EP0774530B1 - Process for producing a heat resistant part from an iron-nickel superalloy - Google Patents

Process for producing a heat resistant part from an iron-nickel superalloy Download PDF

Info

Publication number
EP0774530B1
EP0774530B1 EP96810753A EP96810753A EP0774530B1 EP 0774530 B1 EP0774530 B1 EP 0774530B1 EP 96810753 A EP96810753 A EP 96810753A EP 96810753 A EP96810753 A EP 96810753A EP 0774530 B1 EP0774530 B1 EP 0774530B1
Authority
EP
European Patent Office
Prior art keywords
stage
precipitation hardening
process according
temperature
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810753A
Other languages
German (de)
French (fr)
Other versions
EP0774530A1 (en
Inventor
Mohamed Dr. Nazmy
Markus Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Power Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Power Schweiz AG filed Critical Alstom Power Schweiz AG
Publication of EP0774530A1 publication Critical patent/EP0774530A1/en
Application granted granted Critical
Publication of EP0774530B1 publication Critical patent/EP0774530B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Definitions

  • the invention is based on a method for Production of a high temperature resistant material body by solution annealing and subsequent precipitation hardening a heat-strengthened starting body provided in an oven Made of an IN 706 iron-nickel superalloy.
  • a material body is characterized at temperatures 700 ° C is characterized by high strength and is therefore used in thermal Machines, such as gas turbines in particular, are advantageous used.
  • the invention relates to a prior art, as described by J.H. Moll et al. "Heat Treatment of 706 Alloy for Optimum 1200 ° F Stress-Rupture Properties "Met. Trans. 1971, vol.2, pp.2153-2160.
  • the invention as defined in claim 1 the task is based on a process of the beginning Specify the type mentioned, with a simple way Material body made of the alloy of type IN 706 can be, which despite a high heat resistance a has great ductility.
  • the method according to the invention is particularly noteworthy in that it's easy to do and education eliminates embrittling excretions.
  • One after the Material body produced according to the method of the invention exhibits tensile strengths of approx. 700 ° C at approx. 600 [MPa] and elongation at break values of approx. 30% is therefore an excellent starting material for the Manufacturing a thermally and mechanically highly stressed Rotors of a large gas turbine.
  • the starting bodies each had the same structure and the same chemical composition.
  • the following elements were determined in weight percent as constituents: 0.01 carbon 0.04 Silicon 0.12 manganese ⁇ 0.001 sulfur 0.005 phosphorus 16.03 chrome 41.90 nickel 0.19 aluminum 0.01 cobalt 1.67 titanium ⁇ 0.01 copper 2.95 niobium rest iron
  • composition of the starting bodies can fluctuate within the limit ranges specified below: Max. 0.02 carbon Max. 0.10 Silicon Max. 0.20 manganese Max. 0.002 sulfur Max. 0.015 phosphorus 15 to 18 chrome 40 to 43 nickel 0.1 to 0.3 aluminum Max. 0.30 cobalt 1.5 to 1.8 titanium Max. 0.30 copper 2.8 to 3.2 niobium rest iron
  • the above properties are achieved with the alloy IN 706 reached when the solution-annealed starting body with a cooling rate of between 0.5 and 20 ° C / min of the annealing temperature provided for solution annealing to the the precipitation hardening provided temperature is performed. If the cooling rate is selected to be higher than 20 ° C / min the elongation at break and thus the ductility is strong reduced. However, if the cooling rate is less than 0.5 ° C / min chosen, the process is not economical more feasible. A number between 1 and 5 is preferred ° C / min cooling rate.
  • the solution annealing should depend on the size of the starting body for a maximum of 15 hours at temperatures between 900 and 1000 ° C.
  • Precipitation hardening should preferably take place in several stages Period of at least 10h and at most 70h executed become.
  • the solution-annealed should be used for precipitation hardening
  • Initial bodies in a first stage at temperatures between 700 and 760 ° C and in a second stage Temperatures between 600 and 650 ° C can be heated and in the first stage over a period of at least 10h and at most 50h and in the second stage over a period of time of at least 5h and at most 20h at these temperatures being held.
  • the first stage of precipitation hardening can be another Heat treatment stage upstream, in which the solution annealed starting body at a temperature between 800 ° C and 850 ° C is maintained (material body B ').

