EP0805725B1 - Verfahren und vorrichtung zum pressgissen - Google Patents

Verfahren und vorrichtung zum pressgissen Download PDF

Info

Publication number
EP0805725B1
EP0805725B1 EP96900650A EP96900650A EP0805725B1 EP 0805725 B1 EP0805725 B1 EP 0805725B1 EP 96900650 A EP96900650 A EP 96900650A EP 96900650 A EP96900650 A EP 96900650A EP 0805725 B1 EP0805725 B1 EP 0805725B1
Authority
EP
European Patent Office
Prior art keywords
mould cavity
metal
mould
die
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96900650A
Other languages
English (en)
French (fr)
Other versions
EP0805725A1 (de
Inventor
Geoffrey Allan Chadwick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Papervision Ltd
Original Assignee
Papervision Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Papervision Ltd filed Critical Papervision Ltd
Publication of EP0805725A1 publication Critical patent/EP0805725A1/de
Application granted granted Critical
Publication of EP0805725B1 publication Critical patent/EP0805725B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging

Definitions

  • the present invention relates to an apparatus and method for squeeze casting according to the preambles of claims 1 and 26, respectively.
  • Indirect squeeze casting is generally considered to be a modification or development of high pressure die casting.
  • Liquid metal is forced into a closed die cavity from a shot sleeve by a small piston.
  • the piston normally driven by a hydraulic ram continues to act on the metal in the die cavity during its solidification period. Squeeze pressures are limited by the bore of the piston and the rating of the hydraulic ram.
  • liquid metal is poured turbulently into a shot sleeve and the metal is non-turbulently displaced upwards into the die cavity by the piston through a gate, the width of the gate being many times larger than the gate used in conventional high pressure die casting.
  • the die may open either vertically or horizontally to release the casting.
  • metal is injected turbulently at high velocity into the die cavity through a narrow gate and the metal is further consolidated in the mould by means of opening the gate wider to allow the piston to move forward to compensate for solidification shrinkage.
  • Indirect squeeze casting processes generally operate with short cycle times since they are generally based on high pressure die casting practice and hence they tend to be high productivity processes. By the same token, however, these processes are most suited to conventional casting alloys and it has been found difficult to manufacture consistently good castings from high strength aluminium wrought alloys. Even those indirect squeeze casting produced using conventional casting alloys may contain some remnant microporosity in regions remote from the action of the plunger which could be detrimental to the quality of the castings. Furthermore, in most indirect squeeze casting practices it is not feasible to filter the metal just prior to its entry into the die cavity and therefore the oxides present in the melt due to turbulent metal handling procedures inevitably become trapped in the cast article as non-metallic defects. Such defects undermine and diminish the quality of the cast metal product to an extent that cannot be easily quantified and which cannot be readily tolerated.
  • indirect squeeze casting processes use a closed die to define the casting cavity. Opposing die halves are locked together rigidly by hydraulic cylinders and large toggles during the injection of metal from the shot sleeve and during the metal pressurisation period from the plunger. The only moving part of the equipment during casting is the plunger, which moves to inject metal into the fixed volume die cavity. Side cores may be used in the die to increase the complexity of the casting shape. Although the external form of the cast article may be accurately controlled, indirect squeeze castings may not be one hundred percent dense due to the presence of microporosity, particularly in regions of the casting remote from the plunger. Excess metal comprising the runners and wad, which may constitute over fifty percent of the total shot mass, needs to be removed from the casting after ejection from the die.
  • indirect squeeze casting only satisfies the third requirement, namely, the accurate metering of metal into the die cavity.
  • Direct squeeze casting differs from indirect squeeze casting in several important ways.
