EP0834040B1 - Combustion chamber with a burner arrangement and method of operating a combustion chamber - Google Patents

Combustion chamber with a burner arrangement and method of operating a combustion chamber Download PDF

Info

Publication number
EP0834040B1
EP0834040B1 EP97924865A EP97924865A EP0834040B1 EP 0834040 B1 EP0834040 B1 EP 0834040B1 EP 97924865 A EP97924865 A EP 97924865A EP 97924865 A EP97924865 A EP 97924865A EP 0834040 B1 EP0834040 B1 EP 0834040B1
Authority
EP
European Patent Office
Prior art keywords
combustion
combustion air
fuel
combustion chamber
distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97924865A
Other languages
German (de)
French (fr)
Other versions
EP0834040A1 (en
Inventor
Ahmad Al-Halbouni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WALTER BRINKMANN GMBH
Original Assignee
AL HALBOUNI AHMAD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AL HALBOUNI AHMAD filed Critical AL HALBOUNI AHMAD
Publication of EP0834040A1 publication Critical patent/EP0834040A1/en
Application granted granted Critical
Publication of EP0834040B1 publication Critical patent/EP0834040B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/20Burner staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2205/00Assemblies of two or more burners, irrespective of fuel type

Definitions

  • the invention relates to a combustion chamber with a burner device and a corresponding method for an NO x - and CO-lean combustion in accordance with the preamble of claim 1 and 13 respectively.
  • the combustion air is usually either in a so-called mixing tube gradually added to the fuel (see GB 1444 673 A) or it is added to the Mostly outside of the fuel jet and outside the flame area supplied annular distributor. (see DE-OS 4 419 345 and DE-OS 4 231 788).
  • Other Constructions have multiple slots or openings on the combustion chamber wall and / or Fuel rating within the combustion chamber (see US Pat. No. 5,461,865 A and US Pat. No. 4 931 012). Because of the considerable spatial distance of the combustion air distribution devices from the flame area, is in practical operation with such Burners uniform mixing of fuel and combustion air or a staged mix based on given proportions not achieved.
  • the gas burner according to JP 57-058010 A Combustion air to a larger area of the combustion zone by means of an internal one double-walled distribution body and the lower part of the combustion zone enclosing, drilled wall distributed.
  • This type of air grading grants a better one Mastery of the mixing ratios, but in addition to its complexity, it is also ineffective in terms of heat transfer because the outer combustion wall absorbs the heat shields from the actual combustion chamber wall.
  • the invention is therefore based on the object to provide a combustion chamber with a burner device and a method of operating this burner means through which an NO x - and CO-lean combustion and an intensification is the heat release reached at the wall, simple in design and for a Compact design suitable with predominantly separate supply of fuel and combustion air to the combustion chamber, in which the combustion air is fed in as many stages as possible into larger flame areas.
  • this object is achieved by a combustion chamber with a burner device and a method the characterizing features of claim 1 and 13 solved.
  • the basic concept of the invention which also the claimed method for Operating the burner device involves the following: Approx. 70 to 100 vol.% Of total amount of combustion air supplied is determined by means of one or more Combustion air distribution body in a predominantly radial direction in the direction of the flame filled space between the outer wall of the firebox and the contour of the Combustion air distributors along all or a large part of the flame length fed. This results in a large-scale distribution of the combustion air to the entire flame area or on large parts of the flame area.
  • the fuel is fed into the combustion zone exclusively in the area of the flame base located at the foot part of the combustion air distribution body by means of one or more rows of nozzles arranged around the combustion air distribution body.
  • the remaining part of the combustion air required for the combustion ie 0 to approx. 30% by volume, is mixed into the fuel before entering the combustion zone.
  • the admixture of this part of the combustion air increases the momentum of the fuel, improves the mixing of fuel and combustion air and leads to the ignition limit being reached more quickly.
  • the NO x values drop drastically.
  • the advantages of this concept are that the combustion is initially sub-stoichiometric and, with a gradually increasing air supply, only shortly before the tip of the flame changes into stoichiometry or over-stoichiometry, where complete burnout is achieved. In this way, temperature peaks in the entire flame area are suppressed and the formation of pollutants (NO x and CO) is drastically reduced.
  • This type of feeding of the combustion air also has the advantageous effect that the flame is blown away from the combustion air distribution body, so that no direct combustion takes place on the surface of these combustion air distribution bodies. This lowers the thermal load on the combustion air distribution bodies, especially since they are additionally cooled by the combustion air flowing through them.
  • a further advantageous effect of the combustion air supply according to the invention is that they also cool the flame, thereby reducing the formation of NO x .
  • the geometry of the combustion zone is largely determined by the geometry of these combustion air distributors.
  • An essential function of the combustion air distribution body is therefore seen in the fact that the size of the combustion chamber is decisively influenced by the choice of its dimensions.
  • the contour of the combustion air distribution bodies there is a large variety of variants for designing the contour of the combustion air distribution bodies.
  • the choice of a suitable shape for the combustion air distribution body can optimize the NO x and CO emissions and heat transfer.
  • the outer wall 3 consists of a cylindrical jacket wall 3a, a cover wall 3b and one Bottom wall 3c.
  • Firebox details are not shown in the schematic drawing like viewing openings for visual observation of the flame development in the combustion chamber, Openings for the ignition of the gas-air mixture and for temperature measurement in the lower one Part of the firebox.
  • a UV probe for monitoring the Flame and a suction probe for exhaust gas extraction to carry out the concentration analysis of the exhaust gas emerging at the exhaust outlet 6.
  • the exhaust outlet 6 is in the Cover wall 3b of the furnace arranged.
  • the fire or combustion chamber 2 can also polygon shaped as a prism, but always has a horizontal or vertical arranged longitudinal central axis 34.
  • the heat is removed from the outer wall 3 via cooling water, the either in coils 16 and / or in water chambers 17 flows around the outer wall 3.
  • the combustion air distribution body 7 consists of simple sheet steel with a large number of openings 11 for the exit of the combustion air into the combustion zone. While the almost horizontal head part 9 of the combustion air distribution body is closed, the foot part 8 remains open and is screwed into the air supply pipe 18.
  • the total combustion air or most of it (> 70 vol.% of the total for the Combustion air flow rate of 100% required) is via the inner tube 18th of a coaxial tube, the combustion air supply 5 into the interior of the combustion air distribution body 7 by means of a fan 19 provided with a motor 20.
  • the lower end of the inner tube 18 of the coaxial tube opens into the combustion air supply 5.
  • the cylinder ring 21 is directly on the foot part of the combustion air distribution body 7 with a Provide row of nozzles 12.
  • This row of nozzles 12 has a variety of around Combustion air distribution body 7 arranged around fuel nozzles 13 for distribution of the fuel into the combustion zone in two perpendicular to each other Beam directions 14 crossing planes crossing the longitudinal center axis 34 are used (see Figures 3a-3d).
  • the burner output was determined for relatively small combustion air distributors (length 25-30 cm, width at the foot part 2-3 cm and at the head part 0-10 cm, with a length of the fire or Combustion chamber of 80 cm) to values between 10 and 22 kW and the air ratio varies between 1.1 and 1.5.
  • combustion air distributors length 25-30 cm, width at the foot part 2-3 cm and at the head part 0-10 cm, with a length of the fire or Combustion chamber of 80 cm
  • the distribution body shown in FIG. 1a, to which the measured values in FIGS. 4 and 5 relate was at a total length of approx. 30 cm at the foot part approx. 2.5 cm wide.
  • the contour of the combustion air distribution body did not glow and remained relatively cold (below 300 ° C.) in all designs according to FIG. 2a.
  • the exhaust gas analysis showed, as the measurement data in FIGS. 4 a, 4 b, 5 a and 5 b show, particularly with an increased fuel nozzle pulse, extremely low NO x and CO emission values, which are far below the legal limit values for industrial burners.
  • a major advantage of the invention is therefore the possibility of a energy-saving and environmentally friendly incinerator with compact burner and Build combustion chamber shape that is used for heat generation at smaller outputs up to 100 kW (such as in household appliances, wall-mounted heaters and boilers), with medium outputs, > 100 kW to 1 MW (e.g. in heating centers, thermal power stations and biomass combustion) and also for larger capacities> 1 MW (e.g. in power plant furnaces and rotary kilns) is suitable.
  • FIG. 1b schematically shows an arrangement of a plurality of combustion air distribution bodies 7 in a combustion chamber for industrial purposes in power plant technology.
  • the firebox 2 has a square cross section; the combustion air distribution body shown have the same features as in Fig. 1 a and are on the lower wall 3c, as above explained, installed.
  • the heat is dissipated via the built in the outer wall Water pipes 23 and the evaporator and superheater heating surfaces 24 and 25.
  • a further heat extraction is via an air preheater, which the combustion air of the Brenner preheated, reached in the exhaust duct, which is not shown in the schematic drawing is shown.
  • FIG. 2 a shows a schematic representation of different geometric variants of the Combustion air distribution body.
  • These can be square, cylindrical, conical, have polygon prism or pyramidal shape or their contour can be ellipsoidal or be hyperbolic. Other geometric designs are possible.
  • all combustion air distribution bodies have an internal cavity for the supply of Combustion air, a thin surrounding the cavity with a variety of Porous wall with openings, a closed head part and an open one Foot part on.
  • the dimensions of the combustion air distribution body and the number and Geometry of the openings on their circumference should be chosen so that they are one Controlled combustion process to ensure the combustion air distribution body.
  • the length (A) of the combustion air distribution body 7 is ⁇ 40-85% of the combustion chamber length (B), the diameter (C) of the combustion air distribution body 7 at the base part 8 is ⁇ 10% of the combustion chamber diameter (D), and the porosity of the combustion air distribution body is ⁇ 20%.
  • FIG. 3 a shows a schematic illustration of variants of the jet directions of the fuel nozzles 13, which are positioned in a row of nozzles 12 or more rows of nozzles at the foot part of the combustion air distribution body 7 and arranged around the latter.
  • a row of nozzles 12 contains a plurality of nozzles, the jet direction 14 of which can be changed both in the longitudinal central axis and at an angle to it.
  • this allows the fuel to be distributed over different contour areas of the combustion air distribution body, which contributes to the targeted control of the mixing ratios and promotes ignition.
  • fuel swirl can be generated, which leads to more intensive mixing of fuel and combustion air and to the longer residence time of the fuel particles in the flame area.
  • Both fuel nozzle settings (axial and tangential tilt) ensuring together in conjunction with the continuously flowing air from the openings of the combustion air distributor is a NO x - and CO combustion.
  • the tests carried out have shown that the optimum range of the axial and tangential inclination angles of the fuel nozzles is from approximately -45 ° to + 45 ° in relation to the longitudinal direction of the combustion zone.
  • the angle setting depends on the shape of the combustion air distribution body and has a great influence on the quality of the combustion.
  • the admixture of small amounts of air ( ⁇ 30 ° of the combustion air volume flow) with the fuel leads to improved mixing of the fuel and combustion air and to faster reaching the ignition limit due to the increased impulse.
  • the NO x values drop drastically.
  • the rows of nozzles are to be manufactured for different load ranges and should be exchangeable his; that can e.g. B. happen as follows, as Fig 3 b shows: The coaxial ring 21 closed and immediately before the fuel enters the combustion chamber Providing connecting channels 32 for the fuel supply into the combustion chamber, the channels 32 have internal threads 33 and the fuel nozzles 13 have external threads 28. The Fuel nozzles 13 are screwed into the connecting channels 32.
  • oblique bores 29 or an annular gap 30 can be used with an inner swirl generator 31, as shown in FIG. 3 c and 3 d illustrate.
  • the graphs in FIGS. 4 a and 5 a show the NO x and CO emission values measured in the exhaust gas as a function of the burner output at different air ratios for the variant shown in FIG. 1 a with the conical combustion air distribution body.
  • Natural gas H was fed as fuel by means of a single row of nozzles, the nozzles being adjusted such that every second nozzle was provided with a weak swirl. While the burner output for the relatively small pilot plant was varied between 10 and 22 kW, air figures for the usual and interesting range of 1.2 to 1.5 have been set for combustion plants.
  • the NO x and CO emission values shown have been converted to 3 vol.% O 2 in the exhaust gas so that a comparison with the limit values of the TA-Luft is possible.
  • FIG. 4 b shows an admixture of approx. 20% combustion air to the fuel and otherwise the same settings as in FIG. 4 a, extremely low NO x emission values for all air ratios and for all examined load ranges.
  • the axial and tangential setting of the fuel nozzles has a particular influence on the NO x and CO formation, but depending on the combustion air distribution body used there are different optimal angular positions.
  • the NO x and CO emission values of the new burner device are significantly below the limit values of TA-Luft (NO: 114 ppm, CO: 93 ppm) and the new BImSchV (NO: 45 ppm, CO: 55 ppm ) and that even the production of CO-free exhaust gas from combustion processes is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

