EP0778481B1 - Procedure to manufacture microlenses precisely positioned on the ends of optical fibres and lasers - Google Patents

Procedure to manufacture microlenses precisely positioned on the ends of optical fibres and lasers Download PDF

Info

Publication number
EP0778481B1
EP0778481B1 EP96113232A EP96113232A EP0778481B1 EP 0778481 B1 EP0778481 B1 EP 0778481B1 EP 96113232 A EP96113232 A EP 96113232A EP 96113232 A EP96113232 A EP 96113232A EP 0778481 B1 EP0778481 B1 EP 0778481B1
Authority
EP
European Patent Office
Prior art keywords
optical
predetermined
determined
coordinates
microcomponent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96113232A
Other languages
German (de)
French (fr)
Other versions
EP0778481A1 (en
Inventor
Hans W.P. Dr. Koops
Sergey Dr. Babin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nawotec GmbH
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Publication of EP0778481A1 publication Critical patent/EP0778481A1/en
Application granted granted Critical
Publication of EP0778481B1 publication Critical patent/EP0778481B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4227Active alignment methods, e.g. procedures and algorithms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3843Means for centering or aligning the light guide within the ferrule with auxiliary facilities for movably aligning or adjusting the fibre within its ferrule, e.g. measuring position or eccentricity

Definitions

  • the invention relates to a method for precise location Manufacture of at least one optical microcomponent on a predetermined area of a predetermined area at least one optical device according to claim 1 and a device for performing the method Claim 11.
  • microlenses on the Fiber and / or laser ends can be generated. It was on the one hand, proposed polymers on fiber ends miniaturized single lens press. However this procedure too rough to make an acceptable adjustment between the lens and a single mode fiber. Another method is precision ball lenses stick on the ends of optical devices. This However, micromechanical technology does not provide any better Results. It is also known to have cylindrical lenses Laser ends using high-resolution electron beam lithography and by reactive dry etching manufacture. The dry etching process leads to one strong surface roughness of the lens due to its Mask definition. In the meantime, procedures for Production of 3-dimensional structured Polymer layers available on fiber ends. However No techniques known so far, positioning and Manufacture of microlenses on fiber ends for industrial Applications effectively, let alone automated shape.
  • the invention is therefore based on the object Method and device to create the Manufacture of optical microcomponents on the ends of optical devices, especially on the fiber and Laser ends, improved and the manufacturing time drastically reduced.
  • optical microcomponent like e.g. a spherical, non-spherical, not rotationally symmetric hyperbolic lens, a prism or systems thereof, on the end of an optical Establishment, e.g. a fiber or a laser, the location to manufacture the optical microcomponent required exposure field precisely on one predetermined area is positioned.
  • an optical Establishment e.g. a fiber or a laser
  • the precise positioning of an optical micro component on a predetermined area of a predetermined area at least one optical device is thereby achieves that at least one image of the predetermined Area recorded and stored in an image memory can.
  • the location of the edge of the recorded, predetermined area at several predetermined locations measured and the associated edge coordinates determined.
  • the Position coordinates of the predetermined area on which the optical microcomponent to be formed is calculated.
  • the ones calculated for the predetermined range Position coordinates are pre-programmed Exposure data for the optical microcomponent into one Data set summarized.
  • a corpuscular beam i.e.
  • the optical Microcomponent with a predetermined optical Property precisely aligned to the predetermined Area is with the help of Data record controlled so that the optical Microcomponent with a predetermined optical Property precisely aligned to the predetermined Area can be formed.
  • the Record information about the exact location of the to be formed optical microcomponent and over the exposure time, with which is a certain point within the to be exposed Area must be irradiated to achieve a desired optical Obtain property for the microcomponent to be formed.
  • the positioning process expediently comprises a rough and fine positioning of the optical microcomponent.
  • a low magnification image of the optical device added.
  • the Boundary coordinates determined so that the optical device with the surface to be worked on quickly Irradiation site can be moved. Only now does she find Fine positioning instead of first by Corpuscular beam is optimally focused and stigmatized. For this purpose, any one outside of the one to be exposed Area of focus selected. This Focus area becomes successive several times increasing magnification until the Corpuscular beam is optimally focused and stigmatized. With the help of the focused corpuscular beam it is possible with the help of known techniques of image processing -z. B.
  • Creating histograms along predetermined Lines or the center of gravity method - at predetermined make the edge coordinates of the surface to be determined precisely. From these determined edge coordinates, in itself the center of the surface can be determined in a known manner. In a computing unit that measures the exact dimensions of the generating optical microcomponents knows the Positioning the microcomponent on the predetermined one Area in relation to the determined center of the predetermined area can be calculated.
  • An ordinary scanning electron microscope is preferred in connection with a known Image processing device and a motor-driven Table used.
  • the scanning electron microscope can do three perform very important tasks: 1. With the help of Electron beam can be a single or a field of optical fibers scanned and opened several times as required be displayed on a screen. 2. That or that displayed images are, as explained in more detail is used for this by the image processing device the actual production of an optical micro component -in the first embodiment, this is a round, hyperbolic lens and in the second embodiment this an elliptical, hyperbolic lens - on one Fiber end the precise position of the lens manufacturing required exposure field with respect to a To calculate the reference point or a reference surface.
  • the scanning electron microscope functions as Exposure device for making the lens on the previously precisely defined area of the fiber end or Face of the laser.
  • Motorized table can use the fiber or laser fields be arranged.
  • the table serves a selected one Fiber or a selected laser to the radiation site introduce. Note that the one described above Embodiment is extremely advantageous because that precise positioning of the exposure field to build up a lens on the end face of the fiber and attached to it subsequent production by exposure to the Electron beam in a single device, namely the Scanning electron microscope, can be performed.
  • any other lithography device can be used with an additional image processing device for Come into play.
  • a specially dimensioned, computerized electron beam guidance system in Connection with an image measuring device may be provided that, for example, the electron beam of a Scanning electron microscope can be coupled. programmatically the electron beam can do the necessary work work through one after the other.
  • the method according to the invention is initially based on a Monomode fiber exemplified, at the end of one hyperbolic round lens to be applied.
  • Fig. 1 the longitudinal section through the end portion is a Monomode fiber 30 shown.
  • the fiber core 40 has usually a diameter of 5 to 10 ⁇ m, whereas the monomode fiber 30 itself has a diameter of approximately 125 ⁇ m.
  • On the end face or the fiber end 20 is a hyperbolic round lens 10 centered over the fiber core 40 applied, which, apart from one by the Manufacturing inaccuracy almost in the process Fiber center lies.
  • the lens 10 can be a larger one Take cross-sectional area as the fiber core 40.
  • the other method is an additive Lithography technology in which the optical microcomponents from precursor molecules adsorbed from the gas phase, the polymerize on exposure to corpuscular rays, directly on the fiber end or the face of the Lasers are formed. A previous assignment of the Fiber ends or laser surfaces with a dry paint and a subsequent development of the optical formed Micro components are then no longer required.
  • the method according to the invention is used for the production of optical microcomponents (lenses, beam splitters, Prisms etc. on optical devices, especially on Ends of optical fibers and lasers, both the Dry lacquer and additive lithography technology.
  • the case is now assumed that the fiber end 20 with a dry lacquer layer from which the hyperbolic Round lens 10 is to be worked out, be documented.
  • the first fiber 30 to be processed selected and with the help of the previously determined Center coordinates from the motorized table to the Radiation site of the scanning electron microscope moved up.
  • the next step is another picture from the single mode fiber 30 but now with an increased Magnification recorded and again in the image memory the image processing device.
  • the Coordinates of the position required for the construction of the lens 10 Exposure field with reference to the fiber center precisely calculated. In this case, you can also simply use the precise positioning of the lens 10 on the fiber core 40 am Speak fiber end 20.
  • the desired lens dimensions are known and for example in a programmable memory Microprocessor are stored.
  • the exposure times can be saved with which to expose each point on the face 20 of the fiber 30 is so that the lens has a desired optical property, such as B. receives a special refractive index.
  • the lens 10 For precise positioning of the lens 10 on the fiber core 40 it is first necessary that from Scanning electron microscope delivered electron beam to focus sharply on an area 60 of the fiber end 20 and stigmatize.
  • the focusing area 60 is located preferably outside the area to be exposed, such as this is shown in Fig. 2.
  • the reason is that although the focus and stigmatization of the Electron beam with reduced intensity, the Dry paint on this area 60, if only slightly Dimensions, already exposed and thus networked. This is in 5 clearly recognizable, the inclusion of the Fiber end 20 with that formed from a dry paint Round lens 10 shows.
  • the focusing and stigmatization of the electron beam is described in more detail in connection with FIG. 2.
  • the selected focusing area 60 is recorded several times, with successively increasing magnification each Image area. To do this, the electron beam is made line by line led over the area to be imaged. During everyone The electron beam is recorded due to the increasing Magnification and the increasing resolution of the recorded area 60 readjusted. It will be so long Images with increasing magnification from the area 60 recorded until due to the electron beam device limits no longer better focused and can be stigmatized.
  • the focus and Stigmatization of the electron beam can also automated because there is 20 there are sufficiently fine structures.
  • the center of the fiber end 20 can be determined.
  • the Center coordinates of the fiber end face 20 serve as Reference point for the precise positioning of the lens 10 the fiber core 40 or any area within the Fiber end face provided the distance from the center of the area from the center of the fiber end face 20 is known.
  • First of all the position of the fiber edge 35 of the fiber 30 is determined by predetermined places the edge coordinates are determined. As shown in Fig. 2, the edge 35 becomes four Areas 62, 64, 66 and 68 recorded areal.
  • Center of the fiber end 20 can be calculated.
  • Other Methods calculate the contrast profile along several Lines perpendicular to the edge using Discriminators to calculate the fiber center to obtain the required boundary coordinates.
  • the fiber center can measure with an accuracy of 0.3 ⁇ m with an image resolution of 512 pixels and with an accuracy of 0.15 ⁇ m with an image resolution of 1024 pixels can be set. In other words the determination of the fiber center with a resolution of about 100 nm.
  • the determined fiber center coordinates are with the stored dimensions and exposure data, such as. B. the radiation dose distribution of the round lens 10 to be constructed for example in a computing device calculated and stored as a data record in a memory. On programmable computer reads out the data record and controls thus the electron beam of the scanning electron microscope. After the exposure process has ended, the Dry paint on the fiber end 20 thermally or in suitable solvents developed. As a result lies an optical fiber 30 in front, on the fiber end 20 above the Centric fiber core 40, the round lens 10 precisely is aligned and the desired optical Has properties. Now the next one can be closed processing fiber using the roughly determined Center coordinates to the radiation site of the Scanning electron microscope moved up and according to the just described method with a precise aligned lens are formed on the fiber core.
  • the method according to the invention is now based on a Solid state laser exemplified on the Face above an active zone an elliptical, hyperbolic lens should arise.
  • the position of the individual lasers is determined by the fact that a Low magnification image of the laser field is recorded and the locations of each laser for example by determining the center of gravity Current contacts, which are highlighted by material contrasts, be determined. Every laser is known to have one defined such a current contact.
  • the first Laser 110 to be processed can now be processed using the previously determined position coordinates to the irradiation site of the Scanning electron microscope can be introduced.
  • Fig. 3 is the cross section through a solid-state laser 110 shown with an active zone 130 that is not is located centrally in the end face 100.
  • a hyperbolic, elliptical lens 120 applied. It was this time Assume that the lens 120 is not from an applied Dry paint, but by means of an additive Electron beam lithography had been produced.
  • the active zone 130 On the active zone 130 is the to see elliptical lens 120, its cross-sectional area is larger than that of the active zone 130.
  • the current contact 140 On the top of the laser 110, the current contact 140 is formed, the Center perpendicular in one, from manufacturing known, defined distance above the center of the active zone. The accuracy of the locations of the two Centers to each other depend on the manufacturing process and determines the degree of precision with which the position of the Applying the required exposure field over the lens precalculated and positioned in the active zone 130 can.
  • the measurement window 150 shown by way of example in FIG. 4, 152 and 154 serve to determine the position coordinates of the Current contact 140 and the end face edge 160 of the laser, from which the center of the active zone 130 is precisely calculated can be.
  • the electron beam Before the position of the exposure field is calculated the electron beam must first be focused and be stigmatized. This happens in a similar way as in the previous example.
  • A can be used as the focusing area Range selected, which advantageously the current contact detected. Is the electron beam optimal at first focused and stigmatized, can connect with him using the usual techniques of Image processing the position coordinates of the end face 100 and the center coordinates of the current contact 140 are determined become. For this purpose, at predetermined points on Edge region of the end face 100 several shown in FIG. 4 narrow pictures 150 and 152 or line grid (not shown) are drawn in, for example for upper horizontal edge 160 run vertically.
  • the location of the upper edge 160 is from the contrast profile determined by the change in the emitted Secondary electrons results when the electron beam Face 100 and an area outside the face 100 scans.
  • the location of the center of the exposure field and thus the lens 120 to be formed is then in the Y direction with an accuracy of 0.03 ⁇ m at a Image resolution of 512 pixels and with an accuracy of 0, 015 ⁇ m with an image resolution of 1024 pixels.
  • the The next step will be the center coordinates of the Current contact 140 determined. This happens, for example with the help of a histogram recorded in the x direction along predetermined lines or with flat Image capture using the focus method.
  • the location The center of the exposure field is also in the x direction fixed, because of the manufacturing hiss the distance the center of the current contact 140 and the active one Laser zone 130 on which the lens 120 is applied should be known. From the determined center coordinates the active zone 130 and the stored information about the dimensions and location of the lens 120 with respect to active zone 130 and the corresponding exposure times (Dose distribution) for each point of the exposure Face 100 are the control data for the Beam guiding device calculated. The precise one aligned construction of the lens 120 with the desired optical properties then takes place with the help of Computer controlled electron beam.
  • the invention it is possible, inexpensively and quickly 3-dimensional structured polymer layers on one predetermined area of an optical device, such as. B. a fiber end or a laser surface, precisely aligned manufacture.
  • an optical device such as. B. a fiber end or a laser surface
  • This is just a reference point advantageously the center of the area on which the optical microcomponent is to be produced with the help to calculate known methods of image processing.
  • the location of the Area on which the optical microcomponents are created should be known to the reference point. After all, they are Data on the dimensions and location of the optical Specify microcomponent and exposure times with which the desired optical properties can be achieved are.

