EP0740585B1 - Process and device for treating gasborne particles - Google Patents

Process and device for treating gasborne particles Download PDF

Info

Publication number
EP0740585B1
EP0740585B1 EP95906297A EP95906297A EP0740585B1 EP 0740585 B1 EP0740585 B1 EP 0740585B1 EP 95906297 A EP95906297 A EP 95906297A EP 95906297 A EP95906297 A EP 95906297A EP 0740585 B1 EP0740585 B1 EP 0740585B1
Authority
EP
European Patent Office
Prior art keywords
particles
electrodes
flow duct
gas
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95906297A
Other languages
German (de)
French (fr)
Other versions
EP0740585A1 (en
Inventor
Andreas Gutsch
Friedrich LÖFFLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0740585A1 publication Critical patent/EP0740585A1/en
Application granted granted Critical
Publication of EP0740585B1 publication Critical patent/EP0740585B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • B03C3/0175Amassing particles by electric fields, e.g. agglomeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts

Definitions

  • the invention relates to a method for treating gas-borne Particles, especially for electrically induced agglomeration gas-borne particles according to the preamble of the claim 1 and an apparatus for performing the method according to the preamble of claim 7.
  • Such methods and devices have a whole range of Areas of application.
  • they are in the field of Particle separation used to test the effectiveness of known particle separation processes and devices towards smaller and expand the smallest particles.
  • the desired particle enlargement can be different Way to be achieved.
  • agglomeration techniques also known as “dry” processes known in which the desired agglomeration due to a collision of particles in a fluid Phase.
  • dry processes known in which the desired agglomeration due to a collision of particles in a fluid Phase.
  • a prerequisite for this so-called direct agglomeration is therefore that the individual particles in the fluid phase have a relative speed to one another.
  • This relative speed can be determined by means of thermal and turbulent diffusion or by one induced by force fields Particle movement are generated. Coming as force fields especially heavy fields, centrifugal fields, sound fields or electric fields in question.
  • the advantage of an electric induced agglomeration, d. H. the generation of relative speeds the particles by means of an electric field lies, for example, considerably in comparison to sound fields lower energy requirements, especially in the area small and smallest particles where electrical forces at only low power requirements still have a significant impact on the Exercise particle movements.
  • DE-A-1 407 534 describes one for the separation of particles known from gas streams serving electrostatic precipitators, the ionization electrodes and has deposition electrodes.
  • the ionization electrodes are arranged opposite, needle-shaped Electrodes formed, two opposite each other Ionization electrodes in a separating electrode serving cabbage protrude.
  • For the desired separation of the Particles occur due to a potential difference between the ionization electrodes and the deposition electrode assigned to them, i.e. with this arrangement there is also a unipolar one Charging the particles instead.
  • From US-A-4 734 105 is a method and a Device for separating solid or liquid particles known a gas flow by means of an electrical field.
  • the particle-laden gas flow through a flow channel headed, in which several flat or flat curved Electrode pairs are arranged.
  • At least the main electrodes have needle-shaped projections protruding into the flow channel with spherical or hemispherical tips on which there are corona discharges after application of an electric field and this leads to the ionization of gas molecules.
  • the spherical or hemispherical tips of the needle-shaped Electrode extensions have a diameter that is larger than the diameter of the needle shaft.
  • grid-shaped auxiliary electrodes should be reached be that the area in which the gas is ionized by that area separated in the radial direction of the flow channel is where the particles charged with the help of the gas ions collide.
  • the creation of a strong electric field are made possible by the Solution to the problem identified in US-A-4,734,105 to be achieved, namely in the direction of flow Separation of particles significantly shorten the necessary distance. It is accordingly the one in US Pat. No. 4,734,105 described device for a further developed Electrostatic precipitator.
  • the invention has for its object a method and a device for treating gas-borne particles, in particular for the electrically induced agglomeration of gas-borne Provide particles with which it is possible is an at least almost symmetrically bipolar charged aerosol to provide and at the same time the particle deposition during to minimize deployment.
  • the electrodes must be wired so that they are ungrounded are. Furthermore, it must be ensured that the electrical Field only over the needle-shaped electrodes in the flow channel is coupled and the latter is otherwise free of external electrical fields. Through these measures achieved that the electric field in a spatially limited Area is coupled so that the particle agglomeration takes place mainly in areas where there is no external electric field. In this way prevents it from being reversed in the event of incomplete recombination charged particle to a particle drift in the radial direction of the flow channel and thus for the separation of Particles in the flow channel comes.
  • the method and the device according to the invention are suitable for this are larger and highly unipolar charged, gas-borne Neutralize particles.
  • larger particles are here Particles are meant that are larger than approximately 1 to 2 ⁇ m and in particular are larger than 5 ⁇ m.
