EP0809017A1 - Two-stage fuel injection nozzel for internal combustion engine - Google Patents

Two-stage fuel injection nozzel for internal combustion engine Download PDF

Info

Publication number
EP0809017A1
EP0809017A1 EP96108193A EP96108193A EP0809017A1 EP 0809017 A1 EP0809017 A1 EP 0809017A1 EP 96108193 A EP96108193 A EP 96108193A EP 96108193 A EP96108193 A EP 96108193A EP 0809017 A1 EP0809017 A1 EP 0809017A1
Authority
EP
European Patent Office
Prior art keywords
spray
conical
fuel injection
bore
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96108193A
Other languages
German (de)
French (fr)
Inventor
Harald Ing. Schmidt
Josef Morell
Heinz Ing. Waras
Patrik Dipl.-Ing. Raffelsberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steyr Daimler Puch AG
Original Assignee
Steyr Daimler Puch AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Daimler Puch AG filed Critical Steyr Daimler Puch AG
Priority to EP96108193A priority Critical patent/EP0809017A1/en
Priority to JP9161768A priority patent/JPH1054330A/en
Priority to US08/859,950 priority patent/US5934571A/en
Publication of EP0809017A1 publication Critical patent/EP0809017A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/083Having two or more closing springs acting on injection-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent

Definitions

  • the invention relates to a fuel injection nozzle for internal combustion engines consisting of a nozzle housing ending in a nozzle tip and a nozzle needle which is guided in it and tapered at its lower end, which is resiliently pressed against a conical valve seat in the nozzle tip, which conical valve seat several of the conical end of the nozzle needle has covered spray bores and merges into a blind hole, the nozzle needle lifting off under the pressure of the supplied fuel in a first stroke phase against the force of a first spring from the valve seat and engaging a stop which in turn in a second stroke phase against the force of a second spring is displaceable, and wherein at the end of the first stroke phase the respective imaginary cylinder surface, which results in the extension of each spray bore between the conical end of the nozzle needle and the conical valve seat, is smaller than the cross-sectional area of the respective spray booth is leading to a first deflection of the fuel flow in the space between the nozzle needle and the conical valve seat and a subsequent second deflection when flowing into the spray
  • a generic injection nozzle is known from EP 413 173 B1, in which the cylinder jacket surface in the extension of each spray bore is a maximum of 0.75 times the cross-sectional area of the respective spray bore. Because of the special flow conditions caused thereby, the highest atomization was achieved with such nozzles in the first stroke phase and optimal atomization with sufficient penetration in the second stroke phase. However, there was room for further improvements in emissions and combustion noise, especially in the first lifting phase. In view of the future emission limits according to EURO III, further improvements and optimizations were also necessary. They were achieved in extensive test series and based on hydrodynamic considerations.
  • the low injection rate required in the first stroke phase requires the needle stroke to be as short as possible, which primarily results in a reduction in combustion noise.
  • This small needle stroke leads to increased pressure loss and atomization is at a maximum, which leads to increased particle emission after ignition.
  • this pressure loss also reduces penetration, which on the one hand results in a reduction in hydrocarbon emissions (HC emissions are caused by the fuel touching the wall) but on the other hand causes uneven distribution of the fuel in the combustion air and thus particle emissions.
  • an increase in the needle stroke would be preferable, but this again increases the combustion noise.
  • the surface area of the cylinder becomes particularly low, which means that the injection rate is reduced without any appreciable increase in throttle losses, but on the other hand the boundary layer flow on the walls has more influence. In order to ensure that the double deflected flow into the ejection bores would still "start” under these conditions, the specific rounding was determined.
  • the entry into the spray hole is rounded off with a radius of 8 percent to 15 percent of the diameter of the respective spray hole (claim 2). This gives particularly good results for smaller spray bores.
  • the boundary layer can be influenced further by the transition from the fillet to the conical seat surface forming an edge (claim 3).
  • This edge then forms a separation edge, which favors the formation of a double-deflected flow with minimal pressure loss.
  • the detaching edge is preferably produced by finishing the conical seat surface only after the fillet (claim 5).
  • a further improvement is achieved if the spray bores are delimited on their outlet side by a sharp edge which lies in a plane normal to the axis of the spray bore (claim 6).
  • the sharp edge again forms a tear-off edge, which ensures lossless exit.
  • the normal plane still has the effect that the emerging fuel is not deflected by an angle which is also pressure-dependent. It therefore contributes significantly to better emission values.
  • the nozzle housing 1 which is connected by a union nut 2 to the other parts of the device ends, comprising in a nozzle tip 3, the inside a conical valve seat 4 which merges with a sharp edge 5 at an angle of about 30 o in a blind hole 6 .
  • a nozzle needle 7 is guided, which is pressed resiliently against the conical valve seat 4 and also has a conical end section 8, so that the nozzle needle 7 forms a valve with its end section 8 together with the valve seat 4, which in FIG. 1 is shown in the closed position.
  • the fuel is supplied to a channel 11 by an injection pump (not shown) and reaches a collecting space 12, from where it penetrates along the nozzle needle 7 to the valve seat 4.
  • the pressure in the collecting chamber 12 exerts an upward force on the nozzle needle 7, which is initially acted on by a weaker spring 9, which is essentially of one stronger spring 10 is enclosed. If the pump pressure rises, the nozzle needle 7 or its end section 8 is lifted against the force of the spring 9 from the valve seat 4 until it lies against the surface of the stop 13. This is the first stroke phase, in which the lateral surface of the imaginary cylinder is smaller than the cross-section of the ejection bore.
  • the nozzle tip 3 has in the region of the valve seat 4 ejection bores 15 which are covered by the conical end section 8 of the nozzle needle 7 when the valve is closed.
  • This conical section 8 is delimited towards the blind hole 6 by an edge 16 which also remains at the end of the first stroke phase under the entry of the ejection bores.
  • the outer surface M of the imaginary cylinder resulting from the extension of the ejection bore 15 between its inner edge R and the surface of the conical end section 8 is only up to 30 percent of the Cross-sectional area of the ejection bore 15 and the inner edge R is now only the intersection curve of the extension of the ejection bore 15 with the inner conical surface 4 of the nozzle tip 3.
  • spherical depressions 22', 22 '' are preferably provided, the separation of which with the ejection bores 15 'and 15' 'form sharp edges 23', 23 '' which are in a normal plane to the Axes 24 ', 24' 'of the ejection bores 15' and 15 '' are located.
  • the lengths 25', 25 '' of the ejection bores 15 'and 15' ' are the same.
  • the transition from the ejection bore 15 'to the conical surface 4 is detailed in FIG.
  • the former extends with its cylindrical middle part with the diameter 26 'inwards to the connection 29' of the rounding 17 '.
  • Their radius of curvature is designated 27 'and the corresponding circular arc 30' intersects the conical surface 4 and forms an edge 28 'with it, which can, but does not have to, run all around.
  • This edge 28 ' is produced with particular accuracy and surface quality by first machining the rounding, which is indicated by the dashed extension of the circular arc 30', and only then finishing the conical surface 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The nozzle comprises a needle valve (7) with its cone end working in it. In a second phase the stop is moved opposite a second spring (10). At the end of the first phase, the cylindrical surface (M) forming an extension of each spray hole between the valve end and the seat is smaller than the cross-sectional area (Q) of the hole. A first deflection of fuel flow between the nozzle end and seat occurs, then a second deflection on flowing into the hole. The cylindrical surface area (M) is at the most 0.3 times the cross-sectional area (Q) of the spray hole. The inlet zone (17) into the spray hole is formed with a radius of 8-25% of the spray hole diameter, and an edge can be formed where the radiused portion joins onto the cone seat (4), final machining of the seat taking place only after radiusing. The outlet from each spray hole can be formed by a sharp edge in a plane at right angles to the spray hole axis.

