EP0817907B1 - Heat engine which operates on the stirling principle - Google Patents

Heat engine which operates on the stirling principle Download PDF

Info

Publication number
EP0817907B1
EP0817907B1 EP96909137A EP96909137A EP0817907B1 EP 0817907 B1 EP0817907 B1 EP 0817907B1 EP 96909137 A EP96909137 A EP 96909137A EP 96909137 A EP96909137 A EP 96909137A EP 0817907 B1 EP0817907 B1 EP 0817907B1
Authority
EP
European Patent Office
Prior art keywords
heat
working gas
zeolite
engine
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96909137A
Other languages
German (de)
French (fr)
Other versions
EP0817907A1 (en
Inventor
Günter Pöschl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPV Verwaltungs AG
Original Assignee
PPV Verwaltungs AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPV Verwaltungs AG filed Critical PPV Verwaltungs AG
Publication of EP0817907A1 publication Critical patent/EP0817907A1/en
Application granted granted Critical
Publication of EP0817907B1 publication Critical patent/EP0817907B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers

Definitions

  • the invention relates to a heat engine in the preamble of claim 1 specified Art.
  • Stirling engines are e.g. from Meyers Lexicon dertechnik and the Exact Natural Sciences, Cisco Kleinmotoren GmbH, Sindelfingen. The latter is at the innovation fair from March 9th to 11th, 1995 in Fellbach has been distributed in the Schwabenlandhalle.
  • the object of the invention is to provide a heat engine in To form the preamble of claim 1 specified type so that this has a significantly improved heat balance and moreover with substantially lower temperatures and pressures of the Working gas gets along.
  • the heat engine according to the invention is both a high temperature generating heater as well as the only one Coolers generating heat loss each by means of a zeolite heat accumulator been replaced.
  • Zeolite has the advantage that he the working gas supplied to him, which at the Heat engine according to the invention by the working gas expansion machine is released as heated exhaust gas, absorbed.
  • the zeolite builds the working gas into its molecular lattice a, with a strongly exothermic reaction of the zeolite is triggered at which the working gas supplied to him is heated. In other words, the working gas is released in a state as if it were hypothermic, even though it is heated. Therefore, the pressure in the zeolite heat accumulator also drops very strongly.
  • the two zeolite heat storage alternately, during the a heated working gas as a drive for the working gas expansion machine supplies, the other stores working gas, cooling it down, and vice versa.
  • the waste heat off the working gas expansion machine is via the heat transfer medium used to remove the working gas from the heat storage to expel that previously when it was stored in the heat store Had received warmth. In this respect, it becomes a thermal balance a perfect cycle achieved, which none after Stirling principle working heat engine in the state of the Technology.
  • a low-boiling gas is preferably used as the working gas.
  • This has the advantage that the drive means can have a low temperature in the state in which it is supposed to do work.
  • CO 2 has proven to be particularly suitable. CO 2 leads to a particularly violent exothermic reaction in the zeolite heat accumulator which adsorbs the working gas, which has the consequence that the working gas is cooled down particularly well. In general, a large temperature difference between the warm and cold side of the heat engine is advantageous.
  • This advantage can be used with CO 2 as a working gas. This is made possible by a so-called "thermal hole" in the storage capacity of zeolite.
  • This property enables zeolite to adsorb a much larger amount of gas than its own volume.
  • the zeolite reduces the Braun movement of the working gas (as in a compression or supercooling process), which enables the heat accumulator to absorb a much larger amount of working gas than it does with normal pressure and could otherwise record temperature conditions without zeolite.
  • the heat engine additionally with heat using a burner, e.g. a heating burner, and / or a solar system , it can be used for combined heat and power be used in a combined heat and power plant.
  • a burner e.g. a heating burner, and / or a solar system
  • the additional heat is added to the Feed heat transfer medium in the heat transfer circuit. This will then not only work with the waste heat from the heat engine, but also with the waste heat from a burner or heat generated by solar panels.
  • Fig. 1 has one according to the Stirling principle working heat engine 10 a working gas cycle 12 and a heat transfer circuit 14, both with a working gas expansion machine 11 are connected.
  • the working gas cycle 12 contains two heat exchangers, each consisting of one Zeolite heat storage 16 and 18 exist.
  • the heat transfer circuit 14 has two parallel line branches 20, 22 through the heat accumulators 16 and 18 pass through and before and after are connected to a common line 24 or 26.
  • the common line 24 leads from a heat transfer medium output 28 of the working gas expansion machine 11 to the heat stores 16, 18, and the common line 26 leads to a heat transfer inlet 30 of the working gas expansion machine 11.
  • a third heat exchanger 32 arranged together with a pump 34 for circulation of the heat transfer medium in the heat transfer circuit 14. With the heat transfer medium it is in the embodiment described here for water.
  • a solenoid valve 36 or 38 arranged, with which the flow of the heat carrier in the concerned Shut off the line.
  • the bottom in Fig. 1 in the heat accumulator 16 entering part 20a of line 20 leads in a tubular heat exchanger arranged in the heat accumulator 16, its output, in turn, as shown, with the further one Part 20b of the line 20 is connected.
  • An interior 17, 19 in the heat accumulators 16 and 18, which are not from the tubular heat exchanger of the heat transfer circuit 14 is taken with Zeolite filled.
  • the working gas circuit 12 leads from an outlet 42 of the working gas expansion machine 11 to two input lines 44 and 46 of the heat accumulator 16 and 18 and, as shown, of these Input lines 44, 46 continue to a common Output line 48, which has a buffer space 50 and another Line 52 to an input 54 of the working gas expansion machine 11 leads.
  • a pump 56 is also in line 48 arranged.
  • a solenoid valve 58 and 60 is arranged in line 12 leading to lines 44, 46 arranged.
  • a solenoid valve 62 and 64 is arranged in the lines leading away from the input lines 44, 46 and open into the common line 48. After all, in the of a line 52 leading the buffer space 50 a solenoid valve 66 arranged.
  • solenoid valves 58 to 66 serve also as shut-off valves, which alternately connect the line 12 with the line 44 or 46 or interrupt, and vice versa. With the solenoid valve 66 can shut off the exit of the buffer space 50 until in the buffer space a sufficiently large pressure has been built up.
  • Working gas expansion machine 11 may be a conventional one Be Stirling engine, as he from the aforementioned state is known in the art, with the difference essential to the invention, that to improve the thermal energy balance of such Stirling engine the two usual in the prior art Heat exchanger in the form of a heater and a cooler as Zeolite heat accumulators 16, 18 are formed which are connected minimize any heat loss with the heat transfer circuit and in particular do not involve any heat loss.
  • the heat engine 10 operates as follows:
  • the working gas expansion machine 11 is, as usual, a periodically operating piston engine, which uses a working gas which is alternately strongly heated and cooled and which is pushed back and forth by two pistons (not shown), preferably CO 2 in the present case, and converts the supplied thermal energy into mechanical energy to drive an electrical generator 68, as indicated in FIG. 1.
  • the heat required which is generated in the prior art by the combustion of any fuel in a combustion chamber outside the cylinder (not shown) of the working gas expansion machine 11 and is transferred to the working gas in the cylinder by a special heater, is only as in the heat engine 10 described here supplied latent heat, which is required to start the heat engine.
  • the generator 68 is operated as a motor, which drives the working gas expansion machine 11, which now works as a heat pump, and emits CO 2 to one or the other heat accumulator 16, 18.
  • the CO 2 is stored in this heat storage in an exothermic reaction by adsorption in the zeolite, as described above. If both heat stores are filled, the Stirling process can start. Heat losses in the heat engine that cannot be avoided are compensated for by latent heat from the environment. Additional heat energy that is required, for example because energy is drawn from the generator 68, can be supplied to the heat engine via the heat exchanger 32, for example from the surrounding air, by additional solar radiation, by heating the heat exchanger 32 by means of a burner, etc.
  • the heat engine described here manages with a working gas temperature of about 60 ° C, with a delta P (pressure difference) between the inlet 30 of the working gas expansion machine and the Inputs of the heat accumulator (lines 44 and 46), in which a pressure of 10 bar is reached in the buffer space 50. This is explained in more detail below.
  • the solenoid valve 36 in addition to that Solenoid valve 38 opened so that the heat transfer medium previously in the adsorption phase has been heated in the heat accumulator 16 is now passed through the heat accumulator 18, to add the heat required for the desorption process deliver.
  • the pump 56 can be switched on if necessary.
  • the working gas that is made is driven out of the heat accumulator 18, heated sufficiently strongly, um as a driving means in the working gas expansion machine 11 to be able to do work.
  • the other heat accumulator 16 at least temporarily also flows through heat transfer medium, because in the heat accumulator 18 additionally requires heat for the desorption becomes.
  • the desorption process initially runs without additional heat supply from the heat accumulator 16 in the heat accumulator 18 because the zeolite is still in the heat storage 18 has stored sufficient heat. If this after a certain Time has decreased so far that the desorption process could no longer take place, the solenoid valve 36 opened so that now heated heat transfer medium from the heat storage 16 are passed through the heat accumulator 18 can.
  • the solenoid valves specified above are controlled by a changeover control 67.
  • the changeover control 67 is preferably a freely programmable one Computer control that the heat engine 10 controls over measured data. These measured data include especially the different temperatures and pressures that detected by temperature or pressure sensors, not shown become.
  • the solenoid valves are connected via lines shown in dashed lines operated by the switch controller 67.
  • Fig. 2 shows the use of the heat engine described above 10 in a combined heat and power plant.
  • the heat engine 10 is additional according to FIG. 2 Heat by means of a fuel operated with a fuel 73 such as oil or gas Heating burner 74 and / or a solar system 76 supplied.
  • the generator 68 is connected to the network coupling 70 public network N connectable if excess electrical Energy is to be delivered to the grid.
  • the heating burner 74 can be an oil or gas burner.
  • His exhaust 71 should be one Do not exceed the temperature of 200 ° C, because in the described here Heat engine otherwise high pressures arise would endanger the zeolite in the heat stores 16, 18 could.
  • the heating burner 74 also supplies a hot water circuit 75 with heat, for example for heating the building by the combined heat and power plant. 15 with a heating circuit is designated, which receives its heat from the heat transfer circuit 14.
  • the working gas used in the working circuit 12 is CO 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Gloves (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Disclosed is a heat engine (10) which operates on the Stirling principle, with a working gas circulation (12) in which the working gas as a drive agent is strongly heated in a first heat exchanger to make it capable of doing work, and with a heat-carrying circuit (14) with a second heat exchanger in which spent working gas is cooled. The first and second heat exchangers are designed as zeolite heat accumulators (16, 18), working gas from a working gas expansion machine (11) being alternately supplied to and drawn from the latter by a switch control (67); the zeolite heat accumulator (16, 18) can be brought into heat-exchanging connection with the heat carrying circuit (14) by the switch control (67). The heat engine (10) operates with a considerably better thermal energy balance that conventional Stirling engines since it is hardly affected by thermal wastage. When working gas is adsorbed in one zeolite heat accumulator, heat is transferred to the heat carrier; when working gas is de-sorbed from the zeolite of the other heat accumulator, the heat transferred to the heat carrier is re-used. The heat engine (10) can be used advantageously in a block heating power plant.