  • direct squeeze castings are generally made in a vertically acting hydraulic press. Liquid metal is poured from a spoon or robotic ladle or down a launder into a lower die cavity situated on the lower platen of the hydraulic press and the top part of the die is lowered by means of movement of the upper platen into the lower die cavity to displace liquid metal so as to fill the entire die cavity. Pressure from the hydraulic press continues to act on the metal in the mould during its solidification period by the continued movement of the top part of the die, or punch, into the lower part of the die assembly, or lower die cavity. The pressure on the casting during solidification is governed only by the working capacity of the hydraulic press. No runners or risers are required and the direct squeeze casting process is extremely efficient in metal utilisation for near net shape castings.
  • liquid metal has invariably been fed into the lower die cavity from above in a turbulent fashion.
  • filters can be placed, for instance, in the path of the metal stream as it travels down a launder system, the metal finally entering the die will inevitably do so in a turbulent manner and will consequently generate more oxide films which become engulfed in the casting.
  • the only means to date of metering metal into the cavity has been by the timing of metal flow from a dosing furnace or by using ladles of a given volumetric capacity.
  • variations in casting mass may occur, leading to variations in the through thickness of the direct squeeze castings which may place the castings outside acceptable tolerance limits.
  • One way of addressing this problem has been to allow excess metal to flow out of the die set through gaps or windows between the punch and the lower half as the punch enters the lower half prior to pressing. This procedure has not been found to be a completely satisfactory solution to the problem and it has not been widely adopted in practice.
  • direct squeeze casting as practised currently can be seen to suffer from serious limitations and satisfies only one of the pre-requisites listed above for the highest integrity castings, namely, the full pressurisation of the cast metal during solidification. In-line filtration can also be achieved if an appropriate launder system is used but it cannot be implemented for the commoner practices using robotic ladling of liquid metal into the die set. It will be appreciated that direct squeeze casting as used in the prior art tends to be a cumbersome process combining, as it does, gravity die casting with closed die forging. The resultant questionable cast metal quality together with an inherently low process productivity have restricted the industrial application of direct squeeze castings.
  • metal is injection cast in an apparatus for manufacturing a cast product comprising a mould cavity defined by a top die, a bottom die and a die insert slidable relative to the top die. Pressure is applied to the die insert. Molten metal is then injected from a receptacle through a gate into the mould cavity at a pressure higher than that on the die insert to cause the die insert to move rearward. Thereby an additional amount of molten metal is injected into the cavity sufficient to compensate for shrinkage due to pressurization.
  • an apparatus for casting metal articles comprising a receptacle for molten metal, at least one mould cavity for casting the metal article, the mould cavity being defined by co-operating die parts, the die parts being movable with respect to each other and their separation distance being selected to define a predetermined cavity volume for the cast article, a conduit having a first end connected to an entrance in the lower die part of the mould cavity and a second end connected to the receptacle, and means for transferring molten metal upwardly from the receptacle through the conduit to fill or substantially fill the mould cavity, characterised in that sealing means are provided to seal the entrance to the mould cavity, wherein pressurising means are provided to apply pressure on the die parts to further reduce the cavity volume during solidification of the metal in the mould cavity, the sealing means comprising a sealing gate movable between the first end of the conduit and the entrance to the mould cavity.
  • squeeze castings free or substantially free from porosity that can be produced to near net shape in a process that can be operated repetitively at high production rates to produce high quality products at acceptable cost.
  • the apparatus further comprises opening means to open the mould.