Description

Die Erfindung handelt von einer Kraftstoffeinspritzdüse für Brennkraftmaschinen bestehend aus einem in einer Düsenkuppe endenden Düsengehäuse und einer in diesem geführten und an ihrem unteren Ende konischen Düsennadel, welche federnd gegen einen konischen Ventilsitz in der Düsenkuppe gedrückt wird, welcher konische Ventilsitz mehrere vom konischen Ende der Düsennadel überdeckte Spritzbohrungen aufweist und in ein Sackloch übergeht, wobei sich die Düsennadel unter dem Druck des zugeführten Treibstoffes in einer ersten Hubphase gegen die Kraft einer ersten Feder vom Ventilsitz abhebt und an einen Anschlag anlegt, der seinerseits in einer zweiten Hubphase gegen die Kraft einer zweiten Feder verschiebbar ist, und wobei am Ende der ersten Hubphase die jeweilige gedachte Zylindermantelfläche, die sich in Verlängerung jeder Spritzbohrung zwischen dem konischen Ende der Düsennadel und dem konischen Ventilsitz ergibt, kleiner als die Querschnittsfläche der jeweiligen Spritzbohrung ist, wodurch es zu einer ersten Umlenkung der Treibstoffströmung in dem Raum zwischen Düsennadel und konischem Ventilsitz und zu einer anschließenden zweiten Umlenkung beim Einströmen in die Spritzbohrung kommt.The invention relates to a fuel injection nozzle for internal combustion engines consisting of a nozzle housing ending in a nozzle tip and a nozzle needle which is guided in it and tapered at its lower end, which is resiliently pressed against a conical valve seat in the nozzle tip, which conical valve seat several of the conical end of the nozzle needle has covered spray bores and merges into a blind hole, the nozzle needle lifting off under the pressure of the supplied fuel in a first stroke phase against the force of a first spring from the valve seat and engaging a stop which in turn in a second stroke phase against the force of a second spring is displaceable, and wherein at the end of the first stroke phase the respective imaginary cylinder surface, which results in the extension of each spray bore between the conical end of the nozzle needle and the conical valve seat, is smaller than the cross-sectional area of the respective spray booth is leading to a first deflection of the fuel flow in the space between the nozzle needle and the conical valve seat and a subsequent second deflection when flowing into the spray bore.

Aus der EP 413 173 B1 ist eine gattungsgemäße Einspritzdüse bekannt, bei der die Zylindermantelfläche in Verlängerung jeder Spritzbohrung maximal 0,75 mal die Querschnittsfläche der jeweiligen Spritzbohrung ist. Aufgrund der dadurch mitverursachten besonderen Strömungsverhältnisse wurde bei derartigen Düsen in der ersten Hubphase höchste Zerstäubung und in der zweiten Hubphase optimale Zerstäubung bei ausreichender Penetration erreicht. Es bestand jedoch Raum für weitere Verbesserungen hinsichtlich Emissionen und Verbrennungsgeräuschen, vor allem in der ersten Hubphase. In Anbetracht der zukünftigen Abgasgrenzwerte nach EURO III waren weitere Verbesserungen und Optimierungen auch notwendig. Sie wurden in ausgedehnten Versuchsreihen und gestützt auf hydrodynamische Überlegungen erreicht.A generic injection nozzle is known from EP 413 173 B1, in which the cylinder jacket surface in the extension of each spray bore is a maximum of 0.75 times the cross-sectional area of the respective spray bore. Because of the special flow conditions caused thereby, the highest atomization was achieved with such nozzles in the first stroke phase and optimal atomization with sufficient penetration in the second stroke phase. However, there was room for further improvements in emissions and combustion noise, especially in the first lifting phase. In view of the future emission limits according to EURO III, further improvements and optimizations were also necessary. They were achieved in extensive test series and based on hydrodynamic considerations.

Mit diesen Überlegungen wurde bei folgenden Zusammenhängen angesetzt: Die in der ersten Hubphase nötige geringe Einspritzrate erfordert einen möglichst kleinen Nadelhub, dieser bewirkt vor allem eine Reduktion des Verbrennungsgeräusches. Dieser kleine Nadelhub führt zu erhöhtem Druckverlust und die Zerstäubung ist maximal, was nach dem Zünden zu erhöhter Partikelemission führt. Dieser Druckverlust vermindert aber auch die Penetration, was einerseits eine Verminderung der Kohlenwasserstoffemissionen zur Folge hat (HC-Emissionen enstehen durch Wandberührung des Treibstoffes) andererseits aber ungleichmäßige Verteilung des Treibstoffes in der Verbrennungsluft und damit Partikelemissionen verursacht. Insoferne wäre eine Vergrößerung des Nadelhubes vorzuziehen, diese aber führt wieder zu einer Verstärkung des Verbrennungsgeräusches. Bei all dem kann die Hubhöhe in der ersten Phase aber nicht beliebig variiert werden; die Strömungs- und Druckverhältnisse müssen ja immer die Ausbildung des besonderen Strömungsmusters mit der zweimaligen Umlenkung in unmittelbarer Nähe des Eintrittes in die Spritzbohrung erlauben, das in der den Stand der Technik darstellenden EP 413 173 B1 ausführlich beschrieben ist. Sobald die Verhältnisse sich aus den sehr engen Grenzen heraus ändern, kann sich die besondere Strömungsform nicht ausbilden oder sie bricht zusammen. Dadurch sind sämtliche Vorteile verspielt, weil die Einspritzwolke dann zum Einspritzstrahl wird, was zum sprunghaften Anstieg der HC- und der Partikelemissionen führt.These considerations were used in the following contexts: The low injection rate required in the first stroke phase requires the needle stroke to be as short as possible, which primarily results in a reduction in combustion noise. This small needle stroke leads to increased pressure loss and atomization is at a maximum, which leads to increased particle emission after ignition. However, this pressure loss also reduces penetration, which on the one hand results in a reduction in hydrocarbon emissions (HC emissions are caused by the fuel touching the wall) but on the other hand causes uneven distribution of the fuel in the combustion air and thus particle emissions. In this respect, an increase in the needle stroke would be preferable, but this again increases the combustion noise. With all of this, the lifting height cannot be varied arbitrarily in the first phase; the flow and pressure conditions must always allow the formation of the special flow pattern with the double deflection in the immediate vicinity of the entry into the spray bore, which is described in detail in EP 413 173 B1, which represents the prior art. As soon as the conditions change out of the very narrow limits, the special flow form cannot develop or it breaks down. This means that all the advantages are lost because the injection cloud then becomes the injection jet, which leads to a sudden increase in HC and particle emissions.