Description

Die Erfindung betrifft eine Wärmekraftmaschine der im Oberbegriff des Patentanspruchs 1 angegebenen Art.The invention relates to a heat engine in the preamble of claim 1 specified Art.

Stirling-Motoren sind z.B. aus Meyers Lexikon der Technik und der Exakten Naturwissenschaften, Bibliographisches Institut Mannheim/Wien/Zürich, 1970, Seite 589, sowie aus einem Firmenprospekt mit dem Titel "Entwicklungsarbeit am Stirlingmotor" der Firma SOLO Kleinmotoren GmbH, Sindelfingen, bekannt. Letzterer ist auf der Innovationsmesse vom 9. - 11. März 1995 in Fellbach in der Schwabenlandhalle verteilt worden.Stirling engines are e.g. from Meyers Lexicon der Technik and the Exact Natural Sciences, Bibliographic Institute Mannheim / Vienna / Zurich, 1970, page 589, and from a company brochure with the title "Development work on the Stirling engine" the company SOLO Kleinmotoren GmbH, Sindelfingen. The latter is at the innovation fair from March 9th to 11th, 1995 in Fellbach has been distributed in the Schwabenlandhalle.

Bei solchen bekannten Stirlingmotoren muß konstruktionsbedingt mit hohen Antriebsmitteltemperaturen und -drücken gearbeitet werden, die üblicherweise bis 1000 °C bzw. bis 300 bar reichen. Außerdem wird üblicherweise als Arbeitsgas Helium eingesetzt. Die hohen Temperaturen und Drücke machen eine aufwendige, massive Konstruktion erforderlich, die hochtemperaturfest und hochdruckfest ist. Die Verwendung von Helium bringt große Abdichtungsprobleme mit sich, weil die Diffusionsrate von Helium sehr hoch ist. Die erforderliche hohe Temperatur macht einen als Erhitzer ausgebildeten ersten Wärmetauscher erforderlich, der Abgase entsprechend hoher Temperatur liefert, mit denen das Antriebsmittel ausreichend stark erhitzt werden kann. Außerdem verlangen solche bekannten Stirlingmotoren einen als Kühler ausgebildeten zweiten Wärmetauscher, um das Antriebsmittel wieder herunterkühlen zu können. Die Abwärme eines solchen Kühlers ist für den Wärmekreislauf des Stirlingmotors verloren. Alles das ergibt eine schlechte Wärmebilanz der bekannten Stirlingmotoren. Die hohen Drücke, die bei den bekannten Stirlingmotoren erforderlich sind, machen nicht nur eine aufwendige, massive Konstruktion des Motors erforderlich, sondern führen auch zu einer entsprechend geringen Lebensdauer desselben.In the case of such known Stirling engines, the design must be such worked with high drive medium temperatures and pressures be, which usually range up to 1000 ° C or up to 300 bar. In addition, helium is usually used as the working gas. The high temperatures and pressures make an elaborate, massive Construction required, the high temperature resistant and is high pressure resistant. The use of helium poses great sealing problems with itself because of the diffusion rate of helium is very high. The required high temperature makes you first heat exchanger designed as a heater is required, of the exhaust gases delivers a correspondingly high temperature with which the Drive means can be heated sufficiently strong. Furthermore such known Stirling engines require a cooler trained second heat exchanger to the drive means again to be able to cool down. The waste heat from such a cooler is lost to the heat cycle of the Stirling engine. Everything this results in a poor heat balance of the known Stirling engines. The high pressures in the well-known Stirling engines are not only necessary to make an elaborate, massive Construction of the engine required, but also lead to a corresponding short life of the same.