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einem Verfahren zur Herstellung eines hochtemperaturbeständigen Werkstoffkörpers durch Lösungsglühen und nachfolgendes Ausscheidungshärten eines in einem Ofen vorgesehenen warmverfestigten Ausgangskörpers aus einer Eisen-Nickel-Superlegierung vom Typ IN 706. Ein solcher Werkstoffkörper zeichnet sich bei Temperaturen um 700°C durch hohe Festigkeit aus und wird daher in thermischen Maschinen, wie insbesondere Gasturbinen, mit Vorteil eingesetzt.The invention is based on a method for Production of a high temperature resistant material body by solution annealing and subsequent precipitation hardening a heat-strengthened starting body provided in an oven Made of an IN 706 iron-nickel superalloy. Such a material body is characterized at temperatures 700 ° C is characterized by high strength and is therefore used in thermal Machines, such as gas turbines in particular, are advantageous used.

STAND DER TECHNIKSTATE OF THE ART

Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er etwa von J.H.Moll et al. "Heat Treatment of 706 Alloy for Optimum 1200°F Stress-Rupture Properties" Met. Trans. 1971, vol.2, pp.2153-2160, beschrieben ist.The invention relates to a prior art, as described by J.H. Moll et al. "Heat Treatment of 706 Alloy for Optimum 1200 ° F Stress-Rupture Properties "Met. Trans. 1971, vol.2, pp.2153-2160.

Aus diesem Stand der Technik ist es bekannt, dass die für die Anwendung als Werkstoff für temperaturbelastete Bauteile kritischen Eigenschaften der Legierung IN 706, wie insbesondere die Warmfestigkeit und die Duktilität, durch geeignet ausgeführte Wärmebehandlungsverfahren bestimmt werden. Typische Wärmebehandlungsverfahren umfassen je nach Gefügestruktur des aus der Legierung IN 706 geschmiedeten Ausgangskörpers folgende Verfahrensschritte:

