EP0793006A1 - Cooling circuit of an internal combustion engine - Google Patents

Cooling circuit of an internal combustion engine Download PDF

Info

Publication number
EP0793006A1
EP0793006A1 EP96119729A EP96119729A EP0793006A1 EP 0793006 A1 EP0793006 A1 EP 0793006A1 EP 96119729 A EP96119729 A EP 96119729A EP 96119729 A EP96119729 A EP 96119729A EP 0793006 A1 EP0793006 A1 EP 0793006A1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
internal combustion
expansion tank
valve
cooling circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96119729A
Other languages
German (de)
French (fr)
Other versions
EP0793006B1 (en
Inventor
Klaus Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of EP0793006A1 publication Critical patent/EP0793006A1/en
Application granted granted Critical
Publication of EP0793006B1 publication Critical patent/EP0793006B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a cooling circuit of an internal combustion engine according to the preamble of patent claim 1.
  • Such a cooling circuit is described for example in DE 37 18 697 A1.
  • a main circuit and a short circuit are formed in this overall cooling circuit and are switched by a thermostatic valve depending on the operating temperature of the coolant.
  • the short circuit is switched below a predetermined opening temperature of the thermostatic valve, ie during the cold start and the warm-up phase of the internal combustion engine.
  • an expansion tank is provided in this cooling circuit, which serves as a coolant reservoir and as a compensation reservoir for temperature-related fluctuations in the volume of the coolant.
  • this expansion tank serves as an air or gas separator, for which purpose ventilation lines from high points of the internal combustion engine and / or the cooler open into this expansion tank.
  • the expansion tank is usually integrated into the circuit in such a way that it fulfills its storage, compensation and venting function independently of the operating temperature of the coolant and thus both in the main circuit and in the short-circuit circuit.
  • the coolant volume in the expansion tank must also be heated when the internal combustion engine is cold started or during the warm-up phase. This extends the engine's warm-up phase, which leads to higher consumption and higher pollution levels.
  • the blocking of the ventilation line according to the invention takes place advantageously depending on the operating temperature of the coolant and / or on the pressure in the expansion tank.
  • the pressure in the expansion tank is dependent on the temperature-dependent change in volume of the coolant, so that a temperature-dependent blocking or opening of the ventilation line to the expansion tank also takes place indirectly.
  • Such a pressure or temperature-dependent connection and disconnection of the vent line is advantageously carried out by arranging the shut-off valve on the expansion tank and adjusting its valve member by a piston acted upon by the pressure in the expansion tank.
  • the valve member itself can be designed as a pressurizable piston.
  • the opening pressure or the opening temperature can be in the range of the opening temperature of the thermostatic valve. However, an opening temperature or an opening pressure that causes the shutoff valve to open earlier than the thermostatic valve is also possible.
  • a plurality of ventilation lines are provided in such a cooling circuit and are connected, for example, to the cooler of the cooling circuit (heat exchanger) and the housing of the internal combustion engine, these can advantageously be brought together at the check valve. This means that both vent lines or all vent lines can then be blocked by the valve member, which significantly reduces the construction effort.
  • a separate routing of the different ventilation lines to the valve member has the advantage that pressure differences in the lines due to different lengths cannot lead to a coolant flow between the individual ventilation lines bypassing the expansion tank. If the ventilation lines were brought together in front of the valve member, different line pressure losses would occur due to different line lengths, which could lead to the fact that heated coolant would be pressed from one ventilation line into the other and could thus be fed back into the circuit.
  • the check valve is detachably attached to the expansion tank.
  • shut-off valve can be operated manually regardless of the pressure in the expansion tank, so that the cooling circuit and the expansion tank can be filled in a simple manner for initial filling, refilling or during maintenance and repair.
  • the cooling circuit according to the invention is shown schematically in FIG. 1, with no restriction to this embodiment, using the example of a two-row internal combustion engine with cylinders 1 to 6.
  • the housing 7 of the internal combustion engine not shown in detail, has cavities which are arranged in the region of the cylinder block and cylinder head, also not shown in detail.
  • the coolant flows through these during operation of the internal combustion engine.
  • the coolant is circulated by a coolant pump 8, which in this exemplary embodiment is connected on the suction side to a thermostatic valve 9 known per se.
  • This thermostat valve 9 depending on the operating temperature of the coolant, enables or blocks the connection between the coolant pump 8 and the housing 7 of the internal combustion engine to a cooler 10 (heat exchanger).
  • the coolant pump 8 circulates the coolant in a short-circuit, in which the cavities in the housing 7 of the internal combustion engine and a heating heat exchanger 11 are flowed through without flowing through the cooler 10 at the same time.
  • the suction side of the coolant pump 8 is connected to an expansion tank 12, which serves as a storage and buffer tank for the coolant.
  • the expansion tank 12 is provided with a pressure relief valve 13 which is known per se and which, depending on the internal pressure in the tank, enables a connection to the surroundings.
  • the gas located above the coolant level 14 in the expansion tank 12 can thereby be released when a predetermined maximum pressure is exceeded.
  • two ventilation lines 15 and 16 are connected, of which the ventilation line 15 is connected to the cooler 10 of the internal combustion engine, while the ventilation line 16 leads to a high point of the housing 7 of the internal combustion engine.
  • the connection of the vent lines 15 and 16 to the expansion tank 12 can be blocked in each case via a check valve 17.
  • FIG. 2 shows the housing 18 of the expansion tank 12, which is only partially shown, the upper side of which has an opening 19, into which the valve housing 20 of the check valve 17 is inserted.
  • the cylindrical underside of the cylindrical valve housing 20 of the check valve 17 is inserted into the opening 19 of the housing 18 and sealed by a sealing ring 22.
  • the check valve 17 is detachably attached to the expansion tank 12.
  • two vent connections 23, 24 open into the interior of the valve housing 20, of which the vent connection 23 is connected to the vent line 15 and the vent connection 24 to the vent line 16.
  • a piston-shaped valve member 25 In the interior of the cylindrical valve housing 20, a piston-shaped valve member 25 is axially movably guided, the end face 26 of which is acted upon by the pressure p in the interior of the expansion tank 12.
  • a compression spring 27 On the opposite inside of the valve member 25, one end of a compression spring 27 is supported, the other end of which rests on an end face 28 of the valve housing 20.
  • the valve member 25 has further on the side facing away from the expansion tank 12 on a pin 29, which is encompassed by the compression spring 27 and penetrates the end face 28 of the valve housing 20. Outside the valve housing 20, this pin 29 is encompassed by a disk 30 which, in the end position of the valve member 25 shown in FIG. 2, rests as an end stop on the outside of the valve housing 20. In the switching position of the check valve 17 shown in FIG.
  • the valve member 25 is in its lower end position or the closed position. In this switching position, the two vent connections 23 and 24 are closed on one side by the valve member 25, that is to say there is no connection of the vent lines 15 and 16 to the expansion tank 12 predetermined opening pressure, the valve member 25 is raised against the action of the compression spring 27, so that the connection of the vent connections 23 and 24 and thus the vent lines 15 and 16 to the expansion tank 12 is released.
  • the coolant level / volume in the expansion tank is low and the tank internal pressure corresponds to the ambient pressure.
  • the coolant level in the expansion tank rises, and with it the internal pressure.
  • the pressure relief valve opens to the environment and the gas in the expansion tank can escape, so that the pressure drops.
  • the pressure difference between the internal container pressure and the ambient pressure acts on the valve member or the piston, which on the other hand is acted upon by the action of the spring. If a predetermined opening pressure is exceeded, the valve member is displaced and the ventilation connections are released.
  • the compression spring is designed so that its pretension is just sufficient to move the valve member back to its starting position against the friction of the seal when the coolant cools.
  • the housing 18A of the expansion tank 12 has two concentrically circumferential, annular webs 31, 32 on the outside. Between the outer web 31 and the inner web 32, the housing 18A has a plurality of openings 33 penetrates, which are connected to the interior of the expansion tank 12. The connection via a single opening would also be possible.
  • two separate channels 35, 36 run, which - in a manner not shown in detail and only indicated by dashed lines - are guided in a sealed manner to the outside of the housing 18A and are connected there to the ventilation lines 15 and 16 .
  • a valve housing lower part 37 is placed on the two concentric webs 31 and 32, which in turn is covered by a valve housing upper part 38.
  • the valve housing lower part 37 consists of an outer ring 39 which engages over and surrounds the outer web 31 of the housing 18A and is screwed to it. With this ring 39, an inner ring 40 is connected, which engages over and encompasses the inner annular web 32.
  • the ring 40 has two through openings 41, 42 which are connected to the channels 35 and 36 of the housing 18A. Between the two rings 39 and 40, the valve housing lower part 37 has a plurality of passages 43 which are connected to the annular space 44 between the inner and outer webs 31, 32 of the housing 18A.
  • connection via a single pass is also possible.
  • a rolling membrane 45 is clamped, which rests under the action of a spring-loaded piston 46 on the end face 47 of the inner ring 40 designed as a sealing surface and thus closes the openings 41, 42 and thus the channels 35, 36 on one side .
  • the cup-shaped piston 46 rests with its bottom 48 on the inside 49 of the rolling membrane 45 and has a circumferential circumferential annular groove 50 into which a circumferential ring 51 of the rolling membrane 45 engages.
  • the piston also has a pin 52 which is guided in the valve housing upper part 38 and penetrates it. Of the Pin 52 is surrounded by a compression spring 53, which is supported on the one hand on the bottom 48 of the piston 46 and on the other hand on the valve housing upper part 38.
  • the internal pressure of the expansion tank does not act on the piston, but via the openings 33, the annular space 44 and the passages 43 on the outer area of the rolling membrane 45, while the inner area of the rolling membrane acts on the venting closures 41, 42; 35, 36 closes or opens.
  • a pivotable bracket element 54 is fastened to the pin 52 outside the valve housing upper part 38, by means of which the piston 46 and thus the rolling membrane 45 can be manually raised independently of the pressure in the expansion tank 12.
  • the bracket element 54 has two pivot positions (solid or dashed lines), the piston 46 being held in a position in the pivot position shown in dashed lines in which the shut-off valve is open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Abstract