A low NOx and CO emission heating apparatus provides for substantially separate fuel and combustion air feeds into a combustion chamber provided at one end with an exhaust gas opening and, at an opposite end with an elongated porous air distributor through which air is fed into the combustion chamber and into jets of fuel directed into the space between the air distributor and the side wall of the combustion chamber. Both air and fuel may be subjected to swirl to improve the combustion, by adjusting the inclination of the fuel nozzles.

Description

Die Erfindung betrifft einen Feuerraum mit einer Brennereinrichtung sowie ein entsprechendes Verfahren für eine NOx- und CO-arme Verbrennung gemäß Oberbegriff des Anspruchs 1 bzw. 13.The invention relates to a combustion chamber with a burner device and a corresponding method for an NO x - and CO-lean combustion in accordance with the preamble of claim 1 and 13 respectively.

Im Brennerbau besteht allgemein die Tendenz zum Einsatz einer mehrstufigen Zuführung der Verbrennungsluft in den Verbrennungsraum, um die stöchiometrischen Verhältnisse bei der Verbrennung besser beeinflussen zu können und den hohen Anforderungen nach ökonomischer und ökologischer Verbrennung gerecht zu werden.There is a general tendency in burner construction to use a multi-stage feed of the Combustion air in the combustion chamber to the stoichiometric conditions at the To be able to influence combustion better and meet the high requirements to do justice to economic and ecological combustion.

Die Verbrennungsluft wird dabei meistens entweder in einem sogenannten Mischungsrohr dem Brennstoff schrittweise zugemischt (siehe GB 1444 673 A) oder sie wird auf der Außenseite des Brennstoffstrahles und außerhalb des Flammenbereiches über einen zumeist ringförmigen Verteiler zugeführt. (siehe DE-OS 4 419 345 und DE-OS 4 231 788). Andere Konstruktionen weisen mehrere Schlitze oder Öffnungen an der Brennraumwand und/oder Brennstoffstufung innerhalb des Brennraumes auf (siehe US-PS 5 461 865 A und US-PS 4 931 012). Wegen der beträchtlichen räumlichen Entfernung der Verbrennungsluft-Verteilereinrichtungen vom Flammenbereich, wird im praktischen Betrieb bei derartigen Brennern egleichmäßige Vermischung von Brennstoff und Verbrennungsluft bzw. eine nach vorgegebenen Anteilen erfolgende gestufte Mischung nicht erreicht.The combustion air is usually either in a so-called mixing tube gradually added to the fuel (see GB 1444 673 A) or it is added to the Mostly outside of the fuel jet and outside the flame area supplied annular distributor. (see DE-OS 4 419 345 and DE-OS 4 231 788). Other Constructions have multiple slots or openings on the combustion chamber wall and / or Fuel rating within the combustion chamber (see US Pat. No. 5,461,865 A and US Pat. No. 4 931 012). Because of the considerable spatial distance of the combustion air distribution devices from the flame area, is in practical operation with such Burners uniform mixing of fuel and combustion air or a staged mix based on given proportions not achieved.

Um diesen Nachteil zu beheben, wird bei dem Gasbrenner nach der JP 57-058010 A die Verbrennungsluft auf einen größeren Bereich der Verbrennungszone mittels eines inneren doppelwandigen Verteilkörpers und einer dem unteren Bereich der Verbrennungszone umschließenden, gebohrten Wand verteilt. Diese Art Luftstufung gewährt zwar eine bessere Beherrschung der Mischungsverhältnisse, sie ist aber neben ihrer Kompliziertheit auch uneffektiv hinsichtlich der Wärmeübertragung, da die äußere Verbrennungswand die Wärme von der tatsächlichen Brennraumwand abschirmt. To overcome this disadvantage, the gas burner according to JP 57-058010 A Combustion air to a larger area of the combustion zone by means of an internal one double-walled distribution body and the lower part of the combustion zone enclosing, drilled wall distributed. This type of air grading grants a better one Mastery of the mixing ratios, but in addition to its complexity, it is also ineffective in terms of heat transfer because the outer combustion wall absorbs the heat shields from the actual combustion chamber wall.

Die konsequente Fortführung derartiger Lösungsansätze würde jedoch zu relativ komplizierten Brennerkonstruktionen mit einer Vielzahl von in der Verbrennungszone geführten oder Ofen- bzw.- Kesselwandungen durchdringenden Verbrennungsluft-Verteilungsleitungen (siehe DE-OS 41 42 401 und DE-OS 39 15 704) oder zusätzlichen aus teueren hitzebeständigen Materialien angefertigten Strahlungsstäben für die Flammenkühlung (siehe DE-OS 40 41 360 ) führen. Außerdem ist eine hinsichtlich der Schadstoffemission optimale Regelung des Brenners bei unterschiedlichen Laststufen wesentlich erschwert, weil das Verhältnis von Primär- und Sekundärluftmengen nur in engen Grenzen änderbar ist.The consistent continuation of such approaches would be too relative complicated burner designs with a variety of in the combustion zone guided or furnace or boiler walls penetrating combustion air distribution lines (see DE-OS 41 42 401 and DE-OS 39 15 704) or additional ones expensive heat-resistant materials made radiation rods for flame cooling (see DE-OS 40 41 360) lead. There is also one regarding pollutant emissions optimal control of the burner at different load levels significantly more difficult because the ratio of primary and secondary air quantities can only be changed within narrow limits.

Eine andere Entwicklungstendenz nutzt das Prinzip der Oberflächenverbrennung. Bei diesem Prinzip wird die Verbrennungsluft entweder vor dem Eintritt in den Brennerkörper mit dem Brennstoff vollständig vermischt (siehe EP 0631091 A), oder sie wird mittels einer Vielzahl von Öffnungen auf der Innenwand einer doppelwandigen zylinderförmigen Brennerstruktur in den zwischen der Innen- und Außenwand eingeschlossenen zylinderringförmigen Raum geführt und dort mit dem Brennstoff vermischt (siehe US-PS 1 247 740). Anschließend wird das Gemisch an der Oberfläche der äußeren Brennerwand entzündet. Alle nach diesem Prinzip arbeitenden Oberflächenbrenner verlangen den Einsatz von teuren Materialien und weisen besondere Schwierigkeiten bei der Aufstellung des Brenners im Ofenraum auf.Another development trend uses the principle of surface combustion. With this In principle, the combustion air is either with the before entering the burner body Fuel completely mixed (see EP 0631091 A), or it is mixed using a variety of openings on the inner wall of a double-walled cylindrical burner structure in the cylindrical ring-shaped space enclosed between the inner and outer wall led and mixed there with the fuel (see US Pat. No. 1,247,740). Then will the mixture ignites on the surface of the outer burner wall. All based on this principle Working surface burners require the use of expensive materials and methods particular difficulties when setting up the burner in the furnace.

Eine weitere Entwicklungslinie im Brennerbau nutzt den durch die Strömungsgeschwindigkeit der Flammengase erzeugten Unterdruck, um sekundäre, tertiäre usw. Verbrennungsluft anzusaugen. Dieses Prinzip bedingt jedoch, daß die Flammengase mit einer vorbestimmten Geschwindigkeit an einer mit Ansaugöffnungen für die Verbrennungsluft versehenen Diffusor-Wandung vorbeiströmen (s. DE-OS 36 00 784). So weist diese Bauart den wesentlichen Nachteil auf, daß die Ansaugöffnungen für die Verbrennungsluft in einer Zone mit sehr hoher Flammentemperatur liegen, was zur verstärkten Bildung der umweltbelastenden Stickoxide führt.Another line of development in burner construction uses the flow rate of the flame gases created negative pressure to secondary, tertiary, etc. combustion air suck in. However, this principle requires that the flame gases have a predetermined Speed at a combustion air intake Flow past the diffuser wall (see DE-OS 36 00 784). So this design shows the significant disadvantage that the intake openings for the combustion air in one zone with a very high flame temperature, which leads to the increased formation of polluting Nitrogen oxides leads.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Feuerraum mit einer Brennereinrichtung sowie ein Verfahren zum Betreiben dieser Brennereinrichtung anzugeben, durch die eine NOx- und CO-arme Verbrennung sowie eine Intensivierung der Wärmeabgabe an die Wandung erreicht wird, bei konstruktiv einfacher und für einen Kompaktbau geeigneten Bauweise mit vorwiegend separater Zufuhr von Brennstoff und Verbrennungsluft zum Verbrennungsraum , bei der die Einspeisung der Verbrennungsluft möglichst vielstufig in größere Flammenbereiche erfolgt.The invention is therefore based on the object to provide a combustion chamber with a burner device and a method of operating this burner means through which an NO x - and CO-lean combustion and an intensification is the heat release reached at the wall, simple in design and for a Compact design suitable with predominantly separate supply of fuel and combustion air to the combustion chamber, in which the combustion air is fed in as many stages as possible into larger flame areas.

Erfindungsgemäß wird diese Aufgabe durch einen Feuerraum mit einer Brennereinrichtung und ein Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 bzw. 13 gelöst.According to the invention, this object is achieved by a combustion chamber with a burner device and a method the characterizing features of claim 1 and 13 solved.