  • Charge distribution measurements in the particle size range above about 1.5 ⁇ m have shown that even with bipolar wiring of the electrodes a bipolar charged aerosol is generated.
  • Process and the device according to the invention have been treated are. Due to theoretical considerations actually expects the number of elementary charges to be roughly proportional should be to particle size.
  • a decisive advantage of the method according to the invention or a device according to the invention is in the focusing action of the needle-shaped electrodes can be seen, their opposite Arrangement enables oppositely charged particles in the immediate vicinity and in a spatially limited area Generate area, reducing the agglomeration speed compared to conventional methods or devices is significantly increased and a separation of particles, in particular in the area of the corona electrodes, is greatly reduced.
  • the aerosol flowing through the flow channel is preferred repeatedly bipolar charged in the flow direction the agglomeration of oppositely charged particles charge recombination occurring and a high Ensure collision rate. Due to the repeated bipolar Charging the aerosol can also target the agglomerate size to be influenced. Experiments have shown that the gradual Connection of additional electrode pairs for an additional shift the resulting particle size distribution in areas leads to larger particle sizes. Saturation of the agglomeration effect due to multiple bipolar charging of the Aerosols could not be determined.
  • the wall of the flow channel preferably consists of either electrically insulating plastic or a metal that provided with an electrically insulating coating on the inside is.
  • a device 10 for electrically induced agglomeration gas-borne particles essentially consist of a closed one Flow channel 12 through the in the direction of the arrow Aerosol flows containing gas-borne particles 14 that are solid or can be liquid.
  • the walls of the flow channel 12 d. H. the top surface 16, the bottom surface 18 and the two side surfaces, are made of metal, the inside with an electric insulating coating is provided. They can just as well But walls also made of an electrically insulating plastic consist. Because of the better recognizability it is that Side face of the flow channel 12 facing the observer only shown transparently in the figure.
  • the upper electrodes 20 in FIG. 1 are connected to the positive pole of the DC voltage source, while the opposite, lower electrodes 22 are connected to the negative pole of the DC voltage source.
  • the term "floating" should therefore mean here that none of the Electrodes 20 and 22 are connected to ground, but actually is connected with a plus or minus potential.
  • the DC power source can also be a high voltage AC power source be used.
  • Electrode pairs 20, 22 are in the top surface 16 or the bottom surface 18 with a distance of 10 cm in the flow direction arranged in the middle.
  • the distance at which successive Electrode pairs arranged in the flow direction are from the residence time, the particles 14 between successive pairs of electrodes 20, 22 should have depends on the geometry of the flow channel used and the flow rate of the aerosol. It has found that the dwell time between in the direction of flow successive pairs of electrodes 20, 22 advantageous is in the range of one second.
  • the five pairs of electrodes 20, 22 ensure that the during the residence time of the aerosol taking place in the flow channel 12 Agglomeration of oppositely charged particles and the same Charge recombination occurring, which leads to a reduction of the attractive interaction potential within the particle collective leads, balanced and overcompensated and thus one high collision rate over the entire length of the flow channel 12 is maintained. With targeted overcompensation due to the repeated bipolar charging of the aerosol Agglomerate size in the sense of increasing it to be influenced.
  • Fig. 2 shows the structure of a needle-shaped electrode 20 and their fastening in the top surface 16 more precisely.
  • the electrodes 22 are constructed identically and in the same way in the bottom surface 18 of the flow channel 12 attached.
  • the heart of the electrode 20 is a thin long stainless steel needle 28, at the inner with respect to the flow channel 12 End 26 is formed. On the larger part of the Stainless steel needle 28 has an external thread 30.
  • the part of the needle shaft 31, which is in the operational state in the Flow channel 12 protrudes from an electrical insulation 32 enclosed, which only leaves the tip 26 and thus from the shaft end of the tip 26 to the start of the external thread 30 is enough.
  • the stainless steel needle 28 With its external thread 30, the stainless steel needle 28 is in a Screwed brass sleeve 34, which has a through hole for this 36 with a suitable internal thread 38. At their the End facing the flow channel 12 has the brass sleeve 34 External thread 40, with which it can be screwed into the cover surface 16 is in this a hole with a corresponding internal thread is provided. For easier screwing in of the brass sleeve 34 is a mouth or at its end facing away from the flow channel 12. Ring wrench attachment 42 formed.
  • the electrical connection of the electrode 20 takes place by means of a another sleeve 44, which also has a through hole with a internal thread matching the external thread 30 of the stainless steel needle 28 having.
  • This sleeve 44 which with the not shown here Line 24 is connected to the part of the external thread 30 screwed out of the brass sleeve 34 protrudes.
  • a handle attached to the sleeve 44 called that at the same time for electrical insulation serves.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrostatic Separation (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