Aus der US-A-4 651 527 ist eine Stirling-Maschine bekannt, die zwei Zeolith-Wärmetauscher aufweist. From US-A-4 651 527 a Stirling engine is known, the two zeolite heat exchangers having.

Aufgabe der Erfindung ist es, eine Wärmekraftmaschine der im Oberbegriff des Patentanspruchs 1 angegebenen Art so auszubilden, daß diese eine wesentlich verbesserte Wärmebilanz hat und überdies mit wesenlich geringeren Temperaturen und Drücken des Arbeitsgases auskommt.The object of the invention is to provide a heat engine in To form the preamble of claim 1 specified type so that this has a significantly improved heat balance and moreover with substantially lower temperatures and pressures of the Working gas gets along.

Diese Aufgabe ist durch die im Patentanspruch 1 angegebenen Merkmale gelöst.This object is by the specified in claim 1 Features resolved.

Bei der Wärmekraftmaschine nach der Erfindung ist sowohl der eine hohe Temperatur erzeugende Erhitzer als auch der lediglich Verlustwärme erzeugende Kühler jeweils durch einen Zeolith-Wärmespeicher ersetzt worden. Zeolith bietet den Vorteil, daß er das ihm zugeführte Arbeitsgas, welches bei der Wärmekraftmaschine nach der Erfindung durch die Arbeitsgasexpansionsmaschine als erhitztes Abgas abgegeben wird, absorbiert. Der Zeolith baut das Arbeitsgas in sein Molekülgitter ein, wobei eine stark exotherme Reaktion des Zeoliths ausgelöst wird, bei der das ihm zugeführte Arbeitsgas erhitzt wird. Mit anderen Worten, dabei gelangt das Arbeitsgas in einen Zustand, als würde es unterkühlt werden, obwohl es erhitzt wird. Deshalb sinkt auch der Druck in dem Zeolith-Wärmespeicher sehr stark ab. Nach bisherigem Verständnis der sich dabei abspielenden Vorgänge entsteht dadurch ein Massenstrom in dem Zeolith, der den Wärmespeicher in die Lage versetzt, eine sehr große Menge an Arbeitsgas zu adsorbieren, die etwa das Zehnfache seines Volumens ist. Dieser Speichervorgang wird zwischen den beiden Zeolith-Wärmespeichern wechselweise ausgeführt. Nachdem auch der zweite Zeolith-Wärmespeicher mit Arbeitsgas durch Adsorption im Zeolith gefüllt worden ist, wird dem anderen Zeolith-Wärmespeicher, der zuvor gefüllt worden ist, das Arbeitsgas in erhitztem Zustand durch Desorption des Zeoliths entnommen, um der Wärmekraftmaschine als Antriebsmittel zugeführt zu werden. Dafür ist die Zufuhr von Wärme erforderlich. Zu diesem Zweck wir nun mittels der Umschaltsteuerung der Wärmeträger in dem Wärmeträgerkreis durch denjenigen Wärmespeicher hindurchgeleitet, aus dem gespeichertes Arbeitsgas entnommen werden soll. Durch das Hindurchleiten des Wärmeträgers, der in der Arbeitsgasexpansionsmaschine und/oder in dem anderen Wärmespeicher, in dem Arbeitsgas adsorbiert wird, Wärme aufgenommen hat, durch den einen Zeolith-Wärmespeicher wird in diesem eine endotherme Reaktion in Gang gesetzt, durch die das Arbeitsgas wieder aus dem Zeolith ausgetrieben wird. Das Arbeitsgas wird dabei ausreichend stark erhitzt, um als Antriebsmittel in der Arbeitsgasexpansionsmaschine Arbeit verrichten zu können. Das Ingangsetzen der endothermen Reaktion erfolgt durch die Wärme aus dem Wärmeträger. Die Abwärme der Arbeitsgasexpansionsmaschine wird also erfindungsgemäß wieder voll ausgenutzt, um gespeichertes Arbeitsgas freizusetzen. Die Wärmekraftmaschine nach der Erfindung arbeitet deshalb mit einer wesentlich besseren Wärmeenergiebilanz als die bekannten Stirlingmotoren, bei denen eine Wärmeabfuhr über den Kühler erfolgt. Bei der Wärmekraftmaschine nach der Erfindung arbeiten die beiden Zeolith-Wärmespeicher im Wechsel, während der eine erhitztes Arbeitsgas als Antriebsmittel für die Arbeitsgasexpansionsmaschine liefert, speichert der andere Arbeitsgas, wobei er es herunterkühlt, und umgekehrt. Die Abwärme aus der Arbeitsgasexpansionsmaschine wird über den Wärmeträger dazu eingesetzt, das Arbeitsgas wieder aus dem Wärmespeicher auszutreiben, das zuvor bei seiner Einspeicherung in den Wärmespeicher Wärme empfangen hatte. Insofern wird also wärmebilanzmäßig ein perfekter Kreislauf erreicht, den keine nach dem Stirling-Prinzip arbeitende Wärmekraftmaschine im Stand der Technik aufweist.In the heat engine according to the invention is both a high temperature generating heater as well as the only one Coolers generating heat loss each by means of a zeolite heat accumulator been replaced. Zeolite has the advantage that he the working gas supplied to him, which at the Heat engine according to the invention by the working gas expansion machine is released as heated exhaust gas, absorbed. The zeolite builds the working gas into its molecular lattice a, with a strongly exothermic reaction of the zeolite is triggered at which the working gas supplied to him is heated. In other words, the working gas is released in a state as if it were hypothermic, even though it is heated. Therefore, the pressure in the zeolite heat accumulator also drops very strongly. According to the previous understanding of the the processes that take place thereby create a mass flow in the zeolite that enables the heat accumulator to adsorb a very large amount of working gas, which is about is ten times its volume. This save will executed alternately between the two zeolite heat stores. After the second zeolite heat storage with working gas has been filled by adsorption in the zeolite the other zeolite heat accumulator that was previously filled is, the working gas in the heated state by desorption of the Zeolite taken to drive the heat engine to be fed. This requires the addition of heat. For this purpose we now use the switch control the heat transfer medium in the heat transfer circuit through the heat accumulator passed through from the stored working gas should be removed. By passing the heat transfer medium through that in the working gas expansion machine and / or in the other heat storage in which working gas is adsorbed, Has absorbed heat through a zeolite heat storage an endothermic reaction is set in motion in this the working gas is expelled again from the zeolite. The working gas is heated sufficiently to be as Drive means work in the working gas expansion machine to be able to. Starting the endothermic reaction takes place through the heat from the heat transfer medium. The waste heat from the Working gas expansion machine is again according to the invention fully utilized to release stored working gas. The Heat engine according to the invention therefore works with one much better thermal energy balance than the known ones Stirling engines where heat is dissipated through the radiator he follows. Work in the heat engine according to the invention the two zeolite heat storage alternately, during the a heated working gas as a drive for the working gas expansion machine supplies, the other stores working gas, cooling it down, and vice versa. The waste heat off the working gas expansion machine is via the heat transfer medium used to remove the working gas from the heat storage to expel that previously when it was stored in the heat store Had received warmth. In this respect, it becomes a thermal balance a perfect cycle achieved, which none after Stirling principle working heat engine in the state of the Technology.