Der erfindungsgemäße Kühlkreislauf enthält einen Ausgleichbehälter (12), an den mindestens eine mit der Brennkraftmaschine und/oder dem Kühler (10) verbundene Entlüftungsleitung (15,16) angeschlossen ist. Um die Aufwärmphase der Brennkraftmaschine zu verkürzen, ist in der Entlüftungsleitung (15,16) ein Sperrventil (17,17A) vorgesehen, mit dem die Verbindung der Entlüftungsleitung (15,16) zum Ausgleichbehälter während (10) der Aufwärmphase absperrbar ist. Dadurch wird erreicht, daß das im Ausgleichbehälter (10) befindliche Kühlmittel im Kurzschlußkreislauf nicht umgewälzt wird. <IMAGE>The cooling circuit according to the invention contains an expansion tank (12) to which at least one ventilation line (15, 16) connected to the internal combustion engine and / or the cooler (10) is connected. In order to shorten the warm-up phase of the internal combustion engine, a check valve (17, 17 A) is provided in the ventilation line (15, 16), with which the connection of the ventilation line (15, 16) to the expansion tank can be shut off during (10) of the warm-up phase. This ensures that the coolant in the expansion tank (10) is not circulated in the short circuit. <IMAGE>

Description

Die Erfindung betrifft einen Kühlkreislauf einer Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a cooling circuit of an internal combustion engine according to the preamble of patent claim 1.

Ein derartiger Kühlkreislauf ist beispielsweise in der DE 37 18 697 A1 beschrieben. In diesem Gesamt-Kühlkreislauf sind ein Hauptkreislauf und ein Kurzschlußkreislauf ausgebildet, die in Abhängigkeit von der Betriebstemperatur des Kühlmittels durch ein Thermostatventil geschaltet werden. Der Kurzschlußkreislauf ist unterhalb einer vorgegebenen Öffnungstemperatur des Thermostatventils geschaltet, d.h. während des Kaltstarts und der Aufwärmphase der Brennkraftmaschine. In diesem Kurzschlußkreislauf wird nur ein Teil des Kühlmittels umgewälzt, ohne den Kühler zu durchströmen, um damit die Autwärmzeit zu verringern. Zusätzlich ist in diesem Kühlkreislauf ein Ausgleichbehälter vorgesehen, der als Kühlmittelspeicher und als Ausgleichsreservoir für temperaturbedingte Volumenschwankungen des Kühlmittels dient. Gleichzeitig dient dieser Ausgleichbehälter als Luft- bzw. Gasabscheider, wozu Entlüftungsleitungen von hochgelegenen Punkten der Brennkraftmaschine und/oder des Kühlers in diesen Ausgleichbehälter münden. Der Ausgleichbehälter ist üblicherweise so in den Kreislauf integriert, daß er unabhängig von der Betriebstemperatur des Kühlmittels und damit sowohl im Hauptkreislauf als auch im Kurzschlußkreislauf seiner Speicher-, Ausgleichs- und Entlüftungsfunktion erfüllt. Somit muß auch beim Kaltstart der Brennkraftmaschine bzw. während der Aufwärmphase das im Ausgleichbehälter befindliche Kühlmittelvolumen mit erwärmt werden. Dadurch verlängert sich die Aufwärmphase des Motors, was zu höheren Verbräuchen und höheren Schadstoffbelastungen führt. In der eingangs angeführten DE 37 18 697 A1 wird zur Verkürzung der Warmlaufphase vorgeschlagen, das Volumen des Ausgleichbehälters so aufzuteilen, daß wenigstens zwei das Kühlmittel speichernde Räume vorgesehen sind, von denen nur der kleinere Speicherraum in den Kurzschlußkreislauf der Brennkraftmaschine eingebunden ist, so daß das wesentlich geringere Volumen schneller aufzuheizen ist.Such a cooling circuit is described for example in DE 37 18 697 A1. A main circuit and a short circuit are formed in this overall cooling circuit and are switched by a thermostatic valve depending on the operating temperature of the coolant. The short circuit is switched below a predetermined opening temperature of the thermostatic valve, ie during the cold start and the warm-up phase of the internal combustion engine. In this short circuit, only part of the coolant is circulated without flowing through the cooler in order to reduce the heating time. In addition, an expansion tank is provided in this cooling circuit, which serves as a coolant reservoir and as a compensation reservoir for temperature-related fluctuations in the volume of the coolant. At the same time, this expansion tank serves as an air or gas separator, for which purpose ventilation lines from high points of the internal combustion engine and / or the cooler open into this expansion tank. The expansion tank is usually integrated into the circuit in such a way that it fulfills its storage, compensation and venting function independently of the operating temperature of the coolant and thus both in the main circuit and in the short-circuit circuit. Thus, the coolant volume in the expansion tank must also be heated when the internal combustion engine is cold started or during the warm-up phase. This extends the engine's warm-up phase, which leads to higher consumption and higher pollution levels. In the above-mentioned DE 37 18 697 A1 it is proposed to shorten the warm-up phase to divide the volume of the expansion tank so that at least two rooms storing the coolant are provided, of which only the smaller storage space is integrated into the short-circuit circuit of the internal combustion engine, so that the much smaller volume can be heated faster.