  • Lösungsglühen des Ausgangskörpers bei einer Temperatur von 980°C über einen Zeitraum von 1h,
  • Abkühlen des lösungsgeglühten Ausgangskörpers mit Luft,
  • Ausscheidungshärten bei einer Temperatur von 840 über einen Zeitraum von 3h,
  • Abkühlen mit Luft,
  • Ausscheidungshärten bei einer Temperatur von 720°C über einen Zeitraum von 8h,
  • Abkühlen mit einer Abkühlrate von ca. 55°C/h auf 620°C,
  • Ausscheidungshärten bei einer Temperatur von 620°C über einen Zeitraum von 8h, und
  • Abkühlen mit Luft, bzw.
  • Lösungsglühen des Ausgangskörpers bei Temperaturen um 900°C über 1h,
  • Abkühlen mit Luft,
  • Ausscheidungshärten bei 720°C über einen Zeitraum von 8h,
  • Abkühlen mit einer Abkühlrate von ca. 55°C/h auf 620°C,
  • Ausscheidungshärten bei 620°C über 8h, und
  • Abkühlen mit Luft.
  • From this prior art it is known that the properties of the alloy IN 706, which are critical for use as a material for temperature-stressed components, such as in particular the heat resistance and ductility, are determined by suitably designed heat treatment processes. Depending on the microstructure of the initial body forged from the IN 706 alloy, typical heat treatment processes include the following process steps:
  • Solution annealing of the starting body at a temperature of 980 ° C. for a period of 1 hour,
  • Cooling the solution-annealed starting body with air,
  • Precipitation hardening at a temperature of 840 over a period of 3 hours,
  • Cooling with air,
  • Precipitation hardening at a temperature of 720 ° C over a period of 8 hours,
  • Cooling with a cooling rate of approx. 55 ° C / h to 620 ° C,
  • Precipitation hardening at a temperature of 620 ° C over a period of 8 hours, and
  • Cooling with air or
  • Solution annealing of the starting body at temperatures around 900 ° C for 1h,
  • Cooling with air,
  • Precipitation hardening at 720 ° C over a period of 8 hours,
  • Cooling with a cooling rate of approx. 55 ° C / h to 620 ° C,
  • Precipitation hardness at 620 ° C for 8 hours, and
  • Cool with air.
  • Ein weiteres Verfahren der vorgenannten Art ist auch in PATENT ABSTRACTS OF JAPAN vol.018, no. 632 (C-1280), 2.Dezember 1994 und JP 6 240 427 A beschrieben. Bei diesem Verfahren wird ein Ausgangskörpers aus einer Eisen-Nickel-Superlegierung vom Typ IN 706 nach dem Ausscheidungshärten mit einer Abkühlgeschwindigkeit, die gleich oder kleiner als die Abkühlgeschwindigkeit in Luft ist, auf eine Zwischentemperatur von ca. 800°C bis 850°C gebracht und danach mit einer Abkühlgeschwindigkeit, die grösser als diejenige in Luft ist, beispielsweise durch Abkühlen in Wasser, weiter abgekühlt. Nach diesem Verfahren hergestellte Werkstoffkörper zeichnen sich dadurch aus, dass sie trotz grosser geometrischer Abmessungen eine gleichmässig über den Werkstoff der Körper verteilte, ausreichend hohe mechanische Festigkeit aufweisen.Another method of the aforementioned type is also in PATENT ABSTRACTS OF JAPAN vol.018, no.632 (C-1280), December 2, 1994 and JP 6 240 427 A. With this The process becomes a starting body made of an iron-nickel superalloy of type IN 706 after precipitation hardening at a cooling rate that is equal to or less than the cooling rate in air is to a Intermediate temperature brought from about 800 ° C to 850 ° C and then at a cooling rate greater than that is in air, for example by cooling in Water, further cooled. Made by this process Material bodies are characterized in that they despite large geometric dimensions evenly over the Material of the body distributed, sufficiently high mechanical Have strength.

    KURZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION

    Der Erfindung, wie sie in Patentanspruch 1 definiert ist, liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, mit dem in einfacher Weise ein Werkstoffkörper aus der Legierung vom Typ IN 706 geschaffen werden kann, welcher trotz einer hohen Warmfestigkeit eine grosse Duktilität aufweist.The invention as defined in claim 1 the task is based on a process of the beginning Specify the type mentioned, with a simple way Material body made of the alloy of type IN 706 can be, which despite a high heat resistance a has great ductility.

    Das erfindungsgemässe Verfahren zeichnet sich vor allem dadurch aus, dass es einfach auszuführen ist und die Bildung versprödend wirkender Ausscheidungen vermeidet. Ein nach dem erfindungsgemässen Verfahren hergestellter Werkstoffkörper weist bei Temperaturen um ca. 700°C Zugfestigkeiten von ca. 600 [MPa] und Bruchdehnungswerte von ca. 30% auf und eignet sich daher ganz hervorragend als Ausgangsmaterial bei der Fertigung eines thermisch und mechanisch hoch belasteten Rotors einer grossen Gasturbine.The method according to the invention is particularly noteworthy in that it's easy to do and education eliminates embrittling excretions. One after the Material body produced according to the method of the invention exhibits tensile strengths of approx. 700 ° C at approx. 600 [MPa] and elongation at break values of approx. 30% is therefore an excellent starting material for the Manufacturing a thermally and mechanically highly stressed Rotors of a large gas turbine.

    Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren weiteren Vorteile werden nachfolgend näher erläutert.Preferred embodiments of the invention and the so achievable further advantages are described in more detail below explained.

    WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

    Vier kommerziell erhältliche geschmiedete Ausgangskörper A, B, C, D aus der Legierung IN 706 wurden je für sich in einen Ofen eingebracht und unterschiedlichen Wärmebehandlungsverfahren unterzogen. Die Ausgangskörper wiesen jeweils die gleiche Gefügestruktur und die gleiche chemische Zusammensetzung auf. Als Bestandteile wurden folgende Elemente in Gewichtsprozent ermittelt: 0,01 Kohlenstoff 0,04 Silicium 0,12 Mangan <0,001 Schwefel 0,005 Phosphor 16,03 Chrom 41,90 Nickel 0,19 Aluminium 0,01 Kobalt 1,67 Titan <0,01 Kupfer 2,95 Niob Rest Eisen Four commercially available forged starting bodies A, B, C, D made of IN 706 alloy were each placed in a furnace and subjected to different heat treatment processes. The starting bodies each had the same structure and the same chemical composition. The following elements were determined in weight percent as constituents: 0.01 carbon 0.04 Silicon 0.12 manganese <0.001 sulfur 0.005 phosphorus 16.03 chrome 41.90 nickel 0.19 aluminum 0.01 cobalt 1.67 titanium <0.01 copper 2.95 niobium rest iron

    Die Zusammensetzung der Ausgangskörper kann innerhalb der nachfolgend angegebenen Grenzbereiche schwanken: max. 0,02 Kohlenstoff max. 0,10 Silicium max. 0,20 Mangan max. 0,002 Schwefel max. 0,015 Phosphor 15 bis 18 Chrom 40 bis 43 Nickel 0,1 bis 0,3 Aluminium max. 0,30 Kobalt 1,5 bis 1,8 Titan max. 0,30 Kupfer 2,8 bis 3,2 Niob Rest Eisen The composition of the starting bodies can fluctuate within the limit ranges specified below: Max. 0.02 carbon Max. 0.10 Silicon Max. 0.20 manganese Max. 0.002 sulfur Max. 0.015 phosphorus 15 to 18 chrome 40 to 43 nickel 0.1 to 0.3 aluminum Max. 0.30 cobalt 1.5 to 1.8 titanium Max. 0.30 copper 2.8 to 3.2 niobium rest iron

    Die Wärmebehandlungsverfahren der vier Ausgangskörper sind nachfolgend tabellarisch dargestellt. Ausgangskörper A B C D 3h Lösungsglühen im Ofen bei 980°C x x 10h Lösungsglühen im Ofen bei 925°C x 10h Lösungsglühen im Ofen bei 910°C x Abkühlen mit Luft x Abkühlen im Ofen mit ca. 1 °C/min x x x 10h Halten im Ofen bei 820°C x x Abkühlen im Ofen mit ca. 1 °C/min x x x 10h Halten im Ofen bei 730°C x x x 48h Halten im Ofen bei 730°C x Abkühlen im Ofen x x x x 5h Halten im Ofen bei 620°C x x 8h Halten im Ofen bei 620°C x 16h Halten im Ofen bei 620°C x Werkstoffkörper A' B' C' D' The heat treatment processes of the four starting bodies are shown in the table below. Starting body A B C. D 3h solution annealing in the furnace at 980 ° C x x 10h solution annealing in the oven at 925 ° C x 10h solution annealing in the furnace at 910 ° C x Cool with air x Cool in the oven at approx. 1 ° C / min x x x Hold for 10 hours in the oven at 820 ° C x x Cool in the oven at approx. 1 ° C / min x x x Hold for 10 hours in the oven at 730 ° C x x x Hold for 48 hours in the oven at 730 ° C x Cool in the oven x x x x Hold for 5 hours in the oven at 620 ° C x x Hold for 8 hours in the oven at 620 ° C x Hold 16h in the oven at 620 ° C x Material body A ' B ' C ' D '

