EP0792944A1 - Steel, suitable for manufacture of injection molds for plastics - Google Patents

Steel, suitable for manufacture of injection molds for plastics Download PDF

Info

Publication number
EP0792944A1
EP0792944A1 EP97400354A EP97400354A EP0792944A1 EP 0792944 A1 EP0792944 A1 EP 0792944A1 EP 97400354 A EP97400354 A EP 97400354A EP 97400354 A EP97400354 A EP 97400354A EP 0792944 A1 EP0792944 A1 EP 0792944A1
Authority
EP
European Patent Office
Prior art keywords
steel
kth
chemical composition
steel according
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97400354A
Other languages
German (de)
French (fr)
Other versions
EP0792944B1 (en
Inventor
Jean Beguinot
Frédéric Chenou
Gilbert Primon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industeel France SAS
Original Assignee
Creusot Loire SA
Creusot Loire Industrie SA
Industeel France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creusot Loire SA, Creusot Loire Industrie SA, Industeel France SAS filed Critical Creusot Loire SA
Publication of EP0792944A1 publication Critical patent/EP0792944A1/en
Application granted granted Critical
Publication of EP0792944B1 publication Critical patent/EP0792944B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Definitions

  • the present invention relates to a structural hardening steel which can be used, in particular, for the manufacture of molds for plastic injection.
  • Molds for plastic injection consist of assemblies of parts machined from steel blocks so as to form an impression having the shape of objects to be produced by molding.
  • the objects are molded in series and successive moldings cause wear on the surface of the imprint. After the manufacture of a certain number of objects, the molds are out of use and must be replaced or repaired.
  • Repair when possible, consists of reloading by welding followed by machining and polishing or chemical blasting of the surface of the impression.
  • the ability to repair by welding is obtained, in particular, by using a steel with structural hardening treated by quenching and tempering.
  • Structural hardening is obtained by adding 2% to 5% nickel and at least one element from aluminum and copper to the steel, in contents of between 0.5% and 3%.
  • the combined presence of nickel and copper or aluminum makes it possible by quenching and tempering a bainitic or martensitic structure, the tensile strength of which is around 1400 MPa and the hardness of around 400 HB.
  • the hardening resulting from precipitation during tempering of intermetallic compounds, the carbon content can be limited. This limited carbon content makes it possible to repair the parts by welding without the hardness of the areas affected by heat exceeding substantially 400 HB.
  • the chemical composition of steel comprises, by weight, less than 0.25% of carbon, less than 1% of silicon, from 0.9% to 2% of manganese, from 2% to 5% of nickel, from 0% to 18% of chromium, from 0.05% to 1% of molybdenum, from 0% to 0.2% of sulfur, optionally titanium, niobium or vanadium in contents of less than 0.1%, possibly boron in contents of less than 0.005%, the remainder being iron and impurities resulting from the production.
  • the molds need to resist corrosion, and the chromium content is chosen to be greater than 8%.
  • corrosion resistance is of no particular interest, and the chromium content remains below 2%.
  • the aim of the present invention is to remedy these drawbacks by proposing a steel, usable for the manufacture of molds for plastic injection, having a tensile strength Rm of the order of 1400 MPa, a hardness greater than 350 HB , and preferably greater than 380 HB, good weldability, satisfactory machinability even for very large thicknesses and making it possible to increase the productivity of injection molding installations by shortening the cooling times after injection.
  • composition of the steel can advantageously be chosen in such a way that: 3.8 x C + 3.3 x Mn + 2.4 x Ni + ⁇ x Cr + 1.4 x (Mo + W / 2) ⁇ 8
  • the chemical composition of the steel must be such that the manganese content is less than or equal to 0.7%, and better still, less than or equal to 0.5%; similarly, it is preferable that the silicon content is less than or equal to 0.1%.
  • the chromium content should preferably be greater than or equal to 8%.
  • the chromium content should preferably be less than or equal to 5%, and more preferably less than or equal to 2%, and it is preferable that the steel contains boron.
  • the invention also relates to a steel block according to the invention of characteristic dimension d greater than or equal to 20 mm, which has, at all points, a structure either martensitic, bainitic, or martensito-bainitic, tempered, of hardness greater than 350 HB.
  • log (d) represents the decimal logarithm of the characteristic dimension d expressed in mm.
  • the nitrogen content it is not always possible or desirable to limit the nitrogen content to less than 0.003%, in particular because it is expensive to remove the nitrogen supplied by the preparation.
  • the nitrogen content cannot be limited to less than 0.003%, it is preferable to fix the nitrogen in the form of fine titanium or zirconium nitrides.
  • the contents of titanium, zirconium and nitrogen are such that: 0.00003 ⁇ (N) x (Ti + Zr / 2) ⁇ 0.0016 and that the titanium or zirconium are introduced into the steel by progressive dissolution of an oxidized phase of titanium or zirconium, for example by carrying out the addition of titanium or zirconium in non-deoxidized steel, then in adding a strong deoxidizer such as aluminum.
  • the number of titanium or zirconium nitrides of size greater than 0.1 ⁇ m, counted over an area of 1 mm 2 of a micrographic section of solid steel is lower 4 times the sum of the total content of titanium precipitated in the form of nitrides and half the total content of zirconium precipitated in the form of nitrides, expressed in thousandths of%.
  • the chemical composition of the steel must, moreover, satisfy two conditions relating on the one hand to the hardenability and on the other hand to the thermal conductivity.
  • tensile strength of approximately 1400 MPa and hardness of the order of 400 HB that is to say at least greater than 350 HB, and preferably greater than 380 HB
  • the parts constituting the plastic injection molds must be machined in blocks first hardened to give them a structure either entirely martensitic, or entirely bainitic, or mixed martensito-bainitic, but, in any condition cause, free of ferrite and perlite, then returned to harden by precipitation of intermetallic compounds.
  • Quenching can be done, for example, by cooling with water, oil or air after austenitization, preferably between 850 ° C and 1050 ° C, or directly in hot forging or rolling . Tempering generally takes place between 500 ° C and 550 ° C.
  • the blocks are, for example, rolled sheets or large forged plates whose thickness is greater than 20 mm and can range up to 800 mm, or even 1000 mm. Under these conditions, for the structure to be fully hardened, including the core of the blocks, the hardenability of the steel must be sufficient.
  • the constant Bt which represents the minimum quenchability to be obtained must be at least equal to 3.1 and, for large thicknesses, at least equal to 4.1.
  • each block has a characteristic dimension d which determines the core cooling rate for a specific cooling mode.
  • log (d) represents the decimal logarithm of the characteristic dimension d expressed in mm. This characteristic dimension is, for example, the thickness of a sheet or the diameter of a round bar.
  • the inventors have found that it is possible to minimize the thermal conductivity of steel by choosing its chemical composition appropriately. This has the advantage of making it possible to increase the productivity of the plastic injection operations by shortening the cooling phase which follows the injection phase.
  • the composition must be such that: 3.8 x C + 3.3 x Mn + 2.4 x Ni + ⁇ x Cr + 1.4 x (Mo + W / 2) ⁇ 8
  • the chromium content is greater than or equal to 8%, it is adjusted essentially as a function of considerations relating to the resistance to corrosion. Otherwise, this content can be adjusted to maximize the thermal conductivity.
  • Kth is a dimensionless index varying in the same direction as the thermal resistivity of steel, ie inversely proportional to the thermal conductivity.
  • the essential difficulty consists in reconciling sufficient hardenability to obtain at the heart of thick parts the desired mechanical characteristics, a low manganese content to limit, or even avoid, the presence of segregated bands, and the lowest possible thermal resistivity or, which is equivalent, the highest possible thermal conductivity (for steels having to resist corrosion, because of the high chromium content, the problem of quenchability does not arise).
  • the inventors have found that to obtain this optimum, it is desirable and possible to add an additional condition relating to the Kth / Tr ratio, by imposing that Kth / Tr is less than or equal to 3, preferably less than or equal to 2.8 , and better still less than or equal to 2.5.
  • mold parts were made for plastic injection, by machining sheets of thickness from 80 to 500 mm marked A, B, C, D, E, F, F1, G, H, I, J and J1.
  • the sheets marked A to F1 were in accordance with the invention, and, for comparison, the sheets marked G to J1 were according to the prior art.
  • Chemical compositions, in thousandths of% in weights are shown in Table 1.
  • the thicknesses d (in mm), the heat treatments, the thermal resistivity indices Kth, the thermal conductivity values Cth (in W / m / ° K) and the hardenability indices Tr (K and Tr are dimensionless indices) are shown in Table 2.
  • the steel according to the invention is, in general, manufactured in the form of rolled sheets or in the form of bars or large forged plates but it can, also, be manufactured in any other form, and, in particular, in the form of wire.
  • the repair by welding should preferably be made with welding wires of composition close to the composition of the mass of the mold.
  • the steel according to the invention is also manufactured in the form of welding wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Steel, which is especially useful for making plastic injection moulds, has the composition (by wt.) 0.03-0.25% C, 0-0.2% Si, 0-0.9% Mn, 1.5-5% Ni, 0-18% Cr, 0.05-1% Mo + one half W, 0-0.3% S, 0.05-3% each of Al and/or Cu, optionally 0-0.3% each of one or more of V, Nb, Zr, Ta and Ti, optionally 0-0.3% each of one or more of Pb, Se, Te and Bi, balance Fe and impurities (especially nitrogen). The composition satisfies the relationships (I) and (II): Kth=3.8 x C+9.8 x Si+3.3 x Mn+2.4 x Ni+ alpha x Cr+1.4 x (Mo+ one half W) ≤ 15 (I) where alpha = 1.4 if the Cr content is less than 8% and alpha = 0 if the Cr content is ≥ 8%; Tr=3.8 x C+1.07 x Mn+0.7 x Ni+0.57 x Cr+1.58 x (Mo+ one half W)+kB ≥ 3.1 (II) where kB = 0.8 the B content is 0.0005-0.015%; otherwise kB = 0; and if the Cr content is ≤ 5%, then composition satisfies relationship (III): Kth divided by Tr = ≤ 3 (III) Also claimed are (i) a block of the above steel which has a characteristic dimension (d) of ≥ 20 mm and which has, at all points, a tempered martensitic, bainitic or martensitic-bainitic structure of hardness greater than 350 HB; and (ii) a welding wire of the above steel.