Demgegenüber ist es Aufgabe der Erfindung, einen Kühlkreislauf einer Brennkraftmaschine dahingehend zu verbessern, daß die Aufwärmphase darüber hinaus deutlich reduziert wird und bei dem die im Kurzschlußkreislauf umgewälzte Kühlmittelmenge weitestgehend reduziert wird.In contrast, it is an object of the invention to improve a cooling circuit of an internal combustion engine in such a way that the warm-up phase is also significantly reduced and in which the amount of coolant circulated in the short circuit is largely reduced.

Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Durch die Anordnung eines Sperrventiles in der Entlüftungsleitung, mit dem die Verbindung zum Ausgleichbehälter sperrbar ist, kann in der Aufwärmphase das im Ausgleichbehälter gespeicherte Kühlmittelvolumen weitgehend aus dem Kühlkreislauf abgekoppelt werden. Dieses Kühlmittel muß dadurch in der Aufwärmphase nicht mit aufgeheizt werden, so daß sich die Aufwärmphase deutlich verkürzt. Wird bei Erreichen einer vorgegebenen Betriebsmitteltemperatur oder anderer von der Betriebsmitteltemperatur abhängiger Betriebsgrößen die Sperrung der Entlüftungsleitung aufgehoben, ist der Ausgleichbehälter mit dem gespeicherten Kühlmittelvolumen auf an sich bekannte Weise in den Kurzschlußkreislauf bzw. den Gesamtkreislauf des Kühlmittels eingebunden.This object is achieved with the characterizing features of claim 1. By arranging a shut-off valve in the vent line, with which the connection to the expansion tank can be locked, the coolant volume stored in the expansion tank can be largely decoupled from the cooling circuit in the warm-up phase. As a result, this coolant does not have to be heated up in the warm-up phase, so that the warm-up phase is significantly shortened. If the blocking of the ventilation line is lifted when a predetermined operating medium temperature or other operating variables dependent on the operating medium temperature are released, the expansion tank with the stored coolant volume is integrated in a known manner into the short-circuit circuit or the overall circuit of the coolant.

Die erfindungsgemäße Sperrung der Entlüftungsleitung erfolgt vorteilhafter Weise in Abhängigkeit von der Betriebstemperatur des Kühlmittels und/oder vom Druck im Ausgleichbehälter. Der Druck im Ausgleichbehälter ist abhängig von der temperaturabhängigen Volumenänderung des Kühlmittels, so daß auch damit indirekt eine temperaturabhängige Sperrung bzw. Öffnung der Entlüftungsleitung zum Ausgleichbehälter erfolgt.The blocking of the ventilation line according to the invention takes place advantageously depending on the operating temperature of the coolant and / or on the pressure in the expansion tank. The pressure in the expansion tank is dependent on the temperature-dependent change in volume of the coolant, so that a temperature-dependent blocking or opening of the ventilation line to the expansion tank also takes place indirectly.

Eine derartige druck- bzw. temperaturabhängige Zu- und Abschaltung der Entlüftungsleitung erfolgt vorteilhafter Weise, indem das Sperrventil am Ausgleichbehälter angeordnet und sein Ventilglied durch einen vom Druck im Ausgleichbehälter beaufschlagten Kolben verstellt wird. Dabei kann in besonders vorteilhafter Weise das Ventilglied selbst als druckbeaufschlagbarer Kolben ausgebildet sein.Such a pressure or temperature-dependent connection and disconnection of the vent line is advantageously carried out by arranging the shut-off valve on the expansion tank and adjusting its valve member by a piston acted upon by the pressure in the expansion tank. In a particularly advantageous manner, the valve member itself can be designed as a pressurizable piston.

Wird das als druckbeaufschlagbarer Kolben ausgebildete Ventilglied gegen die Wirkung einer Feder beaufschlagt, kann auf vorteilhafte Weise eine definierbare Einstellung des Öffnungspunktes erfolgen. Dabei kann der Öffnungsdruck bzw. die Öffnungstemperatur im Bereich der Öffnungstemperatur des Thermostatventils liegen. Eine Öffnungstemperatur bzw. ein Öffnungsdruck, der ein früheres Öffnen des Sperrventils im Vergleich zum Thermostatventil bewirkt, ist jedoch ebenfalls möglich.If the valve member designed as a pressurizable piston is acted against the action of a spring, a definable setting of the opening point can advantageously be carried out. The opening pressure or the opening temperature can be in the range of the opening temperature of the thermostatic valve. However, an opening temperature or an opening pressure that causes the shutoff valve to open earlier than the thermostatic valve is also possible.

Sind in einem derartigen Kühlkreislauf mehrere Entlüftungsleitungen vorgesehen, die beispielsweise mit dem Kühler des Kühlkreislaufes (Wärmetauscher) und dem Gehäuse der Brennkraftmaschine verbunden sind, können diese auf vorteilhafter Weise am Sperrventil zusammengeführt werden. Damit sind dann durch das Ventilglied beide Entlüftungsleitungen bzw. alle Entlüftungsleitungen sperrbar, wodurch der Bauaufwand deutlich reduziert wird.If a plurality of ventilation lines are provided in such a cooling circuit and are connected, for example, to the cooler of the cooling circuit (heat exchanger) and the housing of the internal combustion engine, these can advantageously be brought together at the check valve. This means that both vent lines or all vent lines can then be blocked by the valve member, which significantly reduces the construction effort.

Eine getrennte Führung der unterschiedlichen Entlüftungsleitungen bis zum Ventilglied hat dabei den Vorteil, daß Druckunterschiede in den Leitungen aufgrund unterschiedlicher Längen nicht zu einem Kühlmittelfluß zwischen den einzelnen Entlüftungsleitungen unter Umgehung des Ausgleichbehälters führen können. Bei einer Zusammenführung der Entlüftungsleitungen vor dem Ventilglied würden aufgrund unterschiedlicher Leitungslängen unterschiedliche Leitungsdruckverluste auftreten, die dazu führen könnten, daß erwämtes Kühlmittel von einer Entlüftungsleitung in die andere gedrückt würde und somit wieder in den Kreislauf eingespeist werden könnte.A separate routing of the different ventilation lines to the valve member has the advantage that pressure differences in the lines due to different lengths cannot lead to a coolant flow between the individual ventilation lines bypassing the expansion tank. If the ventilation lines were brought together in front of the valve member, different line pressure losses would occur due to different line lengths, which could lead to the fact that heated coolant would be pressed from one ventilation line into the other and could thus be fed back into the circuit.