Hierdurch werden folgende Vorteile erreicht:

  • Dosierung der je Zeiteinheit zugeführten Verbrennungsluftmenge in der Weise, daß im Verbrennungsraum vorgebbare λ-Zahl-Bereiche des Brennstoff-Verbrennungsluft-Gemisches annähernd realisiert werden,
  • Verringerung der thermischen Belastung der Baugruppen zur Verbrennungsluftzuführung und Flammenkühlung sowie Gewährleistung des Einsatzes preiswerter Werkstoffe für diese Baugruppen,
  • Wegfall von Beeinträchtigungen des Wärmeüberganges zwischen Flamme und Wandung infolge von Diffusoren oder anderen Mitteln
  • Gestaltung der Verbrennungs- und Abgaszone mit einer den Wandungen der Wärmesenke angepaßten Geometrie.
This achieves the following advantages:
  • Dosage of the amount of combustion air supplied per unit of time in such a way that predeterminable λ number ranges of the fuel / combustion air mixture are approximately achieved,
  • Reduction of the thermal load on the components for the combustion air supply and flame cooling as well as the use of inexpensive materials for these components,
  • No loss of heat transfer between flame and wall due to diffusers or other means
  • Design of the combustion and exhaust gas zone with a geometry adapted to the walls of the heat sink.

Die grundsätzliche Konzeption der Erfindung, die auch das beanspruchte Verfahren zum Betreiben der Brennereinrichtung betrifft, besteht in folgendem: Ca. 70 bis 100 Vol.% der insgesamt zugeführten Verbrennungsluftmenge wird mittels eines oder mehrerer Verbrennungsluft-Verteilkörper in vorwiegend radialer Richtung in den von der Flamme ausgefüllten Raum zwischen der Außenwand des Feuerraumes und der Kontur der Verbrennungsluft-Verteilkörper entlang der gesamten oder großer Teile der Flammenlänge eingespeist. Damit erfolgt eine großflächige Verteilung der Verbrennungsluft auf den gesamten Flammenbereich oder auf große Teile des Flammenbereiches.The basic concept of the invention, which also the claimed method for Operating the burner device involves the following: Approx. 70 to 100 vol.% Of total amount of combustion air supplied is determined by means of one or more Combustion air distribution body in a predominantly radial direction in the direction of the flame filled space between the outer wall of the firebox and the contour of the Combustion air distributors along all or a large part of the flame length fed. This results in a large-scale distribution of the combustion air to the entire flame area or on large parts of the flame area.

Für diesen Zweck sind auf der Kontur der Verbrennungsluft-Verteilkörper eine Vielzahl von Öffnungen für den Verbrennungsluft-Austritt verteilt. Die Anzahl je Flächeneinheit und der Querschnitt dieser auf der Kontur der Verbrennungsluft-Verteilkörper verteilten Öffnungen sind so gewählt, daß in die Verbrennungszone ein vorbestimmter Volumenstrom von Verbrennungsluft eintritt. Dadurch lassen sich die stöchiometrischen Verhältnisse im Brennstoff-Verbrennungsluftgemisch besser steuern. Weiterhin läßt sich auf diese Weise am Dosierort ein vorbestimmter Verlauf des λ-Zahl-Bereiches zwischen Flammenbasis und Flammenspitze realisieren.For this purpose there are a number of on the contour of the combustion air distribution body Openings for the combustion air outlet distributed. The number per unit area and the Cross-section of these openings distributed on the contour of the combustion air distribution body are selected so that a predetermined volume flow of Combustion air enters. This allows the stoichiometric conditions in the Control fuel-combustion air mixture better. Furthermore, can be in this way Dosing location a predetermined course of the λ number range between the flame base and Realize flame tip.

Im Gegensatz zur Verbrennungsluftzuführung erfolgt die Zuführung des Brennstoffs in die Verbrennungszone ausschließlich im Bereich der am Fußteil der Verbrennungsluft-Verteilkörper gelegenen Flammenbasis mittels einer oder mehrerer um die Verbrennungsluft-Verteilkörper herum angeordneter Düsenreihen. Dabei wird bei einem Luftdurchsatz von kleiner als 100% dem Brennstoff vor dem Eintritt in die Verbrennungszone der restliche Teil der für die Verbrennung benötigten Verbrennungsluft, d. h. 0 bis ca. 30 Vol.%, zugemischt. Die Beimischung dieses Teils der Verbrennungsluft erhöht den Impuls des Brennstoffs, verbessert die Vermischung von Brennstoff und Verbrennungsluft und führt zum schnelleren Erreichen der Zündgrenze. Die NOx-Werte sinken dabei drastisch.In contrast to the combustion air supply, the fuel is fed into the combustion zone exclusively in the area of the flame base located at the foot part of the combustion air distribution body by means of one or more rows of nozzles arranged around the combustion air distribution body. At an air flow rate of less than 100%, the remaining part of the combustion air required for the combustion, ie 0 to approx. 30% by volume, is mixed into the fuel before entering the combustion zone. The admixture of this part of the combustion air increases the momentum of the fuel, improves the mixing of fuel and combustion air and leads to the ignition limit being reached more quickly. The NO x values drop drastically.

Die Vorteile dieses Konzeptes bestehen darin, daß die Verbrennung zuerst unterstöchiometrisch verläuft und mit allmählich steigender Luftzufuhr erst kurz vor der Flammenspitze in die Stöchiometrie bzw. in die Überstöchiometrie übergeht, wo der vollkommene Ausbrand erreicht wird. Somit werden Temperaturspitzen im gesamten Flammenbereich unterdrückt und die Schadstoffbildung (NOx und CO) drastisch vermindert. Diese Art der Einspeisung der Verbrennungsluft hat auch die vorteilhafte Auswirkung, daß die Flamme vom Verbrennungsluft-Verteilkörper weggeblasen wird, so daß keine direkte Verbrennung an der Oberfläche dieser Verbrennungsluft-Verteilkörper stattfindet. Dies senkt die thermische Belastung der Verbrennungsluft-Verteilkörper, zumal sie zusätzlich durch die hindurchströmende Verbrennungsluft gekühlt werden.The advantages of this concept are that the combustion is initially sub-stoichiometric and, with a gradually increasing air supply, only shortly before the tip of the flame changes into stoichiometry or over-stoichiometry, where complete burnout is achieved. In this way, temperature peaks in the entire flame area are suppressed and the formation of pollutants (NO x and CO) is drastically reduced. This type of feeding of the combustion air also has the advantageous effect that the flame is blown away from the combustion air distribution body, so that no direct combustion takes place on the surface of these combustion air distribution bodies. This lowers the thermal load on the combustion air distribution bodies, especially since they are additionally cooled by the combustion air flowing through them.

Eine weitere vorteilhafte Auswirkung der erfindungsgemäßen Verbrennungsluft-Zuführung besteht insbesondere bei großflächigen Verbrennungsluft-Verteilkörpern darin, daß diese zugleich zur Kühlung der Flamme führen, wodurch die NOx-Bildung reduziert wird. Zudem kann bei Verwendung großflächiger Verbrennungsluft-Verteilkörper mit geeigneter Formgebung erreicht werden, daß die Geometrie der Verbrennungszone maßgeblich durch die Geometrie dieser Verbrennungsluft-Verteilkörper bestimmt wird. Eine erfindungs-wesentliche Funktion der Verbrennungsluft-Verteilkörper wird daher darin gesehen, daß durch Wahl ihrer Abmaße die Größe des Feuerraumes entscheidend beeinflußt wird.
Insgesamt ergibt sich auch bei unterschiedlichen Brennerleistungen eine geringe thermische Belastung der Verbrennungsluft-Verteilkörper, da die Kühlwirkung bei steigender Brennerleistung wegen des dann steigenden Verbrennungsluft-Durchsatzes steigt.
A further advantageous effect of the combustion air supply according to the invention, in particular in the case of large-area combustion air distributors, is that they also cool the flame, thereby reducing the formation of NO x . In addition, when using large-area combustion air distributors with a suitable shape, the geometry of the combustion zone is largely determined by the geometry of these combustion air distributors. An essential function of the combustion air distribution body is therefore seen in the fact that the size of the combustion chamber is decisively influenced by the choice of its dimensions.
Overall, even with different burner capacities, there is a low thermal load on the combustion air distribution bodies, since the cooling effect increases with increasing burner output due to the then increasing combustion air throughput.

Für die Gestaltung der Kontur der Verbrennungsluft-Verteilkörper besteht erfindungsgemäß eine große Variantenvielfalt. Je nach Ofen- bzw. Kesselraumgeometrie kann durch Wahl einer geeigneten Form der Verbrennungsluft-Verteilkörper eine Optimierung hinsichtlich der NOx- und CO-Emissionen und der Wärmeübertragung erfolgen.According to the invention, there is a large variety of variants for designing the contour of the combustion air distribution bodies. Depending on the geometry of the furnace or boiler room, the choice of a suitable shape for the combustion air distribution body can optimize the NO x and CO emissions and heat transfer.

Weitere vorteilhafte Ausführungsformen der Erfindung betreffen die Ausgestaltung der Düsenreihen für die Brennstoffzuführung. Als besonders effektiv für eine optimale Einhaltung vorgegebener Wertebereiche der Luflzahl λ hat es sich erwiesen, wenn die Strahlrichtung der Brennstoffdüsen innerhalb derselben Düsenreihe und/oder die Strahlrichtung der Brennstoffdüsen benachbarter Düsenreihen auf unterschiedliche Längenbereiche der Verbrennungsluft-Verteilkörper zielen. Um der Brennstoff-Strömung zusätzlich noch einen Drall zu verleihen, werden die genannten Strahlrichtungen mindestens teilweise windschief eingestellt. Weiterhin können die Verbrennungsluft-Verteilkörper und/oder die Brennstoffdüsen auswechselbar ausgebildet sein, um deren Parameter optimal an eine vorgegebene Brennerleistung anzupassen.Further advantageous embodiments of the invention relate to the configuration of the Row of nozzles for the fuel supply. As particularly effective for optimal compliance It has been found to be predetermined ranges of values for the air number λ if the beam direction of the Fuel nozzles within the same row of nozzles and / or the jet direction of the Fuel nozzles of adjacent rows of nozzles to different lengths of the Aim combustion air distribution body. One more for the fuel flow To give swirl, the beam directions mentioned are at least partially skewed set. Furthermore, the combustion air distribution body and / or the Fuel nozzles can be designed to be interchangeable in order to optimally match their parameters to a adapt the specified burner output.