    Aus den hieraus resultierenden Werkstoffkörpern A', B', C' und D' wurden rotationssymmetrische Probekörper für Zugversuche gedreht. Diese Versuchskörper waren an ihren beiden Enden jeweils mit einem in eine Prüfmaschine einsetzbaren Gewinde versehen und wiesen jeweils einen zwischen zwei Messmarken verlaufenden rundstabförmigen Abschnitt von 5 mm Durchmesser und ca. 24,48 mm Länge auf. Bei einer Temperatur von ca 705°C wurden die Probekörper mit einer Geschwindigkeit von ca. 0,01 mm/min bis zum Bruch gedehnt. Die hierbei ermittelten Werte von Zugfestigkeit und Bruchdehnung sind nachfolgend tabellarisch zusammengestellt. Werkstoffkörper A' B' C' D' Zugfestigkeit bei 705°C [MPa] 760 580 610 620 Bruchdehnung bei 705°C [%] 2,5 33 31,5 27,5 From the resulting material bodies A ', B', C 'and D', rotationally symmetrical test specimens were turned for tensile tests. These test specimens were each provided with a thread that could be inserted into a testing machine at their two ends and each had a round rod-shaped section of 5 mm in diameter and approximately 24.48 mm in length running between two measuring marks. At a temperature of approx. 705 ° C, the test specimens were stretched to break at a speed of approx. 0.01 mm / min. The tensile strength and elongation at break values determined here are summarized in the table below. Material body A ' B ' C ' D ' Tensile strength at 705 ° C [MPa] 760 580 610 620 Elongation at break at 705 ° C [%] 2.5 33 31.5 27.5

    Aus diesen Werten ist ersichtlich, dass bei den nach dem erfindungsgemässen Verfahren hergestellten Werkstoffkörpern B', C' und D' die Bruchdehnung bei 705°C ca. 10- bis 12-mal grösser bzw. die Zugfestigkeit lediglich um ca. 20% kleiner ist als die Zugfestigkeit bzw. die Bruchdehnung bei dem nach dem Verfahren gemäss dem Stand der Technik hergestellten Werkstoffkörper A'. Nach dem erfindungsgemässen Verfahren hergestellte Werkstoffkörper können mit grossem Vorteil als Rotoren grosser Gasturbinen verwendet werden, da sie über eine ausreichend hohe Warmfestigkeit verfügen, und da wegen der hohen Duktilität des Materials nicht zu vermeidende lokale Temperaturgradienten lokal nur geringe Spannnungen aufbauen können.From these values it can be seen that in the after Material bodies produced according to the method of the invention B ', C' and D 'the elongation at break at 705 ° C approx. 10 to 12 times greater or the tensile strength is only about 20% smaller is as the tensile strength or the elongation at break after the method according to the prior art Material body A '. According to the method according to the invention Manufactured material bodies can with great advantage as Large gas turbine rotors are used because they are over have a sufficiently high heat resistance, and because of that due to the high ductility of the material local temperature gradients local only low voltages can build.

    Die vorgenannten Eigenschaften werden mit der Legierung IN 706 erreicht, wenn der lösungsgeglühte Ausgangskörper mit einer zwischen 0,5 und 20 °C/min liegenden Abkühlrate von der beim Lösungsglühen vorgesehenen Glühtemperatur auf die der Ausscheidungshärtung vorgesehene Temperatur geführt wird. Wird die Abkühlrate grösser 20 °C/min gewählt, so werden die Bruchdehnung und damit auch die Duktilität stark reduziert. Wird hingegen die Abkühlrate kleiner 0,5 °C/min gewählt, so ist das Verfahren in wirtschaftlicher Weise nicht mehr durchführbar. Zu bevorzugen ist eine zwischen 1 und 5 °C/min liegende Abkühlrate.The above properties are achieved with the alloy IN 706 reached when the solution-annealed starting body with a cooling rate of between 0.5 and 20 ° C / min of the annealing temperature provided for solution annealing to the the precipitation hardening provided temperature is performed. If the cooling rate is selected to be higher than 20 ° C / min the elongation at break and thus the ductility is strong reduced. However, if the cooling rate is less than 0.5 ° C / min chosen, the process is not economical more feasible. A number between 1 and 5 is preferred ° C / min cooling rate.