  • the apparatus comprises extraction means to remove the cast article from the mould cavity.
  • the receptacle for molten metal is a heatable furnace.
  • the receptacle for molten metal is an unheated reservoir.
  • each die part is supported on a platen of which at least one platen is slidable on one or more tie bars.
  • the means for transferring molten metal in the conduit is a low pressure pneumatic system.
  • the means of transferring molten metal in the conduit is an electromagnetic pump.
  • the means of transferring molten metal in the conduit is a vacuum system to create a negative pressure in the mould relative to the receptacle.
  • the sealing gate is manufactured from an inert material capable of forming a leak-tight closure.
  • the sealing means comprises a sealing surface such that the die parts are slidable upon it to enable the entrance to the mould cavity to be taken out of feeding relationship with the conduit.
  • the sealing surface is manufactured from an inert material capable of forming a leak-tight closure.
  • the pressure applied by the pressurising means during solidification progressively deforms and compresses the solidified metal in the mould to compensate for contraction during solidification to ensure the removal or substantial removal from the casting of contraction cavities or remnant gas porosity from gases dissolved in the metal.
  • the pressurising means has a variable speed of operation.
  • monitoring means are provided to monitor the pressure applied and the displacement produced by the pressurising means and to generate a specific pressurisation and/or displacement regime.
  • the apparatus further comprises a filtration means to filter the molten metal prior to entering the mould cavity.
  • mould cavities there are a plurality of mould cavities.
  • the lower die part is encased in a steel bolster.
  • the upper die part is held on a steel backing plate or support block.
  • the die parts are provided with heating/cooling means.
  • the separation of the die parts is determined by displacement transducers.
  • the separation of the die parts is determined by compressible separators.
  • the pressurising means is a hydraulic press.
  • the die parts comprise impression blocks manufactured in one or more interlocking segments from hardened and tempered steel.
  • the surfaces of the mould cavity are coated with a lubricant or release agent.
  • the present invention provides a method of casting metal articles, comprising the steps of locating at least one mould cavity of variable volume above a receptacle containing molten metal, connecting a conduit between the mould cavity and the receptacle with a first end connected to an entrance in the mould cavity and a second end connected to the receptacle, and forcing molten metal from the receptacle through the conduit and into the mould cavity without turbulence, characterised by using a sealing means to prevent loss of molten metal from the mould cavity, wherein during solidification of the molten metal pressure is applied to the mould cavity to reduce the volume thereby compensating for contraction during solidification, the sealing means comprising a sealing gate movable between the first end of the conduit and the entrance to the mould cavity.
  • the pressure is reduced after solidification is completed.
  • Figure 1 shows the general assembly of direct squeeze casting equipment comprising the hydraulic press 1 with its control/operations panel 2 and the pumping furnace 3 located approximately centrally below the lower platen 4 of the hydraulic press 1.
  • the lower die half 5 which may itself be constructed of separate segments which define the form of the lower surfaces of the casting and which may be held together in a robust steel bolster, is held rigidly on the lower platen 4 by bolts, jacks, levers or the like.
  • the punch or upper die half 6 which may itself be constructed of separate segments and which defines the form of the upper surfaces of the casting, is attached directly or indirectly via a backing plate or a support block to the upper platen 7 above the lower die half and can be lowered into it by the operation of the hydraulic cylinder or cylinders 8 and the associated hydraulic pumps 8a of the hydraulic press 1.
  • the die parts 5,6 and any cores which may be part of the die construction may be sprayed with a graphitic or other die lubricant prior to assembly in their correct locations ready for casting.