Die erfindungsgemäße Lösung wird einschließlich ihrer Funktionsweise nachstehend anhand von Ausführungsbeispielen näher erläutert. In der zugehörigen Zeichnung zeigen:

Fig. 1a
eine schematische Darstellung einer ersten Variante einer CO- und NOx-armen Brennereinrichtung mit kegelförmigem Verbrennungsluft-Verteilkörper für Heizungszwecke,
Fig. 1b
eine schematische Darstellung einer zweiten Variante einer CO- und NOx-armen Brennereinrichtung mit mehreren kegelförmigen Verbrennungsluft-Verteilkörpern für industrielle Zwecke,
Fig. 2 a
eine schematische Darstellung einer Auswahl verschiedener geometrischer Varianten der Verbrennungsluft-Verteilkörper in Seitenansicht und Draufsicht,
Fig. 2 b
eine schematische Darstellung der Auswechselbarkeit der Verbrennungsluft-Verteilkörper,
Fig. 3 a
eine schematische Darstellung von Varianten der Strahlrichtungen der Brennstoff-Düsen,
Fig. 3 b
eine schematische Darstellung der Auswechselbarkeit der Brennstoffdüsen,
Fig. 3 c
eine schematische Darstellung der schrägen Brennstoff-Bohrungen,
Fig. 3 d
eine schematische Darstellung des Brennstoff-Ringspaltes mit einem inneren Drallerzeuger,
Fig. 4 a
eine graphische Darstellung der Abhängigkeit der NOx-Emissionswerte im Abgas von der Brennerleistung für eine ausgewählte Variante eines Verbrennungsluft-Verteilkörpers, wobei ohne Vormischung von Verbrennungsluft zum Brennstoff gearbeitet wurde,
Fig. 4 b
eine graphische Darstellung der Abhängigkeit der NOx-Emissionswerte im Abgas von der Brennerleistung für eine ausgewählte Variante eines Verbrennungsluft-Verteilkörpers, wobei mit Vormischung von Verbrennungsluft zum Brennstoff gearbeitet wurde (erhöhter Brennstoff-Düsenimpuls),
Fig. 5 a
eine graphische Darstellung der Abhängigkeit der CO-Emissionswerte im Abgas von der Brennerleistung für eine ausgewählte Variante eines Verbrennungsluft-Verteilkörpers, wobei ohne Vormischung von Verbrennungsluft zum Brennstoff gearbeitet wurde, und
Fig. 5 b
eine graphische Darstellung der Abhängigkeit der CO-Emissionswerte im Abgas von der Brennerleistung für eine ausgewählte Variante eines Verbrennungsluft-Verteilkörpers, wobei mit Vormischung von Verbrennungsluft zum Brennstoff gearbeitet wurde (erhöhter Brennstoff-Düsenimpuls).
The solution according to the invention, including its mode of operation, is explained in more detail below using exemplary embodiments. In the accompanying drawing:
Fig. 1a
1 shows a schematic representation of a first variant of a low-CO and NO x burner device with a conical combustion air distribution body for heating purposes,
Fig. 1b
1 shows a schematic representation of a second variant of a low-CO and NO x burner device with a plurality of conical combustion air distribution bodies for industrial purposes,
Fig. 2a
a schematic representation of a selection of different geometric variants of the combustion air distribution body in side view and top view,
Fig. 2 b
1 shows a schematic representation of the interchangeability of the combustion air distribution bodies,
Fig. 3 a
1 shows a schematic illustration of variants of the jet directions of the fuel nozzles,
Fig. 3 b
a schematic representation of the interchangeability of the fuel nozzles,
Fig. 3 c
a schematic representation of the oblique fuel holes,
Fig. 3 d
1 shows a schematic representation of the fuel annular gap with an internal swirl generator,
Fig. 4 a
2 shows a graphical representation of the dependence of the NO x emission values in the exhaust gas on the burner output for a selected variant of a combustion air distribution body, work being carried out without premixing combustion air to the fuel,
Fig. 4 b
a graphical representation of the dependence of the NO x emission values in the exhaust gas on the burner output for a selected variant of a combustion air distribution body, with premixing of combustion air to the fuel being used (increased fuel nozzle pulse),
Fig. 5 a
a graphical representation of the dependency of the CO emission values in the exhaust gas on the burner output for a selected variant of a combustion air distribution body, with no premixing of combustion air to the fuel, and
Fig. 5 b
a graphical representation of the dependence of the CO emission values in the exhaust gas on the burner output for a selected variant of a combustion air distribution body, with premixing of combustion air to the fuel being used (increased fuel nozzle pulse).

Gemäß Fig. 1 a wird ein zylinderförmiger Feuer- bzw. Brennraum 2 mit einer Längsmittelachse 34 einer Brennereinrichtung von einem kegelförmigen Verbrennungsluft-Verteilkörper 7 und einer umschließenden Außenwand 3 aus Stahl begrenzt. Die Außenwand 3 besteht aus einer zylindrischen Mantelwandung 3a, einer Deckelwandung 3b und einer Bodenwandung 3c. In der schematischen Zeichnung nicht dargestellt sind Feuerraum-Details wie Schauöffnungen zur visuellen Beobachtung der Flammenentwicklung im Feuerraum, Öffnungen für die Zündung des Gas-Luft-Gemisches und zur Temperaturmessung im unteren Teil des Feuerraumes. Nicht dargestellt sind auch eine UV-Sonde zur Überwachung der Flamme und eine Absaugsonde für die Abgasentnahme zur Durchführung der Konzentrationsanalyse des am Abgasaustritt 6 austretenden Abgases. Der Abgasaustritt 6 ist in der Deckelwandung 3b des Feuerraumes angeordnet. Der Feuer- oder Brennraum 2 kann auch polygon als Prisma geformt sein, besitzt aber immer eine waagerecht oder senkrecht angeordnete Längsmittelachse 34.According to FIG. 1 a, a cylindrical fire or combustion chamber 2 with a Longitudinal central axis 34 of a burner device from a conical combustion air distribution body 7 and a surrounding outer wall 3 made of steel. The outer wall 3 consists of a cylindrical jacket wall 3a, a cover wall 3b and one Bottom wall 3c. Firebox details are not shown in the schematic drawing like viewing openings for visual observation of the flame development in the combustion chamber, Openings for the ignition of the gas-air mixture and for temperature measurement in the lower one Part of the firebox. Also not shown are a UV probe for monitoring the Flame and a suction probe for exhaust gas extraction to carry out the concentration analysis of the exhaust gas emerging at the exhaust outlet 6. The exhaust outlet 6 is in the Cover wall 3b of the furnace arranged. The fire or combustion chamber 2 can also polygon shaped as a prism, but always has a horizontal or vertical arranged longitudinal central axis 34.

Für die Flammenausbildung steht im wesentlichen ein Leerraum 1 zwischen der Außenwand 3 und einem Verbrennungsluft-Verteilkörper 7 zur Verfügung. Dieser Leerraum 1 ist derjenige Teil des Feuerraumes 2, der unterhalb einer gedachten Ebene 10 liegt, die auf dem Ende des Kopfteils 9 des kegelstumpfförmigen Verbrennungsluft-Verteilkörpers 7 aufsitzt, dessen Basis 15 an der unteren Bodenwandung 3c des Feuerraumes 2 liegt.There is essentially an empty space 1 between the outer wall for the flame formation 3 and a combustion air distribution body 7 are available. This empty space is 1 that part of the combustion chamber 2, which lies below an imaginary level 10, which on the End of the head part 9 of the frustoconical combustion air distribution body 7 is seated, whose base 15 lies on the lower bottom wall 3c of the combustion chamber 2.

Für Heizungszwecke wird die Wärme von der Außenwand 3 über Kühlwasser abgeführt, das entweder in Rohrschlangen 16 und/ oder in Wasserkammern 17 um die Außenwand 3 strömt.For heating purposes, the heat is removed from the outer wall 3 via cooling water, the either in coils 16 and / or in water chambers 17 flows around the outer wall 3.

Der Verbrennungsluft-Verteilkörper 7 besteht aus einfachem Stahlblech mit einer Vielzahl von Öffnungen 11 für den Austritt der Verbrennungsluft in die Verbrennungszone. Während das nahezu waagerechte Kopfteil 9 des Verbrennungsluft-Verteilkörpers geschlossen ist, bleibt dessen Fußteil 8 offen und wird in das Luftzuführungsrohr 18 eingeschraubt. Die gesamte Verbrennungsluft bzw. der größte Teil von ihr (> 70 Vol.% des insgesamt für die Verbrennung benötigten Verbrennungsluftdurchsatzes von 100%) wird über das Innenrohr 18 eines Koaxialrohrs die Verbrennungsluft-Zufuhr 5 in das Innere des Verbrennungsluft-Verteilkörpers 7 mittels eines mit einem Motor 20 versehenen Gebläses 19 eingespeist. Das untere Ende des Innenrohres 18 des Koaxialrohres mündet in die Verbrennungsluftzufuhr 5.The combustion air distribution body 7 consists of simple sheet steel with a large number of openings 11 for the exit of the combustion air into the combustion zone. While the almost horizontal head part 9 of the combustion air distribution body is closed, the foot part 8 remains open and is screwed into the air supply pipe 18. The total combustion air or most of it (> 70 vol.% of the total for the Combustion air flow rate of 100% required) is via the inner tube 18th of a coaxial tube, the combustion air supply 5 into the interior of the combustion air distribution body 7 by means of a fan 19 provided with a motor 20. The lower end of the inner tube 18 of the coaxial tube opens into the combustion air supply 5.

Der gesamte Brennstoff wird separat bzw. mit dem Restteil der Verbrennungsluft vermischt über einen senkrecht zur Längsmittelachse 34 angeordneten Zylinderring 21 zwischen dem Innenrohr 18 und Außenrohr 22 des Koaxialrohres der Verbrennungszone über die Brennstoff-Zufuhr 4 zugeführt. Das untere Ende des Außenrohres 22 des Koaxialrohres mündet in die Brennstoffzufuhr 4.All fuel is mixed separately or with the rest of the combustion air Via a cylinder ring 21 arranged perpendicular to the central longitudinal axis 34 between the Inner tube 18 and outer tube 22 of the coaxial tube of the combustion zone over the Fuel supply 4 supplied. The lower end of the outer tube 22 of the coaxial tube flows into the fuel supply 4.

Der Zylinderring 21 ist direkt am Fußteil des Verbrennungsluft-Verteilkörpers 7 mit einer Düsenreihe 12 versehen. Diese Düsenreihe 12 besitzt eine Vielzahl von um den Verbrennungsluft-Verteilkörper 7 herum angeordneten Brennstoffdüsen 13, die zur Verteilung des Brennstoffs in die Verbrennungszone in zwei zueinander senkrechten, die Längsmittelachse 34 kreuzenden Ebenen beliebig einstellbaren Strahlrichtungen 14 dienen (siehe Fig. 3a-3d).The cylinder ring 21 is directly on the foot part of the combustion air distribution body 7 with a Provide row of nozzles 12. This row of nozzles 12 has a variety of around Combustion air distribution body 7 arranged around fuel nozzles 13 for distribution of the fuel into the combustion zone in two perpendicular to each other Beam directions 14 crossing planes crossing the longitudinal center axis 34 are used (see Figures 3a-3d).

Untersuchungen wurden mit Erdgas H als Brennstoff durchgeführt. Dabei wurden verschiedene Formen der Verbrennungsluft-Verteilkörper (siehe Fig. 2a) eingesetzt, wobei die Anzahl der Öffnungen 11 für den Verbrennungsluftaustritt in die Verbrennungszone bzw. deren Größe entlang der Kontur der Verbrennungsluft-Verteilkörper variiert wurden, so daß die Mischverhältnisse verändert werden können, um den Verbrennungsablauf zu steuern.Investigations were carried out using natural gas H as fuel. In doing so different forms of combustion air distribution body (see Fig. 2a) used, the Number of openings 11 for the combustion air outlet into the combustion zone or whose size was varied along the contour of the combustion air distribution body, so that the mixing ratios can be changed to control the combustion process.