Description

La présente invention concerne un acier à durcissement structural utilisable, notamment, pour la fabrication de moules pour injection de matière plastique.The present invention relates to a structural hardening steel which can be used, in particular, for the manufacture of molds for plastic injection.

Les moules pour injection de matières plastiques sont constitués d'assemblages de pièces usinées dans des blocs d'acier de façon à former une empreinte ayant la forme des objets à fabriquer par moulage. Les objets sont moulés en série et les moulages successifs engendrent une usure de la surface de l'empreinte. Après la fabrication d'un certain nombre d'objets, les moules sont hors d'usage et doivent être remplacés ou réparés. La réparation, lorsqu'elle est possible, consiste en un rechargement par soudure suivi d'un usinage et d'un polissage ou d'un grenage chimique de la surface de l'empreinte. Pour que la réparation par soudure soit possible, il faut, notamment, que le métal apporté par soudure et que les zones affectées par la chaleur de soudage dans le métal de base aient des propriétés satisfaisantes. L'aptitude à la réparation par soudage est obtenue, notamment, en utilisant un acier à durcissement structural traités par trempe et revenu. Le durcissement structural est obtenu en ajoutant à l'acier de 2% à 5% de nickel et au moins un élément pris parmi l'aluminium et le cuivre, en des teneurs comprises entre 0,5% et 3%. La présence combinée de nickel et de cuivre ou d'aluminium permet d'obtenir par trempe et revenu une structure bainitique ou martensitique, dont la résistance à la traction est de l'ordre de 1400 MPa et la dureté d'environ 400 HB. Le durcissement résultant de la précipitation au cours du revenu de composés intermétalliques, la teneur en carbone peut être limitée. Cette teneur en carbone limitée permet de réparer les pièces par soudure sans que la dureté des zones affectées par la chaleur dépasse sensiblement 400 HB.Molds for plastic injection consist of assemblies of parts machined from steel blocks so as to form an impression having the shape of objects to be produced by molding. The objects are molded in series and successive moldings cause wear on the surface of the imprint. After the manufacture of a certain number of objects, the molds are out of use and must be replaced or repaired. Repair, when possible, consists of reloading by welding followed by machining and polishing or chemical blasting of the surface of the impression. For repair by welding to be possible, it is necessary, in particular, that the metal supplied by welding and that the areas affected by the heat of welding in the base metal have satisfactory properties. The ability to repair by welding is obtained, in particular, by using a steel with structural hardening treated by quenching and tempering. Structural hardening is obtained by adding 2% to 5% nickel and at least one element from aluminum and copper to the steel, in contents of between 0.5% and 3%. The combined presence of nickel and copper or aluminum makes it possible by quenching and tempering a bainitic or martensitic structure, the tensile strength of which is around 1400 MPa and the hardness of around 400 HB. The hardening resulting from precipitation during tempering of intermetallic compounds, the carbon content can be limited. This limited carbon content makes it possible to repair the parts by welding without the hardness of the areas affected by heat exceeding substantially 400 HB.

Outre le nickel, le cuivre et l'aluminium, la composition chimique de l'acier comprend, en poids, moins de 0,25% de carbone, moins de 1% de silicium, de 0,9% à 2% de manganèse, de 2% à 5% de nickel, de 0% à 18% de chrome, de 0,05% à 1% de molybdène, de 0% à 0,2% de soufre, éventuellement du titane, du niobium ou du vanadium en des teneurs inférieures à 0,1%, éventuellement du bore en des teneurs inférieures à 0,005%, le reste étant du fer et des impuretés résultant de l'élaboration.In addition to nickel, copper and aluminum, the chemical composition of steel comprises, by weight, less than 0.25% of carbon, less than 1% of silicon, from 0.9% to 2% of manganese, from 2% to 5% of nickel, from 0% to 18% of chromium, from 0.05% to 1% of molybdenum, from 0% to 0.2% of sulfur, optionally titanium, niobium or vanadium in contents of less than 0.1%, possibly boron in contents of less than 0.005%, the remainder being iron and impurities resulting from the production.

Pour certaines applications, les moules ont besoin de résister à la corrosion, et la teneur en chrome est choisie supérieure à 8%. Pour d'autres applications, la résistance à la corrosion ne présente pas d'intérêt particulier, et la teneur en chrome reste inférieure à 2%.For certain applications, the molds need to resist corrosion, and the chromium content is chosen to be greater than 8%. For other applications, corrosion resistance is of no particular interest, and the chromium content remains below 2%.

L'utilisation de moules ainsi fabriqués, qu'ils aient ou non besoin de résister à la corrosion, présente l'inconvénient de limiter la productivité des installations de moulage par injection de matières plastiques. En effet, une opération de moulage comporte plusieurs phases successives, dont une phase de solidification de la matière plastique par refroidissement qui est relativement longue.The use of molds thus produced, whether or not they need to resist corrosion, has the drawback of limiting the productivity of plastic injection molding installations. Indeed, a molding operation comprises several successive phases, including a phase of solidification of the plastic by cooling which is relatively long.

De plus, la fabrication des moules qui se fait notamment par usinage de blocs d'acier dont l'épaisseur peut atteindre 800 mm, voire 1000 mm, peut présenter des difficultés résultant de la présence de bandes ségrégées. Ces difficultés sont, d'ailleurs, d'autant plus importantes que les blocs d'acier sont épais.In addition, the manufacture of molds which is done in particular by machining steel blocks whose thickness can reach 800 mm, even 1000 mm, can present difficulties resulting from the presence of segregated strips. These difficulties are, moreover, all the more important as the steel blocks are thick.

Le but de la présente invention est de remédier à ces inconvénients en proposant un acier, utilisable pour la fabrication de moules pour injection de matière plastique, ayant une résistance à la traction Rm de l'ordre de 1400 MPa, une dureté supérieure à 350 HB, et de préférence supérieure à 380 HB, une bonne soudabilité, une usinabilité satisfaisante même pour des épaisseurs très importantes et permettant d'augmenter la productivité des installations de moulage par injection en raccourcissant les durées de refroidissement après injection.The aim of the present invention is to remedy these drawbacks by proposing a steel, usable for the manufacture of molds for plastic injection, having a tensile strength Rm of the order of 1400 MPa, a hardness greater than 350 HB , and preferably greater than 380 HB, good weldability, satisfactory machinability even for very large thicknesses and making it possible to increase the productivity of injection molding installations by shortening the cooling times after injection.

A cet effet, l'invention a pour objet un acier, utilisable notamment pour la fabrication de moules pour injection de matières plastiques, dont la composition chimique comprend, en poids : 0,03% ≤ C ≤ 0,25%

Figure imgb0001
0% ≤ Si ≤ 0,2%
Figure imgb0002
0% ≤ Mn ≤ 0,9%
Figure imgb0003
1,5% ≤ Ni ≤ 5%
Figure imgb0004
0% ≤ Cr ≤ 18%
Figure imgb0005
0,05% ≤ Mo + W/2 ≤ 1%
Figure imgb0006
0% ≤ S ≤ 0,3%
Figure imgb0007

  • au moins un élément pris parmi Al et Cu en des teneurs comprises chacune entre 0,5% et 3%,
  • éventuellement de 0,0005% à 0,015% de bore,
  • éventuellement au moins un élément pris parmi V, Nb, Zr, Ta et Ti, en des teneurs comprises, chacune, entre 0% et 0,3%,
  • éventuellement au moins un élément pris parmi Pb, Se, Te et Bi, en des teneurs comprises chacune entre 0% et 0,3%,
  • de préférence moins de 0,003 % d'azote,
le reste étant du fer et des impuretés résultant de l'élaboration ; la composition chimique satisfaisant, en outre et simultanément, les relations : Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ At
Figure imgb0008
  • dans cette formule, α = 1,4 si Cr < 8%, et α = 0 si Cr ≥ 8% ; et At = 15, de préférence At = 13, et mieux encore At = 11 ;
    et : Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr + 1,58 x (Mo + W/2) + kB ≥ Bt
    Figure imgb0009
  • kB = 0,8 lorsque l'acier contient entre 0,0005 % et 0,015 % de bore, et kB = 0 si non ; Bt = 3,1, et de préférence Bt = 4,1 ;
    et : Kth/Tr ≤ Ct
    Figure imgb0010
    avec Ct = 3 , de préférence Ct = 2,8 , et mieux encore Ct = 2,5 .
To this end, the subject of the invention is a steel, which can be used in particular for the manufacture of molds for injection of plastics, the chemical composition of which comprises, by weight: 0.03% ≤ C ≤ 0.25%
Figure imgb0001
0% ≤ If ≤ 0.2%
Figure imgb0002
0% ≤ Mn ≤ 0.9%
Figure imgb0003
1.5% ≤ Ni ≤ 5%
Figure imgb0004
0% ≤ Cr ≤ 18%
Figure imgb0005
0.05% ≤ Mo + W / 2 ≤ 1%
Figure imgb0006
0% ≤ S ≤ 0.3%
Figure imgb0007
  • at least one element taken from Al and Cu in contents each of between 0.5% and 3%,
  • optionally from 0.0005% to 0.015% boron,
  • optionally at least one element taken from V, Nb, Zr, Ta and Ti, in contents each of between 0% and 0.3%,
  • optionally at least one element taken from Pb, Se, Te and Bi, in contents each of between 0% and 0.3%,
  • preferably less than 0.003% nitrogen,
the remainder being iron and impurities resulting from processing; the chemical composition satisfying, in addition and simultaneously, the relationships: Kth = 3.8 x C + 9.8 x Si + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2) ≤ At
Figure imgb0008
  • in this formula, α = 1.4 if Cr <8%, and α = 0 if Cr ≥ 8%; and At = 15, preferably At = 13, and more preferably At = 11;
    and: Tr = 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr + 1.58 x (Mo + W / 2) + kB ≥ Bt
    Figure imgb0009
  • kB = 0.8 when the steel contains between 0.0005% and 0.015% of boron, and kB = 0 if not; Bt = 3.1, and preferably Bt = 4.1;
    and: Kth / Tr ≤ Ct
    Figure imgb0010
    with Ct = 3, preferably Ct = 2.8, and better still Ct = 2.5.