    Das Lösungsglühen sollte je nach Grösse des Ausgangskörpers über einen Zeitraum von höchstens 15h bei Temperaturen zwischen 900 und 1000°C ausgeführt werden.The solution annealing should depend on the size of the starting body for a maximum of 15 hours at temperatures between 900 and 1000 ° C.

    Das durch Halten bei bestimmten Temperaturen bewirkte Ausscheidungshärten sollte bevorzugt mehrstufig über einen Zeitraum von mindestens 10h und höchstens 70h ausgeführt werden. Beim Ausscheidungshärten sollte der lösungsgeglühte Ausgangskörper in einer ersten Stufe auf Temperaturen zwischen 700 und 760°C und in einer zweiten Stufe auf Temperaturen zwischen 600 und 650°C erwärmt werden und in der erste Stufe über einen Zeitraum von mindestens 10h und höchstens 50h und in der zweiten Stufe über einen Zeitraum von mindestens 5h und höchstens 20h auf diesen Temperaturen gehalten werden.This was caused by holding at certain temperatures Precipitation hardening should preferably take place in several stages Period of at least 10h and at most 70h executed become. The solution-annealed should be used for precipitation hardening Initial bodies in a first stage at temperatures between 700 and 760 ° C and in a second stage Temperatures between 600 and 650 ° C can be heated and in the first stage over a period of at least 10h and at most 50h and in the second stage over a period of time of at least 5h and at most 20h at these temperatures being held.

    Der ersten Stufe des Ausscheidungshärtens kann eine weitere Wärmebehandlungsstufe vorgeschaltet werden, bei der der lösungsgeglühte Ausgangskörper auf einer Temperatur zwischen 800°C und 850°C gehalten wird (Werkstoffkörper B').The first stage of precipitation hardening can be another Heat treatment stage upstream, in which the solution annealed starting body at a temperature between 800 ° C and 850 ° C is maintained (material body B ').

    Claims (9)

    1. Process for producing a temperature-stable body of material by solution annealing and subsequent precipitation hardening of a hot-work hardened starting body which is provided in a furnace and is made from an iron-nickel superalloy of type IN 706, characterized in that the solution-annealed starting body is brought from the annealing temperature provided for solution annealing to a temperature of between 700 and 760°C, which is provided for the precipitation hardening in a first stage, at a cooling rate of between 0.5 and 20°C/min.
    2. Process according to Claim 1, characterized in that the cooling rate is between 1 and 5°C/min.
    3. Process according to one of Claims 1 or 2, characterized in that the solution annealing is carried out over a period of at most 15 h at temperatures of between 900°C and 1000°C.
    4. Process according to one of Claims 1 to 3, characterized in that the precipitation hardening is carried out in a plurality of stages over a period of at least 10 h and at most 70 h.
    5. Process according to Claim 4, characterized in that during the precipitation hardening the solution-annealed starting body, in a second stage, is heat-treated at temperatures of between 600°C and 650°C.
    6. Process according to Claim 5, characterized in that the first stage of the precipitation hardening is carried out over a period of at least 10 h and at most 50 h.
    7. Process according to one of Claims 5 or 6, characterized in that the second stage of the precipitation hardening is carried out over a period of at least 5 h and at most 20 h.
    8. Process according to one of Claims 4 to 7, characterized in that the transition from the first stage to the second stage is carried out by cooling in the furnace.
    9. Process according to one of Claims 1 to 8, characterized in that the first stage of the precipitation hardening is preceded by a further heat-treatment stage, during which the solution-annealed starting body is held at a temperature of between 800°C and 850°C.
    EP96810753A 1995-11-17 1996-11-07 Process for producing a heat resistant part from an iron-nickel superalloy Expired - Lifetime EP0774530B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19542919A DE19542919A1 (en) 1995-11-17 1995-11-17 Process for the production of a high temperature resistant material body made of an iron-nickel superalloy of type IN 706
    DE19542919 1995-11-17