Vorteilhafte Ausgestaltungen der Erfindung bilden die Gegenstände der Unteransprüche.The objects form advantageous embodiments of the invention of subclaims.

Vorzugsweise wird als Arbeitsgas ein niedrig siedendes Gas eingesetzt. Das hat den Vorteil, daß das Antriebsmittel in dem Zustand, es welchem es Arbeit verrichten soll, eine niedrige Temperatur haben kann. Von den bislang bekannten Arbeitsgasen, die als niedrig siedende Gase zum Einsatz bei der Wärmekraftmaschine nach der Erfindung geeignet sind, hat sich CO2 als besonders geeignet herausgestellt. CO2 führt in dem das Arbeitsgas adsorbierenden Zeolith-Wärmespeicher zu einer besonders heftigen exothermen Reaktion, die zur Folge hat, daß das Arbeitsgas besonders gut heruntergekühlt wird. Ganz allgemein ist eine große Temperaturdifferenz zwischen warmer und kalter Seite der Wärmekraftmaschine von Vorteil. Dieser Vorteil läßt sich mit CO2 als Arbeitsgas besonders nutzen. Ermöglicht wird das durch ein sogenanntes "thermisches Loch" im Speichervermögen von Zeolith. Diese Eigenschaft versetzt Zeolith in die Lage, eine wesentlich größere Gasmenge zu adsorbieren, als seinem Eigenvolumen entspricht. Durch die Einbindung des Arbeitsgases in sein Molekülgitter reduziert der Zeolith die Braun'sche Molekularbewegung des Arbeitsgases (wie bei einem Kompressions- oder Unterkühlvorgang), was den Wärmespeicher in die Lage versetzt, eine wesentlich größere Menge an Arbeitsgas aufzunehmen, als er bei normalen Druck- und Temperaturbedingungen sonst ohne Zeolith aufnehmen könnte.A low-boiling gas is preferably used as the working gas. This has the advantage that the drive means can have a low temperature in the state in which it is supposed to do work. Of the previously known working gases, which are suitable as low-boiling gases for use in the heat engine according to the invention, CO 2 has proven to be particularly suitable. CO 2 leads to a particularly violent exothermic reaction in the zeolite heat accumulator which adsorbs the working gas, which has the consequence that the working gas is cooled down particularly well. In general, a large temperature difference between the warm and cold side of the heat engine is advantageous. This advantage can be used with CO 2 as a working gas. This is made possible by a so-called "thermal hole" in the storage capacity of zeolite. This property enables zeolite to adsorb a much larger amount of gas than its own volume. By incorporating the working gas into its molecular lattice, the zeolite reduces the Braun movement of the working gas (as in a compression or supercooling process), which enables the heat accumulator to absorb a much larger amount of working gas than it does with normal pressure and could otherwise record temperature conditions without zeolite.

Wenn in zusätzlicher Ausgestaltung der Erfindung die Wärmekraftmaschine zusätzlich mit Wärme mittels eines Brenners, z.B. eines Heizbrenners, und/oder einer Solaranlage versorgt wird, kann sie auf vorteilhafte Weise zur Kraft-Wärme-Kopplung in einem Blockheizkraftwerk herangezogen werden. Vorteilhafterweise wird man in diesem Fall die zusätzliche Wärme dem Wärmeträger in dem Wärmeträgerkreis zuführen. Dieser wird dann nicht nur mit der Abwärme aus der Wärmekraftmaschine arbeiten, sondern zusätzlich mit der Abwärme eines Brenners oder der mittels Solaranlage erzeugten Wärme.If in an additional embodiment of the invention, the heat engine additionally with heat using a burner, e.g. a heating burner, and / or a solar system , it can be used for combined heat and power be used in a combined heat and power plant. Advantageously in this case, the additional heat is added to the Feed heat transfer medium in the heat transfer circuit. This will then not only work with the waste heat from the heat engine, but also with the waste heat from a burner or heat generated by solar panels.

Ausführungsbeispiele der Erfindung werden im folgenden unter Bezugnahme auf die Zeichnungen näher beschrieben. Es zeigt

Fig. 1
ein Schema einer Wärmekraftmaschine nach der Erfindung, und
Fig. 2
ein Schema eines Blockheizkraftwerkes, das mit einer Wärmekraftmaschine nach der Erfindung ausgerüstet ist.
Embodiments of the invention are described below with reference to the drawings. It shows
Fig. 1
a schematic of a heat engine according to the invention, and
Fig. 2
a diagram of a combined heat and power plant, which is equipped with a heat engine according to the invention.