La composition de l'acier peut être avantageusement choisie de telle façon que : 3,8 x C + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 8

Figure imgb0011
The composition of the steel can advantageously be chosen in such a way that: 3.8 x C + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2) ≤ 8
Figure imgb0011

De préférence, la composition chimique de l'acier doit être telle que la teneur en manganèse soit inférieure ou égale à 0,7%, et, mieux encore, inférieure ou égale à 0,5% ; de même, il est préférable que la teneur en silicium soit inférieure ou égale à 0,1%.Preferably, the chemical composition of the steel must be such that the manganese content is less than or equal to 0.7%, and better still, less than or equal to 0.5%; similarly, it is preferable that the silicon content is less than or equal to 0.1%.

Lorsque l'acier est destiné à fabriquer des moules devant résister à la corrosion, la teneur en chrome doit, de préférence, être supérieure ou égale à 8%. Lorsque la résistance à la corrosion n'est pas nécessaire, la teneur en chrome doit, de préférence, être inférieure ou égale à 5%, et, mieux encore, inférieure ou égale à 2%, et il est préférable que l'acier contienne du bore.When the steel is intended to make molds which have to resist corrosion, the chromium content should preferably be greater than or equal to 8%. When corrosion resistance is not required, the chromium content should preferably be less than or equal to 5%, and more preferably less than or equal to 2%, and it is preferable that the steel contains boron.

L'invention concerne également un bloc en acier selon l'invention de dimension caractéristique d supérieure ou égale à 20 mm, qui a, en tous point, une structure soit martensitique, soit bainitique, soit martensito-bainitique, revenue, de dureté supérieure à 350 HB.The invention also relates to a steel block according to the invention of characteristic dimension d greater than or equal to 20 mm, which has, at all points, a structure either martensitic, bainitic, or martensito-bainitic, tempered, of hardness greater than 350 HB.

De préférence, la composition chimique de l'acier constituant le bloc est telle que : 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2) + kB ≥ f (d)

Figure imgb0012
kB = 0,8 lorsque l'acier contient entre 0,0005 % et 0,015 % de bore, et kB = 0 si non,
avec: f (d) = 2,05 + 1,04 x log(d)
Figure imgb0013
et de préférence : f (d) = - 0,8 + 1,9 x log(d)
Figure imgb0014
dans ce cas, le bloc d'acier doit être trempé à l'eau.Preferably, the chemical composition of the steel constituting the block is such that: 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr +1.58 x (Mo + W / 2) + kB ≥ f (d)
Figure imgb0012
kB = 0.8 when the steel contains between 0.0005% and 0.015% of boron, and kB = 0 if not,
with: f (d) = 2.05 + 1.04 x log (d)
Figure imgb0013
and preferably: f (d) = - 0.8 + 1.9 x log (d)
Figure imgb0014
in this case, the steel block must be quenched with water.

L'expression "log(d)" représente le logarithme décimal de la dimension caractéristique d exprimée en mm.The expression "log (d)" represents the decimal logarithm of the characteristic dimension d expressed in mm.

L'invention va maintenant être décrite plus en détail, mais de façon non limitative, notamment à l'aide des exemples qui suivent.The invention will now be described in more detail, but without limitation, in particular with the aid of the examples which follow.

L'acier selon l'invention est un acier à durcissement structural, dont la composition chimique comprend, en poids :

  • plus de 0,03% de carbone pour assurer une résistance suffisante à l'adoucissement au revenu, mais moins de 0,25% pour obtenir une bonne soudabilité caractérisée par une dureté des ZAT de soudage ne dépassant pas 430 HB ;
  • de 0% à 0,2%, et de préférence moins de 0,1%, de silicium ; cet élément habituellement nécessaire à la désoxydation de l'acier au cours de l'élaboration ne doit pas dépasser 0,2% afin d'éviter une réduction excessive de la conductibilité thermique de l'acier;
  • de 0% à 0,9% de manganèse pour, d'une part, fixer le soufre, et d'autre part, conférer à l'acier une trempabilité suffisante ; la teneur est limitée à 0,9%, et de préférence à 0,7%, et, mieux encore, à 0,5%, pour d'une part contribuer à obtenir une conductibilité thermique la plus grande possible, et d'autre part, et surtout, éviter la formation de bandes ségrégées très défavorables à l'usinabilité ;
  • de 1,5% à 5% de nickel pour, lors du revenu, former avec l'aluminium ou le cuivre des précipitations durcissantes ; compte tenu du niveau de dureté visé après revenu, une addition d'au moins 1,5% de nickel est souhaitable et il n'est pas nécessaire de dépasser 5%, car, au delà, l'effet d'une addition supplémentaire de nickel n'est pas significatif et cet élément est très coûteux ;
  • de 0% à 18% de chrome, et, de préférence, de 8% à 18% lorsque une résistance à la corrosion est nécessaire ; lorsque la résistance à la corrosion n'est pas utile, la teneur en chrome est, de préférence, inférieure à 5%, et, mieux encore, inférieure à 2% ;
  • de 0,05% à 1% de molybdène, notamment pour renforcer la résistance à l'adoucissement au revenu et soutenir, ainsi, le durcissement obtenu par les précipités intermétalliques de nickel, cuivre et aluminium ; les teneurs maximales sont fixées pour ne pas nuire à la conductibilité thermique et ne pas trop augmenter le coût de l'acier ; le molybdène peut être remplacé totalement ou partiellement par du tungstène à raison de 2% de tungstène pour 1% de molybdène, de ce fait, pour ces deux éléments, l'analyse est définie par la valeur Mo + W/2 ;
  • éventuellement de 0,0005% à 0,015% de bore pour augmenter la trempabilité sans détériorer la conductibilité thermique de l'acier; le chrome étant un élément qui augmente sensiblement la trempabilité de l'acier, l'addition de bore est particulièrement souhaitable lorsque la teneur en chrome est inférieure ou égale à 2% ;
  • de 0% à 0,3% de soufre; cet élément améliore l'usinabilité, mais en trop forte teneur il nuit à la qualité des surfaces actives des moules, lesquelles surfaces sont, généralement, soit polies, soit grenées ;
  • au moins un élément pris parmi l'aluminium et le cuivre en des teneurs comprises entre 0,5% et 3% chacune, pour obtenir un effet de durcissement structural par précipitation de composés intermétalliques au cours du revenu, ce qui permet d'obtenir à la fois une grande dureté et une bonne soudabilité ;
  • éventuellement, au moins un élément pris parmi le vanadium, le niobium, le zirconium, le tantale et le titane, en des teneurs comprises chacune entre 0% et 0,3%, et de préférence supérieure à 0,01% chacune, en particulier pour rendre plus fiable l'effet du bore, notamment lorsque l'acier est trempé dans la chaude de forgeage ou de laminage ;
  • éventuellement au moins un élément pris parmi le plomb, le sélénium, le tellure et le bismuth, en des teneurs comprises chacune entre 0,1% et 0,3%, afin d'améliorer l'usinabilité sans trop détériorer l'aptitude au polissage ou au grenage chimique ;
  • de préférence, moins de 0,003 % d'azote pour éviter la formation de gros nitrures d'aluminium défavorables à l'obtention d'une bonne aptitude au polissage ;
le reste étant du fer et des impuretés résultant de l'élaboration.The steel according to the invention is a steel with structural hardening, the chemical composition of which comprises, by weight:
  • more than 0.03% of carbon to ensure sufficient resistance to softening on income, but less than 0.25% to obtain good weldability characterized by a hardness of the welding HAZs not exceeding 430 HB;
  • from 0% to 0.2%, and preferably less than 0.1%, of silicon; this element usually necessary for the deoxidation of the steel during production must not exceed 0.2% in order to avoid an excessive reduction in the thermal conductivity of the steel;
  • from 0% to 0.9% of manganese to, on the one hand, fix the sulfur, and on the other hand, give the steel sufficient quenchability; the content is limited to 0.9%, and preferably to 0.7%, and, better still, to 0.5%, on the one hand to contribute to obtaining the greatest possible thermal conductivity, and on the other hand first and foremost, avoid the formation of segregated bands which are very unfavorable to machinability;
  • from 1.5% to 5% nickel to form hardening precipitation with aluminum or copper; taking into account the target hardness level after tempering, an addition of at least 1.5% of nickel is desirable and it is not necessary to exceed 5%, because, beyond, the effect of an additional addition of nickel is not significant and this element is very expensive;
  • 0% to 18% chromium, and preferably 8% to 18% when corrosion resistance is required; when the corrosion resistance is not useful, the chromium content is preferably less than 5%, and more preferably less than 2%;
  • from 0.05% to 1% of molybdenum, in particular to reinforce the resistance to softening on income and thus support the hardening obtained by the intermetallic precipitates of nickel, copper and aluminum; the maximum levels are fixed so as not to harm the thermal conductivity and not to increase the cost of steel too much; molybdenum can be totally or partially replaced by tungsten at the rate of 2% of tungsten for 1% of molybdenum, therefore, for these two elements, the analysis is defined by the value Mo + W / 2;
  • possibly from 0.0005% to 0.015% boron to increase the hardenability without deteriorating the thermal conductivity of the steel; chromium being an element which appreciably increases the hardenability of steel, the addition of boron is particularly desirable when the chromium content is less than or equal to 2%;
  • 0% to 0.3% sulfur; this element improves the machinability, but in too high a content it harms the quality of the active surfaces of the molds, which surfaces are generally either polished or roughened;
  • at least one element taken from aluminum and copper in contents of between 0.5% and 3% each, to obtain a structural hardening effect by precipitation of intermetallic compounds during tempering, which makes it possible to obtain both great hardness and good weldability;
  • optionally, at least one element chosen from vanadium, niobium, zirconium, tantalum and titanium, in contents each of between 0% and 0.3%, and preferably greater than 0.01% each, in particular to make the effect of boron more reliable, especially when the steel is soaked in hot forging or rolling;
  • optionally at least one element taken from lead, selenium, tellurium and bismuth, in contents each of between 0.1% and 0.3%, in order to improve the machinability without deteriorating the polishability too much or with chemical shot blasting;
  • preferably less than 0.003% nitrogen to avoid the formation of large aluminum nitrides which are unfavorable for obtaining good polishability;
the remainder being iron and impurities resulting from processing.