Dazu kommt noch eine weitere Schwierigkeit, wenn derartige Düsen in der üblichen Weise - also in einem Motor mit zwei Ventilen pro Zylinder - etwas geneigt angeordnet sind. Da sich die Ausspritzbohrungen dann bezüglich der Düsenachse nicht mehr gleichen, sind die Druckverluste in der Eintrittszone und in der Austrittszone der Ausspritzbohrungen und in der Bohrung selbst verschieden.In addition, there is another difficulty if such nozzles are arranged somewhat inclined in the usual way - that is, in an engine with two valves per cylinder. Since the ejection bores are no longer in relation to the nozzle axis same, the pressure losses in the inlet zone and in the outlet zone of the ejection bores and in the bore itself are different.

Es ist somit Ziel der Erfindung, einen Ausweg aus diesem Dilemma zu weisen und die Düse nach dem Stand der Technik so zu verbessern, daß sich das Emissionsverhalten insgesamt - also aller Emissionen einschließlich Lärmemissionen - weiter verbessert.It is therefore the aim of the invention to show a way out of this dilemma and to improve the nozzle according to the prior art in such a way that the overall emission behavior - that is to say all emissions including noise emissions - further improves.

Erfindungsgemäß wird das dadurch erreicht, daß die gedachte Zylindermantelfläche maximal 0,3 mal der Querschnittsfläche der jeweiligen Spritzbohrung beträgt und daß der Eintritt in die Spritzbohrung mit einem Radius von 8 Prozenz bis 25 Prozent des Durchmessers der jeweiligen Spritzbohrung ausgerundet ist.According to the invention this is achieved in that the imaginary cylinder surface area is a maximum of 0.3 times the cross-sectional area of the respective spray hole and in that the entry into the spray hole is rounded with a radius of 8 percent to 25 percent of the diameter of the respective spray hole.

Es wird also die Zylindermantelfläche besonders nieder, wodurch zwar ohne nennenswerte Erhöhung der Drosselverluste die Einspritzrate gesenkt wird, andererseits aber die Grenzschichtströmung an den Wänden mehr Einfluß hat. Um unter diesen Verhältnissen noch das "Anspringen" der doppelt umgelenkten Strömung in die Ausspritzbohrungen sicherzustellen, wurde die bestimmte Ausrundung ermittelt.The surface area of the cylinder becomes particularly low, which means that the injection rate is reduced without any appreciable increase in throttle losses, but on the other hand the boundary layer flow on the walls has more influence. In order to ensure that the double deflected flow into the ejection bores would still "start" under these conditions, the specific rounding was determined.

Damit werden mehrere Verbesserungen erreicht: Wegen der kleinen Einspritzrate wird weniger Verbrennungsgeräusch entwickelt; wegen der weiterhin doppelt umgelenkten Strömung ist die Zerstäubung extrem fein und wegen des relativ hohen Druckes die Penetration doch ausreichend für eine gute Durchmischung, dadurch weniger Partikelemissionen, auch in extremen Betriebsbedingungen, beispielsweise bei hohem Druck im Verbrennungsraum (die damit einhergehende höhere Dichte vermindert die Penetration tendenziell).This achieves several improvements: Because of the low injection rate, less combustion noise is developed; Because of the double-deflected flow, the atomization is extremely fine and because of the relatively high pressure, the penetration is sufficient for thorough mixing, therefore less particle emissions, even in extreme operating conditions, for example at high pressure in the combustion chamber (the associated higher density reduces penetration) tends).

Als zusätzlicher Vorteil wird gewonnen, daß durch die Abrundungen die umlenkungsbedingten Druckverluste bei schräg eingebauter Düse mit verschiedenen Spritzlochwinkeln weniger stark voneinander abweichen, wodurch insgesamt das Einspritzmuster regelmäßiger wird.An additional advantage is gained that the rounding reduces the deflection-related pressure losses when the nozzle is installed at an angle with different spray hole angles deviate, making the overall injection pattern more regular.

In einer bevorzugten Auslegung ist der Eintritt in die Spritzbohrung mit einem Radius von 8 Prozent bis 15 Prozent des Durchmessers der jeweiligen Spritzbohrung ausgerundet (Anspruch 2). Damit werden bei kleineren Spritzbohrungen besonders gute Resultate erzielt.In a preferred embodiment, the entry into the spray hole is rounded off with a radius of 8 percent to 15 percent of the diameter of the respective spray hole (claim 2). This gives particularly good results for smaller spray bores.

In Weiterführung des Erfindungsgedankens kann die Grenzschicht weiter beeinflußt werden, indem der Übergang von der Ausrundung zur konischen Sitzfläche eine Kante bildet (Anspruch 3). Diese Kante bildet dann eine Ablösekante, die die Ausbildung einer doppelt umgelenkten Strömung bei minimalem Druckverlust begünstigt.In continuation of the inventive concept, the boundary layer can be influenced further by the transition from the fillet to the conical seat surface forming an edge (claim 3). This edge then forms a separation edge, which favors the formation of a double-deflected flow with minimal pressure loss.