Im Hinblick auf eine verbesserte Wartung bzw. eine kostengünstigere Reparatur eines derartigen Kühlkreislaufes, ist es vorteilhaft, wenn das Sperrventil lösbar am Ausgleichbehälter befestigt ist.With regard to improved maintenance or a more cost-effective repair of such a cooling circuit, it is advantageous if the check valve is detachably attached to the expansion tank.

Weiterhin ist es vorteilhaft, wenn das Sperrventil unabhängig vom Druck im Ausgleichbehälter manuell betätigt werden kann, so daß für eine Erstbefüllung, Neubefüllung oder bei Wartung und Reparatur die Befüllung des Kühlkreislaufes und des Ausgleichbehälters auf einfache Weise erfolgen kann.It is also advantageous if the shut-off valve can be operated manually regardless of the pressure in the expansion tank, so that the cooling circuit and the expansion tank can be filled in a simple manner for initial filling, refilling or during maintenance and repair.

Weitere Vorteile und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung.Further advantages and advantageous developments of the invention result from the subclaims and the description.

Ein Ausführungsbeispiel der Erfindung ist in der nachfolgenden Beschreibung und Zeichnung näher erläutert. Letztere zeigt in

Fig. 1
ein schematisch dargestelltes Schaltbild des Kühlkreislaufes,
Fig. 2
einen Schnitt durch ein erfindungsgemäßes Sperrventil und
Fig. 3
einen Schnitt durch ein zweites Ausführungsbeispiel des Sperrventils.
An embodiment of the invention is explained in more detail in the following description and drawing. The latter shows in
Fig. 1
a schematically illustrated circuit diagram of the cooling circuit,
Fig. 2
a section through an inventive check valve and
Fig. 3
a section through a second embodiment of the check valve.

Der erfindungsgemäße Kühlkreislauf ist ohne Beschränkung auf diese Ausführungsform in Fig. 1 schematisch am Beispiel einer zweireihigen Brennkraftmaschine mit Zylindern 1 bis 6 dargestellt. Das nicht näher dargestellte Gehäuse 7 der Brennkraftmaschine weist Hohlräume auf, die im Bereich des ebenfalls nicht näher dargestellten Zylinderblockes und Zylinderkopfes angeordnet sind. Diese werden im Betrieb der Brennkraftmaschine vom Kühlmittel durchströmt. Die Umwälzung des Kühlmittels erfolgt durch eine Kühlmittelpumpe 8, die in diesem Ausführungsbeispiel saugseitig mit einem an sich bekannten Thermostatventil 9 verbunden ist. Durch dieses Thermostatventil 9 wird in Abhängigkeit von der Betriebstemperatur des Kühlmittels die Verbindung zwischen Kühlmittelpumpe 8 und Gehäuse 7 der Brennkraftmaschine zu einem Kühler 10 (Wärmetauscher) freigegeben bzw. gesperrt. Unterhalb einer vorgegebenen Öffnungstemperatur des Thermostatventils 9 wälzt die Kühlmittelpumpe 8 das Kühlmittel in einem Kurzschlußkreislauf um, bei dem die Hohlräume im Gehäuse 7 der Brennkraftmaschine und ein Heizungswärmetauscher 11 durchströmt werden, ohne daß gleichzeitig der Kühler 10 durchströmt wird. Damit wird einerseits nur ein Teil des Kühlmittels umgewälzt, andererseits wird eine während der Auswärmphase nicht gewünschte Abkühlung beim Durchströmen des Kühlers vermieden. Übersteigt die Betriebstemperatur des Kühlmittels die vorgegebene Öffnungstemperatur des Thermostatventils 9, wird die Verbindung der Kühlmittelpumpe 8 zum Kühler 10 geöffnet, so daß das gesamte Kühlmittel durch den Kühler 10 umgewälzt wird (Hauptkreislauf).The cooling circuit according to the invention is shown schematically in FIG. 1, with no restriction to this embodiment, using the example of a two-row internal combustion engine with cylinders 1 to 6. The housing 7 of the internal combustion engine, not shown in detail, has cavities which are arranged in the region of the cylinder block and cylinder head, also not shown in detail. The coolant flows through these during operation of the internal combustion engine. The coolant is circulated by a coolant pump 8, which in this exemplary embodiment is connected on the suction side to a thermostatic valve 9 known per se. This thermostat valve 9, depending on the operating temperature of the coolant, enables or blocks the connection between the coolant pump 8 and the housing 7 of the internal combustion engine to a cooler 10 (heat exchanger). Below a predetermined opening temperature of the thermostatic valve 9, the coolant pump 8 circulates the coolant in a short-circuit, in which the cavities in the housing 7 of the internal combustion engine and a heating heat exchanger 11 are flowed through without flowing through the cooler 10 at the same time. On the one hand, this means that only a part of the coolant is circulated, on the other hand, cooling that is not desired during the warm-up phase when flowing through the cooler is avoided. If the operating temperature of the coolant exceeds the predetermined opening temperature of the thermostatic valve 9, the connection of the coolant pump 8 to the cooler 10 is opened, so that all of the coolant is circulated through the cooler 10 (main circuit).

In beiden Kreisläufen ist die Saugseite der Kühlmittelpumpe 8 mit einem Ausgleichbehälter 12 verbunden, der als Speicher und Pufferbehälter für das Kühlmittel dient. Der Ausgleichbehälter 12 ist mit einem an sich bekannten Überdruckventil 13 versehen, das in Abhängigkeit vom Behälterinnendruck eine Verbindung zur Umgebung ermöglicht. Das sich oberhalb des Kühlmittelspiegels 14 im Ausgleichbehälter 12 befindliche Gas kann dadurch bei Überschreiten eines vorgegebenen Höchstdruckes entspannt werden. Mit dem Ausgleichbehälter sind zwei Entlüftungsleitungen 15 und 16 verbunden, von denen die Entlüftungsleitung 15 mit dem Kühler 10 der Brennkraftmaschine verbunden ist, während die Entlüftungsleitung 16 zu einer hochgelegenen Stelle des Gehäuses 7 der Brennkraftmaschine führt. Die Verbindung der Entlüftungsleitungen 15 und 16 zum Ausgleichbehälter 12 ist jeweils über ein Sperrventil 17 sperrbar.In both circuits, the suction side of the coolant pump 8 is connected to an expansion tank 12, which serves as a storage and buffer tank for the coolant. The expansion tank 12 is provided with a pressure relief valve 13 which is known per se and which, depending on the internal pressure in the tank, enables a connection to the surroundings. The gas located above the coolant level 14 in the expansion tank 12 can thereby be released when a predetermined maximum pressure is exceeded. With the expansion tank, two ventilation lines 15 and 16 are connected, of which the ventilation line 15 is connected to the cooler 10 of the internal combustion engine, while the ventilation line 16 leads to a high point of the housing 7 of the internal combustion engine. The connection of the vent lines 15 and 16 to the expansion tank 12 can be blocked in each case via a check valve 17.