  • the upper part of the die 6 is positioned, with the aid of displacement transducers, limit switches or other similarly suitable devices, within the lower part of the die 5 to define a metal metering means such that the volume of liquid metal which will enter the cavity from the conduit 9 will, subsequent to sealing the entrance to the mould and after solidification and simultaneous compression and compaction by the main hydraulic cylinder or cylinders 8, provide a casting free or substantially free from porosity and of the required dimensions.
  • the dies are operated at a temperature within the range 250°c - 350°C and they may be heated or cooled to maintain their temperature by electrical or oil circulation or other means. The heating may be applied directly to the impression blocks or to the bolster and support blocks of the upper and lower parts respectively.
  • Figure 2 shows an enlarged view of a die set 5 and 6 located centrally on the platens 4 and 7 above the conduit 9, which comprises a riser tube 9a from the furnace 3 and a channel 9b in the lower platen, with the sliding gate 10 situated between the top of the conduit 9 and the bottom of the die cavity 11, the sliding gate being operated by the hydraulic cylinder 22.
  • the orifice 12 in the sliding gate 10 which may be lined with ceramic or other inert material, lines up with the conduit 9 when the gate is open to allow metal to pass upwardly from the conduit 9 into the mould cavity 11 through a filtering medium 13 situated within the orifice 12 of the sliding gate 10 or at any suitable position within the mould entrance 14.
  • the channel 9b in the lower platen 4 and in any backing plates between the lower die half 5 and the lower platen 4 may be lined with inert ceramic material 15.
  • the sliding gate 10 is moved by a distance greater than the diameter of the orifice 12 to displace the orifice 12 in the sliding gate 10 fully out of alignment with the conduit 9 and thus to isolate the liquid metal in the mould cavity 11 from the metal in the conduit 9.
  • pressure can be reduced in the pumping furnace 3 to allow the descent of liquid metal in the conduit 9.
  • the underside of the sliding gate 10 may contain a venting passage to allow the ingress of air into the top of the conduit 9 when the venting passage and the inner edge of the conduit are placed in juxtaposition by the further movement of the sliding gate 10.
  • the contacting surfaces above and below the sliding gate may be of a material different from the sliding gate 10 to reduce frictional effects and to prevent any potential seepage of liquid metal into the sliding mechanism.
  • the sliding gate 10 can be secured in its unaligned position to form a leak-tight seal by forcing it from below against the lower end of the mould entrance 14.
  • the upwardly acting force on the sliding gate 10 may be generated from the interaction of the inclined surfaces 16 in the sliding gate against the inclined ramps 17 on the underlying surface.
  • the mechanical or hydraulic action of levers or toggles or the like may also be used to effectively seal the sliding gate 10 against the lower end of the mould entrance 14.
  • the punch 6 can be retracted by the reverse action of the main cylinder or cylinders 8 or by the action of ancillary cylinders and the casting can be removed.
  • the small disc of solidified aluminium in the orifice 12 in the sliding gate 10 can easily be removed by a sprung ball mechanism, for instance, and the die set can be reassembled for further casting.
  • This method of operation is suitable for the larger size of castings in heavy steel moulds and bolsters.
  • This arrangement of die filling and sealing is suitable, for example, for the manufacture of automotive components such as steering knuckles, wheel hub castings, light alloy wheels and other shapes for general engineering applications.
  • FIG 4 An alternative arrangement for metal metering and mould sealing is shown in Figure 4, in which the bottom half of the die set 5 is situated on a raised or recessed slide track 18 and is moved with respect to the conduit 9 to place the mould into or out of feeding relationship with the furnace 3 and simultaneously out of or into coaxiality with the hydraulic press 1.
  • the mould entrance 14 is initially located over the conduit 9 and metal enters the mould from below in a non-turbulent manner through a filtering mechanism 13 located in the liquid metal flow path below the mould entrance 14 or at any suitable position within the mould entrance 14.