Il n'est pas toujours possible ou souhaitable de limiter la teneur en azote à moins de 0,003 %, en particulier parce qu'il est coûteux d'enlever l'azote apportée par l'élaboration. Lorsque la teneur en azote ne peut pas être limitée à moins de 0,003 %, il est préférable de fixer l'azote sous forme de fins nitrures de titane ou de zirconium. Pour cela, il est souhaitable que les teneurs en titane, zirconium et azote (élément toujours présent, au moins à titre d'impureté en des teneurs comprises entre quelques ppm et quelques centaines de ppm) soient telles que : 0,00003 ≤ (N)x(Ti + Zr/2) ≤ 0,0016

Figure imgb0015
et que le titane ou le zirconium soient introduits dans l'acier par dissolution progressive d'une phase oxydée de titane ou de zirconium, par exemple en effectuant l'ajout de titane ou de zirconium dans de l'acier non désoxydé, puis en ajoutant un désoxydant fort tel que l'aluminium. Ces conditions permettent d'obtenir une dispersion très fine de nitrures de titane ou de zirconium favorable à la résilience, à l'usinabilité, et à la polissabilité. Lorsque le titane ou le zirconium sont introduits de cette façon préférentielle, le nombre de nitrures de titane ou de zirconium de taille supérieure à 0,1 µm, comptés sur une aire de 1mm2 d'une coupe micrographique d'acier solide, est inférieure à 4 fois la somme de la teneur totale en titane précipité sous forme de nitrures et de la moitié de la teneur totale en zirconium précipité sous forme de nitrures, exprimées en millièmes de %.It is not always possible or desirable to limit the nitrogen content to less than 0.003%, in particular because it is expensive to remove the nitrogen supplied by the preparation. When the nitrogen content cannot be limited to less than 0.003%, it is preferable to fix the nitrogen in the form of fine titanium or zirconium nitrides. For this, it is desirable that the contents of titanium, zirconium and nitrogen (element always present, at least as an impurity in contents of between a few ppm and a few hundred ppm) are such that: 0.00003 ≤ (N) x (Ti + Zr / 2) ≤ 0.0016
Figure imgb0015
and that the titanium or zirconium are introduced into the steel by progressive dissolution of an oxidized phase of titanium or zirconium, for example by carrying out the addition of titanium or zirconium in non-deoxidized steel, then in adding a strong deoxidizer such as aluminum. These conditions make it possible to obtain a very fine dispersion of titanium or zirconium nitrides favorable to resilience, machinability, and polishability. When titanium or zirconium are introduced in this preferential manner, the number of titanium or zirconium nitrides of size greater than 0.1 μm, counted over an area of 1 mm 2 of a micrographic section of solid steel, is lower 4 times the sum of the total content of titanium precipitated in the form of nitrides and half the total content of zirconium precipitated in the form of nitrides, expressed in thousandths of%.

La composition chimique de l'acier doit, en outre, satisfaire deux conditions relatives d'une part à la trempabilité et d'autre part à la conductibilité thermique.The chemical composition of the steel must, moreover, satisfy two conditions relating on the one hand to the hardenability and on the other hand to the thermal conductivity.

Afin d'obtenir des caractéristiques de résistance mécanique et de dureté satisfaisantes, résistance à la traction d'environ 1400 MPa et dureté de l'ordre de 400 HB (c'est à dire au moins supérieure à 350 HB, et de préférence supérieure à 380 HB), les pièces constituant les moules d'injection de matière plastique doivent être usinées dans des blocs d'abord trempés pour leur conférer une structure soit entièrement martensitique, soit entièrement bainitique, soit mixte martensito-bainitique, mais, en tout état de cause, exempte de ferrite et de perlite, puis revenus pour les durcir par précipitation de composés intermétalliques. La trempe peut être faite, par exemple, par refroidissement à l'eau, à l'huile ou à l'air après austénitisation, de préférence, entre 850°C et 1050°C, ou directement dans la chaude de forge ou de laminage. Le revenu s'effectue, en général, entre 500°C et 550°C.In order to obtain satisfactory mechanical strength and hardness characteristics, tensile strength of approximately 1400 MPa and hardness of the order of 400 HB (that is to say at least greater than 350 HB, and preferably greater than 380 HB), the parts constituting the plastic injection molds must be machined in blocks first hardened to give them a structure either entirely martensitic, or entirely bainitic, or mixed martensito-bainitic, but, in any condition cause, free of ferrite and perlite, then returned to harden by precipitation of intermetallic compounds. Quenching can be done, for example, by cooling with water, oil or air after austenitization, preferably between 850 ° C and 1050 ° C, or directly in hot forging or rolling . Tempering generally takes place between 500 ° C and 550 ° C.

Les blocs sont, par exemple, des tôles laminées ou des larges plats forgés dont l'épaisseur est supérieure à 20 mm et peut aller jusqu'à 800 mm, voire 1000 mm. Dans ces conditions, pour que la structure soit entièrement trempée, y compris à coeur des blocs, la trempabilité de l'acier doit être suffisante. Pour cela, la composition chimique de l'acier doit satisfaire la relation suivante : Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2)+ kB ≥ Bt

Figure imgb0016
kB = 0,8 lorsque l'acier contient entre 0,0005 % et 0,015 % de bore, et kB = 0 si non.The blocks are, for example, rolled sheets or large forged plates whose thickness is greater than 20 mm and can range up to 800 mm, or even 1000 mm. Under these conditions, for the structure to be fully hardened, including the core of the blocks, the hardenability of the steel must be sufficient. For this, the chemical composition of the steel must satisfy the following relationship: Tr = 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr +1.58 x (Mo + W / 2) + kB ≥ Bt
Figure imgb0016
kB = 0.8 when the steel contains between 0.0005% and 0.015% of boron, and kB = 0 if not.

La constante Bt qui représente la trempabilité minimale à obtenir doit au moins être égale à 3,1 et, pour les épaisseurs importantes, au moins égale à 4,1.The constant Bt which represents the minimum quenchability to be obtained must be at least equal to 3.1 and, for large thicknesses, at least equal to 4.1.

Plus précisément, chaque bloc a une dimension caractéristique d qui détermine la vitesse de refroidissement à coeur pour un mode de refroidissement déterminé. Pour obtenir la structure souhaitée, la trempabilité doit être adaptée à la dimension caractéristique d, et pour cela, la composition chimique de l'acier doit être telle que : 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2) + kB ≥ f(d)

Figure imgb0017
avec: f (d) = 2,05 + 1,04 x log(d)
Figure imgb0018
lorsque le bloc est trempé par refroidissement à l'air,
et: f (d) = - 0,8 + 1,9 x log(d)
Figure imgb0019
lorsque le bloc d'acier est trempé à l'eau, ce qui est préférable.More precisely, each block has a characteristic dimension d which determines the core cooling rate for a specific cooling mode. To obtain the desired structure, the hardenability must be adapted to the characteristic dimension d, and for this, the chemical composition of the steel must be such that: 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr +1.58 x (Mo + W / 2) + kB ≥ f (d)
Figure imgb0017
with: f (d) = 2.05 + 1.04 x log (d)
Figure imgb0018
when the block is quenched by air cooling,
and: f (d) = - 0.8 + 1.9 x log (d)
Figure imgb0019
when the steel block is soaked in water, which is preferable.

L'expression "log(d)" représente le logarithme décimal de la dimension caractéristique d exprimée en mm. Cette dimension caractéristique est, par exemple, l'épaisseur d'une tôle ou le diamètre d'une barre ronde.The expression "log (d)" represents the decimal logarithm of the characteristic dimension d expressed in mm. This characteristic dimension is, for example, the thickness of a sheet or the diameter of a round bar.