Die Brennerleistung wurde bei relativ kleinen Verbrennungsluft-Verteilkörpern (Länge 25-30 cm, Breite am Fußteil 2-3 cm und am Kopfteil 0-10 cm, bei einer Länge des Feuer- oder Brennraumes von 80 cm) auf Werte zwischen 10 und 22 kW eingestellt und die Luftzahl zwischen 1,1 und 1,5 variiert. Dies stellt jedoch keine prinzipielle Begrenzung dar. Der in Fig. 1a dargestellte Verteilkörper, auf den sich die Meßwerte in Fig.4 und 5 beziehen, war bei einer Gesamtlänge von ca. 30 cm am Fußteil ca. 2,5 cm breit. The burner output was determined for relatively small combustion air distributors (length 25-30 cm, width at the foot part 2-3 cm and at the head part 0-10 cm, with a length of the fire or Combustion chamber of 80 cm) to values between 10 and 22 kW and the air ratio varies between 1.1 and 1.5. However, this is not a fundamental limitation. The distribution body shown in FIG. 1a, to which the measured values in FIGS. 4 and 5 relate, was at a total length of approx. 30 cm at the foot part approx. 2.5 cm wide.

Bei allen Versuchsreihen stellte sich eine dünne, schwachleuchtende (je nach Betriebsvariante auch kaum bzw. nicht sichtbare) stabile turbulente Flamme um den Verbrennungsluft-Verteilkörper 7 herum ein, und ein kompletter Ausbrand war kurz über der Kopfteilebene 10 des Verbrennungsluft-Verteilkörpers 7 zu verzeichnen. Die Flamme berührte die Oberfläche des Verbrennungsluft-Verteilkörpers nicht, sie füllte großflächig den Leerraum 1 aus. Eine intensive Wärmeabgabe an die Außenwand 3 des Feuerraumes war die Folge. Dies führt zwangsläufig zu einem verbesserten und intensiveren Wärmeaustausch mit dem in den bzw. um die Feuerraumwandungen 3a, 3b, 3c angeordneten Wärmeübertragungsmedium in den Rohrschlangen 16 bzw. in den Wasserkammern 17.In all series of tests, a thin, dimly lit (depending on the operating variant also hardly or not visible) stable turbulent flame around the combustion air distribution body 7 around, and a complete burnout was just above the headboard level 10 of the combustion air distribution body 7. The flame touched the surface of the combustion air distribution body, it filled the empty space 1 over a large area. A intensive heat emission to the outer wall 3 of the firebox was the result. this leads to inevitably to an improved and more intensive heat exchange with the in the or arranged around the combustion chamber walls 3a, 3b, 3c in the heat transfer medium Coils 16 or in the water chambers 17th

Die Kontur des Verbrennungsluft-Verteilkörpers glühte nicht und blieb bei allen Bauformen nach Fig. 2 a relativ kalt (unter 300°C). Die Abgasanalyse ergab, wie die Meßdaten in den Figuren 4 a, 4 b, 5 a und 5 b zeigen, insbesondere bei erhöhtem Brennstoff-Düsenimpuls extrem niedrige NOx- und CO-Emissionswerte, die weit unter den gesetzlichen Grenzwerten für Industriebrenner liegen.The contour of the combustion air distribution body did not glow and remained relatively cold (below 300 ° C.) in all designs according to FIG. 2a. The exhaust gas analysis showed, as the measurement data in FIGS. 4 a, 4 b, 5 a and 5 b show, particularly with an increased fuel nozzle pulse, extremely low NO x and CO emission values, which are far below the legal limit values for industrial burners.

Ein wesentlicher Vorteil der Erfindung besteht demnach in der Möglichkeit, eine energiesparende und umweltfreundliche Verbrennungsanlage mit kompakter Brenner- und Brennkammer-Form zu bauen, die für die Wärmeerzeugung bei kleineren Leistungen bis 100 kW (wie z.B in Haushaltsgeräten, Wandthermen und Heizkesseln), bei mittleren Leistungen, > 100 kW bis 1 MW (wie z.B. in Heizzentralen, Heizkraftwerken und Biomassenverbrennung) und auch bei größeren Leistungen > 1 MW (wie z.B. in Kraftwerksfeuerungen und Drehrohröfen) geeignet ist.A major advantage of the invention is therefore the possibility of a energy-saving and environmentally friendly incinerator with compact burner and Build combustion chamber shape that is used for heat generation at smaller outputs up to 100 kW (such as in household appliances, wall-mounted heaters and boilers), with medium outputs, > 100 kW to 1 MW (e.g. in heating centers, thermal power stations and biomass combustion) and also for larger capacities> 1 MW (e.g. in power plant furnaces and rotary kilns) is suitable.

Fig. 1b zeigt schematisch eine Anordnung von mehreren Verbrennungsluft-Verteilkörpern 7 in einem Brennraum für industrielle Zwecke in der Kraftwerkstechnik. Der Feuerraum 2 hat einen quadratischen Querschnitt; die dargestellten Verbrennungsluft-Verteilkörper haben die gleichen Merkmale wie in Fig. 1 a und werden an der unteren Wandung 3c, wie oben erläutert, installiert. Die Wärmeabfuhr erfolgt über die in der Außenwand eingebauten Wasserrohre 23 sowie über die Verdampfer- und Überhitzerheizflächen 24 und 25. Eine weitere Wärmeauskopplung wird über einen Luftvorwärmer, der die Verbrennungsluft des Brenners vorwärmt, im Abgaskanal erreicht, der in der schematischen Zeichnung nicht dargestellt ist.1b schematically shows an arrangement of a plurality of combustion air distribution bodies 7 in a combustion chamber for industrial purposes in power plant technology. The firebox 2 has a square cross section; the combustion air distribution body shown have the same features as in Fig. 1 a and are on the lower wall 3c, as above explained, installed. The heat is dissipated via the built in the outer wall Water pipes 23 and the evaporator and superheater heating surfaces 24 and 25. A further heat extraction is via an air preheater, which the combustion air of the Brenner preheated, reached in the exhaust duct, which is not shown in the schematic drawing is shown.

Fig. 2 a zeigt schematisch eine Darstellung verschiedener geometrischer Varianten der Verbrennungsluft-Verteilkörper. Diese können eine vierkantquader-, zylinder-, kegel-, polygonprismen- oder pyramidenförmige Gestalt haben oder ihre Kontur kann ellipsoidal oder hyperbolisch ausgebildet sein. Weitere geometrische Bauformen sind möglich. Prinzipiell weisen alle Verbrennungsluft-Verteilkörper einen inneren Hohlraum für die Zuführung der Verbrennungsluft, eine den Hohlraum umschließende dünne mit einer Vielzahl von Öffnungen versehene bzw. poröse Wand, einen geschlossenen Kopfteil und einen offenen Fußteil auf. Die Abmessungen der Verbrennungsluft-Verteilkörper und die Anzahl und Geometrie der Öffnungen auf deren Umfang sollen so gewählt werden, daß sie einen gesteuerten Verbrennungsablauf um den Verbrennungsluft-Verteilkörper gewährleisten. Das heißt, daß mit der Wahl dieser Parameter die Luftabgabe an den Verbrennungsbereich in Abhängigkeit von der Brennerleistung gemäß den spezifischen Anforderungen eines Feuerungsprozesses so gesteuert werden soll, daß auf größerem Verbrennungsbereich eine unterstöchiometrische Verbrennung stattfindet und der völlige Ausbrand erst nahe dem Kopfteil des Verbrennungsluft-Verteilkörpers abgeschlossen wird. Messungen zeigten, daß für unterschiedliche Brennerleistungen verschiedene Abmessungen der Verbrennungsluft-Verteilkörper erforderlich sind. Deshalb sind die Verbrennungsluft-Verteilkörper für bestimmte Lastbereiche gesondert anzufertigen und auswechselbar zu gestalten; dies kann, wie dies Fig. 2 b schematisch verdeutlicht, folgendermaßen geschehen: Der Fußteil 8 des Verbrennungsluft-Verteilkörpers 7 wird mit einer Außengewinde 26 und das Luftzuführungsrohr 18 am Rohraustritt mit einem Innengewinde 27 versehen. Der Verbrennungsluft-Verteilkörper 7 wird in das Luftzuführungsrohr 18 eingeschraubt.2 a shows a schematic representation of different geometric variants of the Combustion air distribution body. These can be square, cylindrical, conical, have polygon prism or pyramidal shape or their contour can be ellipsoidal or be hyperbolic. Other geometric designs are possible. In principle all combustion air distribution bodies have an internal cavity for the supply of Combustion air, a thin surrounding the cavity with a variety of Porous wall with openings, a closed head part and an open one Foot part on. The dimensions of the combustion air distribution body and the number and Geometry of the openings on their circumference should be chosen so that they are one Controlled combustion process to ensure the combustion air distribution body. The means that with the selection of these parameters the air emission to the combustion area in Dependence on the burner output according to the specific requirements of a Firing process should be controlled so that on a larger combustion area substoichiometric combustion takes place and the complete burnout is only close to that Head part of the combustion air distribution body is completed. Measurements showed that Different dimensions of the combustion air distributors for different burner capacities required are. That is why the combustion air distributors are for to manufacture certain load ranges separately and to make them interchangeable; This can, As shown schematically in FIG. 2 b, this is done as follows: The foot part 8 of the Combustion air distribution body 7 is with an external thread 26 and that Air supply pipe 18 is provided with an internal thread 27 at the pipe outlet. The Combustion air distribution body 7 is screwed into the air supply pipe 18.

Prinzipiell haben die Messungen bestätigt, daß, um eine stabile schadstoffarme und vollkommene Verbrennung zu erreichen, folgende Daten am Verbrennungsluft-Verteilkörper eingestellt werden sollen (siehe Fig. 1 a):
Die Länge (A) der Verbrennungsluft-Verteilkörper 7 beträgt ≥ 40 - 85 % der Feuerraum-Länge (B), der Durchmesser (C) des Verbrennungsluft-Verteilkörpers 7 am Fußteil 8 beträgt ≥ 10% des Feuerraum-Durchmessers (D), und die Porösität des Verbrennungsluft-Verteilkörpers beträgt < 20%.
In principle, the measurements confirmed that the following data should be set on the combustion air distribution body in order to achieve stable, low-pollutant and perfect combustion (see Fig. 1 a):
The length (A) of the combustion air distribution body 7 is ≥ 40-85% of the combustion chamber length (B), the diameter (C) of the combustion air distribution body 7 at the base part 8 is ≥ 10% of the combustion chamber diameter (D), and the porosity of the combustion air distribution body is <20%.