Gemäß der Darstellung in Fig. 1 hat eine nach dem Stirling-Prinzip arbeitende Wärmekraftmaschine 10 einen Arbeitsgaskreislauf 12 und einen Wärmeträgerkreis 14, die beide mit einer Arbeitsgasexpansionsmaschine 11 verbunden sind. Der Arbeitsgaskreislauf 12 enthält zwei Wärmetauscher, die jeweils aus einem Zeolith-Wärmespeicher 16 bzw. 18 bestehen. Der Wärmeträgerkreis 14 weist zwei parallele Leitungszweige 20, 22 auf, die durch die Wärmespeicher 16 bzw. 18 hindurchführen und davor und danach an eine gemeinsame Leitung 24 bzw. 26 angeschlossen sind. Die gemeinsame Leitung 24 führt von einem Wärmeträger-Ausgang 28 der Arbeitsgasexpansionsmaschine 11 zu den Wärmespeichern 16, 18, und die gemeinsame Leitung 26 führt zu einem Wärmeträger-Eingang 30 der Arbeitsgasexpansionsmaschine 11. In der gemeinsamen Leitung 26 ist darüber hinaus ein dritter Wärmetauscher 32 angeordnet, zusammen mit einer Pumpe 34 zum Umwälzen des Wärmeträgers in dem Wärmeträgerkreis 14. Bei dem Wärmeträger handelt es sich in dem hier beschriebenen Ausführungsbeispiel um Wasser. In den Leitungen 20, 22, die durch die Wärmespeicher 16 bzw. 18 hindurchführen, ist jeweils vor dem betreffenden Wärmespeicher ein Magnetventil 36 bzw. 38 angeordnet, mit welchem sich der Durchfluß des Wärmeträgers in der betreffenden Leitung absperren läßt. Der in Fig. 1 unten in den Wärmespeicher 16 eintretende Teil 20a der Leitung 20 führt in einen in dem Wärmespeicher 16 angeordneten Röhrenwärmetauscher, dessen Ausgang wiederum, wie dargestellt, mit dem weiterführenden Teil 20b der Leitung 20 verbunden ist. Entsprechendes gilt für den Aufbau des Wärmespeichers 18. Ein Innenraum 17, 19 in den Wärmespeichern 16 bzw. 18, der nicht von dem Röhrenwärmetauscher des Wärmeträgerkreises 14 eingenommen wird, ist mit Zeolith ausgefüllt. According to the illustration in Fig. 1 has one according to the Stirling principle working heat engine 10 a working gas cycle 12 and a heat transfer circuit 14, both with a working gas expansion machine 11 are connected. The working gas cycle 12 contains two heat exchangers, each consisting of one Zeolite heat storage 16 and 18 exist. The heat transfer circuit 14 has two parallel line branches 20, 22 through the heat accumulators 16 and 18 pass through and before and after are connected to a common line 24 or 26. The common line 24 leads from a heat transfer medium output 28 of the working gas expansion machine 11 to the heat stores 16, 18, and the common line 26 leads to a heat transfer inlet 30 of the working gas expansion machine 11. In the common Line 26 is also a third heat exchanger 32 arranged together with a pump 34 for circulation of the heat transfer medium in the heat transfer circuit 14. With the heat transfer medium it is in the embodiment described here for water. In the lines 20, 22 through the heat accumulator 16 or 18 pass through, is in front of the respective one Heat storage a solenoid valve 36 or 38 arranged, with which the flow of the heat carrier in the concerned Shut off the line. The bottom in Fig. 1 in the heat accumulator 16 entering part 20a of line 20 leads in a tubular heat exchanger arranged in the heat accumulator 16, its output, in turn, as shown, with the further one Part 20b of the line 20 is connected. The same applies for the construction of the heat accumulator 18. An interior 17, 19 in the heat accumulators 16 and 18, which are not from the tubular heat exchanger of the heat transfer circuit 14 is taken with Zeolite filled.

Der Arbeitsgaskreislauf 12 führt von einem Ausgang 42 der Arbeitsgasexpansionsmaschine 11 zu zwei Eingangsleitungen 44 und 46 der Wärmespeicher 16 bzw. 18 und, wie dargestellt, von diesen Eingangsleitungen 44, 46 aus weiter zu einer gemeinsamen Ausgangsleitung 48, die über einen Pufferraum 50 und eine weitere Leitung 52 zu einem Eingang 54 der Arbeitsgasexpansionsmaschine 11 führt. In der Leitung 48 ist zusätzlich eine Pumpe 56 angeordnet. In der Leitung 12, die zu den Leitungen 44, 46 führt, ist jeweils ein Magnetventil 58 bzw. 60 angeordnet. In den Leitungen, die von den Eingangsleitungen 44, 46 wegführen und in die gemeinsame Leitung 48 münden, ist jeweils ein Magnetventil 62 bzw. 64 angeordnet. Schließlich ist in der von dem Pufferraum 50 wegführenden Leitung 52 ein Magnetventil 66 angeordnet. Die letztgenannten Magnetventile 58 bis 66 dienen ebenfalls als Absperrventile, welche wechselweise die Verbindung der Leitung 12 mit der Leitung 44 oder 46 herstellen bzw. unterbrechen, und umgekehrt. Mit dem Magnetventil 66 läßt sich der Ausgang des Pufferraums 50 absperren, bis in dem Pufferraum ein ausreichend großer Druck aufgebaut worden ist.The working gas circuit 12 leads from an outlet 42 of the working gas expansion machine 11 to two input lines 44 and 46 of the heat accumulator 16 and 18 and, as shown, of these Input lines 44, 46 continue to a common Output line 48, which has a buffer space 50 and another Line 52 to an input 54 of the working gas expansion machine 11 leads. A pump 56 is also in line 48 arranged. In line 12 leading to lines 44, 46 leads, a solenoid valve 58 and 60 is arranged. In the lines leading away from the input lines 44, 46 and open into the common line 48, is a solenoid valve 62 and 64 arranged. After all, in the of a line 52 leading the buffer space 50 a solenoid valve 66 arranged. The latter solenoid valves 58 to 66 serve also as shut-off valves, which alternately connect the line 12 with the line 44 or 46 or interrupt, and vice versa. With the solenoid valve 66 can shut off the exit of the buffer space 50 until in the buffer space a sufficiently large pressure has been built up.

Die in der vorstehend beschriebenen Wärmekraftmaschine 10 verwendete Arbeitsgasexpansionsmaschine 11 kann ein herkömmlicher Stirling-Motor sein, wie er aus dem eingangs erwähnten Stand der Technik bekannt ist, mit dem erfindungswesentlichen Unterschied, daß zur Verbesserung der Wärmeenergiebilanz eines solchen Stirling-Motors die im Stand der Technik üblichen beiden Wärmetauscher in Form eines Erhitzers und eines Kühlers als Zeolith-Wärmespeicher 16, 18 ausgebildet sind, die in Verbindung mit dem Wärmeträgerkreis jegliche Wärmeverluste minimieren und insbesondere keinerlei Verlustwärmeabfuhr mit sich bringen.The one used in the heat engine 10 described above Working gas expansion machine 11 may be a conventional one Be Stirling engine, as he from the aforementioned state is known in the art, with the difference essential to the invention, that to improve the thermal energy balance of such Stirling engine the two usual in the prior art Heat exchanger in the form of a heater and a cooler as Zeolite heat accumulators 16, 18 are formed which are connected minimize any heat loss with the heat transfer circuit and in particular do not involve any heat loss.