    Publications (2)

    Publication Number Publication Date
    EP0774530A1 EP0774530A1 (en) 1997-05-21
    EP0774530B1 true EP0774530B1 (en) 2001-02-21

    Family

    ID=7777736

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96810753A Expired - Lifetime EP0774530B1 (en) 1995-11-17 1996-11-07 Process for producing a heat resistant part from an iron-nickel superalloy

    Country Status (8)

    Country Link
    US (1) US5846353A (en)
    EP (1) EP0774530B1 (en)
    JP (1) JPH09170016A (en)
    KR (1) KR970027350A (en)
    CN (1) CN1094994C (en)
    CA (1) CA2184850C (en)
    DE (2) DE19542919A1 (en)
    RU (1) RU2191215C2 (en)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19645186A1 (en) * 1996-11-02 1998-05-07 Asea Brown Boveri Heat treatment process for material bodies made of a highly heat-resistant iron-nickel superalloy as well as heat-treated material bodies
    KR100250810B1 (en) * 1997-09-05 2000-04-01 이종훈 Annealing process of ni-base alloy for corrosion resistance improvement
    KR100757258B1 (en) * 2006-10-31 2007-09-10 한국전력공사 Method of one-step for hot isotatic pressing and heat treating of ni-based superalloy componnents for gas turbine in a hot isotatic press
    US8663404B2 (en) * 2007-01-08 2014-03-04 General Electric Company Heat treatment method and components treated according to the method
    US8668790B2 (en) * 2007-01-08 2014-03-11 General Electric Company Heat treatment method and components treated according to the method
    KR101007582B1 (en) * 2008-06-16 2011-01-12 한국기계연구원 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same
    US8313593B2 (en) * 2009-09-15 2012-11-20 General Electric Company Method of heat treating a Ni-based superalloy article and article made thereby
    US20180057920A1 (en) * 2016-08-31 2018-03-01 General Electric Company Grain refinement in in706 using laves phase precipitation
    JP7009928B2 (en) * 2017-11-01 2022-02-10 大同特殊鋼株式会社 Fe—Ni based alloy
    CN111876649B (en) * 2019-08-28 2022-05-24 北京钢研高纳科技股份有限公司 Smelting process of high-niobium high-temperature alloy large-size ingot and high-niobium high-temperature alloy large-size ingot
    CN111876651B (en) * 2019-08-28 2022-05-24 北京钢研高纳科技股份有限公司 Large-size high-niobium high-temperature 706 alloy ingot and smelting process thereof
    EP4023779A4 (en) 2019-08-28 2023-09-20 Gaona Aero Material Co., Ltd. Smelting process for high-niobium high-temperature alloy large-size cast ingot, and high-niobium high-temperature alloy large-size cast ingot
    CN114574793B (en) * 2022-01-25 2023-03-14 东北大学 Heat treatment process for improving performance of GH4706 alloy

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4445943A (en) * 1981-09-17 1984-05-01 Huntington Alloys, Inc. Heat treatments of low expansion alloys
    US4481043A (en) * 1982-12-07 1984-11-06 The United States Of America As Represented By The United States Department Of Energy Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion
    US5047093A (en) * 1989-06-09 1991-09-10 The Babcock & Wilcox Company Heat treatment of Alloy 718 for improved stress corrosion cracking resistance
    JPH04210457A (en) * 1990-12-11 1992-07-31 Japan Steel Works Ltd:The Manufacture of fe-ni base precipitation hardened superalloy
    JPH05295497A (en) * 1992-04-17 1993-11-09 Japan Steel Works Ltd:The Manufacture of precipitation hardening super heat-resistant alloy
    JPH06240427A (en) * 1993-02-16 1994-08-30 Japan Steel Works Ltd:The Production of precipitation hardening superalloy
    JPH06330161A (en) * 1993-05-26 1994-11-29 Japan Steel Works Ltd:The Manufacture of precipitation hardening type fe-ni group heat resisting alloy
    US5415712A (en) * 1993-12-03 1995-05-16 General Electric Company Method of forging in 706 components