Fig. 3 a zeigt eine schematische Darstellung von Varianten der Strahlrichtungen der Brennstoffdüsen 13, die in einer Düsenreihe 12 oder mehreren Düsenreihen am Fußteil des Verbrennungsluft-Verteilkörpers 7 positioniert und um diesen angeordnet sind. Eine Düsenreihe 12 enthält eine Vielzahl von Düsen, deren Strahlrichtung 14 sowohl in Längsmittelachse wie auch schräg zu ihr veränderbar ist. Dies erlaubt einerseits die Verteilung des Brennstoffes auf unterschiedliche Konturbereiche des Verbrennungsluft-Verteilkörpers, was zur gezielten Kontrolle der Mischverhältnisse beiträgt und die Zündung begünstigt. Andererseits kann mittels einer geeigneten Neigung der Strahlrichtung eine Brennstoffverdrallung erzeugt werden, die zur intensiveren Vermischung von Brennstoff und Verbrennungsluft und zur längeren Aufenthaltszeit der Brennstoffteilchen im Flammenbereich führt. Beide Brennstoff-Düseneinstellungen (axiale und tangentiale Neigung) gewährleisten gemeinsam in Verbindung mit der stufenlos fließenden Luft aus den Öffnungen der Verbrennungsluft-Verteilkörper eine NOx- und CO-arme Verbrennung. Bei den durchgeführten Untersuchungen hat sich herausgestellt, daß der optimale Bereich der axialen und tangentialen Neigungswinkel der Brennstoffdüsen von ca. -45° bis +45° bezogen auf die Längsrichtung der Verbrennungszone beträgt. Die Winkeleinstellung hängt von der Form des Verbrennungsluft-Verteilkörpers ab und hat einen großen Einfluß auf die Qualität der Verbrennung. Die Beimischung geringer Luftmengen (< 30° des VerbrennungsluftVolumenstroms) mit dem Brennstoff führt infolge des erhöhten Impulses zu verbesserter Vermischung von Brennstoff und Verbrennungsluft und zum schnelleren Erreichen der Zündgrenze. Die NOx -Werte sinken dabei drastisch.3 a shows a schematic illustration of variants of the jet directions of the fuel nozzles 13, which are positioned in a row of nozzles 12 or more rows of nozzles at the foot part of the combustion air distribution body 7 and arranged around the latter. A row of nozzles 12 contains a plurality of nozzles, the jet direction 14 of which can be changed both in the longitudinal central axis and at an angle to it. On the one hand, this allows the fuel to be distributed over different contour areas of the combustion air distribution body, which contributes to the targeted control of the mixing ratios and promotes ignition. On the other hand, by means of a suitable inclination of the jet direction, fuel swirl can be generated, which leads to more intensive mixing of fuel and combustion air and to the longer residence time of the fuel particles in the flame area. Both fuel nozzle settings (axial and tangential tilt) ensuring together in conjunction with the continuously flowing air from the openings of the combustion air distributor is a NO x - and CO combustion. The tests carried out have shown that the optimum range of the axial and tangential inclination angles of the fuel nozzles is from approximately -45 ° to + 45 ° in relation to the longitudinal direction of the combustion zone. The angle setting depends on the shape of the combustion air distribution body and has a great influence on the quality of the combustion. The admixture of small amounts of air (<30 ° of the combustion air volume flow) with the fuel leads to improved mixing of the fuel and combustion air and to faster reaching the ignition limit due to the increased impulse. The NO x values drop drastically.

Die Düsenreihen sind für verschiedene Lastbereiche zu fertigen und sollen auswechselbar sein; das kann z. B. folgendermaßen geschehen, wie Fig 3 b zeigt: Der Koaxialring 21 wird direkt vor dem Eintitt des Brennstoffes in den Feuerraum geschlossen und mit Verbindungskanälen 32 für die Brennstoffzufuhr in den Feuerraum versehen, die Kanäle 32 weisen Innengewinde 33 und die Brennstoffdüsen 13 Außengewinde 28 auf. Die Brennstoffdüsen 13 werden in die Verbindungskanäle 32 eingeschraubt. The rows of nozzles are to be manufactured for different load ranges and should be exchangeable his; that can e.g. B. happen as follows, as Fig 3 b shows: The coaxial ring 21 closed and immediately before the fuel enters the combustion chamber Providing connecting channels 32 for the fuel supply into the combustion chamber, the channels 32 have internal threads 33 and the fuel nozzles 13 have external threads 28. The Fuel nozzles 13 are screwed into the connecting channels 32.

Anstelle der Brennstoffdüsen 13 innerhalb einer Düsenreihe 12 können schräge Bohrungen 29 bzw. ein Ringspalt 30 mit einem inneren Drallerzeuger 31 verwendet werden, wie dies Fig. 3 c und 3 d verdeutlichen.Instead of the fuel nozzles 13 within a row of nozzles 12, oblique bores 29 or an annular gap 30 can be used with an inner swirl generator 31, as shown in FIG. 3 c and 3 d illustrate.

Durch die Vielfalt der Konstruktionsmöglichkeiten der Brennstoffdüsen ist die Anwendung flüssiger, gas- oder staubförmiger Brennstoffe möglich.Due to the variety of design options of the fuel nozzles, the application is liquid, gaseous or dusty fuels possible.

Die graphischen Darstellungen in Fig. 4 a und 5 a zeigen die im Abgas gemessenen NOx- und CO-Emissionswerte in Abhängigkeit von der Brennerleistung bei unterschiedlichen Luftzahlen für die in Fig. 1 a dargestellte Variante mit dem kegelförmigen Verbrennungsluft-Verteilkörper. Als Brennstoff wurde Erdgas H mittels einer einzigen Düsenreihe eingespeist, wobei die Düsen so eingestellt wurden, daß jede zweite Düse mit einem schwachen Drall versehen war. Während die Brennerleistung für die relativ kleine Versuchsanlage zwischen 10 und 22 kW variiert wurde, sind Luftzahlen für den bei Feuerungsanlagen üblichen und interessanten Bereich von 1,2 bis 1,5 eingestellt worden. Die dargestellten NOx- und CO-Emissionswerte sind auf 3 Vol.% O2 im Abgas umgerechnet worden, damit ein Vergleich mit den Grenzwerten der TA-Luft möglich wird.The graphs in FIGS. 4 a and 5 a show the NO x and CO emission values measured in the exhaust gas as a function of the burner output at different air ratios for the variant shown in FIG. 1 a with the conical combustion air distribution body. Natural gas H was fed as fuel by means of a single row of nozzles, the nozzles being adjusted such that every second nozzle was provided with a weak swirl. While the burner output for the relatively small pilot plant was varied between 10 and 22 kW, air figures for the usual and interesting range of 1.2 to 1.5 have been set for combustion plants. The NO x and CO emission values shown have been converted to 3 vol.% O 2 in the exhaust gas so that a comparison with the limit values of the TA-Luft is possible.

Aus Fig. 4 a ist deutlich erkennbar, daß die NOx-Emissionswerte bei dieser Variante des Verbrennungsluft-Verteilkörpers geringfügig mit der Brennerlast aufgrund steigender Verbrennungstemperaturen ansteigen. Da die Flammentemperatur jedoch unter 1200 °C bei allen untersuchten Lastbereichen bleibt, tendieren die NOx-Emissionswerte bei höheren Leistungen zu einem konstanten Verlauf. Eine Erhöhung der Luftzahl führt zu einer drastischen Verringerung der NOx-Emissionswerte. So fällt z.B. ihr Maximum bei der Luftzahl 1,2 und der Leistung 22 kW von 31 ppm auf 19,5 ppm bei der Luftzahl 1,5 und derselben Last.It can be clearly seen from FIG. 4 a that the NO x emission values in this variant of the combustion air distribution body increase slightly with the burner load due to increasing combustion temperatures. However, since the flame temperature remains below 1200 ° C for all examined load ranges, the NO x emission values tend to remain constant at higher outputs. An increase in the air ratio leads to a drastic reduction in the NO x emission values. For example, their maximum at an air ratio of 1.2 and an output of 22 kW drops from 31 ppm to 19.5 ppm at an air ratio of 1.5 and the same load.

Entscheidend für die weitere Herabsetzung der NOx-Emissionswerte ist der Einfluß der Impulserhöhung durch die Brennstoffdüsen. So führt eine geringfügige Luftzugabe mit dem Brennstoff zu starker Verwirbelung und besserer Mischung zwischen Brennstoff und Verbrennungsluft. Die Zündgrenze wird eher erreicht. Weiterhin wird die Flamme dünner, großflächiger und brennt im vorliegenden Beispiel bereits bei einer Zumischung von ca. 20 % Verbrennungsluft zum Brennstoff kaum bzw. nicht sichtbar. Fig. 4 b zeigt bei einer Zumischung von ca. 20 % Verbrennungsluft zum Brennstoff und ansonsten gleichen Einstellungen wie in Fig. 4 a extrem niedrige NOx-Emissionswerte für alle Luftzahlen und bei allen untersuchten Lastbereichen.The decisive factor for the further reduction of the NO x emission values is the influence of the pulse increase through the fuel nozzles. A slight addition of air with the fuel leads to strong turbulence and a better mixture between fuel and combustion air. The ignition limit is reached sooner. Furthermore, the flame becomes thinner, more extensive and in the present example burns hardly or not visibly even when approximately 20% combustion air is added to the fuel. FIG. 4 b shows an admixture of approx. 20% combustion air to the fuel and otherwise the same settings as in FIG. 4 a, extremely low NO x emission values for all air ratios and for all examined load ranges.

Betrachtet man die entsprechenden CO-Emissionswerte in Fig. 5 a, so stellt man fest, daß diese allgemein sehr gering sind und zum völligen Verschwinden (Nullwerte) mit steigender Brennerlast und Luftzahl tendieren. Die Impulserhöhung der Brennstoffdüsen durch die Zumischung von ca. 20 % Verbrennungsluft zum Brennstoff führt, wie Fig. 5b zeigt, zu einer vollkommenen Verbrennung. Die Abgase sind bei Luftzahlen größer als 1,05 und bei allen untersuchten Leistungen CO-frei. Dieses Verhalten hinsichtlich der CO-Emission ist auch für alle anderen Formen der Verbrennungsluft-Verteilkörper typisch. Die experimentellen Untersuchungen zeigen, daß durch geeignete Einstellung der Brennstoffdüsen die Nullwerte der CO-Emission sehr schnell eintreten können.If one looks at the corresponding CO emission values in FIG. 5 a, one finds that these are generally very low and to disappear completely (zero values) with increasing Burner load and air ratio tend. The increase in momentum of the fuel nozzles through the Addition of approx. 20% combustion air to the fuel leads to, as shown in FIG. 5b perfect combustion. The exhaust gases are greater than 1.05 for air numbers and for all services examined CO-free. This behavior with regard to CO emissions is also for all other forms of combustion air distributors are typical. The experimental Studies show that by setting the fuel nozzles appropriately, the zero values of CO emissions can occur very quickly.

Einen besonderen Einfluß auf die NOx- und CO-Bildung besitzt die axiale und tangentiale Einstellung der Brennstoffdüsen, wobei sich jedoch je nach dem eingesetzten Verbrennungsluft-Verteilkörper unterschiedliche optimale Winkelpositionen ergeben.The axial and tangential setting of the fuel nozzles has a particular influence on the NO x and CO formation, but depending on the combustion air distribution body used there are different optimal angular positions.

Insgesamt kann festgestellt werden, daß die NOx- und CO-Emissionswerte der neuen Brennereinrichtung wesentlich unter den Grenzwerten der TA-Luft (NO: 114 ppm, CO: 93 ppm) und der neuen BImSchV (NO: 45 ppm, CO: 55 ppm) liegen und daß sogar die Erzeugung von CO-freiem Abgas aus Verbrennungsprozessen möglich ist.Overall, it can be stated that the NO x and CO emission values of the new burner device are significantly below the limit values of TA-Luft (NO: 114 ppm, CO: 93 ppm) and the new BImSchV (NO: 45 ppm, CO: 55 ppm ) and that even the production of CO-free exhaust gas from combustion processes is possible.