Die Wärmekraftmaschine 10 arbeitet folgendermaßen:The heat engine 10 operates as follows:

Die Arbeitsgasexpansionsmaschine 11 ist wie üblich eine periodisch arbeitende Kolbenkraftmaschine, die als Antriebsmittel ein abwechselnd stark erhitztes und abgekühltes, von zwei Kolben (nicht dargestellt) hin- und hergeschobenes Arbeitsgas, in vorliegendem Fall vorzugsweise CO2, benutzt und die zugeführte Wärmeenergie in mechanische Energie umwandelt, um, wie in Fig. 1 angedeutet, einen elektrischen Generator 68 anzutreiben. Die benötigte Wärme, die im Stand der Technik durch Verbrennung eines beliebigen Brennstoffes in einer Brennkammer außerhalb des Zylinders (nicht dargestellt) der Arbeitsgasexpansionsmaschine 11 erzeugt und durch einen besonderen Erhitzer auf das Arbeitsgas im Zylinder übertragen wird, wird bei der hier beschriebenen Wärmekraftmaschine 10 lediglich als latente Wärme zugeführt, die zum Starten der Wärmekraftmaschine benötigt wird. Für den Startvorgang wird der Generator 68 als Motor betrieben, der die Arbeitsgasexpansionsmaschine 11 antreibt, die nun als Wärmepumpe arbeitet, und CO2 an den einen oder anderen Wärmespeicher 16, 18 abgibt. In diesem Wärmespeicher wird das CO2 in einer exothermen Reaktion durch Adsorption im Zeolith gespeichert, wie oben beschrieben. Wenn beide Wärmespeicher gefüllt sind, kann der Stirling-Prozeß anlaufen. Wärmeverluste der Wärmekraftmaschine, die sich nicht vermeiden lassen, werden dabei durch latente Wärme aus der Umgebung ausgeglichen. Zusätzliche Wärmeenergie, die benötigt wird, weil z.B. über den Generator 68 Energie entnommen wird, läßt sich der Wärmekraftmaschine über den Wärmetauscher 32 zuführen, z.B. aus der umgebenden Luft, durch zusätzliche Sonneneinstrahlung, durch Erhitzen des Wärmetauschers 32 mittels eines Brenners, usw. Im Gegensatz zum Stand der Technik, wo der Wärmeträger auf Temperaturen bis zu 1000 °C erhitzt werden muß, kommt die hier beschriebene Wärmekraftmaschine.mit einer Arbeitsgastemperatur von etwa 60 °C aus, bei einem Delta P (Druckdifferenz) zwischen dem Eingang 30 der Arbeitsgasexpansionsmaschine und den Eingängen der Wärmespeicher (Leitungen 44 bzw. 46), bei dem in dem Pufferraum 50 ein Druck von 10 bar erreicht wird. Das wird weiter unten noch näher erläutert.The working gas expansion machine 11 is, as usual, a periodically operating piston engine, which uses a working gas which is alternately strongly heated and cooled and which is pushed back and forth by two pistons (not shown), preferably CO 2 in the present case, and converts the supplied thermal energy into mechanical energy to drive an electrical generator 68, as indicated in FIG. 1. The heat required, which is generated in the prior art by the combustion of any fuel in a combustion chamber outside the cylinder (not shown) of the working gas expansion machine 11 and is transferred to the working gas in the cylinder by a special heater, is only as in the heat engine 10 described here supplied latent heat, which is required to start the heat engine. For the starting process, the generator 68 is operated as a motor, which drives the working gas expansion machine 11, which now works as a heat pump, and emits CO 2 to one or the other heat accumulator 16, 18. The CO 2 is stored in this heat storage in an exothermic reaction by adsorption in the zeolite, as described above. If both heat stores are filled, the Stirling process can start. Heat losses in the heat engine that cannot be avoided are compensated for by latent heat from the environment. Additional heat energy that is required, for example because energy is drawn from the generator 68, can be supplied to the heat engine via the heat exchanger 32, for example from the surrounding air, by additional solar radiation, by heating the heat exchanger 32 by means of a burner, etc. In contrast to the state of the art, where the heat transfer medium has to be heated to temperatures of up to 1000 ° C, the heat engine described here manages with a working gas temperature of about 60 ° C, with a delta P (pressure difference) between the inlet 30 of the working gas expansion machine and the Inputs of the heat accumulator (lines 44 and 46), in which a pressure of 10 bar is reached in the buffer space 50. This is explained in more detail below.

Nach dem Anfahren der Arbeitsgasexpansionsmaschine 11 und nach dem Speichern von Arbeitsgas in beiden Wärmespeichern 16, 18 kann der Stirlingprozeß ablaufen. Bei der Speicherung des Arbeitsgases in dem einen Wärmespeicher tritt, wie eingangs erläutert, aufgrund des Adsorptionsvolumens ein Druckgefälle auf. Gleichzeitig wird infolge der exothermen Reaktion die Druckenergie als Wärme an den Wärmeträger übergeben, der dabei stark erhitzt wird. Unter der Annahme, daß in den Wärmespeicher 16 Arbeitsgas eingespeichert wird, ist das Magnetventil 36 geschlossen, das Magnetventil 58 ist geöffnet, das Magnetventil 62 ist geschlossen, und das Magnetventil 38 ist geöffnet. Wenn nun gleichzeitig Arbeitsgas durch Desorption aus dem Zeolith des Wärmespeichers 18 entnommen wird, wird das Magnetventil 60 geschlossen, und das Magnetventil 64 wird geöffnet. Für das Anfahren des Desorptionsvorganges in dem Wärmespeicher 18 wird nach einer gewissen Zeit das Magnetventil 36 zusätzlich zu dem Magnetventil 38 geöffnet, damit der Wärmeträger, der zuvor in der Adsorptionsphase in dem Wärmespeicher 16 erhitzt worden ist, nunmehr durch den Wärmespeicher 18 hindurchgeleitet wird, um dort die für den Desorptionsvorgang erforderliche Wärme zu liefern. Zur Zufuhr des Arbeitsgases zu der Arbeitsgasexpansionsmaschine 11 kann die Pumpe 56 bei Bedarf eingeschaltet werden. Bei dem Desorptionsvorgang wird das Arbeitsgas, das aus dem Wärmespeicher 18 ausgetrieben wird, ausreichend stark erhitzt, um als Antriebsmittel in der Arbeitsgasexpansionsmaschine 11 Arbeit verrichten zu können. Während der Wärmespeicher 18, dem Arbeitsgas durch die Desorption des Zeoliths entnommen werden soll, von Wärmeträger durchströmt ist, wird nach einer gewissen Zeitspanne der andere Wärmespeicher 16 zumindest vorübergehend ebenfalls von Wärmeträger durchströmt, weil in dem Wärmespeicher 18 zusätzlich Wärme für die Desorption benötigt wird. Der Desorptionsvorgang läuft nämlich zunächst ohne zusätzliche Wärmezufuhr aus dem Wärmespeicher 16 in dem Wärmespeicher 18 ab, weil der Zeolith in dem Wärmespeicher 18 noch ausreichend Wärme gespeichert hat. Wenn diese nach einer gewissen Zeit soweit abgenommen hat, daß der Desorptionsvorgang nicht mehr vonstatten gehen könnte, wird das Magnetventil 36 geöffnet, so daß nun erhitzter Wärmeträger aus dem Wärmespeicher 16 durch den Wärmespeicher 18 hindurchgeleitet werden kann. After starting the working gas expansion machine 11 and after the storage of working gas in both heat stores 16, 18 the Stirling process can run. When storing the working gas in which a heat store occurs, as explained at the beginning, a pressure drop due to the adsorption volume. At the same time, due to the exothermic reaction, the pressure energy passed as heat to the heat transfer medium, which is strong is heated. Assuming that in the heat accumulator 16 Working gas is stored, the solenoid valve 36 is closed, the solenoid valve 58 is open, the solenoid valve 62 is closed and the solenoid valve 38 is open. If now working gas at the same time by desorption from the zeolite of the heat accumulator 18 is removed, the solenoid valve 60 closed and the solenoid valve 64 is opened. For starting of the desorption process in the heat accumulator 18 after a certain time the solenoid valve 36 in addition to that Solenoid valve 38 opened so that the heat transfer medium previously in the adsorption phase has been heated in the heat accumulator 16 is now passed through the heat accumulator 18, to add the heat required for the desorption process deliver. For supplying the working gas to the working gas expansion machine 11, the pump 56 can be switched on if necessary. During the desorption process, the working gas that is made is driven out of the heat accumulator 18, heated sufficiently strongly, um as a driving means in the working gas expansion machine 11 to be able to do work. During the heat storage 18, taken from the working gas by the desorption of the zeolite is to be flowed through by heat transfer, is after a certain period of time, the other heat accumulator 16 at least temporarily also flows through heat transfer medium, because in the heat accumulator 18 additionally requires heat for the desorption becomes. The desorption process initially runs without additional heat supply from the heat accumulator 16 in the heat accumulator 18 because the zeolite is still in the heat storage 18 has stored sufficient heat. If this after a certain Time has decreased so far that the desorption process could no longer take place, the solenoid valve 36 opened so that now heated heat transfer medium from the heat storage 16 are passed through the heat accumulator 18 can.