Optimale Resultate werden mit der Ablösekante erzielt, wenn der Eintritt in die Spritzbohrung mit einem Radius von 18 Prozent bis 25 Prozent des Durchmessers der jeweiligen Spritzbohrung ausgerundet ist (Anspruch 4). Die Ablösekante wird vorzugsweise dadurch hergestellt, daß die Endbearbeitung der konischen Sitzfläche erst nach der Ausrundung erfolgt (Anspruch 5).Optimal results are achieved with the release edge if the entry into the spray hole is rounded with a radius of 18 percent to 25 percent of the diameter of the respective spray hole (claim 4). The detaching edge is preferably produced by finishing the conical seat surface only after the fillet (claim 5).

Eine weitere Verbesserung wird erzielt, wenn die Spritzbohrungen an ihrer Austrittsseite von einer scharfen Kante begrenzt sind, die in einer zur Achse der Spritzbohrung normalen Ebene liegt (Anspruch 6). Die scharfe Kante bildet wieder eine Abreißkante, die verlustlosen Austritt sichert. Die normale Ebene bewirkt bei Düsen mit gegenüber der Austrittfläche geneigten, oder gar verschieden stark geneigten, Düsenbohrungsachsen noch, daß der austretende Treibstoff nicht um einen obendrein druckabhängigen Winkel abgelenkt wird. Sie tragt somit erheblich zu besseren Emissionswerten bei.A further improvement is achieved if the spray bores are delimited on their outlet side by a sharp edge which lies in a plane normal to the axis of the spray bore (claim 6). The sharp edge again forms a tear-off edge, which ensures lossless exit. In the case of nozzles with nozzle bore axes which are inclined or even inclined to different extents, the normal plane still has the effect that the emerging fuel is not deflected by an angle which is also pressure-dependent. It therefore contributes significantly to better emission values.

Weiters kann dazu beitragen, daß alle Spritzbohrungen gleich lang sind (Anspruch 7), was sich angesichts der rotierenden Strömung direkt auf die Form der Einspritzwolke auswirkt.Furthermore, it can help that all spray bores are of equal length (claim 7), which has a direct effect on the shape of the injection cloud in view of the rotating flow.

Dadurch sind die Druckverluste in allen Bohrungen gleich. Das wird vorzugsweise bei der Bildung der scharfen Kanten erreicht, bei der die Bearbeitungstiefe ja entsprechend gewählt werden kann.This means that the pressure losses in all holes are the same. This is preferably achieved when forming the sharp edges, where the machining depth can be selected accordingly.

Im folgenden wird die Erfindung anhand von Abbildungen beschrieben und erläutert. Es stellen dar:

Fig.1:
Die erfindungswesentlichen Teile einer Kraftstoff-Einspritzdüse mit zweiphasigem Nadelhub in vereinfachter Darstellung im Axialschnitt,
Fig.2:
den Bereich einer erfindungsgemäßen Ausspritzbohrung als vergrößertes Detail,
Fig.3:
Eine bevorzugte Ausführungsform der erfindungsgemäßen Einspritzdüse,
Fig.4:
Detail IV der Fig. 3, stark vergrößert.
The invention is described and explained below with the aid of figures. They represent:
Fig.1:
The parts of a fuel injection nozzle with two-phase needle stroke essential to the invention in a simplified representation in axial section,
Fig. 2:
the area of an ejection bore according to the invention as an enlarged detail,
Fig. 3:
A preferred embodiment of the injection nozzle according to the invention,
Fig. 4:
Detail IV of Fig. 3, greatly enlarged.

In Figur 1 endet das Düsengehäuse 1, das durch eine Überwurfmutter 2 mit den übrigen Vorrichtungsteilen verbunden ist, in einer Düsenkuppe 3, die innen einen konischen Ventilsitz 4 aufweist, der mit scharfer Kante 5 mit einem Winkel von etwa 30o in ein Sackloch 6 übergeht. Im Düsengehäuse 1 ist eine Düsennadel 7 geführt, die federnd gegen den konischen Ventilsitz 4 gedrückt wird und ebenfalls einen konischen Endabschnitt 8 besitzt, so daß die Düsennadel 7 mit ihrem Endabschnitt 8 zusammen mit dem Ventilsitz 4 ein Ventil bildet, das in der Fig. 1 in geschlossener Stellung dargestellt ist.In Figure 1, the nozzle housing 1, which is connected by a union nut 2 to the other parts of the device ends, comprising in a nozzle tip 3, the inside a conical valve seat 4 which merges with a sharp edge 5 at an angle of about 30 o in a blind hole 6 . In the nozzle housing 1, a nozzle needle 7 is guided, which is pressed resiliently against the conical valve seat 4 and also has a conical end section 8, so that the nozzle needle 7 forms a valve with its end section 8 together with the valve seat 4, which in FIG. 1 is shown in the closed position.

Beim Einspritzen wird der Kraftstoff von einer nicht dargestellten Einspritzpumpe einem Kanal 11 zugeführt und gelangt in einen Sammelraum 12, von wo er entlang der Düsennadel 7 bis zum Ventilsitz 4 vordringt. Der Druck im Sammelraum 12 übt eine aufwärts gerichtete Kraft auf die Düsennadel 7 aus, auf die zunächst eine schwächere Feder 9 einwirkt, die von einer wesentlich stärkeren Feder 10 umschlossen ist. Steigt der Pumpendruck an, so wird die Düsennadel 7 bzw. deren Endabschnitt 8 gegen die Kraft der Feder 9 vom Ventilsitz 4 so weit abgehoben, bis sie sich gegen die Fläche des Anschlags 13 legt. Das ist die erste Hubphase, in der die Mantelfläche des gedachten Zylinders kleiner als der Querschnitt der Ausspritzbohrung ist. Erst bei weiterem Anstieg des Kraftstoffdruckes wird dann auch der Anschlag 13 gegen die Kraft der Feder 10 bis zum Anlegen an eine Innenschulter 14a einer Hülse 14 angehoben. Das ist die zweite Hubphase, in der die Mantelfläche größer als der Querschnitt der Ausspritzbohrung ist.During injection, the fuel is supplied to a channel 11 by an injection pump (not shown) and reaches a collecting space 12, from where it penetrates along the nozzle needle 7 to the valve seat 4. The pressure in the collecting chamber 12 exerts an upward force on the nozzle needle 7, which is initially acted on by a weaker spring 9, which is essentially of one stronger spring 10 is enclosed. If the pump pressure rises, the nozzle needle 7 or its end section 8 is lifted against the force of the spring 9 from the valve seat 4 until it lies against the surface of the stop 13. This is the first stroke phase, in which the lateral surface of the imaginary cylinder is smaller than the cross-section of the ejection bore. Only when the fuel pressure rises further is the stop 13 then raised against the force of the spring 10 until it rests against an inner shoulder 14a of a sleeve 14. This is the second stroke phase, in which the lateral surface is larger than the cross-section of the ejection bore.