Par ailleurs, les inventeurs ont constaté qu'il était possible de minimiser la conductibilité thermique de l'acier en choisissant convenablement sa composition chimique. Ceci a l'avantage de permettre d'augmenter la productivité des opération d'injection de matière plastique en raccourcissant la phase de refroidissement qui suit la phase d'injection. Pour cela, la composition chimique de l'acier doit être telle que : Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2)

Figure imgb0020
soit le plus petit possible, et, au moins, que Kth soit inférieur à 15, de préférence inférieur à 13, et mieux encore inférieur à 11.Furthermore, the inventors have found that it is possible to minimize the thermal conductivity of steel by choosing its chemical composition appropriately. This has the advantage of making it possible to increase the productivity of the plastic injection operations by shortening the cooling phase which follows the injection phase. For this, the chemical composition of the steel must be such that: Kth = 3.8 x C + 9.8 x Si + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2)
Figure imgb0020
is as small as possible, and, at least, that Kth is less than 15, preferably less than 13, and better still less than 11.

De préférence, la composition doit être telle que : 3,8 x C + 3,3 x Mn + 2,4 x Ni + α x Cr + 1,4 x (Mo + W/2) ≤ 8

Figure imgb0021
Preferably, the composition must be such that: 3.8 x C + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2) ≤ 8
Figure imgb0021

Dans ces expressions, α = 1,4 si la teneur en chrome est inférieure à 8%, et α = 0 si la teneur en chrome est supérieure ou égale à 8%. En effet, lorsque la teneur en chrome est supérieure ou égale à 8%, celle ci est ajustée essentiellement en fonction de considérations relatives à la résistance à la corrosion. Dans le cas contraire, cette teneur peut être ajustée pour maximiser la conductivité thermique.In these expressions, α = 1.4 if the chromium content is less than 8%, and α = 0 if the chromium content is greater than or equal to 8%. In fact, when the chromium content is greater than or equal to 8%, it is adjusted essentially as a function of considerations relating to the resistance to corrosion. Otherwise, this content can be adjusted to maximize the thermal conductivity.

Kth est un indice sans dimension variant dans le même sens que la résistivité thermique de l'acier, c'est à dire inversement proportionnel à la conductivité thermique.Kth is a dimensionless index varying in the same direction as the thermal resistivity of steel, ie inversely proportional to the thermal conductivity.

En fait, pour les aciers n'ayant pas besoin de résister à la corrosion (Cr < 8 % ou même Cr ≤ 5 %) la difficulté essentielle consiste à concilier une trempabilité suffisante pour obtenir à coeur de pièces épaisses les caractéristiques mécaniques souhaitées, une faible teneur en manganèse pour limiter, voire éviter, la présence de bandes ségrégées, et une résistivité thermique la plus faible possible ou, ce qui est équivalent, une conductibilité thermique la plus grande possible (pour les aciers devant résister à la corrosion, du fait de la forte teneur en chrome, le problème de la trempabilité ne se pose pas). Les inventeurs ont constaté que pour obtenir cet optimum, il est souhaitable et possible d'ajouter une condition supplémentaire relative au rapport Kth/Tr, en imposant que Kth/Tr soit inférieur ou égal à 3, de préférence inférieur ou égal à 2,8, et mieux encore inférieur ou égal à 2,5.In fact, for steels that do not need to resist corrosion (Cr <8% or even Cr ≤ 5%) the essential difficulty consists in reconciling sufficient hardenability to obtain at the heart of thick parts the desired mechanical characteristics, a low manganese content to limit, or even avoid, the presence of segregated bands, and the lowest possible thermal resistivity or, which is equivalent, the highest possible thermal conductivity (for steels having to resist corrosion, because of the high chromium content, the problem of quenchability does not arise). The inventors have found that to obtain this optimum, it is desirable and possible to add an additional condition relating to the Kth / Tr ratio, by imposing that Kth / Tr is less than or equal to 3, preferably less than or equal to 2.8 , and better still less than or equal to 2.5.

Une solution particulièrement intéressante correspond à un acier dont la composition chimique comprend, en poids : 0,1% ≤ C ≤ 0,16%

Figure imgb0022
0% ≤ Si ≤ 0,15%
Figure imgb0023
0,6% ≤ Mn ≤ 0,9%
Figure imgb0024
2,8% ≤ Ni ≤ 3,3%
Figure imgb0025
0% ≤ Cr ≤ 0,8%
Figure imgb0026
0,2% ≤ Mo + W/2 ≤ 0,35%
Figure imgb0027
0,9% ≤ Al ≤ 1,5%
Figure imgb0028
0,9% ≤ Cu ≤ 1,5%
Figure imgb0029
0,0005% ≤ B ≤ 0,015%
Figure imgb0030
0% ≤ S ≤ 0,3%
Figure imgb0031

  • éventuellement au moins un élément pris parmi V, Nb, Zr, Ta et Ti, en des teneurs comprises chacune entre 0% et 0,3%,
  • éventuellement au moins un élément pris parmi Pb, Se, Te et Bi, en des teneurs comprises chacune entre 0% et 0,3%,
le reste étant du fer et des impuretés résultant de l'élaboration.A particularly interesting solution corresponds to a steel whose chemical composition comprises, by weight: 0.1% ≤ C ≤ 0.16%
Figure imgb0022
0% ≤ If ≤ 0.15%
Figure imgb0023
0.6% ≤ Mn ≤ 0.9%
Figure imgb0024
2.8% ≤ Ni ≤ 3.3%
Figure imgb0025
0% ≤ Cr ≤ 0.8%
Figure imgb0026
0.2% ≤ Mo + W / 2 ≤ 0.35%
Figure imgb0027
0.9% ≤ Al ≤ 1.5%
Figure imgb0028
0.9% ≤ Cu ≤ 1.5%
Figure imgb0029
0.0005% ≤ B ≤ 0.015%
Figure imgb0030
0% ≤ S ≤ 0.3%
Figure imgb0031
  • optionally at least one element taken from V, Nb, Zr, Ta and Ti, in contents each of between 0% and 0.3%,
  • optionally at least one element taken from Pb, Se, Te and Bi, in contents each of between 0% and 0.3%,
the remainder being iron and impurities resulting from processing.

Avec l'analyse moyenne, cet acier permet d'obtenir un coefficient de résistivité thermique Kth = 11,75, une trempabilité Tr = 4,76, un rapport Kth/Tr = 2,5, et une dureté supérieure à 350 HB , quasiment uniforme dans toute la masse de blocs d'épaisseur pouvant atteindre 800 mm trempés à l'air.With the average analysis, this steel makes it possible to obtain a coefficient of thermal resistivity Kth = 11.75, a hardenability Tr = 4.76, a ratio Kth / Tr = 2.5, and a hardness greater than 350 HB, almost uniform throughout the mass of blocks up to 800 mm thick, air-hardened.

A titre de premier exemple, on a fabriqué des pièces de moule pour injection de matière plastique, par usinage de tôles d'épaisseur de 80 à 500 mm repérées A, B, C, D, E, F, F1, G, H, I, J et J1. Les tôles repérées A à F1 étaient conforme à l'invention, et, à titre de comparaison, les tôles repérées G à J1 étaient selon l'art antérieur. Les compositions chimiques, en millièmes de % en poids sont indiquées au tableau 1. As a first example , mold parts were made for plastic injection, by machining sheets of thickness from 80 to 500 mm marked A, B, C, D, E, F, F1, G, H, I, J and J1. The sheets marked A to F1 were in accordance with the invention, and, for comparison, the sheets marked G to J1 were according to the prior art. Chemical compositions, in thousandths of% in weights are shown in Table 1.

Toutes les tôles ont été laminées à 1100°C avant d'être soumises à un traitement thermique pour obtenir des duretés toutes comprises entre 385 HB et 420 HB.All the sheets were rolled at 1100 ° C before being subjected to a heat treatment to obtain hardnesses all between 385 HB and 420 HB.

Les épaisseurs d (en mm), les traitements thermiques, les indices de résistivité thermique Kth, les valeurs de conductibilité thermique Cth (en W/m/°K) et les indices de trempabilité Tr (K et Tr sont des indices sans dimension) sont indiqués au tableau 2. Tableau 1 C Si Mn Ni Cr Mo Al Cu Nb V B A 115 45 500 3100 150 310 1100 1050 3 B 105 57 750 3040 160 295 1140 1050 30 3 C 115 85 710 3110 140 305 1110 1600 3 D 130 50 300 2750 130 285 1090 1070 3 E 120 130 850 3020 150 305 1110 1075 55 3 F 100 30 200 2500 100 250 1120 1080 3 F1 130 85 850 2800 1200 300 1120 1080 3 G 130 350 1150 3050 200 290 1100 1060 H 125 65 1520 3100 190 320 1130 1020 I 145 85 1090 3200 210 305 1120 1050 3 J 140 490 1600 3100 850 340 1050 1450 J1 130 350 1500 3000 1000 300 1050 1450 The thicknesses d (in mm), the heat treatments, the thermal resistivity indices Kth, the thermal conductivity values Cth (in W / m / ° K) and the hardenability indices Tr (K and Tr are dimensionless indices) are shown in Table 2. Table 1 VS Yes Mn Or Cr Mo Al Cu Nb V B AT 115 45 500 3100 150 310 1100 1050 3 B 105 57 750 3040 160 295 1140 1050 30 3 VS 115 85 710 3110 140 305 1110 1600 3 D 130 50 300 2750 130 285 1090 1070 3 E 120 130 850 3020 150 305 1110 1075 55 3 F 100 30 200 2500 100 250 1120 1080 3 F1 130 85 850 2800 1200 300 1120 1080 3 G 130 350 1150 3050 200 290 1100 1060 H 125 65 1520 3100 190 320 1130 1020 I 145 85 1090 3200 210 305 1120 1050 3 J 140 490 1600 3100 850 340 1050 1450 D1 130 350 1500 3000 1000 300 1050 1450