Claims (14)

  1. Combustion chamber with a burner device for combustion with low emissions of NOx and CO with predominantly separate supply of fuel and combustion air to the combustion chamber, whereby the entirety or the majority of the combustion air is continuously staged at a plurality of points and supplied to the combustion chamber, characterised in that
    a) a coaxial pipe (18, 22) is provided at one end of which the inner pipe (18) is connected with at least one feed line (5) for the supply of combustion air and the outer pipe (22) is connected with at least one feed line (4) for the supply of fuel or fuel and combustion air mixture, and at the other end of which a combustion air distributor (7) is connected sealingly with the inner pipe (18) and at least one injector row (12) exhibiting a plurality of fuel injectors (13) sealingly closes the cylindrical ring (21) between the inner pipe (18) and the outer pipe (22),
    b) the combustion air distributor (7) consists of an elongated inner cavity which is surrounded by a thin perforated or porous wall and exhibits a closed top part (9), an open bottom part (8) and a plurality of distributed openings (11) for emergence of combustion air into the combustion zone,
    c) the combustion air distributor (7) is connected sealingly by its open bottom part (8) to the inner pipe (18) of the coaxial pipe,
    d) the ratio (A/B) of the length (A) of the combustion air distributor (7) to the length (B) of the combustion chamber (2) and the ratio (C/D) of the outside diameter (C) of the combustion air distributor (7) at the bottom part (8) to the inside diameter (D) of the combustion chamber (2) are such that an ignitable mixture is formed and stable combustion takes place,
    e) the direction (14) of injection of the fuel injectors inside the same injector row (12) and/or the direction (14) of injection of the fuel injectors of neighbouring injector rows (12) is adjustable separately,
    f) the burner device is installed in the combustion chamber (2) so that it passes through the outer wall (3) surrounding it and exhibits a sealed connection with it and the end of the coaxial pipe (18, 22) with the feed lines for the supply of combustion air and fuel (5 and 4) remains outside the combustion chamber (2), the entire length of the combustion air distributor (7) is located in the combustion chamber (2) and the fuel injectors (13) project into the combustion chamber (2), but do not exceed the distance from the bottom part (8) of the combustion air distributor (7) to the start of the openings (11),
    g) the combustion zone in the combustion chamber (2) is simultaneously the zone for the complete mixing of the combustion air from the openings (11) with the fuel or fuel and air mixture from the fuel injectors (13),
    h) the volume and the geometry of the combustion zone essentially correspond to the volume and the geometry of the empty space (1) which is bounded by the outer wall (3) surrounding the combustion chamber (2), the outer contour of the combustion air distributor (7) and an imaginary plane (10) disposed inside the combustion chamber (2) and sitting on the end of the top part (9) of the combustion air distributor (7).
  2. Combustion chamber according to claim 1,
    characterised in that
    a) the porosity of the combustion air distributor (7) is such that predetermined ranges of values for the air/fuel ratio λ from the sub-stoichiometric range in the vicinity of the bottom parts (8) to the super-stoichiometric range in the vicinity of the top parts (9) roughly prevail in the combustion zone,
    b) the arrangement and the number of openings (11) on the contour of the combustion air distributor (7) are chosen so that the pulse of combustion air streams from the openings (11) blows the flame away from the combustion air distributor (7) so that no combustion takes place on the wall of the combustion air distributor (7) and this wall does not exhibit any glowing,
    c) means for ignition of the mixture formed in the combustion zone are present in the vicinity of the fuel injectors.
  3. Combustion chamber according to claim 1,
    characterised in that the inner cavity of the combustion air distributor (7) is surrounded by a single wall which exhibits a square block-shaped, cylindrical, conical, polygonal prism-shaped or pyramid-shaped form or its contour is ellipsoidal or hyperbolic in form.
  4. Combustion chamber according to claim 1,
    characterised in that the wall of the combustion air distributor (7) is made of porous ceramic materials or of metal materials which take the form of a screen, perforated plate, wire mesh, grid or metal mesh, or in that the combustion air distributor (7) takes the form of a wire pressing or sintered moulding.
  5. Combustion chamber according to claim 1,
    characterised in that the combustion air distributors (7) exhibit guiding devices to impart a swirling motion to the stream of combustion air.
  6. Combustion chamber according to claim 1,
    characterised in that the combustion air distributors (7) and/or the injectors (13) or injector rows (12) are embodied so that they can be changed.
  7. Combustion chamber according to claim 1,
    characterised in that the direction (14) of injection of the fuel injectors (13) inside the same injector row (12) and/or neighbouring injector rows (12) is aimed at different portions of the length of the combustion air distributors (7) and/or the fuel injectors (13) are disposed inclined so that a swirling motion is imparted to the stream of fuel.
  8. Combustion chamber according to claim 1,
    characterised in that the fuel injectors (13) inside an injector row (12) can be embodied as oblique bores (29) or as an annular gap (30) with an inner swirl inducer (31).
  9. Combustion chamber according to claim 1,
    characterised in that the combustion chamber (2) is cylindrical in form and exhibits a wall (3, 16, 17) for removal of heat.
  10. Combustion chamber according to claim 1,
    characterised in that the length (A) of the distributor (7) is between 30% and 85% of the length (B) of the combustion chamber (2), and in that the diameter (C) of the distributor (7) in the area of the fuel outlets is between 10% and 60% of the inside diameter (D) of the combustion chamber wall (3a).
  11. Combustion chamber according to claim 9,
    characterised in that a further heat exchanger (24) is provided in the combustion chamber (2) downstream of the distributor (7).
  12. Combustion chamber according to claim 7,
    characterised in that the fuel injectors (13) are disposed parallel to one another and inclined relative to the cylindrical ring (21) so that a circular swirling motion is produced, or disposed inclined diverging or converging relative to the injector circle (35) in the cylindrical ring (21) so that a widening or contracting flow is produced, or are disposed inclined in both directions in the cylindrical ring (21).
  13. Process for operation of a combustion chamber according to claims 1 to 12, characterised in that
    a) approximately 70 to 100% by volume of the total combustion air throughput supplied is fed by means of at least one combustion air distributor (7) in a mainly radial direction into the combustion zone filled by the flame along the entirety or large parts of the length of the flame, and mixes there with the fuel or fuel and air mixture from the fuel injectors (13),
    b) the fuel is fed into the combustion zone by means of the fuel injectors (13) in the area of the base of the flame in the bottom part of the combustion air distributor (7) and around the latter,
    c) the remaining part of the volume of the combustion air required for the combustion is mixed with the fuel before entering the combustion zone,
    d) the mixture formed in the combustion zone (1) is ignited in the vicinity of the fuel injectors (13) and burns completely in the same zone without further distribution,
    e) the flame is formed throughout the combustion zone (1) and the combustion waste gases flow out through the imaginary plane (10) unrestricted and leave the combustion chamber through the waste gas opening (6),
    f) depending on operating parameters and type of fuel, a certain angular setting of the fuel injectors (13), the bores (29) or the swirl inducer (31) is selected in combination with a certain mixing ratio of the combustion air in the stream of fuel to obtain a visible or an invisible flame and/or minimize the NOx and CO emission levels in the waste gas.
  14. Process according to claim 13, characterised in that the fuel or the fuel and air mixture is fed in an angle ranging from approximately -45° to +45° relative to the longitudinal direction of the combustion zone, and the proportion of the combustion air in the stream of fuel fed in lies in a range from 0 to approximately 30% by volume of the combustion air throughput supplied overall.
EP97924865A 1996-04-20 1997-04-18 Combustion chamber with a burner arrangement and method of operating a combustion chamber Expired - Lifetime EP0834040B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19615761 1996-04-20
DE19615761 1996-04-20
PCT/DE1997/000817 WO1997040315A1 (en) 1996-04-20 1997-04-18 COMBUSTION DEVICE AND METHOD FOR OPERATING A COMBUSTION DEVICE FOR LOW-NOx AND LOW-CO COMBUSTION

Publications (2)

Publication Number Publication Date
EP0834040A1 EP0834040A1 (en) 1998-04-08
EP0834040B1 true EP0834040B1 (en) 2000-08-09

Family

ID=7791926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97924865A Expired - Lifetime EP0834040B1 (en) 1996-04-20 1997-04-18 Combustion chamber with a burner arrangement and method of operating a combustion chamber

Country Status (6)

Country Link
US (1) US6419480B2 (en)
EP (1) EP0834040B1 (en)
AT (1) ATE195367T1 (en)
DE (2) DE19717721A1 (en)
ES (1) ES2151273T3 (en)
WO (1) WO1997040315A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013019934A1 (en) 2013-11-25 2015-05-28 Brinkmann Industrielle Feuerungssysteme Gmbh Method and device for producing hot / drying gases

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406507B (en) * 1997-11-24 2000-06-26 Vaillant Gmbh BURNER WITH SEPARATE FUEL SUPPLY
AT407565B (en) * 1998-08-03 2001-04-25 Vaillant Gmbh Blower-type burner
AT406899B (en) * 1998-10-08 2000-10-25 Vaillant Gmbh DEVICE FOR GENERATING ELECTRICAL ELECTRICITY AND HEAT WITH AT LEAST ONE FUEL CELL
AT408266B (en) * 1999-02-19 2001-10-25 Vaillant Gmbh HEATING DEVICE
AT407784B (en) * 1999-03-23 2001-06-25 Vaillant Gmbh BURNER
WO2000063619A1 (en) * 1999-04-15 2000-10-26 J. Eberspächer Gmbh & Co. Combustion chamber of a heating device
AT408027B (en) * 1999-05-25 2001-08-27 Vaillant Gmbh AIR STAGE BURNER
AT408268B (en) * 1999-09-24 2001-10-25 Vaillant Gmbh FAN-SUPPORTED BURNER
DE10116726A1 (en) * 2001-04-04 2002-10-10 Bosch Gmbh Robert Plant for the thermal treatment of workpieces with an explosive gas mixture, in particular thermal deburring plant
US6790031B2 (en) 2003-01-16 2004-09-14 Rjm Corporation Fuel staging methods for low NOx tangential fired boiler operation
US7805190B2 (en) * 2003-04-02 2010-09-28 Physio-Control, Inc. Defibrillators customized for anticipated patients
US20050164137A1 (en) * 2004-01-27 2005-07-28 Adolph Mondry Automatic furnace-system and method for automatically maintaining a multiburner furnace
US8100064B2 (en) * 2005-01-31 2012-01-24 Diesel & Combustion Technologies, Llc Fuel staging methods for low NOx tangential fired boiler operation
US20080096146A1 (en) * 2006-10-24 2008-04-24 Xianming Jimmy Li Low NOx staged fuel injection burner for creating plug flow
US8408896B2 (en) * 2007-07-25 2013-04-02 Lummus Technology Inc. Method, system and apparatus for firing control
DE102008063990A1 (en) * 2008-12-19 2010-06-24 J. Eberspächer GmbH & Co. KG vehicle burner
CN102080822B (en) * 2010-12-22 2013-03-27 阿米那能源环保技术(中国)有限公司 Combustor and manufacturing method thereof
US8365534B2 (en) 2011-03-15 2013-02-05 General Electric Company Gas turbine combustor having a fuel nozzle for flame anchoring
RU2011115528A (en) 2011-04-21 2012-10-27 Дженерал Электрик Компани (US) FUEL INJECTOR, COMBUSTION CHAMBER AND METHOD OF OPERATION OF THE COMBUSTION CHAMBER
EP2780634B1 (en) * 2011-11-10 2020-03-18 Zeeco Inc. Low nox burner apparatus and method
US8955467B1 (en) * 2013-01-08 2015-02-17 William Parrish Horne Steam boiler
US20150153066A1 (en) * 2013-12-04 2015-06-04 Victory Energy Operations. L.L.C. Method of providing heat to a heat exchanger apparatus via a burner
US20150192291A1 (en) * 2014-01-06 2015-07-09 Rheem Manufacturing Company Multi-Cone Fuel Burner Apparatus For Multi-Tube Heat Exchanger
US9593847B1 (en) 2014-03-05 2017-03-14 Zeeco, Inc. Fuel-flexible burner apparatus and method for fired heaters
US9593848B2 (en) 2014-06-09 2017-03-14 Zeeco, Inc. Non-symmetrical low NOx burner apparatus and method
ITUB20159531A1 (en) * 2015-12-21 2017-06-21 Satengineering Sas Di Francesco Dursi & C BOILER FOR FLUID HEATING
AU2018280267A1 (en) * 2017-06-08 2020-01-16 Rheem Manufacturing Company Optimized burners for boiler applications
CN108757944B (en) * 2018-08-07 2023-12-19 深圳众诚联合能源科技有限公司 Rotary air preheater sealing device based on airflow movement posture adjustment technology
RU2706168C1 (en) * 2019-03-01 2019-11-14 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Burner device and method of fuel combustion flame arrangement
US11486576B2 (en) * 2019-08-23 2022-11-01 Regal Beloit America, Inc. System and method for burner ignition using sensorless constant mass flow draft inducers
US11353212B2 (en) 2019-09-12 2022-06-07 Zeeco, Inc. Low NOxburner apparatus and method
RU197468U1 (en) * 2019-12-30 2020-04-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Liquid fuel burner