Abstract

The method provides precise location manufacturing of at least one optical micro=component (10) on or over a predetermined region (40) of a given surface (20) of an optical device. At least one image of the given surface (20) is recorded and stored. The position of the edge of the surface (35) is measured at several predetermined points (62,64,66,68) and the corresponding edge coordinates are determined. The position coordinates of the optical microcomponent (10) within the given surface are calculated from the determined edge coordinates and the measured position coordinates of the given region. The calculated position coordinates are combined with pre-programmed illumination data for the optical component into a data set. This data set is used to control a corpuscular beam such that the optical component can be formed with a predetermined optical properties precisely aligned on or over the given region (40).

Description

Die Erfindung betrifft ein Verfahren zum ortsgenauen Herstellen von wenigstens einer optischen Mikrokomponente auf einem vorbestimmten Bereich einer vorbestimmten Fläche wenigstens einer optischen Einrichtung nach Anspruch 1 sowie eine Vorrichtung zur Durchführung des Verfahrens nach Anspruch 11.The invention relates to a method for precise location Manufacture of at least one optical microcomponent on a predetermined area of a predetermined area at least one optical device according to claim 1 and a device for performing the method Claim 11.

Es sind Verfahren bekannt, mit denen Mikrolinsen auf den Faser- und/oder Laserenden erzeugt werden können. Es wurde zum einen vorgeschlagen, Polymere auf Faserenden zu einer miniaturisierten Einzellinse zu pressen. Allerdings ist dieses Verfahren zu grob, um eine akzeptable Anpassung zwischen der Linse und einer Monomode-Faser zu ermöglichen. Eine andere Methode besteht darin, Präzisions-Kugellinsen auf die Enden optischer Einrichtungen aufzukleben. Diese mikromechanische Technik liefert allerdings keine besseren Ergebnisse. Es ist ferner bekannt, Zylinderlinsen auf Laserenden mittels einer hochauflösenden Elektronenstrahl-Lithographie festzulegen und durch reaktives Trockenätzen herzustellen. Der Trockenätzprozeß führt aber zu einer starken Oberflächenrauhigkeit der Linse aufgrund seiner Maskendefinition. Inzwischen sind zwar Verfahren zur Herstellung von 3-dimensional strukturierten Polymerschichten auf Faserenden verfügbar. Allerdings sind bisher keine Techniken bekannt, das Positionieren und Herstellen von Mikrolinsen auf Faserenden für industrielle Anwend ungen effektiv, geschweige denn automatisiert zu gestalten.Methods are known with which microlenses on the Fiber and / or laser ends can be generated. It was on the one hand, proposed polymers on fiber ends miniaturized single lens press. However this procedure too rough to make an acceptable adjustment between the lens and a single mode fiber. Another method is precision ball lenses stick on the ends of optical devices. This However, micromechanical technology does not provide any better Results. It is also known to have cylindrical lenses Laser ends using high-resolution electron beam lithography and by reactive dry etching manufacture. The dry etching process leads to one strong surface roughness of the lens due to its Mask definition. In the meantime, procedures for Production of 3-dimensional structured Polymer layers available on fiber ends. However No techniques known so far, positioning and Manufacture of microlenses on fiber ends for industrial Applications effectively, let alone automated shape.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zu schaffen, die die Herstellung von optischen Mikrokomponenten auf den Enden von optischen Einrichtungen, insbesondere auf den Faser- und Laserenden, verbessert und die Fertigungszeit drastisch verringert.The invention is therefore based on the object Method and device to create the Manufacture of optical microcomponents on the ends of optical devices, especially on the fiber and Laser ends, improved and the manufacturing time drastically reduced.