Les résultats reportés au tableau 2 montrent que les aciers selon l'invention ont des conductivités thermiques de 10% (E comparé à H) à 60% (F comparé à J) plus fortes que celles des aciers selon l'art antérieur. Ces conductivités thermiques plus fortes permettent d'augmenter significativement la productivité des moules en réduisant la durée des phases de refroidissement au cours des cycles de moulage. On peut également comparer les aciers F1 et l, J et J1 qui permettent tous les quatres de fabriquer des blocs de 900 mm d'épaisseur par refroidissement à l'air. L'acier F1 selon l'invention a une conductibilité thermique supérieure de 30 % à celle des aciers J et J1 conformes à l'art antérieur. De plus, la teneur en manganèse de l'acier F1 est très sensiblement plus faible que celle de ces aciers, ce qui est très favorable à la réduction des ségrégations. L'acier I conforme à l'art antérieur, bien qu'ayant une teneur en silicium faible, a une conductibilité thermique inférieure de plus de 10 % à celle de l'acier F1. Tableau 2 d austénitisation trempe revenu Kth Tr Cth Kth/Tr A 80 950°C air 525°C-2h 10,6 4,5 43 2,3 B 130 chaude de laminage air 525°C-2h 11,4 4,7 40 2,4 C 500 950°C eau 525°C-3h 11,7 4,7 40 2,5 D 200 950°C eau 525°C-3h 9,2 4,1 45 2,2 E 150 950°C air 525°C-2h 12,4 4,8 39 2,6 F 100 950°C eau 525°C-2h 7,8 3,3 47 2,4 F1 900 ? 950°C air ? 525°C-2h 12,1 5,32 39 2,3 G 80 950°C air 525°C-2h 15,7 4,4 34 3,6 H 400 950°C eau 525°C-3h 14,3 4,9 36 2,9 I 130 950°C air 525°C-2h 13,4 5,3 35 2,5 J 150 950°C air 525°C-2h 19,7 5,4 29 3,6 J1 900 950°C air 525°C-2h 17,9 5,2 30 3,4 The results reported in Table 2 show that the steels according to the invention have thermal conductivities of 10% (E compared to H) to 60% (F compared to J) stronger than those of steels according to the prior art. These higher thermal conductivities make it possible to significantly increase the productivity of the molds by reducing the duration of the cooling phases during the molding cycles. We can also compare steels F1 and l, J and J1 which allow all four to make blocks 900 mm thick by air cooling. The steel F1 according to the invention has a thermal conductivity 30% higher than that of the steels J and J1 according to the prior art. In addition, the manganese content of the steel F1 is very significantly lower than that of these steels, which is very favorable for the reduction of segregation. Steel I according to the prior art, although having a low silicon content, has a thermal conductivity lower by more than 10% than that of steel F1. Table 2 d austenitization quenching returned Kth Tr Cth Kth / Tr AT 80 950 ° C air 525 ° C-2h 10.6 4.5 43 2.3 B 130 hot rolling air 525 ° C-2h 11.4 4.7 40 2.4 VS 500 950 ° C water 525 ° C-3h 11.7 4.7 40 2.5 D 200 950 ° C water 525 ° C-3h 9.2 4.1 45 2.2 E 150 950 ° C air 525 ° C-2h 12.4 4.8 39 2.6 F 100 950 ° C water 525 ° C-2h 7.8 3.3 47 2.4 F1 900 ? 950 ° C air ? 525 ° C-2h 12.1 5.32 39 2.3 G 80 950 ° C air 525 ° C-2h 15.7 4.4 34 3.6 H 400 950 ° C water 525 ° C-3h 14.3 4.9 36 2.9 I 130 950 ° C air 525 ° C-2h 13.4 5.3 35 2.5 J 150 950 ° C air 525 ° C-2h 19.7 5.4 29 3.6 D1 900 950 ° C air 525 ° C-2h 17.9 5.2 30 3.4

A titre de deuxième exemple, on a fabriqué des moules pour injection de matières plastiques, devant résister à la corrosion, avec l'acier M selon l'invention, et N conforme à l'art antérieur. Ces aciers ont été laminés sous forme de tôles d'épaisseur 150 mm, puis soumises à un traitement thermique par trempe air et revenu à 550°C pendant 2 heures. Les analyses chimiques, en millièmes de % en poids, sont indiquées au tableau 3, et les caractéristiques obtenues, au tableau 4. Tableau 3 C Si Mn Ni Cr Mo Al Cu Nb V B M 40 50 300 3500 16000 600 2200 1550 N 50 450 1100 4100 16000 550 2100 1450 Tableau 4 HB Kth Tr Cth M 415 10,8 13,0 22 N 430 18,8 14,2 18 As a second example, molds have been made for injection of plastics, having to resist corrosion, with steel M according to the invention, and N according to the prior art. These steels were rolled into 150 mm thick sheets, then subjected to heat treatment by air quenching and returned to 550 ° C for 2 hours. The chemical analyzes, in thousandths of% by weight, are indicated in Table 3, and the characteristics obtained, in Table 4. Table 3 VS Yes Mn Or Cr Mo Al Cu Nb V B M 40 50 300 3500 16000 600 2200 1550 NOT 50 450 1100 4100 16000 550 2100 1450 HB Kth Tr Cth M 415 10.8 13.0 22 NOT 430 18.8 14.2 18

On constate un écart de conductibilité thermique de 20% en faveur de l'acier selon l'invention ce qui conduit aux mêmes avantages que ceux qui ont été indiqués précédemment.There is a difference in thermal conductivity of 20% in favor of the steel according to the invention, which leads to the same advantages as those which have been indicated above.

L'acier selon l'invention est, en général, fabriqué sous forme de tôles laminées ou sous forme de barres ou de larges plats forgés mais il peut, également, être fabriqué sous toute autre forme, et, en particulier, sous forme de fil.The steel according to the invention is, in general, manufactured in the form of rolled sheets or in the form of bars or large forged plates but it can, also, be manufactured in any other form, and, in particular, in the form of wire.

Pour que parties réparées par soudure aient les mêmes propriétés que la masse du moule, aussi bien la conductibilité thermique que les propriétés requises pour la surface de l'empreinte, la réparation par soudure doit, de préférence, être faite avec des fils de soudage de composition voisine de la composition de la masse du moule. Aussi, l'acier selon l'invention est également fabriqué sous forme de fil de soudage.In order for the parts repaired by welding to have the same properties as the mass of the mold, both the thermal conductivity and the properties required for the surface of the cavity, the repair by welding should preferably be made with welding wires of composition close to the composition of the mass of the mold. Also, the steel according to the invention is also manufactured in the form of welding wire.

Claims (18)