Wenn hingegen die in den Wärmespeichern 16 und 18 im Zeolith gespeicherte Wärmeenergie ausreicht, um jeweils auch den Desorptionsvorgang ablaufen zu lassen, besteht kein Bedarf, aus dem anderen Wärmespeicher Wärmeträger zu entnehmen. In diesem Fall werden die Wärmespeicher 16, 18 durch die Umschaltsteuerung tatsächlich nur wechselweise in Wärmeübertragungsbeziehung mit dem Wärmeträgerkreis gebracht.If, on the other hand, those in heat stores 16 and 18 in the zeolite stored thermal energy is sufficient to also each There is no need to run the desorption process the other heat accumulator to remove heat transfer fluid. In this Fall, the heat accumulator 16, 18 by the switching control actually only alternately in the heat transfer relationship brought with the heat transfer circuit.

Die Steuerung der vorstehend angegebenen Magnetventile erfolgt durch eine Umschaltsteuerung 67. Diese könnte auch manuell ausgebildet sein, d.h. durch eine Bedienungsperson ersetzt werden. Vorzugsweise ist die Umschaltsteuerung 67 aber eine freiprogrammierbare Computersteuerung, die die Wärmekraftmaschine 10 über gemessene Daten steuert. Zu diesen gemessenen Daten gehören insbesondere die verschiedenen Temperaturen und Drücke, die durch nicht dargestellte Temperatur- bzw. Drucksensoren erfaßt werden. Über gestrichelt dargestellte Leitungen werden die Magnetventile durch die Umschaltsteuerung 67 betätigt.The solenoid valves specified above are controlled by a changeover control 67. This could also be configured manually be, i.e. to be replaced by an operator. However, the changeover control 67 is preferably a freely programmable one Computer control that the heat engine 10 controls over measured data. These measured data include especially the different temperatures and pressures that detected by temperature or pressure sensors, not shown become. The solenoid valves are connected via lines shown in dashed lines operated by the switch controller 67.

Fig. 2 zeigt den Einsatz der vorstehend beschriebenen Wärmekraftmaschine 10 in einem Blockheizkraftwerk. In Fig. 2 sind gleiche Teile wie in Fig. 1 mit denselben Bezugszahlen bezeichnet und brauchen deshalb hier nicht nochmals beschrieben zu werden. Lediglich die zusätzlichen Komponenten werden beschrieben. Der Wärmekraftmaschine 10 wird gemäß Fig. 2 zusätzliche Wärme mittels eines mit einem Brennstoff 73 wie Öl oder Gas betriebenen Heizbrenners 74 und/oder einer Solaranlage 76 zugeführt. Der Generator 68 ist über eine Netzkupplung 70 an das öffentliche Netz N anschließbar, wenn überschüssige elektrische Energie an das Netz abgegeben werden soll. Der Heizbrenner 74 kann ein Öl- oder Gasbrenner sein. Sein Abgas 71 sollte eine Temperatur von 200°C nicht überschreiten, weil in der hier beschriebenen Wärmekraftmaschine sonst zu hohe Drücke entstehen würden, die den Zeolith in den Wärmespeichern 16, 18 gefährden könnten. Fig. 2 shows the use of the heat engine described above 10 in a combined heat and power plant. In Fig. 2 are same parts as in Fig. 1 with the same reference numerals and therefore do not need to be described again here become. Only the additional components are described. The heat engine 10 is additional according to FIG. 2 Heat by means of a fuel operated with a fuel 73 such as oil or gas Heating burner 74 and / or a solar system 76 supplied. The generator 68 is connected to the network coupling 70 public network N connectable if excess electrical Energy is to be delivered to the grid. The heating burner 74 can be an oil or gas burner. His exhaust 71 should be one Do not exceed the temperature of 200 ° C, because in the described here Heat engine otherwise high pressures arise would endanger the zeolite in the heat stores 16, 18 could.

Der Heizbrenner 74 versorgt im übrigen einen Warmwasserkreislauf 75 mit Wärme, z.B. zur Gebäudebeheizung durch das Blockheizkraftwerk. Mit 15 ist ein Heizkreislauf bezeichnet, der seine Wärme aus dem Wärmeträgerkreis 14 empfängt. Das im Arbeitskreislauf 12 eingesetzte Arbeitsgas ist CO2.The heating burner 74 also supplies a hot water circuit 75 with heat, for example for heating the building by the combined heat and power plant. 15 with a heating circuit is designated, which receives its heat from the heat transfer circuit 14. The working gas used in the working circuit 12 is CO 2 .