Dieses technische Problem löst die Erfindung mit den Verfahrensschritten des Anspruchs 1 und den Merkmalen des Anspruchs 11.The invention solves this technical problem with the Process steps of claim 1 and the features of Claim 11.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous further developments are in the subclaims specified.

Das Besondere der Erfindung ist vor allem darin zu sehen, daß vor dem Erzeugen einer optischen Mikrokomponente, wie z.B. einer sphärischen, nichtsphärischen, nicht rotationssymmetrischen hyperbolischen Linse, eines Prismas oder Systemen davon, auf dem Ende einer optischen Einrichtung, z.B. einer Faser oder eines Lasers, die Lage des zur Herstellung der optischen Mikrokomponente erforderlichen Belichtungsfelds präzise auf einen vorbestimmten Bereich positioniert wird. Dies geschieht mit den Hilfsmitteln einer Bildaufnahme- und Anzeigeeinrichtung sowie einer Bildverarbeitungseinrichtung, die mit einer Rechner-gesteuerten Belichtungseinrichtung, vorzugsweise eine Rasterelektronenmikroskop, zusammenwirken.The special feature of the invention can be seen above all in that that before creating an optical microcomponent like e.g. a spherical, non-spherical, not rotationally symmetric hyperbolic lens, a prism or systems thereof, on the end of an optical Establishment, e.g. a fiber or a laser, the location to manufacture the optical microcomponent required exposure field precisely on one predetermined area is positioned. This happens with the tools of an image recording and display device and an image processing device that with a Computer-controlled exposure device, preferably a scanning electron microscope.

Die präzise Positionierung einer optischen Mikrokomponente auf einem vorbestimmten Bereich einer vorbestimmten Fläche wenigstens einer optischen Einrichtung wird dadurch erreicht, daß wenigstens ein Bild von der vorbestimmten Fläche aufgenommen und in einem Bildspeicher abgelegt werden kann. Danach wird die Lage des Randes der aufgenommenen, vorbestimmten Fläche an mehreren vorbestimmten Stellen gemessen und die dazu gehörenden Randkoordinaten ermittelt. Aus den ermittelten Randkoordinaten werden die Lagekoordinaten des vorbestimmten Bereichs, auf dem die optische Mikrokomponente gebildet werden soll, berechnet. Die für den vorbestimmten Bereich berechneten Lagekoordinaten werden mit vorprogrammierten Belichtungsdaten für die optische Mikrokomponente zu einem Datensatz zusammengefaßt. Ein Korpuskularstrahl, d.h. ein Elektronen-, Ionen- oder Photonenstrahl, wird mit Hilfe des Datensatzes derart gesteuert, daß die optische Mikrokomponente mit einer vorbestimmten optischen Eigenschaft präzise ausgerichtet auf dem vorbestimmten Bereich gebildet werden kann. Insbesondere erhält der Datensatz Angaben über den genauen Ort der zu bildenden optischen Mikrokomponente und über die Belichtungszeit, mit der ein bestimmter Punkt innerhalb des zu belichtenden Bereichs bestrahlt werden muß, um eine gewünschte optische Eigenschaft für die zu bildende Mikrokomponente zu erhalten.The precise positioning of an optical micro component on a predetermined area of a predetermined area at least one optical device is thereby achieves that at least one image of the predetermined Area recorded and stored in an image memory can. After that, the location of the edge of the recorded, predetermined area at several predetermined locations measured and the associated edge coordinates determined. From the determined edge coordinates, the Position coordinates of the predetermined area on which the optical microcomponent to be formed is calculated. The ones calculated for the predetermined range Position coordinates are pre-programmed Exposure data for the optical microcomponent into one Data set summarized. A corpuscular beam, i.e. on Electron, ion or photon beam, is with the help of Data record controlled so that the optical Microcomponent with a predetermined optical Property precisely aligned to the predetermined Area can be formed. In particular, the Record information about the exact location of the to be formed optical microcomponent and over the exposure time, with which is a certain point within the to be exposed Area must be irradiated to achieve a desired optical Obtain property for the microcomponent to be formed.

Zweckmäßigerweise umfaßt der Positioniervorgang eine Grob- und Feinpositionierung der optischen Mikrokomponente. Dazu wird zunächst ein Bild mit niedriger Vergrößerung der optischen Einrichtung aufgenommen. Danach werden die Randkoordinaten ermittelt, so daß die optische Einrichtung mit der zu bearbeitenden Fläche schnell an den Bestrahlungsort bewegt werden kann. Erst jetzt findet die Feinpositionierung statt, indem zunächst der Korpuskularstrahl optimal fokussiert und stigmatisiert wird. Dazu wird ein beliebiger, außerhalb des zu belichtenden Bereichs liegender Fokussier-Bereich ausgewählt. Dieser Fokussier-Bereich wird mehrmals mit jeweils sukzessiv steigender Vergrößerung aufgenommen, bis der Korpuskularstrahl optimal fokussiert und stigmatisiert ist. Mit Hilfe des fokussierten Korpuskularstrahls ist es möglich, mit Hilfe bekannter Techniken der Bildverarbeitung -z. B. Erstellen von Histogrammen entlang vorbestimmter Linien oder der Schwerpunkt-Methode - an vorbestimmten Stellen die Randkoordinaten der Fläche präzise zu ermitteln. Aus diesen ermittelten Randkoordinaten kann dann in an sich bekannter Weise das Zentrum der Fläche ermittelt werden. In einer Recheneinheit, die die genauen Abmessungen der zu erzeugenden optischen Mikrokomponenten kennt, kann die Positionierung der Mikrokomponente auf dem vorbestimmten Bereich in Bezug auf den ermittelten Mittelpunkt der vorbestimmten Fläche berechnet werden.The positioning process expediently comprises a rough and fine positioning of the optical microcomponent. To First, a low magnification image of the optical device added. After that, the Boundary coordinates determined so that the optical device with the surface to be worked on quickly Irradiation site can be moved. Only now does she find Fine positioning instead of first by Corpuscular beam is optimally focused and stigmatized. For this purpose, any one outside of the one to be exposed Area of focus selected. This Focus area becomes successive several times increasing magnification until the Corpuscular beam is optimally focused and stigmatized. With the help of the focused corpuscular beam it is possible with the help of known techniques of image processing -z. B. Creating histograms along predetermined Lines or the center of gravity method - at predetermined Make the edge coordinates of the surface to be determined precisely. From these determined edge coordinates, in itself the center of the surface can be determined in a known manner. In a computing unit that measures the exact dimensions of the generating optical microcomponents knows the Positioning the microcomponent on the predetermined one Area in relation to the determined center of the predetermined area can be calculated.

Die Erfindung wird nachfolgend anhand der Ausführungsbeispiele in Verbindung mit den beiliegenden Zeichnungen näher erläutert. Es zeigen:

Fig. 1
den Längsschnitt durch eine Monomode-Faser mit einem Faserkern und einer auf der Stirnfläche der Faser präzise positionierten und hergestellten hyperbolischen Linse nach der Erfindung,
Fig. 2
ein vereinfachtes Schema zur präzisen Positionierung der in Fig. 1 gezeigten hyperbolischen Linse auf der Stirnfläche der Monomode-Faser,
Fig. 3
einen Querschnitt eines Halbleiterlasers mit einer aktiven Zone, über der eine hyperbolische Linse gemäß der Erfindung präzise positioniert und hergestellt worden ist,
Fig. 4
ein vereinfachtes Schema zur präzisen Positionierung der in Fig. 3 gezeigten hyperbolischen Linse auf der aktiven Laserzone, und
Fig. 5
eine Fotografie eines Faserendes, das mit einem Trockenlack belegt war, wobei neben einer Linse die Stellen sichtbar sind, die während der Fokussierung und Positionierung belichtet und dadurch polymerisiert worden sind.
The invention is explained in more detail below on the basis of the exemplary embodiments in conjunction with the accompanying drawings. Show it:
Fig. 1
the longitudinal section through a single-mode fiber with a fiber core and a hyperbolic lens according to the invention precisely positioned and manufactured on the end face of the fiber,
Fig. 2
1 shows a simplified diagram for the precise positioning of the hyperbolic lens shown in FIG. 1 on the end face of the single-mode fiber,
Fig. 3
3 shows a cross section of a semiconductor laser with an active zone over which a hyperbolic lens according to the invention has been precisely positioned and manufactured,
Fig. 4
a simplified diagram for the precise positioning of the hyperbolic lens shown in Fig. 3 on the active laser zone, and
Fig. 5
a photograph of a fiber end, which was coated with a dry varnish, whereby next to a lens the places are visible which were exposed during the focusing and positioning and thereby polymerized.