Acier, utilisable notamment pour la fabrication de moules pour injection de matières plastiques, caractérisé en ce que sa composition chimique comprend, en poids: 0,03% ≤ C ≤ 0,25%
Figure imgb0032
0% ≤ Si ≤ 0,2%
Figure imgb0033
0% ≤ Mn ≤ 0,9%
Figure imgb0034
1,5% ≤ Ni ≤ 5%
Figure imgb0035
0% ≤ Cr ≤ 18%
Figure imgb0036
0,05% ≤ Mo + W/2 ≤ 1%
Figure imgb0037
0% ≤ S ≤ 0,3%
Figure imgb0038
- au moins un élément pris parmi Al et Cu en des teneurs comprises chacune entre 0,5% et 3%, - éventuellement 0,0005% ≤ B ≤ 0,015%, - éventuellement au moins un élément pris parmi V, Nb, Zr, Ta et Ti, en des teneurs comprises chacune entre 0% et 0,3%, - éventuellement au moins un élément pris parmi Pb, Se, Te et Bi, en des teneurs comprises chacune entre 0% et 0,3%, le reste étant du fer et des impuretés résultant de l'élaboration, notamment de l'azote, la composition chimique satisfaisant, en outre, les relations: Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 15
Figure imgb0039
avec α= 1,4 si Cr < 8%, et α = 0 si Cr ≥ 8%,
et: Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2) + kB ≥ 3,1
Figure imgb0040
avec kB = 0,8 si la teneur en bore est comprise entre 0,0005% et 0,015%, et kB = 0 si non,
et, si Cr ≤ 5 % : Kth/Tr ≤ 3
Figure imgb0041
Steel, usable in particular for the manufacture of molds for plastic injection, characterized in that its chemical composition comprises, by weight: 0.03% ≤ C ≤ 0.25%
Figure imgb0032
0% ≤ If ≤ 0.2%
Figure imgb0033
0% ≤ Mn ≤ 0.9%
Figure imgb0034
1.5% ≤ Ni ≤ 5%
Figure imgb0035
0% ≤ Cr ≤ 18%
Figure imgb0036
0.05% ≤ Mo + W / 2 ≤ 1%
Figure imgb0037
0% ≤ S ≤ 0.3%
Figure imgb0038
- at least one element taken from Al and Cu in contents each of between 0.5% and 3%, - possibly 0.0005% ≤ B ≤ 0.015%, - optionally at least one element chosen from V, Nb, Zr, Ta and Ti, in contents each of between 0% and 0.3%, - optionally at least one element taken from Pb, Se, Te and Bi, in contents each of between 0% and 0.3%, the remainder being iron and impurities resulting from the production, in particular nitrogen, the chemical composition satisfying, moreover, the relationships: Kth = 3.8 x C + 9.8 x Si + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2) ≤ 15
Figure imgb0039
with α = 1.4 if Cr <8%, and α = 0 if Cr ≥ 8%,
and: Tr = 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr +1.58 x (Mo + W / 2) + kB ≥ 3.1
Figure imgb0040
with kB = 0.8 if the boron content is between 0.0005% and 0.015%, and kB = 0 if not,
and, if Cr ≤ 5%: Kth / Tr ≤ 3
Figure imgb0041
Acier selon la revendication 1 caractérisé en ce que: Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 13
Figure imgb0042
Steel according to claim 1 characterized in that: Kth = 3.8 x C + 9.8 x Si + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2) ≤ 13
Figure imgb0042
Acier selon la revendication 2 caractérisé en ce que: Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 11
Figure imgb0043
Steel according to claim 2 characterized in that: Kth = 3.8 x C + 9.8 x Si + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2) ≤ 11
Figure imgb0043
Acier selon la revendication 1 caractérisé en ce que: 3,8 x C + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 8
Figure imgb0044
avec α= 1,4 si Cr < 8%, et α = 0 si Cr ≥ 8%,
Steel according to claim 1 characterized in that: 3.8 x C + 3.3 x Mn + 2.4 x Ni + α x Cr + 1.4 x (Mo + W / 2) ≤ 8
Figure imgb0044
with α = 1.4 if Cr <8%, and α = 0 if Cr ≥ 8%,
Acier selon la revendication 1 caractérisé en ce que: Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2) + kB ≥ 4,1
Figure imgb0045
Steel according to claim 1 characterized in that: Tr = 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr +1.58 x (Mo + W / 2) + kB ≥ 4.1
Figure imgb0045
Acier selon la revendication 1 caractérisé en ce que: Kth/Tr ≤ 2,8
Figure imgb0046
Steel according to claim 1 characterized in that: Kth / Tr ≤ 2.8
Figure imgb0046
Acier selon la revendication 6 caractérisé en ce que: Kth/Tr ≤ 2,5
Figure imgb0047
Steel according to claim 6 characterized in that: Kth / Tr ≤ 2.5
Figure imgb0047
Acier selon la revendication 1 caractérisé en ce que sa composition chimique est telle que: Mn ≤ 0,7%
Figure imgb0048
Steel according to claim 1 characterized in that its chemical composition is such that: Mn ≤ 0.7%
Figure imgb0048
Acier selon la revendication 8 caractérisé en ce que sa composition chimique est telle que: Mn < 0,5%
Figure imgb0049
Steel according to claim 8 characterized in that its chemical composition is such that: Mn <0.5%
Figure imgb0049
Acier selon la revendication 1 caractérisé en ce que sa composition chimique est telle que: Si ≤ 0,1%
Figure imgb0050
Steel according to claim 1 characterized in that its chemical composition is such that: If ≤ 0.1%
Figure imgb0050
Acier selon l'une quelconque des revendications 1à 10 caractérisé en ce que: Cr ≤ 5%
Figure imgb0051
Steel according to any one of Claims 1 to 10, characterized in that: Cr ≤ 5%
Figure imgb0051
Acier selon la revendication 11 caractérisé en ce que: Cr ≤ 2%
Figure imgb0052
0,0005% ≤ B ≤ 0,005%
Figure imgb0053
Steel according to claim 11 characterized in that: Cr ≤ 2%
Figure imgb0052
0.0005% ≤ B ≤ 0.005%
Figure imgb0053
Acier selon l'une quelconque des revendications 1 à 4 et 8 à 10 caractérisé en ce que: Cr ≥ 8%
Figure imgb0054
Steel according to any one of Claims 1 to 4 and 8 to 10, characterized in that: Cr ≥ 8%
Figure imgb0054
Acier selon la revendication 1 caractérisé en ce que la teneur en azote est inférieure à 0,003 %.Steel according to claim 1 characterized in that the nitrogen content is less than 0.003%. Bloc en acier selon l'une quelconque des revendications 1 à 14 caractérisé en ce que il a une dimension caractéristique d supérieure ou égale à 20 mm, et en ce que, en tous points, il a une structure martensitique, bainitique ou martensito-bainitique revenue de dureté supérieure à 350 HB.Steel block according to any one of Claims 1 to 14, characterized in that it has a characteristic dimension d greater than or equal to 20 mm, and in that, at all points, it has a martensitic, bainitic or martensito-bainitic structure hardness over 350 HB. Bloc selon la revendication 15 caractérisé en ce que la composition chimique de l'acier est telle que: 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo +W/2) + kB ≥ 2,05 + 1,04 x log(d)
Figure imgb0055
Block according to claim 15 characterized in that the chemical composition of the steel is such that: 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr +1.58 x (Mo + W / 2) + kB ≥ 2.05 + 1.04 x log (d)
Figure imgb0055
Bloc selon la revendication 15 caractérisé en ce que la composition chimique de l'acier est telle que: 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo +W/2) + kB ≥ - 0,8 + 1,9 x log(d)
Figure imgb0056
Block according to claim 15 characterized in that the chemical composition of the steel is such that: 3.8 x C + 1.07 x Mn + 0.7 x Ni + 0.57 x Cr +1.58 x (Mo + W / 2) + kB ≥ - 0.8 + 1.9 x log (d )
Figure imgb0056
Fil de soudage en acier selon l'une quelconque des revendications 1 à 14.Steel welding wire according to any one of claims 1 to 14.
EP97400354A 1996-03-01 1997-02-18 Steel, suitable for manufacture of injection molds for plastics Expired - Lifetime EP0792944B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9602595 1996-03-01
FR9602595A FR2745587B1 (en) 1996-03-01 1996-03-01 STEEL FOR USE IN PARTICULAR FOR THE MANUFACTURE OF MOLDS FOR INJECTION OF PLASTIC MATERIAL

Publications (2)

Publication Number Publication Date
EP0792944A1 true EP0792944A1 (en) 1997-09-03
EP0792944B1 EP0792944B1 (en) 2002-06-19

Family

ID=9489754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400354A Expired - Lifetime EP0792944B1 (en) 1996-03-01 1997-02-18 Steel, suitable for manufacture of injection molds for plastics

Country Status (13)

Country Link
US (1) US5785924A (en)
EP (1) EP0792944B1 (en)
JP (1) JPH1036938A (en)
KR (1) KR100451474B1 (en)
CN (1) CN1070241C (en)
AT (1) ATE219526T1 (en)
CA (1) CA2197532A1 (en)
DE (1) DE69713415T2 (en)
ES (1) ES2176632T3 (en)
FR (1) FR2745587B1 (en)
MX (1) MX9701554A (en)
PT (1) PT792944E (en)
TW (1) TW367372B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097642C (en) * 1999-07-30 2003-01-01 日立金属株式会社 Tool steel with good weldability, machinability and thermal treatment property, and metallic mould made of same
WO2003083153A1 (en) * 2002-04-03 2003-10-09 Industeel France Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
WO2003083154A1 (en) * 2002-04-03 2003-10-09 Industeel (France) Bulk steel for the production of injection moulds for plastic material or for the production of tools for working metals
CN101270451B (en) * 2007-03-19 2011-03-30 宝山钢铁股份有限公司 Plastic mold steel and method for manufacturing same
CN114737111A (en) * 2022-03-24 2022-07-12 南京钢铁股份有限公司 Steel for 5Ni and production method thereof