Die Düsenkuppe 3 weist im Bereich des Ventilsitzes 4 Ausspritzbohrungen 15 auf, die bei geschlossenem Ventil vom konischen Endabschnitt 8 der Düsennadel 7 überdeckt sind. Dieser konische Abschnitt 8 ist gegen das Sackloch 6 hin durch eine Kante 16 begrenzt, die auch am am Ende der ersten Hubphase unter dem Eintritt der Ausspritzbohrungen bleibt.The nozzle tip 3 has in the region of the valve seat 4 ejection bores 15 which are covered by the conical end section 8 of the nozzle needle 7 when the valve is closed. This conical section 8 is delimited towards the blind hole 6 by an edge 16 which also remains at the end of the first stroke phase under the entry of the ejection bores.

Wie in Fig. 2 angedeutet, soll nun erfindungsgemäß nach der ersten Hubphase der Düsennadel 7 jeweils die Mantelfläche M des sich in Verlängerung der Ausspritzbohrung 15 zwischen deren innerem Rand R und der Oberfläche des konischen Endabschnittes 8 sich ergebenden gedachten Zylinders nur bis zu 30 Prozent der Querschnittsfläche der Ausspritzbohrung 15 betragen und ist der innere Rand R nur mehr die Verschneidungskurve der Verlängerung der Ausspritzbohrung 15 mit der inneren Kegelfläche 4 der Düsenkuppe 3. Dadurch kommt es trotz der sehr geringen Spalthöhe 18 erst im Bereich der Ausspritzbohrungen 15 zu einer zweimaligen Umlenkung (dieses Strömungsmuster ist in der EP 413 173 B1 ausführlich beschrieben) und zu einer Drosselung der Kraftstoffströmung, die wegen der hohen und rund um die Eintrittslöcher gleichen Geschwindigkeiten und wegen der Rotationskomponente der Strömung zu einer besonders feinen Zerstäubung führt.As indicated in FIG. 2, according to the invention, after the first lifting phase of the nozzle needle 7, the outer surface M of the imaginary cylinder resulting from the extension of the ejection bore 15 between its inner edge R and the surface of the conical end section 8 is only up to 30 percent of the Cross-sectional area of the ejection bore 15 and the inner edge R is now only the intersection curve of the extension of the ejection bore 15 with the inner conical surface 4 of the nozzle tip 3. As a result, despite the very small gap height 18, a redirection only occurs in the area of the ejection bores 15 (this Flow pattern is described in detail in EP 413 173 B1) and throttling the fuel flow, which leads to particularly fine atomization because of the high speeds that are the same around the inlet holes and because of the rotational component of the flow.

Die in Fig.3 dargestellte Ausführungsform einer erfindungsgemäßen Einspritzdüse für einen Dieselmotor mit Direkteinspritzung und nur zwei Ventilen ist im Zylinder etwas exzentrisch und geneigt angeordnet. Um das anzudeuten, ist die Düsenachse 20 und die Zylinderachse 21 eingezeichnet. Die bereits beschreibenen Teile bzw Größen tragen wieder dieselben Bezugszeichen, etwa die Spalthöhe 18. Da aber die Ausspritzbohrungen 15 wegen der geneigten Lage der Düse verschieden sind, sind die beiden sichtbaren mit 15' und 15'' bezeichnet, ihre Achsen mit 24' und 24''. Sie schließen mit der Zylinderachse 21 annähernd denselben Winkel ein, weshalb auch die Ausspritzbohrungen 15' und 15'' in der Kegelfläche 4 unter verschiedenen Winkeln münden, die Abrundungen an der Mündung sind mit 17' und 17'' bezeichnet.The embodiment shown in Figure 3 of an injection nozzle according to the invention for a diesel engine with direct injection and only two valves are arranged somewhat eccentrically and inclined in the cylinder. To indicate this, the nozzle axis 20 and the cylinder axis 21 are shown. The parts or sizes already described again have the same reference numerals, for example the gap height 18. However, since the ejection bores 15 are different because of the inclined position of the nozzle, the two visible ones are labeled 15 'and 15'', their axes 24' and 24 ''. They enclose approximately the same angle with the cylinder axis 21, which is why the ejection bores 15 ′ and 15 ″ also open into the conical surface 4 at different angles; the roundings at the mouth are denoted by 17 ′ and 17 ″.

Am äußeren Ende der Ausspritzbohrungen 15' und 15'' sind vorzugsweise sphärische Vertiefungen 22', 22'' vorgesehen, deren Verscheidung mit den Ausspritzbohrungen 15' und 15'' scharfe Kanten 23', 23'' bilden, die in einer Normalebene zu den Achsen 24', 24'' der Ausspritzbohrungen 15' und 15'' liegen. Bei geeignet gewählter Tiefe der sphärische Vertiefungen 22', 22'' sind die Längen 25', 25'' der Ausspritzbohrungen 15' und 15'' gleich.At the outer end of the ejection bores 15 'and 15' ', spherical depressions 22', 22 '' are preferably provided, the separation of which with the ejection bores 15 'and 15' 'form sharp edges 23', 23 '' which are in a normal plane to the Axes 24 ', 24' 'of the ejection bores 15' and 15 '' are located. With a suitably chosen depth of the spherical depressions 22 ', 22' ', the lengths 25', 25 '' of the ejection bores 15 'and 15' 'are the same.

In Fig.4 ist der Übergang von der Ausspritzbohrung 15' zur Kegelfläche 4 detailliert. Erstere reicht mit ihrem zylindrischen Mittelteil mit dem Durchmesser 26' einwärts bis zum Anschluß 29' der Abrundung 17'. Deren Rundungsradius ist mit 27' bezeichnet und der entsprechende Kreisbogen 30' schneidet die Kegelfläche 4 und bildet dabei mit dieser eine Kante 28', die rundum verlaufen kann, aber nicht muß. Es kann bei rundum die Kante 28' ungleicher Geschwindigkeitsverteilung für die Ausbildung einer gleichmäßigen Drehströmung vorteilhaft sein, wenn die Kante 28' am oberen Rand der Rundung 17' schärfer ist als an deren unterem Rand. Mit besonderer Genauigkeit und Oberflächengüte wird diese Kante 28' hergestellt, indem zuerst die Rundung bearbeitet wird, was durch die strichlierte Verlängerung des Kreisbogens 30' angedeutet ist, und dann erst die Kegelfläche 4 feinbearbeitet.The transition from the ejection bore 15 'to the conical surface 4 is detailed in FIG. The former extends with its cylindrical middle part with the diameter 26 'inwards to the connection 29' of the rounding 17 '. Their radius of curvature is designated 27 'and the corresponding circular arc 30' intersects the conical surface 4 and forms an edge 28 'with it, which can, but does not have to, run all around. In the case of an uneven speed distribution all around the edge 28 ', it can be advantageous for the formation of a uniform rotary flow if the edge 28' is sharper at the upper edge of the curve 17 'than at the lower edge thereof. This edge 28 'is produced with particular accuracy and surface quality by first machining the rounding, which is indicated by the dashed extension of the circular arc 30', and only then finishing the conical surface 4.