Fig. 2 zeigt das nur teilweise dargestellte Gehäuse 18 des Ausgleichbehälters 12, dessen Oberseite eine Öffnung 19 aufweist, in die das Ventilgehäuse 20 des Sperrventils 17 eingesetzt ist. Das zylinderförmige Ventilgehäuse 20 des Sperrventils 17 ist mit seiner offenen Unterseite 21 in die Öffnung 19 des Gehäuses 18 eingesetzt und durch einen Dichtring 22 abgedichtet. Durch Einschrauben des Ventilgehäuses 20 in diese Öffnung 19, durch Verschrauben mittels zusätzlicher Schrauben am Gehäuse 18 des Ausgleichbehälters 12, durch Rastmittel oder ähnliche Befestigungsmittel ist das Sperrventil 17 lösbar am Ausgleichbehälter 12 befestigt. Oberhalb des Ausgleichbehälters 12 münden in das Innere des Ventilgehäuses 20 zwei Entlüftungsanschlüsse 23, 24, von denen der Entlüftungsanschluß 23 mit der Entlüftungsleitung 15 und der Entlüttungsanschluß 24 mit der Entlüftungsleitung 16 verbunden ist.2 shows the housing 18 of the expansion tank 12, which is only partially shown, the upper side of which has an opening 19, into which the valve housing 20 of the check valve 17 is inserted. The cylindrical underside of the cylindrical valve housing 20 of the check valve 17 is inserted into the opening 19 of the housing 18 and sealed by a sealing ring 22. By screwing the valve housing 20 into this opening 19, by screwing by means of additional screws on the housing 18 of the expansion tank 12, by locking means or similar fastening means, the check valve 17 is detachably attached to the expansion tank 12. Above the expansion tank 12, two vent connections 23, 24 open into the interior of the valve housing 20, of which the vent connection 23 is connected to the vent line 15 and the vent connection 24 to the vent line 16.

Im Inneren des zylindrischen Ventilgehäuses 20 ist ein kolbenförmiges Ventilglied 25 axial beweglich geführt, dessen Stirnseite 26 vom Druck p im Inneren des Ausgleichbehälters 12 beaufschlagt ist. An der gegenüberliegenden Innenseite des Ventilgliedes 25 stützt sich das eine Ende einer Druckfeder 27 ab, deren anderes Ende an einer Stirnseite 28 des Ventilgehäuses 20 anliegt. Das Ventilglied 25 weist weiterhin auf der dem Ausgleichbehälter 12 abgewandten Seite einen Zapfen 29 auf, der von der Druckfeder 27 umfaßt wird und die Stirnseite 28 des Ventilgehäuses 20 durchdringt. Außerhalb des Ventilgehäuses 20 wird dieser Zapfen 29 von einer Scheibe 30 umfaßt, die in der in Fig. 2 dargestellten Endstellung des Ventilgliedes 25 als Endanschlag an der Außenseite des Ventilgehäuses 20 anliegt. In der in Fig. 2 dargestellten Schaltstellung des Sperrventils 17 befindet sich das Ventilglied 25 in seiner unteren Endstellung bzw. der Schließstellung. In dieser Schaltstellung sind die beiden Entlüftungsanschlüsse 23 und 24 durch das Ventilglied 25 einseitig verschlossen, d.h. es besteht keine Verbindung der Entlüftungsleitungen 15 und 16 zum Ausgleichbehälter 12. Übersteigt der Innendruck im Ausgleichbehälter 12 aufgrund der temperaturabhängigen Volumenzunahme des Kühlmittels einen durch die Vorspannung der Druckfeder 27 vorgegebenen Öffnungsdruck, wird das Ventilglied 25 gegen die Wirkung der Druckfeder 27 angehoben, so daß die Verbindung der Entlüftungsanschlüsse 23 und 24 und damit der Entlüftungsleitungen 15 und 16 zum Ausgleichbehälter 12 freigegeben wird.In the interior of the cylindrical valve housing 20, a piston-shaped valve member 25 is axially movably guided, the end face 26 of which is acted upon by the pressure p in the interior of the expansion tank 12. On the opposite inside of the valve member 25, one end of a compression spring 27 is supported, the other end of which rests on an end face 28 of the valve housing 20. The valve member 25 has further on the side facing away from the expansion tank 12 on a pin 29, which is encompassed by the compression spring 27 and penetrates the end face 28 of the valve housing 20. Outside the valve housing 20, this pin 29 is encompassed by a disk 30 which, in the end position of the valve member 25 shown in FIG. 2, rests as an end stop on the outside of the valve housing 20. In the switching position of the check valve 17 shown in FIG. 2, the valve member 25 is in its lower end position or the closed position. In this switching position, the two vent connections 23 and 24 are closed on one side by the valve member 25, that is to say there is no connection of the vent lines 15 and 16 to the expansion tank 12 predetermined opening pressure, the valve member 25 is raised against the action of the compression spring 27, so that the connection of the vent connections 23 and 24 and thus the vent lines 15 and 16 to the expansion tank 12 is released.

Beim Kaltstart der Brennkraftmaschine ist das Kühlmittelniveau/Kühlmittelvolumen im Ausgleichbehälter niedrig und der Behälterinnendruck entspricht dem Umgebungsdruck. Bei Volumenzunahme des Kühlmittels infolge der Erwärmung steigt der Kühlmittelspiegel im Ausgleichbehälter und damit dessen Innendruck. Übersteigt der Innendruck einen vorgegebenen Maximaldruck, öffnet das Überdruckventil zur Umgebung, und das im Ausgleichbehälter befindliche Gas kann entweichen, so daß der Druck absinkt. Die Druckdifferenz zwischen Behälterinnendruck und Umgebunsdruck wirkt auf das Ventilglied bzw. den Kolben, der andererseits durch die Wirkung der Feder beaufschlagt ist. Bei Überschreiten eines vorgegebenen Öffnungsdruckes wird das Ventilglied verschoben und die Entlüftungsanschlüsse werden freigegeben. Die Druckfeder ist so ausgelegt, daß ihre Vorspannung gerade ausreicht, um bei Abkühlung des Kühlmittels das Ventilglied gegen die Reibung der Dichtung wieder in seine Ausgangsstellung zurückzubewegen. Es ist jedoch auch möglich, über entsprechende Auslegung des Federelementes eine höhere Öffnungskraft und damit eine höhere Öffnungstemperatur/einen höheren Öffnungsdruck vorzugeben.When the engine is cold started, the coolant level / volume in the expansion tank is low and the tank internal pressure corresponds to the ambient pressure. When the volume of the coolant increases as a result of the heating, the coolant level in the expansion tank rises, and with it the internal pressure. If the internal pressure exceeds a predetermined maximum pressure, the pressure relief valve opens to the environment and the gas in the expansion tank can escape, so that the pressure drops. The pressure difference between the internal container pressure and the ambient pressure acts on the valve member or the piston, which on the other hand is acted upon by the action of the spring. If a predetermined opening pressure is exceeded, the valve member is displaced and the ventilation connections are released. The compression spring is designed so that its pretension is just sufficient to move the valve member back to its starting position against the friction of the seal when the coolant cools. However, it is also possible to specify a higher opening force and thus a higher opening temperature / a higher opening pressure by appropriate design of the spring element.