An apparatus (10) to carry out a process, in particular for the electrically induced agglomeration of gas-borne particles, contains a closed flow duct (12) through which is directed an aerosol containing particles (14). For the purpose of the bipolar charging of the aerosol, at least one electrode pair (20, 22) is arranged in the flow duct (12), the electrode (20) being wired, so as to be ungrounded, to the negative pole of a current source, the strength of which is sufficient to produce a corona discharge between the electrodes (20 and 22). The electrodes (20 and 22) of each electrode pair are designed to be needle-shaped and are arranged to be insulated with respect to the flow duct walls, such that their tips (26) are disposed opposite each other. By use of the apparatus (10), it is possible to charge the aerosol which is directed through the flow duct (12) at least virtually symmetrically bipolarly, without any substantial particle deposition in the region of the electrodes (20) and (22) or in the flow duct (12).

Description

Die Erfindung betrifft ein Verfahren zur Behandlung gasgetragener Partikel, insbesondere zur elektrisch induzierten Agglomeration gasgetragener Partikel nach dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens nach dem Oberbegriff des Anspruchs 7.The invention relates to a method for treating gas-borne Particles, especially for electrically induced agglomeration gas-borne particles according to the preamble of the claim 1 and an apparatus for performing the method according to the preamble of claim 7.

Solche Verfahren bzw. Vorrichtungen haben eine ganze Reihe von Einsatzbereichen. Insbesondere werden sie auf dem Gebiet der Partikelabscheidung benutzt, um die Wirksamkeit bekannter Partikelabscheideverfahren und -vorrichtungen in Richtung kleiner und kleinster Partikel zu erweitern. So kommt es beispielsweise bei der Stromerzeugung aus fossilen Brennstoffen, bei der Müllverbrennung, bei metallurgischen Hochtemperaturprozessen und bei katalytischen Gas-Feststoffsynthesen zu Problemen mit herkömmlichen Partikelabscheidetechniken, da die Primärpartikelgröße der bei den vorgenannten Prozessen zu behandelnden Aerosole in der Regel deutlich unterhalb von 1 µm liegt und Partikeln dieser Größe mit herkömmlichen Partikelabscheidetechniken nicht oder zumindest nicht wirtschaftlich abscheidbar sind.Such methods and devices have a whole range of Areas of application. In particular, they are in the field of Particle separation used to test the effectiveness of known particle separation processes and devices towards smaller and expand the smallest particles. For example, it happens in electricity generation from fossil fuels, in waste incineration, in high temperature metallurgical processes and in catalytic gas-solid synthesis to problems with conventional Particle separation techniques because of the primary particle size the aerosols to be treated in the aforementioned processes usually well below 1 µm and particles this size with conventional particle separation techniques cannot be separated or at least cannot be deposited economically.