Claims (7)

Kraftstoffeinspritzdüse für Brennkraftmaschinen bestehend aus einem in einer Düsenkuppe (3) endenden Düsengehäuse (1) und einer in diesem geführten und an ihrem unteren Ende konischen Düsennadel (7), welche federnd gegen einen konischen Ventilsitz (4) in der Düsenkuppe (3) gedrückt wird, welcher konische Ventilsitz (4) mehrere vom konischen Ende (8) der Düsennadel überdeckte Spritzbohrungen (15) aufweist und in ein Sackloch (6) übergeht, wobei sich die Düsennadel (7) unter dem Druck des zugeführten Treibstoffes in einer ersten Hubphase gegen die Kraft einer ersten Feder (9) vom Ventilsitz (4) abhebt und an einen Anschlag (14a) anlegt, der seinerseits in einer zweiten Hubphase gegen die Kraft einer zweiten Feder (10) verschiebbar ist, und wobei am Ende der ersten Hubphase die jeweilige gedachte Zylindermantelfläche (M), die sich in Verlängerung jeder Spritzbohrung (15) zwischen dem konischen Ende (8) der Düsennadel (7) und dem konischen Ventilsitz (4) ergibt, kleiner als die Querschnittsfläche (Q) der jeweiligen Spritzbohrung (15) ist, wodurch es zu einer ersten Umlenkung der Treibstoffströmung in dem Raum zwischen konischem Ende (8) der Düsennadel (7) und konischem Ventilsitz (4) und zu einer anschließenden zweiten Umlenkung beim Einströmen in die Spritzbohrung (15) kommt, dadurch gekennzeichnet, daß die gedachte Zylindermantelfläche (M) maximal 0,3 mal der Querschnittsfläche (Q) der jeweiligen Spritzbohrung (15; 15', 15'') beträgt und daß die Eintrittszone (17; 17',17'') in die Spritzbohrung (15; 15', 15'') mit einem Radius (27; 27', 27'') von 8 % bis 25 % des Durchmessers (26; 26', 26'') der jeweiligen Spritzbohrung (15; 15', 15'') ausgerundet ist.Fuel injection nozzle for internal combustion engines consisting of a nozzle housing (1) ending in a nozzle tip (3) and a nozzle needle (7) which is guided in it and conical at its lower end, which is resiliently pressed against a conical valve seat (4) in the nozzle tip (3) Which conical valve seat (4) has a plurality of spray bores (15) covered by the conical end (8) of the nozzle needle and merges into a blind hole (6), the nozzle needle (7) under the pressure of the supplied fuel in a first stroke phase against the Force of a first spring (9) lifts off the valve seat (4) and bears against a stop (14a), which in turn can be displaced in a second stroke phase against the force of a second spring (10), and at the end of the first stroke phase the respective imaginary one Cylinder surface (M), which results in the extension of each spray hole (15) between the conical end (8) of the nozzle needle (7) and the conical valve seat (4), less than al s is the cross-sectional area (Q) of the respective spray bore (15), which leads to a first deflection of the fuel flow in the space between the conical end (8) of the nozzle needle (7) and the conical valve seat (4) and to a subsequent second deflection when flowing in comes into the spray bore (15), characterized in that the imaginary cylindrical surface area (M) does not exceed 0.3 times the cross-sectional area (Q) of the respective spray bore (15; 15 ', 15'') and that the entry zone (17; 17', 17 '') into the spray bore (15; 15 ', 15'') with a radius (27; 27', 27 '') of 8 % to 25% of the diameter (26; 26 ', 26'') of the respective spray hole (15; 15', 15 '') is rounded. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß der Eintritt (17) in die Spritzbohrung (15) mit einem Radius (27) von 8 % bis 15 % des Durchmessers (26) der jeweiligen Spritzbohrung ausgerundet ist.Fuel injection nozzle according to Claim 1, characterized in that the entry (17) into the spray bore (15) is rounded off with a radius (27) of 8% to 15% of the diameter (26) of the respective spray bore. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß der Übergang von der Ausrundung (17; 17',17'') zur konischen Sitzfläche (4) eine Kante (28; 28',28'') bildet.Fuel injection nozzle according to Claim 1, characterized in that the transition from the fillet (17; 17 ', 17'') to the conical seat surface (4) forms an edge (28; 28', 28 ''). Kraftstoffeinspritzdüse nach Anspruch 3, dadurch gekennzeichnet, daß der Eintritt (17; 17',17'') in die Spritzbohrung (15; 15', 15'') mit einem Radius (27; 27',27'') von 18 % bis 25 % des Durchmessers (26; 26',26'') der jeweiligen Spritzbohrung ausgerundet ist.Fuel injection nozzle according to Claim 3, characterized in that the inlet (17; 17 ', 17'') into the spray bore (15; 15', 15 '') with a radius (27; 27 ', 27'') of 18% up to 25% of the diameter (26; 26 ', 26'') of the respective spray hole is rounded. Kraftstoffeinspritzdüse nach Anspruch 3, dadurch gekennzeichnet, daß die Kante (28; 28',28'') am Übergang von der Ausrundung (17; 17',17'') zur konischen Sitzfläche (4) dadurch hergestellt ist, daß die Endbearbeitung der konischen Sitzfläche (4) erst nach der Bearbeitung der Ausrundung (17; 17',17'') erfolgt.Fuel injection nozzle according to Claim 3, characterized in that the edge (28; 28 ', 28'') at the transition from the fillet (17; 17', 17 '') to the conical seat surface (4) is produced in that the finishing of the conical seat (4) only after machining the fillet (17; 17 ', 17''). Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß die Spritzbohrungen (15; 15',15'') an ihrer Austrittsseite von einer scharfen Kante (23; 23',23'') begrenzt sind, die in einer zur Achse (24; 24',24'') der Spritzbohrung (15; 15', 15'') normalen Ebene liegt.Fuel injection nozzle according to Claim 1, characterized in that the spray bores (15; 15 ', 15'') are delimited on their outlet side by a sharp edge (23; 23', 23 '') which is in a line with the axis (24; 24 ', 24'') of the spray hole (15; 15', 15 '') is normal plane. Kraftstoffeinspritzdüse nach Anspruch 6 zum geneigten Einbau in den Zylinder, dadurch gekennzeichnet, daß alle Spritzbohrungen (15; 15', 15'') die gleiche Länge (25; 25',25'') aufweisen.Fuel injection nozzle according to claim 6 for inclined installation in the cylinder, characterized in that all spray bores (15; 15 ', 15'') have the same length (25; 25', 25 '').
EP96108193A 1996-05-22 1996-05-22 Two-stage fuel injection nozzel for internal combustion engine Withdrawn EP0809017A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96108193A EP0809017A1 (en) 1996-05-22 1996-05-22 Two-stage fuel injection nozzel for internal combustion engine
JP9161768A JPH1054330A (en) 1996-05-22 1997-05-16 Fuel injection nozzle for internal combustion engine
US08/859,950 US5934571A (en) 1996-05-22 1997-05-21 Two-stage fuel-injection nozzle for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96108193A EP0809017A1 (en) 1996-05-22 1996-05-22 Two-stage fuel injection nozzel for internal combustion engine