Bei der in Fig. 3 dargestellten zweiten Ausführungsform des Sperrventils 17A hat das Gehäuse 18A des Ausgleichbehälters 12 an seiner Außenseite zwei konzentrisch umlaufende, ringförmige Stege 31, 32. Zwischen dem äußeren Steg 31 und dem inneren Steg 32 ist das Gehäuse 18A von mehreren Öffnungen 33 durchsetzt, die mit dem Innenraum des Ausgleichbehälters 12 verbunden sind. Die Verbindung über eine einzelne Öffnung wäre ebenfalls möglich. In dem durch den inneren ringförmigen Steg 32 begrenzten Behälterabschnitt 34 verlaufen zwei getrennte Kanäle 35, 36, die - auf nicht näher dargestellte Weise und nur gestrichelt angedeutet - abgedichtet bis zur Außenseite des Gehäuses 18A geführt sind und dort mit den Entlüftungsleitungen 15 und 16 verbunden sind. Auf die beiden konzentrischen Stege 31 und 32 ist ein Ventilgehäuseunterteil 37 aufgesetzt, das wiederum von einem Ventilgehäuseoberteil 38 abgedeckt ist.In the second embodiment of the check valve 17A shown in FIG. 3, the housing 18A of the expansion tank 12 has two concentrically circumferential, annular webs 31, 32 on the outside. Between the outer web 31 and the inner web 32, the housing 18A has a plurality of openings 33 penetrates, which are connected to the interior of the expansion tank 12. The connection via a single opening would also be possible. In the container section 34 delimited by the inner annular web 32, two separate channels 35, 36 run, which - in a manner not shown in detail and only indicated by dashed lines - are guided in a sealed manner to the outside of the housing 18A and are connected there to the ventilation lines 15 and 16 . A valve housing lower part 37 is placed on the two concentric webs 31 and 32, which in turn is covered by a valve housing upper part 38.

Das Ventilgehäuseunterteil 37 besteht aus einem äußeren Ring 39, der den äußeren Steg 31 des Gehäuses 18A übergreift und umfaßt und mit diesem verschraubt ist. Mit diesem Ring 39 ist ein innerer Ring 40 verbunden, der den inneren ringförmigen Steg 32 übergreift und umfaßt. Der Ring 40 weist zwei durchgehende Öffnungen 41, 42 auf, die mit den Kanälen 35 und 36 des Gehäuses 18A verbunden sind. Zwischen den beiden Ringen 39 und 40 weist das Ventilgehäuseunterteil 37 mehrere Durchgänge 43 auf, die mit dem Ringraum 44 zwischen dem inneren und äußeren Steg 31, 32 des Gehäuses 18A verbunden sind. Auch hier ist die Verbindung über einen einzelnen Durchgang ebenfalls möglich.The valve housing lower part 37 consists of an outer ring 39 which engages over and surrounds the outer web 31 of the housing 18A and is screwed to it. With this ring 39, an inner ring 40 is connected, which engages over and encompasses the inner annular web 32. The ring 40 has two through openings 41, 42 which are connected to the channels 35 and 36 of the housing 18A. Between the two rings 39 and 40, the valve housing lower part 37 has a plurality of passages 43 which are connected to the annular space 44 between the inner and outer webs 31, 32 of the housing 18A. Here, too, connection via a single pass is also possible.

Zwischen dem Ventilgehäuseoberteil 38 und dem Ventilgehäuseunterteil 37 ist eine Rollmembran 45 eingespannt, die unter der Wirkung eines federbelasteten Kolbens 46 auf der als Dichtfläche ausgebildeten Stirnfläche 47 des inneren Ringes 40 aufliegt und so die Öffnungen 41, 42 und damit die Kanäle 35, 36 einseitig verschließt. Der becherförmige Kolben 46 liegt dazu mit seinem Boden 48 an der Innenseite 49 der Rollmembran 45 an und hat eine umfangsseitig umlaufende Ringnut 50, in die ein umlaufender Ring 51 der Rollmembran 45 eingreift. Der Kolben hat weiterhin einen Zapfen 52, der im Ventilgehäuseoberteil 38 geführt ist und dieses durchdringt. Der Zapfen 52 wird von einer Druckfeder 53 umfaßt, die sich einerseits am Boden 48 des Kolbens 46 und andererseits am Ventilgehäuseoberteil 38 abstützt.Between the valve housing upper part 38 and the valve housing lower part 37, a rolling membrane 45 is clamped, which rests under the action of a spring-loaded piston 46 on the end face 47 of the inner ring 40 designed as a sealing surface and thus closes the openings 41, 42 and thus the channels 35, 36 on one side . For this purpose, the cup-shaped piston 46 rests with its bottom 48 on the inside 49 of the rolling membrane 45 and has a circumferential circumferential annular groove 50 into which a circumferential ring 51 of the rolling membrane 45 engages. The piston also has a pin 52 which is guided in the valve housing upper part 38 and penetrates it. Of the Pin 52 is surrounded by a compression spring 53, which is supported on the one hand on the bottom 48 of the piston 46 and on the other hand on the valve housing upper part 38.

Der Innendruck des Ausgleichbehälters wirkt in diesem Ausführungsbeispiel nicht auf den Kolben sondern über die Öffnungen 33, den Ringraum 44 und die Durchgänge 43 auf den äußeren Bereich der Rollmembran 45, während der innere Bereich der Rollmembran die Entlüftungsabschlüsse 41,42; 35, 36 verschließt bzw. öffnet.In this exemplary embodiment, the internal pressure of the expansion tank does not act on the piston, but via the openings 33, the annular space 44 and the passages 43 on the outer area of the rolling membrane 45, while the inner area of the rolling membrane acts on the venting closures 41, 42; 35, 36 closes or opens.

An dem Zapfen 52 ist außerhalb des Ventilgehäuseoberteils 38 ein schwenkbares Bügelelement 54 befestigt, mit dem der Kolben 46 und damit die Rollmembran 45 unabhängig vom Druck im Ausgleichbehälter 12 manuell angehoben werden können. Das Bügelelement 54 hat zwei Schwenkstellungen (durchgezogen bzw. getrichelt dargestellt), wobei in der gestrichelt dargestellten Schwenkstellung der Kolben 46 in einer Position festgehalten ist, in der das Sperrventil geöffnet ist.A pivotable bracket element 54 is fastened to the pin 52 outside the valve housing upper part 38, by means of which the piston 46 and thus the rolling membrane 45 can be manually raised independently of the pressure in the expansion tank 12. The bracket element 54 has two pivot positions (solid or dashed lines), the piston 46 being held in a position in the pivot position shown in dashed lines in which the shut-off valve is open.

Claims (11)