  • Metering of the correct amount of liquid metal into the mould is effected through having the top half of the die 6 situated within the lower half of the die 5 so defining the mould cavity 11 but raised on, preferably adjustable, compressible separators 19 by an amount which just compensates for the volume contraction of the liquid metal on solidification and compaction by the squeezing forces of the hydraulic press 1.
  • the top half of the die 6 may alternatively be held at the required metal metering height on its own slide track 20 attached directly or indirectly to the top platen and directly above the lower slide track as shown in Figure 5.
  • the synchronous sideways sliding movement of the two halves of the die may be actuated by a single hydraulic cylinder acting in the line of the slide tracks with the punch 6 being moved by interaction with the lower half 5, or vice versa, or by the cylinder acting jointly on the two die halves; or by a pair of cylinders acting simultaneously on the two halves.
  • the top half 6 and the bottom half 5 of the mould are together moved sideways out of feeding relationship with the conduit 9 to a position near the centre of the platens of the hydraulic press.
  • the punch 6 in Figure 4 can engage securely in a seating such as a tapered keyway or some other interlocking or interacting device on the underside of the upper platen 7 in order to create a withdrawal mechanism for the punch when the casting has solidified.
  • pressure is brought to bear on the bottom half of the mould by ancillary hydraulic or pneumatic pistons or by mechanical devices to seal the entrance to the mould by making a leak-proof joint between the die and the lower slide track. Pressure from the hydraulic press is then applied to the punch 6 of the die set such as to displace the punch to compensate for solidification contraction until the liquid metal fully solidifies.
  • the die set can then be opened and the casting removed.
  • FIG. 6 Another alternative way of sealing the mould is illustrated in Figure 6 in which the moving part 21 of the sealing means is held in the upper part of the die 6. After being coated with the necessary die lubricant the die halves are initially set at the appropriate distance apart such that the correct quantity of liquid metal is metered into the die cavity 11 when the die cavity is filled from below. The moving part 21 of the sealing means can then be lowered by actuation of an ancillary hydraulic cylinder 23 or by pneumatic or mechanical devices through the liquid metal to seat on the entrance to the mould 14 in the lower half of the die 5 and to effectively seal it to prevent the flow of liquid from the mould during the pressurisation cycle of the hydraulic press.
  • an ancillary hydraulic cylinder 23 or by pneumatic or mechanical devices through the liquid metal to seat on the entrance to the mould 14 in the lower half of the die 5 and to effectively seal it to prevent the flow of liquid from the mould during the pressurisation cycle of the hydraulic press.
  • Pressure can be exerted on the moving part 21 of the sealing means by the ancillary hydraulic cylinder 23 or by other pneumatic or mechanical devices to ensure that a pressure tight joint exists to prevent the loss of metal from the mould.
  • the squeezing pressure from the main hydraulic cylinder 8 can be applied to consolidate the casting during solidification.
  • the moving part 21 of the sealing means can be withdrawn by reverse actuation of the ancillary hydraulic cylinder 23 or pneumatic piston or by release of the mechanical devices, the die set can be opened using the return action of the main hydraulic cylinder or cylinders 8 and the casting can be removed from the mould cavity.
  • This embodiment of the direct squeeze casting process is particularly suitable for components which require a through hole such as steering knuckles and wheels or wheel centres, for instance, and for moulds containing multiple cavities arranged around a common ingate.
  • the punch 6 is located in its metal metering position prior to metal entering the die.
  • the lowering of the punch 6 to its metering position in the lower half of the die 5 to define the die cavity can occur simultaneous with mould filling, or even subsequent to mould filling but prior to mould sealing, in order to promote enhanced liquid metal movement in the die cavity and to encourage a more refined microstructure in the cast article.
  • Such a procedure will also provide shorter manufacturing times and greater productivities, particularly for large volume castings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Claims (28)