Publications (1)

Publication Number Publication Date
EP0809017A1 true EP0809017A1 (en) 1997-11-26

Family

ID=8222810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96108193A Withdrawn EP0809017A1 (en) 1996-05-22 1996-05-22 Two-stage fuel injection nozzel for internal combustion engine

Country Status (3)

Country Link
US (1) US5934571A (en)
EP (1) EP0809017A1 (en)
JP (1) JPH1054330A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023707A1 (en) * 1998-10-15 2000-04-27 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engines with self-ignition
EP0890735A3 (en) * 1997-07-11 2001-10-10 Robert Bosch Gmbh Fuel injection valve
DE10050704A1 (en) * 2000-10-13 2003-02-20 Siemens Ag Fuel injection valve has stepped transition region from jet chamber to each injection boring with at least one indentation
EP1508689A1 (en) * 1999-08-11 2005-02-23 Robert Bosch Gmbh Fuel injection valve
DE102009034072A1 (en) * 2009-07-22 2011-01-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Injector for the supply of reducing agent and apparatus for the treatment of exhaust gases
WO2012010657A3 (en) * 2010-07-23 2012-06-14 Continental Automotive Gmbh Nozzle body comprising a blind hole
EP2525077A1 (en) * 2011-05-16 2012-11-21 Liebherr-Machines Bulle SA Nozzle