Bevor das erfindungsgemäße Verfahren näher beschrieben wird, werden zunächst die elektronischen und optischen Geräte kurz erläutert, die zur Durchführung des erfindungsgemäßen Verfahrens erforderlich sind. Before the process according to the invention is described in more detail, first the electronic and optical devices are short explained the implementation of the invention Procedure are required.

Vorzugsweise wird ein gewöhnliches Rasterelektronenmikroskop in Verbindung mit einer an sich bekannten Bildverarbeitungseinrichtung und einem motorgetriebenen Tisch benutzt. Das Rasterelektronenmikroskop kann dabei drei ganz wesentliche Aufgaben erfüllen: 1. Mit Hilfe des Elektronenstrahls kann eine einzige oder ein Feld von optischen Fasern je nach Bedarf mehrmals abgetastet und auf einem Bildschirm dargestellt werden. 2. Das oder die dargestellten Bilder werden, wie dies noch näher erläutert wird, von der Bildverarbeitungseinrichtung dazu benutzt, vor der eigentlichen Herstellung einer optischen Mikrokomponente -bei der ersten Ausführungsform ist diese eine runde, hyperbolische Linse und beim zweiten Ausführungsbeispiel ist diese eine elliptische, hyperbolische Linse- auf einem Faserende die präzise Position des zur Linsenherstellung erforderlilchen Belichtungsfeldes bezüglich eines Bezugspunktes oder einer Bezugsfläche zu berechnen. Die Ermittlung der dazu erforderlichen Lagekoordinaten des Faserendes geschieht mit Hilfe des Elektronenstrahls. 3. Zu guter Letzt fungiert das Rasterelektronenmikroskop als Belichtungsgerät zur Herstellung der Linse auf dem vorher präzise definierten Bereich des Faserendes bzw. der Stirnfläche des Lasers. Auf dem rechnergesteuerten, motorbetriebenen Tisch können die Faser- oder Laserfelder angeordnet sein. Der Tisch dient dazu, eine ausgewählte Faser bzw. einen ausgewählten Laser an den Bestrahlungsort heranzuführen. Es sei angemerkt, daß die oben beschriebene Ausführungsform ausgesprochen vorteilhaft ist, da das präzise Positionieren des Belichtungsfeldes zum Aufbauen einer Linse auf der Stirnfläche der Faser und die sich daran anschließende Herstellung mittels Belichtung durch den Elektronenstrahl in einem einzigen Gerät, nämlich dem Rasterelektronenmikroskop, ausgeführt werden kann. Alternativ können auch beliebig andere Lithographiegeräte mit einer zusätzlichen Bildverarbeitungseinrichtung zum Einsatz kommen. Auch die getrennte Ausführung des Belichtungsgerätes und der Bildverarbeitungseinrichtung ist denkbar. Dazu kann ein speziell dafür dimensioniertes, rechnergestütztes Elektronenstrahl-Führungssystem in Verbindung mit einem bildmessenden Gerät vorgesehen sein, an das beispielsweise der Elektronenstrahl eines Rasterelektronenmikroskops koppelbar ist. Programmgesteuert kann der Elektronenstrahl die erforderlichen Arbeitsschritte nacheinander abarbeiten.An ordinary scanning electron microscope is preferred in connection with a known Image processing device and a motor-driven Table used. The scanning electron microscope can do three perform very important tasks: 1. With the help of Electron beam can be a single or a field of optical fibers scanned and opened several times as required be displayed on a screen. 2. That or that displayed images are, as explained in more detail is used for this by the image processing device the actual production of an optical micro component -in the first embodiment, this is a round, hyperbolic lens and in the second embodiment this an elliptical, hyperbolic lens - on one Fiber end the precise position of the lens manufacturing required exposure field with respect to a To calculate the reference point or a reference surface. The Determination of the position coordinates required for this Fiber ends are done with the help of the electron beam. 3. To Finally, the scanning electron microscope functions as Exposure device for making the lens on the previously precisely defined area of the fiber end or Face of the laser. On the computer-controlled, Motorized table can use the fiber or laser fields be arranged. The table serves a selected one Fiber or a selected laser to the radiation site introduce. Note that the one described above Embodiment is extremely advantageous because that precise positioning of the exposure field to build up a lens on the end face of the fiber and attached to it subsequent production by exposure to the Electron beam in a single device, namely the Scanning electron microscope, can be performed. Alternatively, any other lithography device can be used with an additional image processing device for Come into play. Even the separate execution of the Exposure device and the image processing device conceivable. A specially dimensioned, computerized electron beam guidance system in Connection with an image measuring device may be provided that, for example, the electron beam of a Scanning electron microscope can be coupled. programmatically the electron beam can do the necessary work work through one after the other.

Das erfindungsgemäße Verfahren wird zunächst anhand einer Monomode-Faser beispielhaft erläutert, auf deren Ende eine hyperbolische Rundlinse aufgebracht werden soll. In Fig. 1 ist der Längsschnitt durch den Endabschnitt einer Monomode-Faser 30 dargestellt. Im Zentrum der Monomode-Faser 30 verläuft ein Faserkern 40. Der Faserkern 40 besitzt üblicherweise einen Durchmesser von 5 bis 10 µm, wohingegen die Monomode-Faser 30 selbst einen Durchmesser von etwa 125 µm aufweist. Auf der Stirnfläche oder dem Faserende 20 ist eine hyperbolische Rundlinse 10 zentriert über dem Faserkern 40 aufgebracht, der, abgesehen von einer durch den Fertigungsprozeß bedingten Ungenauigkeit nahezu in der Fasermitte liegt. Die Linse 10 kann eine größere Querschnittsfläche als der Faserkern 40 einnehmen.The method according to the invention is initially based on a Monomode fiber exemplified, at the end of one hyperbolic round lens to be applied. In Fig. 1, the longitudinal section through the end portion is a Monomode fiber 30 shown. At the center of the single-mode fiber 30 runs a fiber core 40. The fiber core 40 has usually a diameter of 5 to 10 µm, whereas the monomode fiber 30 itself has a diameter of approximately 125 µm. On the end face or the fiber end 20 is a hyperbolic round lens 10 centered over the fiber core 40 applied, which, apart from one by the Manufacturing inaccuracy almost in the process Fiber center lies. The lens 10 can be a larger one Take cross-sectional area as the fiber core 40.

An dieser Stelle sei angemerkt, daß es zwei bevorzugte Techniken gibt, mit denen optische Mikrokomponenten, wie z. B. Linsen und Prismen, direkt durch Belichtung des Faserendes 20 oder der Sirnfläche 100 eines Festkörperlasers 110 mit einem Korpuskularstrahl - das ist ein Elektronen-, Ionen- oder Photonenstrahl ( im UV-Bereich) - auf diesen Flächen hergestellt werden kann. Das eine Verfahren ist als Trockenlacktechnik bekannt. Hier wird entweder ein Trockenlack (z. B. Octavinyl-Silsesqui-oxan) im Hochvakuum mit einer definierten Schichtdicke auf das Faserende 20 bzw. die Stirnfläche 100 des Lasers 110 aufgedampft oder ein Polymer aus einer Plasma-Gasphase aus gesondert vorgelegten Präkursoren abgeschieden. Bei dem Trockenlack oder dem aus der Plasma-Gasphase abgeschiedenen Lack handelt es sich um ein Korpuskularstrahl-empfindliches Polymer, das durch lithographische Belichtung derart verändert wird, daß die Polymerschicht nach der Entwicklung ein 3-dimensionales Profil aufweist.At this point it should be noted that it preferred two Techniques exist with which optical microcomponents such. B. lenses and prisms, directly by exposure of the Fiber end 20 or the face 100 of a solid-state laser 110 with a corpuscular beam - that's an electron, Ion or photon beam (in the UV range) - on this Surfaces can be made. One is as Dry paint technology known. Here either one Dry lacquer (e.g. octavinyl-silsesqui-oxane) in a high vacuum with a defined layer thickness on the fiber end 20 or the end face 100 of the laser 110 is evaporated or on Polymer from a plasma gas phase from separately submitted Precursors deposited. With the dry paint or from the lacquer deposited in the plasma gas phase is a corpuscular beam sensitive polymer, which by lithographic exposure is changed such that the Polymer layer after development a 3-dimensional Has profile.