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW454040B (en) 1997-12-19 2001-09-11 Exxon Production Research Co Ultra-high strength ausaged steels with excellent cryogenic temperature toughness
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
KR100374980B1 (en) 1999-02-12 2003-03-06 히다찌긴조꾸가부시끼가이사 High strength steel for dies with excellent machinability
US8808472B2 (en) * 2000-12-11 2014-08-19 Uddeholms Ab Steel alloy, holders and holder details for plastic moulding tools, and tough hardened blanks for holders and holder details
FR2823767B1 (en) * 2001-04-24 2004-02-06 Pechiney Rhenalu HIGH THICKNESS METAL BLOCKS FOR MACHINING
US6843237B2 (en) 2001-11-27 2005-01-18 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
US6852175B2 (en) * 2001-11-27 2005-02-08 Exxonmobil Upstream Research Company High strength marine structures
JP4192579B2 (en) * 2002-11-29 2008-12-10 住友金属工業株式会社 Steel for plastic mold
CN101311293B (en) * 2007-05-24 2010-10-13 宝山钢铁股份有限公司 Large-scale mold module and method for manufacturing same
EP2265739B1 (en) 2008-04-11 2019-06-12 Questek Innovations LLC Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10351922B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
JP5239578B2 (en) * 2008-07-22 2013-07-17 大同特殊鋼株式会社 Steel for plastic molds with excellent temperature control
JP5412851B2 (en) * 2009-01-29 2014-02-12 大同特殊鋼株式会社 Steel for plastic molds and plastic molds
DE112011100602T5 (en) * 2010-02-18 2013-01-24 Hitachi Metals, Ltd. Steel for molds with excellent hole forming capability and reduced process deformation, as well as methods for its production
JP5713195B2 (en) * 2011-07-19 2015-05-07 大同特殊鋼株式会社 Pre-hardened steel for plastic molds
KR101312822B1 (en) * 2011-11-30 2013-09-27 주식회사 포스코 Die steel and manufacturing method using the same
CN102560265A (en) * 2012-03-06 2012-07-11 常熟市精工模具制造有限公司 1Cr17Ni2Mo glass mold
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
CN103774047B (en) * 2012-10-20 2017-03-01 大同特殊钢株式会社 There is the mould steel of excellent thermal conductance, mirror polishability and toughness
CN102877001A (en) * 2012-10-29 2013-01-16 北京科技大学 Low-carbon tempering-free all-bainite structure plastic mould steel and preparation method thereof
CN103266280B (en) * 2013-06-06 2015-04-29 滁州迪蒙德模具制造有限公司 Steel for wear-resistant die and production method of steel
CN104562047A (en) * 2013-10-11 2015-04-29 溧阳市永恒热处理有限公司 Method for improving service life of granulator mold by change of materials and heat treatment technology
CN104911484A (en) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 Die steel
CN104073748A (en) * 2014-07-03 2014-10-01 滁州市艾德模具设备有限公司 Steel material for corrosion-resistant mould and preparation method of steel material
RU2703748C2 (en) * 2014-12-11 2019-10-22 Сандвик Интеллекчуал Проперти Аб Ferrite alloy
CN104818438A (en) * 2015-04-21 2015-08-05 苏州劲元油压机械有限公司 Casting process of high-strength sequence valve
CN105543653A (en) * 2015-12-22 2016-05-04 四川六合锻造股份有限公司 Plastic die steel with high intensity, high toughness and high corrosion resistance and production method thereof
CN105463336A (en) * 2015-12-22 2016-04-06 四川六合锻造股份有限公司 Plastic die steel with high strength, toughness, corrosion resistance and polishing performance and production method
CN106191684A (en) * 2016-07-01 2016-12-07 宜兴市凯诚模具有限公司 A kind of NiTi tungsten alloy glass mold
US11091825B2 (en) * 2017-04-19 2021-08-17 Daido Steel Co., Ltd. Prehardened steel material, mold, and mold component
WO2018220412A1 (en) 2017-06-01 2018-12-06 Arcelormittal Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
CN107246804B (en) * 2017-07-11 2023-08-11 南京华电节能环保股份有限公司 Anti-coking coke oven flue waste gas waste heat recovery device
CN107414342A (en) * 2017-07-31 2017-12-01 安徽华众焊业有限公司 A kind of copper aluminium flux-cored wire
CN110195186B (en) * 2019-05-14 2021-02-23 鞍钢股份有限公司 Ultra-thick hot-rolled high-alloy hot-work die steel and preparation method thereof
CN110029280B (en) * 2019-05-21 2021-09-17 安徽协同创新设计研究院有限公司 Thrust rod support steel casting and production method thereof
CN112030073B (en) * 2020-08-26 2022-01-14 东北大学 Bismuth-containing free-cutting pre-hardened plastic die steel and preparation method thereof
CN114058926A (en) * 2021-10-11 2022-02-18 铜陵精达新技术开发有限公司 Material for generator conductor wire forming die and preparation method thereof
CN114293113B (en) * 2021-12-31 2022-10-18 安徽哈特三维科技有限公司 High-thermal-conductivity alloy powder for SLM (Selective laser melting), high-thermal-conductivity die steel and SLM forming process of high-thermal-conductivity die steel
CN114250422B (en) * 2021-12-31 2022-09-30 安徽哈特三维科技有限公司 Die steel with good toughness and high thermal conductivity and preparation method thereof
CN116103567A (en) * 2023-01-31 2023-05-12 河钢工业技术服务有限公司 High-mirror-surface corrosion-resistant die steel and powder for 3D printing and preparation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1912624A1 (en) * 1968-03-14 1969-10-09 Int Nickel Ltd Durable nickel steel
US3926621A (en) * 1970-10-19 1975-12-16 Daido Steel Co Ltd Cold workable and age-hardenable steel
JPS63114942A (en) * 1986-11-04 1988-05-19 Hitachi Metals Ltd Steel for prehardening metal mold for plastic molding
JPS63125644A (en) * 1986-11-14 1988-05-28 Hitachi Metals Ltd Steel for prehardened metallic mold for molding plastic
JPH03122252A (en) * 1989-10-04 1991-05-24 Hitachi Metals Ltd Steel for metal mold and metal mold
JPH0570889A (en) * 1991-09-18 1993-03-23 Daido Steel Co Ltd Age-hardening steel for metal mold for plastic molding excellent in strength and toughness
JPH06279922A (en) * 1993-03-23 1994-10-04 Kobe Steel Ltd Precipitation hardening steel excellent in carbide tool chipping property

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627992A (en) * 1992-07-13 1994-02-04 Toshiba Corp Speech recognizing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1912624A1 (en) * 1968-03-14 1969-10-09 Int Nickel Ltd Durable nickel steel
US3926621A (en) * 1970-10-19 1975-12-16 Daido Steel Co Ltd Cold workable and age-hardenable steel
JPS63114942A (en) * 1986-11-04 1988-05-19 Hitachi Metals Ltd Steel for prehardening metal mold for plastic molding
JPS63125644A (en) * 1986-11-14 1988-05-28 Hitachi Metals Ltd Steel for prehardened metallic mold for molding plastic
JPH03122252A (en) * 1989-10-04 1991-05-24 Hitachi Metals Ltd Steel for metal mold and metal mold
JPH0570889A (en) * 1991-09-18 1993-03-23 Daido Steel Co Ltd Age-hardening steel for metal mold for plastic molding excellent in strength and toughness
JPH06279922A (en) * 1993-03-23 1994-10-04 Kobe Steel Ltd Precipitation hardening steel excellent in carbide tool chipping property

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 358 (C - 531) 26 September 1988 (1988-09-26) *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 373 (C - 534) 6 October 1988 (1988-10-06) *
PATENT ABSTRACTS OF JAPAN vol. 15, no. 324 (C - 859) 19 August 1991 (1991-08-19) *
PATENT ABSTRACTS OF JAPAN vol. 17, no. 394 (C - 1088) 23 July 1993 (1993-07-23) *
PATENT ABSTRACTS OF JAPAN vol. 94, no. 0010 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097642C (en) * 1999-07-30 2003-01-01 日立金属株式会社 Tool steel with good weldability, machinability and thermal treatment property, and metallic mould made of same
WO2003083153A1 (en) * 2002-04-03 2003-10-09 Industeel France Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
WO2003083154A1 (en) * 2002-04-03 2003-10-09 Industeel (France) Bulk steel for the production of injection moulds for plastic material or for the production of tools for working metals
FR2838137A1 (en) * 2002-04-03 2003-10-10 Usinor STEEL FOR THE MANUFACTURE OF MOLDS FOR INJECTION MOLDING OF PLASTIC MATERIALS OR FOR THE MANUFACTURE OF TOOLS FOR THE WORKING OF METALS
FR2838138A1 (en) * 2002-04-03 2003-10-10 Usinor STEEL FOR THE MANUFACTURE OF PLASTIC INJECTION MOLDS OR FOR THE MANUFACTURE OF WORKPIECES FOR METAL WORKING
AU2003258841B2 (en) * 2002-04-03 2008-05-29 Industeel France Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
CN101270451B (en) * 2007-03-19 2011-03-30 宝山钢铁股份有限公司 Plastic mold steel and method for manufacturing same
CN114737111A (en) * 2022-03-24 2022-07-12 南京钢铁股份有限公司 Steel for 5Ni and production method thereof

Also Published As

Publication number Publication date
KR100451474B1 (en) 2004-11-16
CN1174244A (en) 1998-02-25
DE69713415T2 (en) 2003-01-09
EP0792944B1 (en) 2002-06-19
MX9701554A (en) 1998-04-30
CA2197532A1 (en) 1997-09-01
FR2745587B1 (en) 1998-04-30
TW367372B (en) 1999-08-21
US5785924A (en) 1998-07-28
KR970065758A (en) 1997-10-13
PT792944E (en) 2002-09-30
DE69713415D1 (en) 2002-07-25
FR2745587A1 (en) 1997-09-05
CN1070241C (en) 2001-08-29
ATE219526T1 (en) 2002-07-15
JPH1036938A (en) 1998-02-10
ES2176632T3 (en) 2002-12-01

Similar Documents

Publication Publication Date Title
EP0792944B1 (en) Steel, suitable for manufacture of injection molds for plastics
EP1649069B1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
CA2203488C (en) Low alloy steel for the manufacture of moulds for plastics
EP1563103B1 (en) Method for making an abrasion resistant steel plate and steel plate obtained
EP0709481B1 (en) Low alloy steel for the manufacture of moulds for plastic materials or for rubber articles
EP1490526B1 (en) Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
EP1844173B1 (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
EP2630269B1 (en) Hot or cold rolled steel sheet, its manufacturing method and its use in the automotive industry
EP1774052B1 (en) Martensitic stainless steel for moulds and injection mould frames
EP2591134B1 (en) Austenitic-ferritic stainless steel with improved machinability
EP0851038B2 (en) Steel and process for forming a steel article by cold plastic working
EP2279275B1 (en) Block and sheet made of steel with high properties for bulky parts
EP0805221B1 (en) Steel, repairable by welding, for the manufacture of moulds for the plastics industry
EP1563110B1 (en) Weldable structural steel component and method for making same
EP1563109B1 (en) Weldable structural steel component and method for making same
EP2690187B1 (en) Alloy, corresponding part and manufacturing method
EP1587963B1 (en) Ultrahigh strength hot-rolled steel and method of producing bands
EP0845544B1 (en) Steel product made from bainitic steel and process for making the steel product
EP2257652B1 (en) Method of manufacturing sheets of austenitic stainless steel with high mechanical properties
FR2784692A1 (en) Case hardenable low alloy constructional steel, especially for automobile gear wheels, comprises chromium, manganese, nickel, molybdenum, silicon, copper, sulfur, carbon, and aluminum
FR2473065A1 (en) BRONZE HAVING MULTI-CONSTITUENTS CONTAINING MANGANESE AND ALUMINUM FOR INITIAL FORMING AND FITTING TOOLS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT PT SE

17P Request for examination filed

Effective date: 19970919

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010725

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: USINOR INDUSTEEL (FRANCE)

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT PT SE

REF Corresponds to:

Ref document number: 219526

Country of ref document: AT

Date of ref document: 20020715

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRIMON, GILBERT

Inventor name: CHENOU, FREDERIC

Inventor name: BEGUINOT, JEAN

REF Corresponds to:

Ref document number: 69713415

Country of ref document: DE

Date of ref document: 20020725

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020830

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020711

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176632

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070206

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070213

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20070219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070521

Year of fee payment: 11

Ref country code: BE

Payment date: 20070416

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070208

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20080818

BERE Be: lapsed

Owner name: *USINOR INDUSTEEL (FRANCE)

Effective date: 20080228

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218