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815918A1 (en) * 1998-04-09 1999-10-21 Man B & W Diesel As Fuel injector
US6644565B2 (en) * 1998-10-15 2003-11-11 Robert Bosch Gmbh Fuel injection nozzle for self-igniting internal combustion engines
DE10105674A1 (en) * 2001-02-08 2002-08-29 Siemens Ag Fuel injection nozzle for an internal combustion engine
DE10106809A1 (en) * 2001-02-14 2002-09-19 Siemens Ag Method for producing a hole in a body, in particular an injection hole in a fuel injector
JP3788275B2 (en) * 2001-06-26 2006-06-21 日産自動車株式会社 In-cylinder direct injection internal combustion engine
US20040163254A1 (en) * 2002-12-27 2004-08-26 Masanori Miyagawa Method for manufacturing injection hole member
US20050150979A1 (en) * 2004-01-14 2005-07-14 General Electric Company Locomotive engine economy enhancement with improved nozzle
US7124963B2 (en) * 2004-11-05 2006-10-24 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7137577B2 (en) * 2004-11-05 2006-11-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7185831B2 (en) * 2004-11-05 2007-03-06 Ford Motor Company Low pressure fuel injector nozzle
US7438241B2 (en) * 2004-11-05 2008-10-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7168637B2 (en) * 2004-11-05 2007-01-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7198207B2 (en) * 2004-11-05 2007-04-03 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7051957B1 (en) * 2004-11-05 2006-05-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7104475B2 (en) * 2004-11-05 2006-09-12 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
DE102004057151B4 (en) * 2004-11-26 2009-04-16 Continental Automotive Gmbh Injection valve with a pressure-holding valve for fluid pressure of a spring chamber
JP4528701B2 (en) * 2005-09-13 2010-08-18 日立オートモティブシステムズ株式会社 Injection valve and orifice machining method
JP2008068360A (en) * 2006-09-14 2008-03-27 Mitsubishi Heavy Ind Ltd Method and apparatus for working nozzle hole on nozzle body, and fuel injection nozzle manufactured by them
US7572997B2 (en) * 2007-02-28 2009-08-11 Caterpillar Inc. EDM process for manufacturing reverse tapered holes
GB0712403D0 (en) 2007-06-26 2007-08-01 Delphi Tech Inc A Spray Hole Profile
JP5150416B2 (en) * 2008-09-05 2013-02-20 日立オートモティブシステムズ株式会社 Orifice processing method and press processing method
US20110030635A1 (en) * 2009-08-04 2011-02-10 International Engine Intellectual Property Company, Llc Fuel injector nozzle for reduced coking
KR101198805B1 (en) * 2010-12-02 2012-11-07 현대자동차주식회사 Injector for vehicle
WO2013138673A1 (en) * 2012-03-14 2013-09-19 International Engine Intellectual Property Company, Llc Fuel injector nozzle
JP5959892B2 (en) * 2012-03-26 2016-08-02 日立オートモティブシステムズ株式会社 Spark ignition type fuel injection valve
EP2757247A1 (en) * 2013-01-18 2014-07-23 EFI Hightech AG Injection nozzle for a combustion engine
JP6264221B2 (en) * 2014-07-24 2018-01-24 株式会社デンソー Fuel injection nozzle
EP3845756A4 (en) * 2018-10-26 2022-08-10 Hitachi Astemo, Ltd. Fuel injection valve
JP6868144B1 (en) * 2020-05-25 2021-05-12 株式会社スギノマシン nozzle
JP7026751B1 (en) * 2020-11-13 2022-02-28 三菱電機株式会社 Fuel injection device
CN115324715A (en) * 2022-10-13 2022-11-11 潍柴动力股份有限公司 Precombustion chamber and processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2352957A1 (en) * 1976-05-26 1977-12-23 Sulzer Ag INTERNAL COMBUSTION ENGINE FUEL INJECTION VALVE JET
US4578164A (en) * 1983-08-24 1986-03-25 Nissan Motor Co., Ltd. Method of electrolytically finishing spray-hole of fuel injection nozzle
EP0370659A1 (en) * 1988-11-19 1990-05-30 Lucas Industries Public Limited Company Fuel injection nozzle
EP0413173A2 (en) * 1989-08-17 1991-02-20 STEYR-DAIMLER-PUCH Aktiengesellschaft Fuel injection nozzle for internal combustion engines
US5026462A (en) * 1990-03-06 1991-06-25 Ail Corporation Method and apparatus for electrochemical machining of spray holes in fuel injection nozzles
EP0641931A1 (en) * 1993-09-06 1995-03-08 Servojet Electronic Systems, Ltd. Accumulator fuel injection system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557772A1 (en) * 1975-12-20 1977-06-23 Kloeckner Humboldt Deutz Ag FUEL INJECTION VALVE
DE2711350A1 (en) * 1977-03-16 1978-09-21 Bosch Gmbh Robert FUEL INJECTION NOZZLE FOR COMBUSTION MACHINES
JPS5882068A (en) * 1981-11-09 1983-05-17 Nissan Motor Co Ltd Fuel injection nozzle
US4715541A (en) * 1985-02-26 1987-12-29 Steyr-Daimler-Puch Ag Fuel injection nozzle for combustion engines
DE3533014A1 (en) * 1985-09-16 1987-03-26 Avl Verbrennungskraft Messtech METHOD AND DEVICE FOR INPUTING THE FUEL INTO THE COMBUSTION CHAMBER OF A DIESEL ENGINE
DE3567062D1 (en) * 1985-10-22 1989-02-02 Voest Alpine Automotive Method of manufacturing an injection nozzle housing
US5242118A (en) * 1989-08-17 1993-09-07 Steyr-Daimler-Punch Ag Fuel injector for internal combustion engines
JP2819702B2 (en) * 1989-12-12 1998-11-05 株式会社デンソー Fuel injection valve
US5449121A (en) * 1993-02-26 1995-09-12 Caterpillar Inc. Thin-walled valve-closed-orifice spray tip for fuel injection nozzle
DE19547423B4 (en) * 1995-12-19 2008-09-18 Robert Bosch Gmbh Fuel injection valve for internal combustion engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2352957A1 (en) * 1976-05-26 1977-12-23 Sulzer Ag INTERNAL COMBUSTION ENGINE FUEL INJECTION VALVE JET
US4578164A (en) * 1983-08-24 1986-03-25 Nissan Motor Co., Ltd. Method of electrolytically finishing spray-hole of fuel injection nozzle
EP0370659A1 (en) * 1988-11-19 1990-05-30 Lucas Industries Public Limited Company Fuel injection nozzle
EP0413173A2 (en) * 1989-08-17 1991-02-20 STEYR-DAIMLER-PUCH Aktiengesellschaft Fuel injection nozzle for internal combustion engines
US5026462A (en) * 1990-03-06 1991-06-25 Ail Corporation Method and apparatus for electrochemical machining of spray holes in fuel injection nozzles
EP0641931A1 (en) * 1993-09-06 1995-03-08 Servojet Electronic Systems, Ltd. Accumulator fuel injection system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890735A3 (en) * 1997-07-11 2001-10-10 Robert Bosch Gmbh Fuel injection valve
WO2000023707A1 (en) * 1998-10-15 2000-04-27 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engines with self-ignition
EP1508689A1 (en) * 1999-08-11 2005-02-23 Robert Bosch Gmbh Fuel injection valve
DE10050704A1 (en) * 2000-10-13 2003-02-20 Siemens Ag Fuel injection valve has stepped transition region from jet chamber to each injection boring with at least one indentation
DE102009034072A1 (en) * 2009-07-22 2011-01-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Injector for the supply of reducing agent and apparatus for the treatment of exhaust gases
US8528884B2 (en) 2009-07-22 2013-09-10 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Injection nozzle for supplying reducing agent and device for treating exhaust gases
WO2012010657A3 (en) * 2010-07-23 2012-06-14 Continental Automotive Gmbh Nozzle body comprising a blind hole
EP2525077A1 (en) * 2011-05-16 2012-11-21 Liebherr-Machines Bulle SA Nozzle

Also Published As

Publication number Publication date
JPH1054330A (en) 1998-02-24
US5934571A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
EP0809017A1 (en) Two-stage fuel injection nozzel for internal combustion engine
DE4039520B4 (en) Fuel injection valve
EP2480783B1 (en) Fuel injection valve for an internal combustion engine
EP1076772A1 (en) Fuel injection nozzle for an internal combustion engine
DE3841142A1 (en) INJECTION VALVE
DE2750929C2 (en) Fuel injector for internal combustion engines
DE10012969B4 (en) Injection nozzle and a method for forming a fuel-air mixture
WO2005052354A1 (en) Fuel injection device, especially for a direct injection internal combustion engine, and method for the production thereof
DE19847625A1 (en) Fuel injection valve for internal combustion engine
DE10123775A1 (en) Fuel injection device for internal combustion engines, in particular common rail injector, and fuel system and internal combustion engine
DE2815672A1 (en) FUEL INJECTION DEVICE
DE2902417C2 (en)
WO2003078824A1 (en) Fuel injection valve for internal combustion engines
DE10058153A1 (en) Injection nozzle with separately controllable nozzle needles
WO2001051806A1 (en) Fuel injection nozzle
DE2814999C2 (en)
DE3502642A1 (en) FUEL INJECTION VALVE FOR AN AIR-COMPRESSING INJECTION COMBUSTION ENGINE
DE4432686C2 (en) Cross-section controlled injection nozzle
EP0116864A2 (en) Fuel injection nozzle for internal-combustion engines
WO2004092576A1 (en) Fuel injection valve for internal combustion engines
DE3114398A1 (en) INJECTION NOZZLE FOR DIESEL ENGINES
EP1062423B1 (en) Fuel injection valve
DE102009041028A1 (en) Nozzle assembly for injection valve, has nozzle body, in which nozzle body cutout and injection opening are disposed, where nozzle body cutout is hydraulically coupled to high-pressure circuit of fluid
WO2000014400A1 (en) Fuel injector for internal combustion engines
DE3506729C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19980313

17Q First examination report despatched

Effective date: 20020828

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20061127