Bei dem anderen Verfahren handelt es sich um eine additive Lithographietechnik, bei der die optischen Mikrokomponenten aus aus der Gasphase adsorbierten Präkursor-Molekülen, die bei Belichtung mit Korpuskularstrahlen polymerisieren, unmittelbar auf dem Faserende oder der Stirnfläche des Lasers gebildet werden. Eine vorherige Belegung der Faserenden oder Laserflächen mit einem Trockenlack und eine anschließende Entwicklung der gebildeten optischen Mikrokomponenten ist dann nicht mehr erforderlich. Das erfindungsgemäße Verfahren bedient sich für die Herstellung von optischen Mikrokomponenten (Linsen, Strahlteiler, Prismen u.s.w) auf optischen Einrichtungen, insbesondere auf Enden von optischen Fasern und Lasern, sowohl der Trockenlack- als auch der additiven Lithographietechnik. Es sei nunmehr der Fall angenommen, daß das Faserende 20 mit einer Trockenlack-Schicht, aus der die hyperbolische Rundlinse 10 herausgearbeitet werden soll, belegt sei. Obwohl in Fig. 1 nur eine Faser 30 dargestellt ist, können mehrere Fasern zu einem Array gruppiert und auf dem motorbetriebenen Tisch gelagert sein. Auf den Enden der Fasern können dann nacheinander die entsprechenden Linsen aufgebaut werden. Nachdem die Fasern 30 in das Rasterelektronenmikroskop eingeschleust worden sind, wird zunächst ein Bild der gesamten Fasergruppe mit einer niedrigen Bildvergrößerung aufgenommen und in einen Bildspeicher der Bildverarbeitungseinrichtung eingelesenen. Die Lage der einzelnen Fasern 30, d. h. präziser gesprochen der Enden der Fasern, werden mit aus der Bildverarbeitung an sich bekannten Methoden lokalisiert. Als Beispiele seien an dieser Stelle die Schwerpunkts-Methode und die Erstellung von Histogrammen basierend auf Kontrastmessungen entlang vorbestimmter Linien erwähnt, mit denen die Zentrumskoordinaten der flächigen Faserenden bestimmt werden können. Anschließend wird die erste zu bearbeitende Faser 30 ausgewählt und mit Hilfe der zuvor ermittelten Zentrumskoordinaten von dem motorgetriebenen Tisch an den Bestrahlungsort des Rasterelektronenmikroskops herangefahren. Als nächster Schritt wird ein weiteres Bild von der Monomode-Faser 30 aber jetzt mit einer erhöhten Vergrößerung aufgenommen und wiederum in den Bildspeicher der Bildverarbeitungseinrichtung eingezogen. Bevor die hyperbolische Rundlinse 10 aus dem auf die Stirnfläche 20 der Faser 30 aufgebrachten Trockenlack durch eine vorprogrammierte Elektronenstrahlbelichtung herausgearbeitet werden kann, werden erfindungsgemäß zunächst die Lagekoodinaten des zum Aufbau der Linse 10 erforderlichen Belichtungsfeldes mit Bezug auf das Faserzentrum präzise berechnet. Man kann in diesem Fall auch einfach von der präzisen Positionierung der Linse 10 auf dem Faserkern 40 am Faserende 20 sprechen. Zu diesem Zweck müssen unter anderem die gewünschten Linsen-Abmessungen bekannt sein und beispielsweise in einem Speicher eines programmierbaren Mikroprozessors abgelegt werden. Als weitere Parameter können die Belichtungszeiten gespeichert werden, mit denen jeder Punkt auf der Stirnfläche 20 der Faser 30 zu belichten ist, damit die Linse eine gewünschte optische Eigenschaft, wie z. B. einen besonderen Brechungsindex, erhält.The other method is an additive Lithography technology in which the optical microcomponents from precursor molecules adsorbed from the gas phase, the polymerize on exposure to corpuscular rays, directly on the fiber end or the face of the Lasers are formed. A previous assignment of the Fiber ends or laser surfaces with a dry paint and a subsequent development of the optical formed Micro components are then no longer required. The The method according to the invention is used for the production of optical microcomponents (lenses, beam splitters, Prisms etc. on optical devices, especially on Ends of optical fibers and lasers, both the Dry lacquer and additive lithography technology. The case is now assumed that the fiber end 20 with a dry lacquer layer from which the hyperbolic Round lens 10 is to be worked out, be documented. Although only one fiber 30 is shown in FIG several fibers grouped into an array and on the be motor-driven table stored. On the ends of the Fibers can then use the corresponding lenses in succession being constructed. After the fibers 30 in the Scanning electron microscope has been introduced first a picture of the entire fiber group with a low image magnification and incorporated into one Image memory of the image processing device read. The location of the individual fibers 30, i.e. H. spoken more precisely the ends of the fibers, are used in image processing localized methods. Let me give you examples the focus method and the creation of histograms based on contrast measurements along predetermined lines with which the Center coordinates of the flat fiber ends can be determined can. Then the first fiber 30 to be processed selected and with the help of the previously determined Center coordinates from the motorized table to the Radiation site of the scanning electron microscope moved up. The next step is another picture from the single mode fiber 30 but now with an increased Magnification recorded and again in the image memory the image processing device. Before that hyperbolic round lens 10 from the on the end face 20th the fiber 30 applied dry paint by a preprogrammed electron beam exposure worked out According to the invention, the Coordinates of the position required for the construction of the lens 10 Exposure field with reference to the fiber center precisely calculated. In this case, you can also simply use the precise positioning of the lens 10 on the fiber core 40 am Speak fiber end 20. For this purpose, among other things the desired lens dimensions are known and for example in a programmable memory Microprocessor are stored. As further parameters the exposure times can be saved with which to expose each point on the face 20 of the fiber 30 is so that the lens has a desired optical property, such as B. receives a special refractive index.

Zur präzisen Positionierung der Linse 10 auf dem Faserkern 40 ist es zunächst notwendig, den vom Rasterelektronenmikroskop gelieferten Elektronenstrahl scharf auf einen Bereich 60 des Faserendes 20 zu fokussieren und stigmatisieren. Der Fokussier-Bereich 60 befindet sich vorzugsweise außerhalb des zu belichtenden Bereichs, wie dies in Fig. 2 gezeigt ist. Der Grund liegt darin, daß, obgleich die Fokussierung und Stigmatisierung des Elektronenstrahls mit verringerter Intensität erfolgt, der Trockenlack an diesem Bereich 60, wenn auch nur in geringem Maße, bereits belichtet und somit vernetzt wird. Dies ist in der Fig. 5 deutlich erkennbar, die die Aufnahme des Faserendes 20 mit der aus einem Trockenlack herausgebildeten Rundlinse 10 zeigt. Darüber hinaus sind in Fig. 5 vier umfangseitig im Abstand von 90° zueinander gebildete Positionier-Bereiche 62, 64, 66 und 68 sichtbar, deren Bedeutung weiter unten noch beschrieben wird.For precise positioning of the lens 10 on the fiber core 40 it is first necessary that from Scanning electron microscope delivered electron beam to focus sharply on an area 60 of the fiber end 20 and stigmatize. The focusing area 60 is located preferably outside the area to be exposed, such as this is shown in Fig. 2. The reason is that although the focus and stigmatization of the Electron beam with reduced intensity, the Dry paint on this area 60, if only slightly Dimensions, already exposed and thus networked. This is in 5 clearly recognizable, the inclusion of the Fiber end 20 with that formed from a dry paint Round lens 10 shows. In addition, there are four in FIG formed circumferentially at a distance of 90 ° to each other Positioning areas 62, 64, 66 and 68 visible, their Meaning is described below.

Die Fokussierung und Stigmatisierung des Elektronenstrahls wird in Verbindung mit Fig. 2 näher beschrieben. Der ausgewählte Fokussier-Bereich 60 wird mehrmals aufgenommen, und zwar mit sukzessiv steigender Vergrößerung jedes Bildausschnittes. Dazu wird der Elektronenstrahl zeilenweise über den abzubildenden Bereich geführt. Während jeder Aufnahme wird der Elektronenstrahl aufgrund der zunehmenden Vergrößerung und der damit steigenden Auflösung des aufgenommenen Bereichs 60 nachgestellt. Es werden solange Bilder mit sukzessiv steigender Vergrößerung von dem Bereich 60 aufgenommen, bis der Elektronenstrahl aufgrund gerätetechnischer Grenzen nicht mehr besser fokussiert und stigmatisiert werden kann. Die Fokussierung und Stigmatisierung des Elektronenstrahls kann auch automatisiert erfolgen, da am Rand und in der Fläche 20 ausreichend feine Strukturen vorliegen.The focusing and stigmatization of the electron beam is described in more detail in connection with FIG. 2. The selected focusing area 60 is recorded several times, with successively increasing magnification each Image area. To do this, the electron beam is made line by line led over the area to be imaged. During everyone The electron beam is recorded due to the increasing Magnification and the increasing resolution of the recorded area 60 readjusted. It will be so long Images with increasing magnification from the area 60 recorded until due to the electron beam device limits no longer better focused and can be stigmatized. The focus and Stigmatization of the electron beam can also automated because there is 20 there are sufficiently fine structures.