    Also Published As

    Publication number Publication date
    JPH09170016A (en) 1997-06-30
    CN1094994C (en) 2002-11-27
    CN1165205A (en) 1997-11-19
    DE59606461D1 (en) 2001-03-29
    DE19542919A1 (en) 1997-05-22
    RU2191215C2 (en) 2002-10-20
    CA2184850C (en) 2008-04-29
    KR970027350A (en) 1997-06-24
    CA2184850A1 (en) 1997-05-18
    EP0774530A1 (en) 1997-05-21
    US5846353A (en) 1998-12-08

    Similar Documents

    Publication Publication Date Title
    EP0774530B1 (en) Process for producing a heat resistant part from an iron-nickel superalloy
    EP2956562B1 (en) Nickel-cobalt alloy
    DE69203791T2 (en) Method for producing a workpiece from a titanium alloy with a modified hot processing stage and manufactured workpiece.
    DE68915095T2 (en) Nickel-based alloy and process for its manufacture.
    DE2223114A1 (en) Process for the heat treatment of alloys on a nickel-iron basis and especially suitable alloys for this
    EP0774526B1 (en) Iron-nickel superalloy of the IN 706 type
    DE112014001570T5 (en) Austenitic heat-resistant cast steel and process for its production
    DE1301586B (en) Austenitic precipitation hardenable steel alloy and process for its heat treatment
    DE112016004410T5 (en) SUPER ALLOY WITH LOW THERMAL EXPANSION AND MANUFACTURING METHOD THEREFOR
    EP0839923B1 (en) Heat treatment process for a part made from a heat resistant iron-nickel superalloy and heat treated part
    WO2005090628A1 (en) Al/si cast alloy containing zn and mg, and method for producing a cast part from one such alloy
    DE2649529A1 (en) FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING
    EP0136998B1 (en) Wrought nickel-base alloy and process for its thermal treatment
    WO2016020519A1 (en) High-strength and at the same time tough semifinished products and components of high-alloy steel, method for the production thereof and use
    EP0257262A1 (en) Age-hardenable martensitic steel
    DE69923330T2 (en) MODIFIED NICKEL CHROME ALUMINUM IRON ALLOY
    EP0119501A1 (en) Use of a curable copper-nickel-manganese alloy in the manufacture spectacle components
    AT408763B (en) ALUMINUM ALLOY EXHAUST HARDNESS
    DE4411228A1 (en) High temperature nickel base alloy and use thereof
    DE102018210743A1 (en) Method for producing a riveted component and riveted component with a precipitation-hardened rivet
    DE1807992B2 (en) Heat treatment process to achieve a bainitic structure in a high-strength steel
    DE102018130946A1 (en) METHOD FOR PRODUCING SEMI-NICKEL BASE ALLOY ALLOYS
    DE102016102770A1 (en) Method for producing a component, in particular a chassis component, of a motor vehicle
    DE69500546T2 (en) alloy
    DE4017973C2 (en)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    17P Request for examination filed

    Effective date: 19971010

    17Q First examination report despatched

    Effective date: 19971212

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM POWER (SCHWEIZ) AG

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REF Corresponds to:

    Ref document number: 59606461

    Country of ref document: DE

    Date of ref document: 20010329

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010523

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ALSTOM (SCHWEIZ) AG

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20091130

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20101109

    Year of fee payment: 15

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

    Effective date: 20101102

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101022

    Year of fee payment: 15

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20111107

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130