Kühlkreislauf einer Brennkraftmaschine mit Kühlmittel, das Hohlräume im Gehäuse (7) dieser Brennkraftmaschine durchströmt, mit einer Kühlmittelpumpe (8), einem Thermostatventil (9) zur Umschaltung zwischen einem Hauptkreislauf und einem Kurzschlußkreislauf, einem Kühler (10), einem Ausgleichbehälter (12) mit einem Überdruckventil (13) und mindestens einer in den Ausgleichbehälter mündenden Entlüftungsleitung (15, 16), dadurch gekennzeichnet, daß in der Entlüftungsleitung ein Sperrventil (17, 17A) angeordnet ist, mit dem die Verbindung zum Ausgleichbehälter sperrbar ist.Cooling circuit of an internal combustion engine with coolant that flows through cavities in the housing (7) of this internal combustion engine, with a coolant pump (8), a thermostatic valve (9) for switching between a main circuit and a short circuit, a cooler (10), an expansion tank (12) a pressure relief valve (13) and at least one vent line (15, 16) opening into the expansion tank, characterized in that a shut-off valve (17, 17A) is arranged in the vent line, with which the connection to the expansion tank can be locked. Kühlkreislauf einer Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, daß das Sperrventil (17; 17A) in Abhängigkeit von der Betriebstemperatur des Kühlmittels betätigt wird.Cooling circuit of an internal combustion engine according to claim 1, characterized in that the shut-off valve (17; 17A) is actuated as a function of the operating temperature of the coolant. Kühlkreislauf einer Brennkraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Sperrventil (17; 17A) in Abhängigkeit vom Druck im Ausgleichbehälter (12) betätigt wird.Cooling circuit of an internal combustion engine according to claim 1 or 2, characterized in that the shut-off valve (17; 17A) is actuated as a function of the pressure in the expansion tank (12). Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Sperrventil (17; 17A) am Ausgleichbehälter (12) angeordnet ist und ein Ventilglied (25: 45, 46) hat, daß durch eine vom Druck im Ausgleichbehälter (12) beaufschlagte Stelleinheit (25; 46) betätigt ist.Cooling circuit of an internal combustion engine according to one of the preceding claims, characterized in that the shut-off valve (17; 17A) is arranged on the expansion tank (12) and has a valve member (25: 45, 46) which is acted upon by the pressure in the expansion tank (12) Actuator (25; 46) is actuated. Kühlkreislauf einer Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, daß das Ventilglied (25) als druckbeaufschlagbarer Kolben ausgebildet ist.Cooling circuit of an internal combustion engine according to claim 4, characterized in that the valve member (25) is designed as a pressurizable piston. Kühlkreislauf einer Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, daß das Ventilglied mit einer druckbaufschlagten Membran (45) verbunden ist.Cooling circuit of an internal combustion engine according to claim 4, characterized in that the valve member is connected to a pressurized membrane (45). Kühlkreislauf einer Brennkraftmaschine nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß das Ventilglied (25; 45, 46) gegen die Wirkung einer Feder (27; 53) vom Druck im Ausgleichbehälter (12) beaufschlagt ist.Cooling circuit of an internal combustion engine according to one of claims 4 to 6, characterized in that the valve member (25; 45, 46) is acted upon by the pressure in the expansion tank (12) against the action of a spring (27; 53). Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Ventilglied (25; 45, 46) mit mindestens zwei Entlüftungsleitungen (15, 16) zusammenwirkt, von denen eine mit dem Kühler (10) und die andere mit einem der Hohlräume im Gehäuse (7) der Brennkraftmaschine verbunden ist.Cooling circuit of an internal combustion engine according to one of the preceding claims, characterized in that the valve member (25; 45, 46) cooperates with at least two ventilation lines (15, 16), one of which with the cooler (10) and the other with one of the cavities in Housing (7) of the internal combustion engine is connected. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Sperrventil (17; 17A) lösbar am Ausgleichbehälter (12) befestigt ist.Cooling circuit of an internal combustion engine according to one of the preceding claims, characterized in that the check valve (17; 17A) is detachably attached to the expansion tank (12). Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Ventilglied (25; 45, 46) unabhängig vom Druck im Ausgleichbehälter (12) manuell betätigbar ist.Cooling circuit of an internal combustion engine according to one of the preceding claims, characterized in that the valve member (25; 45, 46) can be actuated manually regardless of the pressure in the expansion tank (12). Kühlkreislauf einer Brennkraftmaschine nach Anspruch 10, dadurch gekennzeichnet, daß das Ventilglied (25; 45, 46) einen das Ventilgehäuse (20; 38) durchdringenden, von außen zugänglichen Zapfen (29; 52) aufweist.Cooling circuit of an internal combustion engine according to claim 10, characterized in that the valve member (25; 45, 46) has a pin (29; 52) penetrating the valve housing (20; 38) and accessible from the outside.
EP96119729A 1996-02-29 1996-12-10 Cooling circuit of an internal combustion engine Expired - Lifetime EP0793006B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19607638A DE19607638C1 (en) 1996-02-29 1996-02-29 Internal combustion engine coolant circuit
DE19607638 1996-02-29

Publications (2)

Publication Number Publication Date
EP0793006A1 true EP0793006A1 (en) 1997-09-03
EP0793006B1 EP0793006B1 (en) 2002-09-18

Family

ID=7786755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96119729A Expired - Lifetime EP0793006B1 (en) 1996-02-29 1996-12-10 Cooling circuit of an internal combustion engine

Country Status (6)