Ist der Elektronenstrahl erst einmal fokussiert, kann mit der Berechnung der Zentrumskoordinaten des flächig aufgenommenen Faserendes 20 begonnen werden. Hierfür stehen die bekannten Hilsmittel der Bildverarbeitung zur Verfügung. Wie bereits erwähnt, kann mit Hilfe der Schwerpunkt-Methode das Zentrum des Faserendes 20 ermittelt werden. Die Zentrumskoordinaten der Faserendfläche 20 dienen als Bezugspunkt für die präzise Positionierung der Linse 10 auf dem Faserkern 40 oder jedem beliebigen Bereich innerhalb der Faserendfläche, sofern der Abstand des Zentrums des Bereichs vom Zentrum der Faserendfläche 20 bekannt ist. Zunächst wird die Lage des Faserrandes 35 der Faser 30 ermittelt, indem an vorbestimmten Stellen die Randkoordinaten bestimmt werden. Wie in Fig. 2 gezeigt ist, wird der Rand 35 an vier Bereichen 62, 64, 66 und 68 flächig aufgenommen. Aus den so gewonnenen Randkoordinaten kann dann auf bekannte Weise der Mittelpunkt des Faserendes 20 berechnet werden. Andere Verfahren berechnen das Kontrastprofil entlang mehrerer Linien senkrecht zum Rand unter Verwendung von Diskriminatoren, um die zur Berechnung des Faserzentrums erforderlichen Randkoordinaten zu erhalten. Mit diesen Methoden kann das Faserzentrum mit einer Genauigkeit von 0,3 µm bei einer einer Bildauflösung von 512 Pixeln und mit einer Genauigkeit von 0,15 µm bei einer Bildauflösung von 1024 Pixeln festgelegt werden. Mit anderen Worten erfolgt die Ermittlung des Faserzentrums mit einer Auflösung von etwa 100 nm.Once the electron beam is focused, you can use the calculation of the center coordinates of the area recorded fiber end 20 can be started. Stand for it the well-known tools of image processing are available. As mentioned earlier, using the focus method the center of the fiber end 20 can be determined. The Center coordinates of the fiber end face 20 serve as Reference point for the precise positioning of the lens 10 the fiber core 40 or any area within the Fiber end face provided the distance from the center of the area from the center of the fiber end face 20 is known. First of all the position of the fiber edge 35 of the fiber 30 is determined by predetermined places the edge coordinates are determined. As shown in Fig. 2, the edge 35 becomes four Areas 62, 64, 66 and 68 recorded areal. From that obtained edge coordinates can then in a known manner Center of the fiber end 20 can be calculated. Other Methods calculate the contrast profile along several Lines perpendicular to the edge using Discriminators to calculate the fiber center to obtain the required boundary coordinates. With these The fiber center can measure with an accuracy of 0.3 µm with an image resolution of 512 pixels and with an accuracy of 0.15 µm with an image resolution of 1024 pixels can be set. In other words the determination of the fiber center with a resolution of about 100 nm.

Die ermittelten Faserzentrums-Koordinaten werden mit den gespeicherten Abmessungen und Belichtungsdaten, wie z. B. der Strahlendosisverteilung, der aufzubauenden Rundlinse 10 beispielsweise in einer Recheneinrichtung miteinander verrechnet und als Datensatz in einem Speicher abgelegt. Ein programmierbarer Rechner liest den Datensatz aus und steuert damit den Elektronenstrahl des Rasterelektronenmikroskops. Nachdem der Belichtungsvorgang beendet worden ist, wird der Trockenlack auf dem Faserende 20 thermisch oder in geeigneten Lösungsmitteln entwickelt. Als Ergebnis liegt eine optische Faser 30 vor, auf deren Faserende 20 über dem zentrisch gelagerten Faserkern 40 die Rundlinse 10 präzise ausgerichtet angeordnet ist und die gewünschten optischen Eigenschaften aufweist. Jetzt kann die nächste zu bearbeitende Faser mit Hilfe der grob ermittelten Zentrumskoordinaten an den Bestrahlungsort des Rasterelektronenmikroskops herangefahren und gemäß dem gerade beschriebenen Verfahren mit einer präzise ausgerichteten Linse auf dem Faserkern ausgebildet werden. Es sei noch angemerkt, daß mit dem oben beschrieben Verfahren nicht nur einzelne Linsen sondern sogar optische Mikro-Abbildungsysteme auf dem Faserende 20 hergestellt werden können. Die bildverarbeitenden Schritten, die Vorberechnung der präzisen Positionierung des Belichtungsfeldes zur Herstellung der Linse 10 und die Belichtung des Trockenlacks können somit in einem einzigen Gerät, das lediglich mit einem Bildverarbeitungssystem ausgerüstet ist, in einer optimal kurzen Fertigungszeit durchgeführt werden.The determined fiber center coordinates are with the stored dimensions and exposure data, such as. B. the radiation dose distribution of the round lens 10 to be constructed for example in a computing device calculated and stored as a data record in a memory. On programmable computer reads out the data record and controls thus the electron beam of the scanning electron microscope. After the exposure process has ended, the Dry paint on the fiber end 20 thermally or in suitable solvents developed. As a result lies an optical fiber 30 in front, on the fiber end 20 above the Centric fiber core 40, the round lens 10 precisely is aligned and the desired optical Has properties. Now the next one can be closed processing fiber using the roughly determined Center coordinates to the radiation site of the Scanning electron microscope moved up and according to the just described method with a precise aligned lens are formed on the fiber core. It should also be noted that with that described above Process not just individual lenses but even optical ones Micro-imaging systems made on the fiber end 20 can be. The image processing steps that Precalculation of the precise positioning of the Exposure field for the production of the lens 10 and the Exposure of the dry varnish can thus be done in a single Device that only has an image processing system is equipped in an optimally short production time be performed.

Das erfindungsgemäße Verfahren wird nunmehr anhand eines Festkörperlasers beispielhaft erläutert, auf dessen Stirnfläche über einer aktiven Zone eine elliptische, hyperbolische Linse entstehen soll.The method according to the invention is now based on a Solid state laser exemplified on the Face above an active zone an elliptical, hyperbolic lens should arise.

Wiederum sei angenommen, daß eine Gruppe von Lasern auf dem motorgesteuerten Tisch angeordnet ist und in das Rasterelektronenmikroskop eingeschleust wurde. Eine grobe Lagebestimmung der einzelnen Laser erfolgt dadurch, daß ein Bild von dem Laserfeld mit niedriger Vergrößerung aufgenommen wird und die Orte der einzelnen Laser beispielsweise durch eine Schwerpunkt-Bestimmung der Stromkontakte, die sich durch Materialkontraste hervorheben, ermittelt werden. Jeder Laser weist bekannterweise an einer definierten Stelle einen solchen Stromkontakt auf. Der erste zu bearbeitende Laser 110 kann nunmehr mit Hilfe der zuvor ermittelten Lagekoordinaten an den Bestrahlungsort des Rasterelektronenmikroskops herangeführt werden.Again it is assumed that a group of lasers on the motorized table is arranged and in that Scanning electron microscope was introduced. A rough one The position of the individual lasers is determined by the fact that a Low magnification image of the laser field is recorded and the locations of each laser for example by determining the center of gravity Current contacts, which are highlighted by material contrasts, be determined. Every laser is known to have one defined such a current contact. The first Laser 110 to be processed can now be processed using the previously determined position coordinates to the irradiation site of the Scanning electron microscope can be introduced.

In Fig. 3 ist der Querschnitt durch einen Festkörperlaser 110 mit einer aktiven Zone 130 dargestellt, die nicht zentrisch in der Stirnfläche 100 liegt. Über der aktiven Zone 130 der Stirnfläche 100 ist eine hyperbolische, elliptische Linse 120 aufgebracht. Es sei diesmal angenommen, daß die Linse 120 nicht aus einem aufgetragenen Trockenlack, sondern mittels einer additiven Elektronenstrahl-Lithographie hergestellt worden sei.In Fig. 3 is the cross section through a solid-state laser 110 shown with an active zone 130 that is not is located centrally in the end face 100. About the active Zone 130 of face 100 is a hyperbolic, elliptical lens 120 applied. It was this time Assume that the lens 120 is not from an applied Dry paint, but by means of an additive Electron beam lithography had been produced.

In Fig. 4 ist die aufgenommene Stirnfläche 100 mit der unterhalb des oberen Flächenrandes 160 eingebrachten aktiven Laserzone 130 dargestellt. Auf der aktiven Zone 130 ist die elliptische Linse 120 zu sehen, deren Querschnittsfläche größer ist als die der aktive Zone 130. Auf der Oberseite des Laser 110 ist der Stromkontakt 140 ausgebildet, dessen Mittelpunkt senkrecht in einem, aus der Herstellung bekannten, definierten Abstand über dem Mittelpunkt der aktiven Zone befindet. Die Genauigkeit der Lagen der beiden Mittelpunkte zueinander hängt vom Herstellungsprozeß ab und bestimmt den Präzisionsgrad, mit dem die Lage des zum Aufbringen der Linse erforderlichen Belichtungsfelds über der aktiven Zone 130 vorberechnet und positioniert werden kann. Die in Fig. 4 beispielhaft gezeigten Meßfenster 150, 152 und 154 dienen der Bestimmung der Lagekoordinaten des Stromkontaktes 140 und der Stirnflächenkante 160 des Lasers, aus denen das Zentrum der aktiven Zone 130 präzise berechnet werden kann.In Fig. 4, the recorded end face 100 with the active 160 introduced below the upper surface edge Laser zone 130 shown. On the active zone 130 is the to see elliptical lens 120, its cross-sectional area is larger than that of the active zone 130. On the top of the laser 110, the current contact 140 is formed, the Center perpendicular in one, from manufacturing known, defined distance above the center of the active zone. The accuracy of the locations of the two Centers to each other depend on the manufacturing process and determines the degree of precision with which the position of the Applying the required exposure field over the lens precalculated and positioned in the active zone 130 can. The measurement window 150 shown by way of example in FIG. 4, 152 and 154 serve to determine the position coordinates of the Current contact 140 and the end face edge 160 of the laser, from which the center of the active zone 130 is precisely calculated can be.

