant
    JPS6265919A (ja) Co分離回収用吸着剤、その製造法およびそれを用いてcoを分離回収する方法

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE FR NL

    17P Request for examination filed

    Effective date: 19980604

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19990121

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE FR NL

    REF Corresponds to:

    Ref document number: 69700400

    Country of ref document: DE

    Date of ref document: 19990916

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20120531

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20120523

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20120524

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20120601

    Year of fee payment: 16

    BERE Be: lapsed

    Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

    Effective date: 20130531

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20131201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131203

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69700400

    Country of ref document: DE

    Effective date: 20131203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131201

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130531