  1. Vorrichtung zum Gießen von Metallgegenständen, mit einem Behälter (3) für Metallschmelze, mindestens einer Formkavität (11) zum Gießen des Metallgegenstandes, wobei die Formkavität definiert ist durch zusammenwirkende Formwerkzeugteile (5, 6), die relativ zueinander beweglich sind und deren gegenseitiger Abstand so gewählt ist, daß sie ein vorgegebenes Kavitätsvolumen für den Gußartikel definieren, einer Leitung (9) mit einem ersten Ende, das mit einem Einlaß am unteren Formwerkzeugteil der Formkavität verbunden ist, und einem zweiten Ende, das mit dem Behälter verbunden ist, und Mitteln zum Überführen von Metallschmelze nach oben von dem Behälter durch die Leitung, um die Formkavität turbulenzfrei zu füllen oder weitgehend zu füllen,
    dadurch gekennzeichnet, daß Verschlußmittel (10) zum dichten Verschließen des Einlasses (15) der Formkavität vorgesehen sind und daß Druckbeaufschlagungsmittel (8) vorgesehen sind, um einen Druck auf die Formwerkzeugteile auszuüben, um das Kavitätsvolumen während der Verfestigung des Metalls in der Formkavität weiter zu reduzieren, wobei die Verschlußmittel ein Verschlußglied (10) aufweisen, das zwischen dem ersten Ende der Leitung (9) und dem Einlaß (14) der Formkavität (11) beweglich ist.
  2. Vorrichtung nach Anspruch 1,
    mit Mitteln zum Öffnen der Form.
  3. Vorrichtung nach Anspruch 1 oder 2,
    mit Extraktionsmitteln zum Entnehmen des gegossenen Gegenstandes aus der Formkavität.
  4. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem der Behälter für Metallschmelze ein heizbarer Ofen (3) ist.
  5. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem der Behälter für Metallschmelze ein unbeheizter Vorratsbehälter ist.
  6. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem jedes Formwerkzeug (5, 6) von einer Platte (4, 7) gehalten ist, wobei mindestens eine der Platten auf einer der mehreren Zugstangen verschiebbar ist.
  7. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem die Mittel zum Überführen von Metallschmelze durch die Leitung (9) aus einem Niederdruck-Pneumatiksystem bestehen.
  8. Vorrichtung nach einem der Ansprüche 1 bis 6,
    bei der die Mittel zum Überführen von Metallschmelze durch die Leitung (9) eine elektromagnetische Pumpe sind.
  9. Vorrichtung nach einem der Ansprüche 1 bis 6,
    bei der die Mittel zum Überführen von Metallschmelze durch die Leitung (9) ein Vakuumsystem sind, welches einen Unterdruck in der Formkavität relativ zu dem Behälter erzeugt.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9,
    bei der das Verschlußglied (10) aus einem inerten Material hergestellt ist, das einen leckdichten Verschluß bilden kann.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10,
    bei der die Verschlußmittel (10) eine solche Abdichtfläche aufweisen, daß die Formwerkzeuge (5, 6) auf dieser verschiebbar sind, so daß der Einlaß zur Formkavität (11) von der Leitung (9) wegbewegt werden kann.
  12. Vorrichtung nach Anspruch 11,
    bei der die Dichtfläche aus einem inerten Material besteht, das einen leckdichten Verschluß bilden kann.
  13. Vorrichtung nach einem der vorangehenden Ansprüche,
    bei dem der von den Druckbeaufschlagungsmitteln (8) während der Verfestigung aufgebrachte Druck das verfestigte Metall in der Form progressiv verformt und komprimiert, um die Kontraktion während der Verfestigung zu kompensieren und um eine vollständige oder weitgehende Entfernung von Kontraktionskavitäten oder einer verbleibenden Gasporosität aufgrund von im Metall gelösten Gasen aus dem Gußstück zu gewährleisten.