Bevor die Position des Belichtungsfeldes berechnet werden kann, muß der Elektronenstrahl zuerst fokussiert und stigmatisiert werden. Dies geschieht in ähnlicher Weise wie im vorhergehenden Beispiel. Als Fokussierbereich kann ein Bereich gewählt, der vorteilhafterweise den Stromkontakt erfaßt. Ist der Elektronenstrahl erst einaml optimal fokussiert und stigmatisiert, können mit ihm in Verbindung mit den oben genannten üblichen Techniken der Bildverarbeitung die Lagekoordinaten der Stirnfläche 100 und die Zentrumkoordinaten des Stromkontaktes 140 ermittelt werden. Dazu können zunächst an vorbestimmten Stellen am Randbereich der Stirnfläche 100 mehrere in Fig. 4 gezeigte schmale Bilder 150 und 152 oder Linien-Raster (nicht dargestellt) eingezogen werden, die beispielsweise zur oberen horizontalen Kante 160 senkrecht verlaufen. Mit Hilfe der aufgenommenen Bilder 150, 152 oder der Linien-Raster wird die Lage der oberen Kante 160 aus dem Kontrastprofil bestimmt, das sich durch die Änderung der emittierten Sekundärelektronen ergibt, wenn der Elektronenstrahl die Stirnfläche 100 und einen Bereich außerhalb der Stirnfläche 100 abtastet. Die Lage des Zentrums des Belichtungsfeldes und damit der zu bildenden Linse 120 liegt danach in Y-Richtung mit einer Genauigkeit von 0,03 µm bei einer Bildauflösung von 512 Pixeln und mit einer Genauigkeit von 0, 015 µm bei einer Bildauflösung von 1024 Pixeln fest. Im nächsten Schritt werden die Zentrumskordinaten des Stromkontaktes 140 ermittelt. Dies geschieht beispielsweise mit Hilfe eines in x-Richtung aufgnommenen Histogramms entlang vorbestimmter Linien oder bei flächigen Bildaufnahmen mit Hilfe der Schwerpunkts-Methode. Die Lage des Zentrums des Belichtungsfeldes liegt danach auch in x-Richtung fest, da herstellungsbedingt der Abstand zischen dem Mittelpunkt des Stromkontaktes 140 und der aktiven Laserzone 130, auf der die Linse 120 aufgebracht werden soll, bekannt ist. Aus den ermittelten Zentrumskoordinaten der Aktiven Zone 130 und den gespeicherten Informationen über die Abmessungen und Lage der Linse 120 bezüglich der aktiven Zone 130 sowie die entsprechenden Belichtungszeiten (Dosisverteilung) für jeden Punkt der zu belichtenden Stirnfläche 100 werden die Steuerdaten für die Strahlführungseinrichtung berechnet. Der präzise ausgerichete Aufbau der Linse 120 mit den gewünschten optischen Eigenschaften erfolgt anschließend mit Hilfe des Rechner-gesteuerten Elektronenstrahls.Before the position of the exposure field is calculated the electron beam must first be focused and be stigmatized. This happens in a similar way as in the previous example. A can be used as the focusing area Range selected, which advantageously the current contact detected. Is the electron beam optimal at first focused and stigmatized, can connect with him using the usual techniques of Image processing the position coordinates of the end face 100 and the center coordinates of the current contact 140 are determined become. For this purpose, at predetermined points on Edge region of the end face 100 several shown in FIG. 4 narrow pictures 150 and 152 or line grid (not shown) are drawn in, for example for upper horizontal edge 160 run vertically. With help of the captured images 150, 152 or the line grid the location of the upper edge 160 is from the contrast profile determined by the change in the emitted Secondary electrons results when the electron beam Face 100 and an area outside the face 100 scans. The location of the center of the exposure field and thus the lens 120 to be formed is then in the Y direction with an accuracy of 0.03 µm at a Image resolution of 512 pixels and with an accuracy of 0, 015 µm with an image resolution of 1024 pixels. in the The next step will be the center coordinates of the Current contact 140 determined. This happens, for example with the help of a histogram recorded in the x direction along predetermined lines or with flat Image capture using the focus method. The location The center of the exposure field is also in the x direction fixed, because of the manufacturing hiss the distance the center of the current contact 140 and the active one Laser zone 130 on which the lens 120 is applied should be known. From the determined center coordinates the active zone 130 and the stored information about the dimensions and location of the lens 120 with respect to active zone 130 and the corresponding exposure times (Dose distribution) for each point of the exposure Face 100 are the control data for the Beam guiding device calculated. The precise one aligned construction of the lens 120 with the desired optical properties then takes place with the help of Computer controlled electron beam.

Dank der Erfindung ist es möglich, kostengünstig und schnell 3-dimensional strukturierte Polymerschichten auf einem vorbestimmten Bereich einer optischen Einrichtung, wie z. B. eines Faserende oder einer Laserfläche, präzise ausgerichtet herzustellen. Dazu ist lediglich ein Bezugspunkt, vorteilhafterweise das Zentrum der Fläche, auf der die optische Mikrokomponente hergestellt werden soll, mit Hilfe bekannter Methoden der Bildverarbeitung zu berechnen. Darüber hinaus muß herstellungsbedingt die Lage des Bereichs, auf dem die optische Mikrokomponente entstehen soll, zum Bezugspunkt bekannt sein. Schließlich sind die Daten über die Abmessungen und Lage der optischen Mikrokomponente und die Belichtungszeiten vorzugeben, mit denen die gewünschten optischen Eigenschaften erzielbar sind.Thanks to the invention, it is possible, inexpensively and quickly 3-dimensional structured polymer layers on one predetermined area of an optical device, such as. B. a fiber end or a laser surface, precisely aligned manufacture. This is just a reference point advantageously the center of the area on which the optical microcomponent is to be produced with the help to calculate known methods of image processing. In addition, the location of the Area on which the optical microcomponents are created should be known to the reference point. After all, they are Data on the dimensions and location of the optical Specify microcomponent and exposure times with which the desired optical properties can be achieved are.

Claims (12)