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US461219A (en) * 1891-10-13 Vapor-burner
US14414A (en) * 1856-03-11 Apparatus for heating or cooking by gas
US1247740A (en) 1917-02-17 1917-11-27 Arthur D Sutton Gas-burner.
US1452563A (en) * 1922-02-13 1923-04-24 Lewis William Karl Oil burner
US1527758A (en) * 1924-04-16 1925-02-24 Swartzentruber Peter Oil burner
US1542528A (en) * 1924-09-23 1925-06-16 Rudkin William Paul Liquid-fuel burner
US1670033A (en) * 1926-09-01 1928-05-15 Jackson G Gilmore Oil burner
US2065265A (en) * 1933-01-16 1936-12-22 Oscar L Bock Oil burner
US2075242A (en) * 1934-08-10 1937-03-30 Vincent S Todaro Liquid fuel burner
US2184967A (en) * 1938-04-11 1939-12-26 Winter Louis Oil burning apparatus
US2256183A (en) * 1940-06-05 1941-09-16 Julius Bandyga Burner
US2375598A (en) * 1942-02-26 1945-05-08 Louis C Trosky Carbon and soot eliminator for oil burners
US2390059A (en) * 1943-01-01 1945-12-04 Miller Co Liquid fuel burner
US2423079A (en) * 1945-02-14 1947-07-01 John G Behrendt Bowl type oil burner
US2663366A (en) * 1953-09-16 1953-12-22 Herman R Harris Trough-type oil burner with forced combustion air supply
US3093185A (en) * 1960-09-26 1963-06-11 Daisy Seaman Lowry Integrated fuel burner
US3460895A (en) * 1967-10-02 1969-08-12 Keizo Yamaguchi Device for gasifying and combusting light petroleum by utilizing air under pressure
GB1444673A (en) * 1973-03-20 1976-08-04 Nippon Musical Instruments Mfg Gas burners
US3938934A (en) * 1974-11-08 1976-02-17 Scm Corporation Fuel economizer process and apparatus
JPS5758010A (en) * 1980-09-26 1982-04-07 Nippon Gakki Seizo Kk Gas burner
FR2592321A1 (en) * 1986-01-02 1987-07-03 Rhone Poulenc Chim Base PROCESS FOR OBTAINING A HIGH TEMPERATURE GASEOUS PHASE, AND DEVICE FOR CARRYING OUT THIS PROCESS. APPLICATION TO THE TREATMENT OF LIQUID OR GASEOUS PHASES, WITH OR WITHOUT SOLIDS, AND SPRAY SOLIDS.
DE3600784A1 (en) 1986-01-14 1987-07-16 Anton Gerhard Ing Grad Secondary air burner for gaseous and liquid fuels
DE3915704A1 (en) 1989-05-13 1990-11-15 Didier Werke Ag BURNER FOR A WINDER HEATER
DE4002237A1 (en) 1990-01-26 1991-08-01 Elco Energiesysteme Gmbh Gas burner combustion chamber - has exhaust gas feed component from furnace mounted concentrically in burner tube
DE4041360C1 (en) 1990-12-20 1992-07-09 Wolf Klimatechnik Gmbh, 8302 Mainburg, De Atmos. burner with elongated tube in combustion chamber - has burner tube with slotted, or perforated strip of width of 15-30 % of tube dia.
DE4142401C2 (en) 1991-12-20 1999-01-21 Linde Ag Method for operating a furnace heating based on one or more burners
DE4231788A1 (en) 1992-09-23 1994-03-24 Koerting Ag Burners for liquid or gaseous fuels
US5344314A (en) 1993-04-09 1994-09-06 Shrinkfast Marketing Turbine device for hot air generation
US5461865A (en) * 1994-02-24 1995-10-31 United Technologies Corporation Tangential entry fuel nozzle
DE4419345A1 (en) 1994-06-03 1995-12-07 Buderus Heiztechnik Gmbh Atmospheric gas burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013019934A1 (en) 2013-11-25 2015-05-28 Brinkmann Industrielle Feuerungssysteme Gmbh Method and device for producing hot / drying gases

Also Published As

Publication number Publication date
WO1997040315A1 (en) 1997-10-30
ATE195367T1 (en) 2000-08-15
EP0834040A1 (en) 1998-04-08
DE19717721A1 (en) 1997-10-30
ES2151273T3 (en) 2000-12-16
DE59702133D1 (en) 2000-09-14
US6419480B2 (en) 2002-07-16
US20010018171A1 (en) 2001-08-30

Similar Documents

Publication Publication Date Title
EP0834040B1 (en) Combustion chamber with a burner arrangement and method of operating a combustion chamber
DE60007946T2 (en) A combustion chamber
DE3306483C2 (en)
EP0503319B1 (en) Burner for a premixing combustion of a liquid and/or a gaseous fuel
DE4200073A1 (en) DUAL FUEL BURNER WITH REDUCED NO (DOWN ARROW) X (DOWN ARROW) EXHAUST
DE4405894C2 (en) Water tube boiler
EP0931979A1 (en) Method and apparatus for supressing flame and pressure fluctuations in a furnace
EP1802915A2 (en) Gas turbine burner
DE3842842A1 (en) ATMOSPHERIC BURNER
DE2953648C2 (en) Liquid fuel burners
WO2004038291A1 (en) Combustion method and burner head, burner comprising one such burner head, and boiler comprising one such burner head
EP0276397B1 (en) Gas turbine combustor
DE102005038662B4 (en) Combustion head and method for burning fuel
DE4329971C2 (en) Burner device for a gaseous fuel
EP0639742A2 (en) Method and device for low emission combustion of fluid and or gaseous fuels with internal recirculation of fluegas
EP4089325B1 (en) Nozzle for blowing gas into a combustion plant with a pipe and a swirl generator, flue with such a nozzle and method of using such a nozzle
DE4422535A1 (en) Process for operating a furnace
DE2700786C3 (en) Ceramic gas burner for wind heaters
DE19542644B4 (en) premixed
EP0699867A2 (en) Burner device for gaseous fuels
EP0601018B1 (en) Gas burner, in particular for liquefied gas
EP0876570B1 (en) Burner surface
DE102019114954A1 (en) Burners with reduced flame temperature and nitrogen oxide emissions
DE4222839A1 (en) Oil burner
DE2828319C2 (en) Liquid fuel burner with a cylindrical swirl chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AL-HALBOUNI, AHMAD

17Q First examination report despatched

Effective date: 19990707

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: COMBUSTION CHAMBER WITH A BURNER ARRANGEMENT AND METHOD OF OPERATING A COMBUSTION CHAMBER

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990707

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000809

REF Corresponds to:

Ref document number: 195367

Country of ref document: AT

Date of ref document: 20000815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59702133

Country of ref document: DE

Date of ref document: 20000914

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000907

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001110

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2151273

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: WALTER BRINKMANN GMBH

Free format text: AL-HALBOUNI, AHMAD#BLECHENWEG 2#39128 MAGDEBURG (DE) -TRANSFER TO- WALTER BRINKMANN GMBH#GEWERBESTRASSE 12#53791 WERDOHL (DE)

BECA Be: change of holder's address

Owner name: WALTER BRINKMANN G.M.B.H.GEWERBESTR. 12, D-58791 W

Effective date: 20090917

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090910 AND 20090916

NLS Nl: assignments of ep-patents

Owner name: WALTER BRINKMANN GMBH

Effective date: 20090820

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

Representative=s name: KNH PATENTANWAELTE KAHLHOEFER NEUMANN ROESSLER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

Representative=s name: KNH PATENTANWAELTE KAHLHOEFER NEUMANN ROESSLER, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: AL-HALBOUNI, DE

Effective date: 20120228

Ref country code: FR

Ref legal event code: CD

Owner name: AL-HALBOUNI, DE

Effective date: 20120228

Ref country code: FR

Ref legal event code: CA

Effective date: 20120228

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120308 AND 20120314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DR. AHMAD AL-HALBOUNI

Free format text: WALTER BRINKMANN GMBH#GEWERBESTRASSE 12#53791 WERDOHL (DE) -TRANSFER TO- DR. AHMAD AL-HALBOUNI#GRAF-BERNADOTTE-STRASSE 4#45133 ESSEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOMBERG & SCHART, DE

Effective date: 20120224

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOMBERG & SCHART, DE

Effective date: 20110902

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

Effective date: 20110902

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

Effective date: 20120224

Ref country code: DE

Ref legal event code: R081

Ref document number: 59702133

Country of ref document: DE

Owner name: BRINKMANN INDUSTRIELLE FEUERUNGSSYSTEME GMBH, DE

Free format text: FORMER OWNER: WALTER BRINKMANN GMBH, 58791 WERDOHL, DE

Effective date: 20120224

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20120423

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20120608

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: DR. AHMAD AL-HALBOUNI

Effective date: 20120618

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 195367

Country of ref document: AT

Kind code of ref document: T

Owner name: DR. AHMAD AL-HALBOUNI, DE

Effective date: 20120919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120420

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120425

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130423

Year of fee payment: 17

Ref country code: SE

Payment date: 20130426

Year of fee payment: 17

Ref country code: CH

Payment date: 20130429

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130427

Year of fee payment: 17

Ref country code: IT

Payment date: 20130420

Year of fee payment: 17

Ref country code: FR

Payment date: 20130523

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140417

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOMBERG & SCHART, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59702133

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59702133

Country of ref document: DE

Owner name: BRINKMANN INDUSTRIELLE FEUERUNGSSYSTEME GMBH, DE

Free format text: FORMER OWNER: AL-HALBOUNI, AHMAD, DR., 45133 ESSEN, DE

Effective date: 20141021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 195367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140418

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140418

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140418

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140419

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140418

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59702133

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430