  14. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem die Druckbeaufschlagungsmittel (9) eine veränderbare Betriebsgeschwindigkeit haben.
  15. Vorrichtung nach einem vorangehenden Anspruch,
    bei der Überwachungsmittel vorgesehen sind, um den aufgebrachten Druck und die von den Druckbeaufschlagungsmitteln (9) erzeugte Verschiebung während der Verfestigung zu überwachen und um ein spezielles Druck- und/oder Verschiebungsprofil zu erzeugen.
  16. Vorrichtung nach einem vorangehenden Anspruch,
    mit einer Filtriereinrichtung (13) zum Filtrieren der Metallschmelze vor dem Eintritt in die Formkavität (11).
  17. Vorrichtung nach einem vorangehenden Anspruch,
    mit einer Mehrzahl von Formkavitäten (11).
  18. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem das untere Formwerkzeugteil (5) in einer Stahlummantelung eingeschlossen ist.
  19. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem das obere Formwerkzeugteil (6) von einer Aufspannplatte oder einem Tragblock aus Stahl gehalten ist.
  20. Vorrichtung nach einem vorangehenden Anspruch,
    bei der die Formwerkzeugteile (5, 6) oder ihre Aufspannplatten mit Heiz-/Kühlmitteln versehen sind.
  21. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem die Trennung der Formwerkzeugteile (5, 6) durch Positionsgeber bestimmt wird.
  22. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem die Trennung der Formwerkzeugteile (5, 6) durch kompressible Separatoren (19) bestimmt ist.
  23. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem die Druckbeaufschlagungsmittel (8) eine Hydraulikpresse sind.
  24. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem die Formwerkzeugteile (5, 6) Tiefdruckblöcke sind, die aus gehärtetem und geglühtem Stahl in einem oder mehreren ineinandergreifenden Segmenten hergestellt sind.
  25. Vorrichtung nach einem vorangehenden Anspruch,
    bei dem die Oberflächen der Formkavität mit einem Schmier- oder Ablösemittel beschichtet sind.
  26. Verfahren zum Gießen von Metallgegenständen mit den Schritten:
    Anordnen mindestens einer Formkavität (11) oberhalb eines Metallschmelze enthaltenden Behälters (3), Verbinden einer Leitung (9) zwischen der Formkavität und dem Behälter, wobei ein erstes Ende mit einem Einlaß (14) der Formkavität und ein zweites Ende mit dem Behälter verbunden ist, und Pressen von Metallschmelze aus dem Behälter durch die Leitung in die Formkavität ohne Turbulenz, gekennzeichnet durch die Verwendung von Verschlußmitteln (10) zum Verhindern des Austritts von Metallschmelze aus der Formkavität, wobei während der Verfestigung der Metallschmelze Druck auf die Formkavität (11) ausgeübt wird, um deren Volumen zu reduzieren und dadurch die Kontraktion während der Verfestigung zu kompensieren, wobei die Verschlußmittel ein Verschlußglied (10) umfassen, das zwischen dem ersten Ende der Leitung (9) und dem Einlaß (14) zur Formkavität (11) bewegbar ist.
  27. Verfahren nach Anspruch 26,
    bei dem der Druck reduziert wird, nachdem die Verfestigung abgeschlossen ist.
  28. Verfahren nach Anspruch 27,
    bei dem die Form dann durch ihre Öffnungseinrichtung geöffnet und das Gußstück durch Extraktionsmittel entnommen wird.
EP96900650A 1995-01-23 1996-01-23 Verfahren und vorrichtung zum pressgissen Expired - Lifetime EP0805725B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9501261.3A GB9501261D0 (en) 1995-01-23 1995-01-23 Apparatus and method for squeeze casting
GB9501261 1995-01-23
PCT/GB1996/000137 WO1996022851A1 (en) 1995-01-23 1996-01-23 Apparatus and method for squeeze casting