  1. Method for the precise-location manufacturing of at least one optical microcomponent (10; 120) on or above a predetermined region (40; 130) of a predetermined surface (20; 100) of at least one optical apparatus (30; 110) with the following steps:
    a) at least one image of the predetermined surface (20; 100) is recorded and stored;
    b) the position of the surface edge (35; 160) is measured at a plurality of predetermined points (62, 64, 66, 68; 150, 152, 154) and the corresponding edge coordinates are determined;
    c) the position coordinates of the optical microcomponent (10; 120) within the predetermined surface (20; 100) are calculated from the determined edge coordinates of the surface (20; 100) and the measured position coordinates of the predetermined region (40; 130);
    d) the position coordinates calculated in step c) are combined with preprogrammed exposure data for the optical microcomponent to form a data record; and
    e) the data record produced in step d) is used to control a corpuscular beam such that the optical microcomponent with a predetermined optical property can be formed, precisely aligned, on or above the predetermined region (40; 130).
  2. Method according to claim 1,
    characterized in that step c) comprises the following steps:
    c1) the centre of the predetermined surface (20; 100) is calculated from the determined edge coordinates thereof;
    c2) the position coordinates of the predetermined region (40; 130) within the predetermined surface (20; 100) are determined with reference to the centre.
  3. Method according to claim 1 or 2,
    characterized in that step a) comprises the following substeps:
    a.1) a first image of the predetermined surface (20; 100) of the optical apparatus (30; 110) is recorded with low magnification;
    a.2) the position of the surface edge (35; 160) is roughly determined at a plurality of predetermined points and the corresponding edge coordinates are determined;
    a.3) the optical apparatus (30; 110) is moved to the irradiation position with reference to the determined edge coordinates;
    a.4) successive images with successively increasing magnification are recorded of a selected focusing region (60) of the surface (20) until the corpuscular beam has been optimally focused and stigmatized;
    and step b) comprises the following step:
    at each of the predetermined points (62, 64, 66, 68; 150, 152, 154) of the surface edge (35; 160) a contrast measurement for fine determination of the corresponding edge coordinates is performed along a line extending perpendicularly to the edge.
  4. Method according to claim 1, 2 or 3,
    characterized in that, prior to the performance of step a), a corpuscular-beam-sensitive dry varnish or a polymer of a plasma gas phase of separately presented precursors is vapour-deposited onto the predetermined surface (2; 100) in a predetermined thickness.
  5. Method according to claim 4,
    characterized in that the optical microcomponent (10; 120) formed from the vapour-deposited dry varnish or deposited polymer is developed thermally or in solvents.
  6. Method according to claim 1, 2 or 3,
    characterized in that in step e) the optical microcomponent (10; 120) is deposited on or above the predetermined region (40; 130) by means of the corpuscular beam.
  7. Method according to any one of claims 1 to 6,
    characterized in that an optical fibre (30) and/or a laser (110) is used as the optical apparatus.
  8. Method according to any one of claims 1 to 7,
    characterized in that three-dimensionally structured polymer layers are formed on the predetermined region (40; 130) of the predetermined surface (20; 100) of the optical apparatus (30; 110).
  9. Method according to any one of claims 1 to 8,
    characterized in that steps a.1), a.2) and a.3) are replaced by:
    a1') an image of the predetermined surfaces (20; 100) of a group of optical apparatuses (30; 110) is recorded with low magnification;
    a2') the positions of the surface edges (35; 160) are each roughly determined at a plurality of predetermined points and the corresponding edge coordinates are determined;
    a3') the optical apparatus (30; 110) is selected and is moved with reference to the determined edge coordinates to the irradiation position on which the optical microcomponent (10; 120) is to be formed.
  10. Device for manufacturing and precise positioning of optical microcomponents (10; 120) on optical apparatuses (30; 110) according to the method according to any one of claims 1 to 10
    with the following features:
    a generator apparatus for generating a corpuscular beam of variable intensity;
    a contrast detector for determining the contours of a recorded, predetermined surface of an optical apparatus;
    a computing apparatus capable of calculating from the values supplied by the contrast detector the position of a predetermined region within the predetermined surface;
    a programmable beam guiding apparatus which, in response to the coordinate values supplied by the computing apparatus and to preprogrammed exposure data, guides the corpuscular beam over the predetermined surface such that an optical microcomponent with a predetermined optical property can be applied to the predetermined region.
  11. Device according to claim 10,
    characterized by a programmable computer which monitors and controls the device.
  12. Device according to claim 10 or 11,
    characterized by a motor table controlled by the computer.
EP96113232A 1995-12-07 1996-08-19 Procedure to manufacture microlenses precisely positioned on the ends of optical fibres and lasers Expired - Lifetime EP0778481B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545721A DE19545721C2 (en) 1995-12-07 1995-12-07 Method and device for producing and precisely positioning optical microcomponents on top of an optical device
DE19545721 1995-12-07

Publications (2)

Publication Number Publication Date
EP0778481A1 EP0778481A1 (en) 1997-06-11
EP0778481B1 true EP0778481B1 (en) 2002-11-27

Family

ID=7779488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96113232A Expired - Lifetime EP0778481B1 (en) 1995-12-07 1996-08-19 Procedure to manufacture microlenses precisely positioned on the ends of optical fibres and lasers

Country Status (7)

Country Link
EP (1) EP0778481B1 (en)
AT (1) ATE228663T1 (en)
DE (2) DE19545721C2 (en)
DK (1) DK0778481T3 (en)
ES (1) ES2190461T3 (en)
NO (1) NO316948B1 (en)
PT (1) PT778481E (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630705A1 (en) 1995-08-30 1997-03-20 Deutsche Telekom Ag Process for the production of 3-dimensional structured polymer layers for integrated optics
JP2001519040A (en) 1995-08-30 2001-10-16 ドイッチェ テレコム アーゲー Methods for improving contrast in structuring three-dimensional surfaces
US8903205B2 (en) 2012-02-23 2014-12-02 Karlsruhe Institute of Technology (KIT) Three-dimensional freeform waveguides for chip-chip connections
US9034222B2 (en) 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
CN111580342B (en) * 2020-06-18 2023-10-31 中国建筑材料科学研究总院有限公司 Preparation of optical fiber image transmission element end surface micro-convex structure and application of optical fiber image transmission element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2358881C2 (en) * 1973-11-27 1984-07-19 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for the production of coupling optics on an optical waveguide
EP0005462B1 (en) * 1978-05-22 1983-06-08 Siemens Aktiengesellschaft Method for positioning two objects which are to be adjusted to one another
US4932989A (en) * 1989-04-05 1990-06-12 At&T Bell Laboratories Method and apparatus for fabricating microlenses on optical fibers
US5148322A (en) * 1989-11-09 1992-09-15 Omron Tateisi Electronics Co. Micro aspherical lens and fabricating method therefor and optical device
JPH03232215A (en) * 1990-02-08 1991-10-16 Toshiba Corp Method for alignment
US5256851A (en) * 1992-02-28 1993-10-26 At&T Bell Laboratories Microlenses for coupling optical fibers to elliptical light beams
US5383118A (en) * 1992-09-23 1995-01-17 At&T Corp. Device alignment methods
JP3412224B2 (en) * 1994-01-07 2003-06-03 住友電気工業株式会社 Lens mounting method and device

Also Published As

Publication number Publication date
NO963932D0 (en) 1996-09-19
ES2190461T3 (en) 2003-08-01
EP0778481A1 (en) 1997-06-11
NO963932L (en) 1997-06-09
DE19545721C2 (en) 2003-02-20
DK0778481T3 (en) 2003-03-17
NO316948B1 (en) 2004-07-05
ATE228663T1 (en) 2002-12-15
DE19545721A1 (en) 1997-06-12
PT778481E (en) 2003-04-30
DE59609917D1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
DE3137031C2 (en) Multiple beam scanning optics system
DE2246152C2 (en) Method and apparatus for the mutual alignment of semiconductor wafers and masks
EP1618426B1 (en) Method and array for determining the focal position during imaging of a sample
DE3148091C2 (en) Device for examining a sample in a scanning electron microscope
EP1276586B1 (en) Laser microdissection device
EP0173849B1 (en) Laser lithography
DE19721688B4 (en) Surface detection device and method for surface detection
EP1436658B1 (en) Method and device for optically examining an object
DE2110073C3 (en) Device for the projection masking of a light-sensitive layer
DE3116190C2 (en)
EP2616866B1 (en) Wide range zoom system
WO2013053454A1 (en) Microscope and method for spim microscopy
DE102014219601B4 (en) Method for scanning a sample using X-ray optics and an apparatus for scanning a sample
DE102014107044B4 (en) Improved autofocus method for a coordinate measuring machine and coordinate measuring machine
EP0778481B1 (en) Procedure to manufacture microlenses precisely positioned on the ends of optical fibres and lasers
DE102019201916A1 (en) Method and device for inspection of nano and microstructures
DE102014220168B4 (en) Optical system for lithographic structure generation and method for the determination of relative coordinates
DE102012212194A1 (en) Microlithographic projection exposure apparatus and method for modifying an optical wavefront in a catoptric objective of such a system
DE102020210586A1 (en) LASER PROCESSING DEVICE, LASER PROCESSING METHOD, AND CORRECTION DATA GENERATION METHOD
AT413305B (en) METHOD AND DEVICE FOR ORIENTING A ADJUSTABLE MICROSCOPE USING THE MIRRORED ADJUSTING MASK
DE19650696A1 (en) Device for optically coupling a solid-state laser with an optical waveguide and method for its production
DE102022209214A1 (en) Individual mirror of a pupil facet mirror and pupil facet mirror for an illumination optics of a projection exposure system
DE69913313T2 (en) Quadrupole device for projection lithography using charged particles
DE102020201806A1 (en) Reference sample for a microscope and uses
DE112019007690T5 (en) ELECTRON GUN AND ELECTRON BEAM DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19971211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020305

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

REF Corresponds to:

Ref document number: 228663

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59609917

Country of ref document: DE

Date of ref document: 20030109

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030328

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20030227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20030625

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030723

Year of fee payment: 8

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0778481E

Country of ref document: IE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20030724

Year of fee payment: 8

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030731

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2190461

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030806

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030811

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030827

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030828

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030831

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030910

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030925

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: NAWOTEC GMBH

Free format text: DEUTSCHE TELEKOM AG#FRIEDRICH-EBERT-ALLEE 140#53113 BONN (DE) -TRANSFER TO- NAWOTEC GMBH#INDUSTRIESTRASSE 1#64380 ROSSDORF (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: AMMANN PATENTANWAELTE AG BERN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030828

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: NAWOTEC GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040819

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040819

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050221

BERE Be: lapsed

Owner name: *NAWOTEC G.M.B.H.

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040819

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20050221

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050819

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040820

BERE Be: lapsed

Owner name: *NAWOTEC G.M.B.H.

Effective date: 20040831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140821

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59609917

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301