Schaltet man jedoch der eigentlichen Partikelabscheidung eine Stufe vor, in der die zu behandelnden Partikel zu Partikelverbänden agglomeriert werden, so verbessert sich bei unveränderter Abscheidetechnik das erzielbare, durch den Gesamtabscheidegrad repräsentierte Ergebnis deutlich.However, if you switch on the actual particle separation Stage before, in which the particles to be treated become particle groups agglomerate, so improves with unchanged Separation technology the achievable, through the total degree of separation represented result clearly.

Ein weiterer Einsatzbereich ist die Feststoffsynthese aus Gasphasenreaktionen. Bei derartigen Synthesen beträgt die Primärpartikelgröße häufig nur wenige Nanometer. Schon aus wirtschaftlichen Gründen ist hier eine äußerst effektive Partikelabscheidung erforderlich, da die im Aerosol vorliegenden Partikeln den zu gewinnenden Wertstoff darstellen. Primär ist daher auch im Rahmen solcher Feststoffsynthesen die Partikelvergrößerung vor der eigentlichen Partikelabscheidung die Hauptaufgabe, jedoch kann durch das gewählte Agglomerationsverfahren auch die entstehende Agglomeratstruktur beeinflußt werden.Another area of application is solid synthesis from gas phase reactions. In such syntheses, the primary particle size is often only a few nanometers. For economic reasons alone The reason for this is an extremely effective particle separation required because the particles present in the aerosol represent the recoverable material. Primary is therefore also in Particle enlargement is part of such solid synthesis the actual particle separation is the main task, however can also be created by the chosen agglomeration process Agglomerate structure can be influenced.

Grundsätzlich kann die gewünschte Partikelvergrößerung auf verschiedene Weise erreicht werden. Neben sogenannten "nassen" Verfahren, bei denen die Partikelvergrößerung durch Kondensation von Wasserdampf aus einer übersättigten Atmosphäre erfolgt, sind die auch als "trockene" Verfahren bezeichneten Agglomerationstechniken bekannt, bei denen die gewünschte Agglomeration durch eine Kollision von Partikeln in einer fluiden Phase erfolgt. Voraussetzung für diese sogenannte direkte Agglomeration ist demnach, daß die einzelnen Partikeln in der fluiden Phase untereinander eine Relativgeschwindigkeit aufweisen. Diese Relativgeschwindigkeit kann mittels thermischer und turbulenter Diffusion oder durch eine von Kraftfeldern induzierte Partikelbewegung erzeugt werden. Als Kraftfelder kommen insbesondere Schwerefelder, Zentrifugalfelder, Schallfelder oder elektrische Felder in Frage. Der Vorteil einer elektrisch induzierten Agglomeration, d. h. der Erzeugung von Relativgeschwindigkeiten der Partikel mittels eines elektrischen Feldes, liegt in dem beispielsweise im Vergleich zu Schallfeldern erheblich niedrigeren Energiebedarf, insbesondere im Bereich kleiner und kleinster Partikel, wo elektrische Kräfte bei nur geringem Leistungsbedarf noch einen erheblichen Einfluß auf die Partikelbewegungen ausüben. Basically, the desired particle enlargement can be different Way to be achieved. In addition to so-called "wet" Procedures in which the particle enlargement by condensation of water vapor from a supersaturated atmosphere, are the agglomeration techniques also known as "dry" processes known in which the desired agglomeration due to a collision of particles in a fluid Phase. A prerequisite for this so-called direct agglomeration is therefore that the individual particles in the fluid phase have a relative speed to one another. This relative speed can be determined by means of thermal and turbulent diffusion or by one induced by force fields Particle movement are generated. Coming as force fields especially heavy fields, centrifugal fields, sound fields or electric fields in question. The advantage of an electric induced agglomeration, d. H. the generation of relative speeds the particles by means of an electric field, lies, for example, considerably in comparison to sound fields lower energy requirements, especially in the area small and smallest particles where electrical forces at only low power requirements still have a significant impact on the Exercise particle movements.