Publications (2)

Publication Number Publication Date
EP0805725A1 EP0805725A1 (de) 1997-11-12
EP0805725B1 true EP0805725B1 (de) 2000-10-04

Family

ID=10768406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96900650A Expired - Lifetime EP0805725B1 (de) 1995-01-23 1996-01-23 Verfahren und vorrichtung zum pressgissen

Country Status (7)

Country Link
EP (1) EP0805725B1 (de)
JP (1) JPH10512811A (de)
AU (1) AU708985B2 (de)
CA (1) CA2211140A1 (de)
DE (1) DE69610550T2 (de)
GB (1) GB9501261D0 (de)
WO (1) WO1996022851A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899624B2 (en) 2005-05-19 2014-12-02 Magna International Inc. Controlled pressure casting
US8496258B2 (en) 2003-10-20 2013-07-30 Magna International Inc. Hybrid component
CA2608168C (en) * 2005-05-19 2014-08-12 Magna International Inc. Controlled pressure casting
DE102005025768A1 (de) * 2005-06-04 2006-12-07 Almecon Entwicklungs-, Beratungs- Und Beschaffungsgesellschaft Mbh Verfahren zur Herstellung von Formteilen aus Metall mittels einer Pressvorrichtung und Pressvorrichtung zur Durchführung des Verfahrens
DE102008027682B4 (de) * 2008-06-10 2011-03-17 Eduard Heidt Verfahren zum Herstellen von dünnwandigen und hochfesten Bauteilen
DE102008054718B4 (de) * 2008-12-16 2012-11-22 Federal-Mogul Nürnberg GmbH Gießform für den Schwerkraftguss und Schwerkraftgießverfahren
DE102016123496A1 (de) * 2016-12-05 2018-06-07 Schuler Pressen Gmbh Werkzeug zum Gießen und/oder Umformen eines Formteils, Gießvorrichtung, Presse und Verfahren zum Kompensieren einer thermischen Belastung eines Formteils
DE102016123491B4 (de) * 2016-12-05 2019-12-24 Schuler Pressen Gmbh Gießvorrichtung, Presse und Verfahren zum Gießen eines Bauteils
DE102016123495A1 (de) 2016-12-05 2018-06-07 Schuler Pressen Gmbh Werkzeug zum Gießen und/oder Umformen eines Bauteils, Gießvorrichtung, Presse und Verfahren zur Spaltkompensation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2255738A (en) * 1991-05-16 1992-11-18 Frys Metals Ltd Dispensing molten metal for casting
JPH06210426A (ja) * 1992-03-04 1994-08-02 Mitsubishi Electric Corp 鋳物の製造方法及び製造装置

Also Published As

Publication number Publication date
DE69610550T2 (de) 2001-05-10
GB9501261D0 (en) 1995-03-15
JPH10512811A (ja) 1998-12-08
EP0805725A1 (de) 1997-11-12
AU708985B2 (en) 1999-08-19
DE69610550D1 (de) 2000-11-09
AU4455296A (en) 1996-08-14
CA2211140A1 (en) 1996-08-01
WO1996022851A1 (en) 1996-08-01

Similar Documents

Publication Publication Date Title
US5908065A (en) Apparatus and method for squeeze casting
CN101274361B (zh) 低速真空压挤铸造工艺
US6808004B2 (en) Semi-solid molding method
US4497359A (en) Die-casting method
US4519436A (en) Method for injecting molten metal in vertical diecasting machine
US4380261A (en) Die-casting method
EP0120649B1 (de) Pressgiessen von Gegenständen
CA2450037A1 (en) Automotive and aerospace materials in a continuous, pressurized mold filling and casting machine
US20060151138A1 (en) Semi-solid molding method
EP0805725B1 (de) Verfahren und vorrichtung zum pressgissen
CN106001499A (zh) 适用于含异形轮缘结构的轮毂局部挤压铸造模具及工艺
CN108326256A (zh) 一种低压充型高压凝固铸造装置与铸造方法
US5906235A (en) Pressurized squeeze casting apparatus and method and low pressure furnace for use therewith
EP0005239A1 (de) Niederdruckgiessverfahren für Metalle, insbesondere NE-Metalle, sowie Vorrichtung zur Durchführung des Verfahrens
CN102717049A (zh) 一种闭模浇注直接挤压铸造的方法及其装置
GB2056338A (en) Die-casting method and apparatus
US5595236A (en) Vertical squeeze casting apparatus
EP0535421B1 (de) Verfahren und Vorrichtung zur Erzeugung von Bauteilen
WO2000045979A2 (en) Method and apparatus for casting metal articles
JPH1085919A (ja) 加圧鋳造方法及び装置
KR19990051756A (ko) 알루미늄 휠 주조장치
CN112658226B (zh) 一种不等厚深腔壳型铝合金构件挤压铸造装置及其使用方法
DE2846512A1 (de) Maschine zum druckgiessen von metallen, insbesondere legierten eisenmetallen (stahl)
CN110681846A (zh) 铝合金异形结构件卧式造型立式差压浇注装置及浇注方法
US20220048434A1 (en) Hitch step and method of manufacturing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19971126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PAPERVISION LIMITED

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001004

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69610550

Country of ref document: DE

Date of ref document: 20001109

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010117

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010129

Year of fee payment: 6

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010209

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BRAUN & PARTNER PATENT-, MARKEN-, RECHTSANWAELTE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010328

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050123