Claims (4)

  1. A thermal engine (10) operating in accordance with the Stirling principle, with a working gas circuit (12), in which the working gas constituting the drive fluid is strongly heated in a first heat exchanger so that it can perform work, and with a heat transfer agent circuit (14) with a second heat exchanger, in which the working gas is cooled following the performance of work, wherein the first and second heat exchangers are embodied as zeolite heat accumulators (16, 18),
    characterised in
    that the working gas of a working gas expansion machine (11) is alternatingly supplied to or taken from the zeolite heat accumulators (16, 18) by means of a reversing control (67), and that the zeolite heat accumulators (16, 18) can be brought into a heat transfer connection with the heat transfer agent circuit (14) by means of the reversing control (67).
  2. The thermal engine according to claim 1, characterised in that the working gas is a low-boiling gas.
  3. The thermal engine according to claim 2, characterised in that the working gas is CO2.
  4. The thermal engine according to one of claims 1 to 3, characterised in that it is supplied with additional heat by means of a burner (74) and/or by means of a solar installation (76).
EP96909137A 1995-03-27 1996-03-27 Heat engine which operates on the stirling principle Expired - Lifetime EP0817907B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19511215 1995-03-27
DE19511215A DE19511215A1 (en) 1995-03-27 1995-03-27 Heat engine working according to the Stirling principle
PCT/EP1996/001351 WO1996030638A1 (en) 1995-03-27 1996-03-27 Heat engine which operates on the stirling principle

Publications (2)

Publication Number Publication Date
EP0817907A1 EP0817907A1 (en) 1998-01-14
EP0817907B1 true EP0817907B1 (en) 1999-06-09

Family

ID=7757886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96909137A Expired - Lifetime EP0817907B1 (en) 1995-03-27 1996-03-27 Heat engine which operates on the stirling principle

Country Status (8)

Country Link
EP (1) EP0817907B1 (en)
JP (1) JPH11502583A (en)
KR (1) KR19980703351A (en)
AT (1) ATE181140T1 (en)
AU (1) AU5274896A (en)
DE (2) DE19511215A1 (en)
RU (1) RU2131987C1 (en)
WO (1) WO1996030638A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816021C2 (en) * 1998-04-09 2000-10-26 Deutsch Zentr Luft & Raumfahrt Refrigeration system
DE19826372A1 (en) * 1998-06-12 1999-12-16 Franz Schoenmetzler Autonomous power system for small and medium single family dwellings enables 3 KW current generator to be effectively driven by low temp.
DE29818314U1 (en) 1998-10-13 1998-12-24 Theilacker GmbH Motoren-Instandsetzung, 70190 Stuttgart generator
JP2011518270A (en) * 2008-03-14 2011-06-23 エナジー コンプレッション エルエルシー Adsorption enhanced compressed air energy storage
MD679Z (en) * 2013-03-01 2014-04-30 ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ Stirling cycle-based heat engine
MD658Z (en) * 2013-03-15 2014-02-28 ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ Cooler for heat engine with Stirling cycle
CN113090480A (en) * 2021-04-29 2021-07-09 姜铁华 Solar heat collection liquid medium energy storage driving Stirling engine power generation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE417448B (en) * 1979-06-19 1981-03-16 Cmc Ab MODULE FOR BUILDING A DOUBLE-OPERATING, FOUR-CYCLE-STIRLING ENGINE
US4702903A (en) * 1983-10-03 1987-10-27 Keefer Bowie Method and apparatus for gas separation and synthesis
US4651527A (en) * 1986-05-23 1987-03-24 Alger Donald L Process and apparatus for reducing the loss of hydrogen from Stirling engines
JP2706828B2 (en) * 1989-11-01 1998-01-28 株式会社日立製作所 refrigerator
US5161382A (en) * 1991-05-24 1992-11-10 Marin Tek, Inc. Combined cryosorption/auto-refrigerating cascade low temperature system

Also Published As

Publication number Publication date
DE59602171D1 (en) 1999-07-15
AU5274896A (en) 1996-10-16
EP0817907A1 (en) 1998-01-14
RU2131987C1 (en) 1999-06-20
KR19980703351A (en) 1998-10-15
ATE181140T1 (en) 1999-06-15
DE19511215A1 (en) 1996-10-02
WO1996030638A1 (en) 1996-10-03
JPH11502583A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
DE2051203C2 (en) Gas chiller
EP3390785B1 (en) Constant-pressure multi-compartment vessel, thermodynamic energy converter and operating method
AT502402B1 (en) METHOD FOR CONVERTING THERMAL ENERGY TO MECHANICAL WORK
DE1551312B2 (en) DEVICE FOR GENERATING KELTE
DE2109891B2 (en) Thermodynamic machine as a cooling machine or heat engine
DE2633233A1 (en) THERMAL POWER MACHINE WITH EXTERNAL HEAT SOURCE
DE2939423A1 (en) METHOD FOR OPERATING A HEATING SYSTEM CONTAINING AN ABSORBER HEAT PUMP AND HEATING SYSTEM FOR CARRYING OUT THIS METHOD
DE2522711A1 (en) POWER PLANT
DE102019127431A1 (en) Thermal power storage with fixed bed heat storage and fixed bed cold storage and method for operating a thermal power storage
EP0817907B1 (en) Heat engine which operates on the stirling principle
DE10126403A1 (en) Power station has carbon dioxide circuit, forward line with turbine(s) or piston engine(s), return line with pressure build-up device(s); forward and return lines form closed liquid circuit
DE102015007079B4 (en) Stirling engine with split duty cycle
DE2923621A1 (en) THERMAL DRIVE
EP2668374B1 (en) Heat engine
EP1404948B1 (en) Assembly of gas expansion elements and a method for operating said assembly
EP2775109B1 (en) Thermodynamic energy converter
DE2225816A1 (en) Cooling system
DE1501158A1 (en) Refrigerator for very low temperatures
DE1967744U (en) DEVICE FOR GENERATING COLD AT LOW TEMPERATURES AND / OR LIQUIDING AN AGENT.
DE2344162A1 (en) HOT GAS ENGINE WITH ONE OR MORE HEATERS MADE BY A NUMBER OF PIPES ARRANGED IN THE FLOW PATH OF COMBUSTION GASES COMING FROM A COMMON BURNER DEVICE
DE19502190A1 (en) Heating and cooling machine
DE3619016A1 (en) Engine
DE19726286A1 (en) Thermally driven sorption cooling plant
DE653657C (en) Process for exploiting low temperature gradients
DE4206957A1 (en) EXTERNALLY HEATED, REGENERATIVE, HEATING AND REFRIGERATING MACHINE WORKING AFTER THE VUILLEUMIER CIRCUIT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980213

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990609

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19990609

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990609

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990609

REF Corresponds to:

Ref document number: 181140

Country of ref document: AT

Date of ref document: 19990615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59602171

Country of ref document: DE

Date of ref document: 19990715

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103