Country Link
US (1) US5836269A (en)
EP (1) EP0793006B1 (en)
JP (1) JPH09329021A (en)
KR (1) KR100381353B1 (en)
CN (1) CN1160123A (en)
DE (2) DE19607638C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011116202B3 (en) * 2011-10-15 2012-10-04 Audi Ag Coolant circuit for an internal combustion engine
DE102015105921A1 (en) * 2015-04-17 2016-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728814A1 (en) * 1997-07-05 1999-01-07 Behr Thermot Tronik Gmbh & Co Cooling system for an internal combustion engine of a motor vehicle
DE19831922A1 (en) * 1998-07-16 2000-01-20 Man Nutzfahrzeuge Ag Drive device in a motor vehicle
DE19948160B4 (en) * 1999-10-07 2010-07-15 Wilhelm Kuhn Cooling device for a liquid-cooled internal combustion engine of a motor vehicle
FR2804719B1 (en) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2804722B1 (en) * 2000-02-03 2002-03-08 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2804720B1 (en) 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2806444B1 (en) 2000-03-17 2002-06-07 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
US7152555B2 (en) * 2001-02-20 2006-12-26 Volvo Trucks North America, Inc. Engine cooling system
US6532910B2 (en) 2001-02-20 2003-03-18 Volvo Trucks North America, Inc. Engine cooling system
DE10127219A1 (en) * 2001-05-23 2002-11-28 Behr Thermot Tronik Gmbh Cooling system for internal combustion engine has coolant outlet of one row of cylinders connected to radiator inlet, that of another connected to thermostatic valve short circuit inlet
US6634322B2 (en) 2001-04-12 2003-10-21 Cold Fire, Llc Heat exchanger tempering valve
US6802283B2 (en) 2002-07-22 2004-10-12 Visteon Global Technologies, Inc. Engine cooling system with variable speed fan
US6668766B1 (en) 2002-07-22 2003-12-30 Visteon Global Technologies, Inc. Vehicle engine cooling system with variable speed water pump
US6745726B2 (en) 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine
US6668764B1 (en) 2002-07-29 2003-12-30 Visteon Global Techologies, Inc. Cooling system for a diesel engine
US7885627B2 (en) * 2003-07-07 2011-02-08 Advanced Micro Devices, Inc. Optimal initial gain selection for wireless receiver
US7194986B2 (en) * 2003-08-07 2007-03-27 Brp Us Inc. Actuator assisted blow-off assembly to control coolant flow in an internal combustion engine
DE102004058869B4 (en) 2004-12-06 2021-09-30 Att Automotivethermotech Gmbh Method and device for hot cooling of internal combustion engines
DE102004058865B4 (en) * 2004-12-06 2020-08-20 Att Automotivethermotech Gmbh Method and device for needs-based cooling and venting of internal combustion engines
JP4659769B2 (en) * 2007-01-25 2011-03-30 トヨタ自動車株式会社 Cooling system
SE530868C2 (en) * 2007-02-09 2008-09-30 Volvo Lastvagnar Ab Cooling
EP2039902A3 (en) * 2007-06-27 2010-03-17 Geiger Automotive GmbH Device for calibrating the flow of a cooling agent in a cooling circuit and cooling circuit
DE102008030567A1 (en) 2008-06-27 2009-12-31 Bayerische Motoren Werke Aktiengesellschaft A fuel cell assembly having storage means for storing and providing liquid coolant
US8397681B2 (en) * 2009-09-02 2013-03-19 International Engine Intellectual Property Company, Llc Expansion tank for vehicle cooling system
DE102010018089B3 (en) 2010-04-24 2011-07-14 Audi Ag, 85057 Valve arrangement for ventilation of refrigerant circuit of internal combustion engine, has valve by which primary and secondary ventilation lines are combined to joint
DE102010017766B4 (en) * 2010-07-06 2013-11-14 Ford Global Technologies, Llc. Cooling arrangement for internal combustion engines
DE102010033715A1 (en) * 2010-08-07 2012-02-09 Audi Ag Expansion tank for a coolant circuit
DE102011078293B4 (en) * 2011-06-29 2017-06-29 Röchling Automotive AG & Co. KG Expansion tank with a liquid check valve body and a relative to this movably received on this gas vacuum valve body and such a valve structure supporting lid for a surge tank
US20130073190A1 (en) * 2011-09-21 2013-03-21 Honda Motor Co., Ltd. Engine Start Up Control For A Motor Vehicle
KR101875620B1 (en) 2012-04-10 2018-07-06 현대자동차 주식회사 Engine cooling system and electronic thermostat control system and method thereof
DE102012218392A1 (en) * 2012-10-09 2014-04-10 Reutter Gmbh Directional valve for surge tank of cooling system of combustion engine for e.g. passenger car, has pressure spring that is acted on valve element such that valve blocking operation is performed based on screwing of lid of surge tank
CN103437880A (en) * 2013-08-30 2013-12-11 重庆长安汽车股份有限公司 Engine cooling system and exhaust structure
EP3137747B1 (en) * 2014-04-30 2020-10-14 Cummins, Inc. Vehicle comprising a driveline retarder and method of controlling coolant flow to a driveline retarder
DE102015109691A1 (en) 2015-06-17 2016-12-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Bleed valve for use in a cooling system of a motor vehicle
DE102015109690A1 (en) 2015-06-17 2016-12-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for use in a motor vehicle
CN107542572B (en) * 2016-06-24 2019-07-19 北汽福田汽车股份有限公司 Cooling system and vehicle with it
GB2554443A (en) * 2016-09-28 2018-04-04 Mclaren Automotive Ltd Coolant header tank
DE102016119181A1 (en) * 2016-10-10 2018-04-12 Volkswagen Aktiengesellschaft Internal combustion engine
DE102017204824B3 (en) 2017-03-22 2018-06-14 Ford Global Technologies, Llc Cooling system of a vehicle engine having a separation unit
KR20200014540A (en) * 2018-08-01 2020-02-11 현대자동차주식회사 Control method of cooling system for vehicle
DE102020100895B3 (en) * 2020-01-16 2021-02-25 Audi Aktiengesellschaft Expansion tank for a cooling circuit of a drive device of a motor vehicle and a corresponding drive device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3718697A1 (en) 1986-06-14 1987-12-17 Volkswagen Ag Cooling arrangement
EP0295445A2 (en) * 1987-05-18 1988-12-21 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Liquid cooling circuit for machines especially for internal combustion engines
FR2722244A1 (en) * 1994-07-07 1996-01-12 Valeo Thermique Moteur Sa Temperature controlling three=way valve for heat engine
FR2722833A1 (en) * 1994-07-21 1996-01-26 Valeo Thermique Moteur Sa Cooling system for heat engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2058995B2 (en) * 1970-12-01 1973-08-09 DEVICE FOR VENTILATING THE COOLING LIQUID OF AN COMBUSTION ENGINE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3718697A1 (en) 1986-06-14 1987-12-17 Volkswagen Ag Cooling arrangement
EP0295445A2 (en) * 1987-05-18 1988-12-21 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Liquid cooling circuit for machines especially for internal combustion engines
FR2722244A1 (en) * 1994-07-07 1996-01-12 Valeo Thermique Moteur Sa Temperature controlling three=way valve for heat engine
FR2722833A1 (en) * 1994-07-21 1996-01-26 Valeo Thermique Moteur Sa Cooling system for heat engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011116202B3 (en) * 2011-10-15 2012-10-04 Audi Ag Coolant circuit for an internal combustion engine
EP2581580A2 (en) 2011-10-15 2013-04-17 Audi Ag Coolant loop for a combustion engine
DE102015105921A1 (en) * 2015-04-17 2016-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle
US11125145B2 (en) 2015-04-17 2021-09-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle
DE102015105921B4 (en) 2015-04-17 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle and method for operating the same

Also Published As

Publication number Publication date
EP0793006B1 (en) 2002-09-18
DE59609688D1 (en) 2002-10-24
US5836269A (en) 1998-11-17
CN1160123A (en) 1997-09-24
KR970062273A (en) 1997-09-12
JPH09329021A (en) 1997-12-22
KR100381353B1 (en) 2003-07-22
DE19607638C1 (en) 1997-06-19

Similar Documents

Publication Publication Date Title
DE19607638C1 (en) Internal combustion engine coolant circuit
DE2755466C3 (en) Thermostatic control valve
DE3226508C2 (en) Cooling circuit for internal combustion engines
DE19606202B4 (en) Cooling system for an internal combustion engine
DE2314301A1 (en) CIRCULATION COOLING DEVICE FOR PISTON ENGINE ENGINE
DE19814252B4 (en) thermostatic valve
DE2755464A1 (en) THERMOSTATIC CONTROL VALVE
DE69911849T2 (en) Control and safety valve for fuel supply system
WO2018069053A1 (en) Internal combustion engine
DE102004020589A1 (en) Temperature-dependent flow control valves for engine cooling systems
CH343709A (en) Temperature controlled flow regulator in a cooling system
EP0671552A1 (en) Cooling system for an internal combustion engine
DE102011054198A1 (en) DISCHARGE VALVE FOR AN OIL PUMP
EP0289872A2 (en) Piston with a variable headroom
DE4102853A1 (en) EVAPORATION COOLED INTERNAL COMBUSTION ENGINE
DE3151970A1 (en) &#34;DEVICE FOR CONTROLLING THE FUEL FLOW IN AN INTERNAL COMBUSTION ENGINE&#34;
WO2007134807A1 (en) Thermostatic valve
EP0437772A1 (en) Boiling liquid cooling system for a liquid cooled internal combustion engine
DE3718697C2 (en) Cooling arrangement for an internal combustion engine of a vehicle
DE19826045A1 (en) Method for controlling a gas exchange valve for internal combustion engines
DE2817976A1 (en) COMBUSTION ENGINE
EP0888494B1 (en) Cooling system for a liquid-cooled internal combustion engine
DE4040323A1 (en) Thermostatic valve for engine cooling system - is designed to provide limited by=pass flow of coolant
DE4426435A1 (en) Thermostatic valve for the coolant circuit of an internal combustion engine
DE102015009580B3 (en) Motor vehicle with an engine as an internal combustion engine and with a multi-circuit cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980204

17Q First examination report despatched

Effective date: 20010330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609688

Country of ref document: DE

Date of ref document: 20021024

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030619

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110310 AND 20110316

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110331 AND 20110406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151207

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609688

Country of ref document: DE