Aus der DE-A- 37 37 343 und aus der US-A- 3 826 063 sind Elektrofilter bekannt, in denen ein partikelbeladener, zu reinigender Gasstrom in zwei räumlich voneinander getrennte Teilgasströme aufgeteilt wird. Jeder Teilgasstrom wird in herkömmlicher Weise durch zumindest ein Elektrodenpaar unipolar aufgeladen. Nach der unipolaren Aufladung der Teilgasströme werden letztere wieder zusammengeführt.From DE-A-37 37 343 and from US-A-3 826 063 are electrostatic filters known in which a particle-laden, to be cleaned Gas flow in two spatially separated partial gas flows is divided. Each partial gas stream is made in a conventional manner charged unipolar by at least one pair of electrodes. After the unipolar charging of the partial gas flows becomes the latter again merged.

Aus der DE-A- 1 407 534 ist ein zur Abscheidung von Partikeln aus Gasströmen dienender Elektrofilter bekannt, der Ionisationselektroden und Abscheideelektroden aufweist. Die Ionisationselektroden sind als gegenüberliegend angeordnete, nadelförmige Elektroden ausgebildet, wobei je zwei sich gegenüberliegende Ionisationselektroden in einen als Abscheideelektrode dienenden Kohlkörper ragen. Zur gewünschten Abscheidung der Partikel kommt es aufgrund einer Potentialdifferenz zwischen den Ionisationselektroden und der diesen zugeordneten Abscheideelektrode, d.h. es findet auch bei dieser Anordnung eine uni-polare Aufladung der Partikel statt.DE-A-1 407 534 describes one for the separation of particles known from gas streams serving electrostatic precipitators, the ionization electrodes and has deposition electrodes. The ionization electrodes are arranged opposite, needle-shaped Electrodes formed, two opposite each other Ionization electrodes in a separating electrode serving cabbage protrude. For the desired separation of the Particles occur due to a potential difference between the ionization electrodes and the deposition electrode assigned to them, i.e. with this arrangement there is also a unipolar one Charging the particles instead.

Aus der US-A- 4 734 105 ist ein Verfahren und eine Vorrichtung zur Abtrennung fester oder flüssiger Partikel aus einem Gasstrom mittels eines elektrischen Feldes bekannt. Dabei wird der partikelbeladene Gasstrom durch einen Strömungskanal geleitet, in dem mehrere flächig ebene bzw. flächig gekrümmte Elektrodenpaare angeordnet sind. Zumindest die Hauptelektroden weisen in den Strömungskanal hineinragende, nadelförmige Fortsätze mit kugelförmigen oder halbkugelförmigen Spitzen auf, an denen es nach Anlegen eines elektrischen Feldes zu Koronaentladungen und damit zur Ionisation von Gasmolekülen kommt. Die kugelförmigen bzw. halbkugelförmigen Spitzen der nadelförmigen Elektrodenfortsätze weisen dabei einen Durchmesser auf, der größer als der Durchmesser des Nadelschaftes ist. Mittels zweier beispielsweise gitterförmiger Hilfselektroden soll erreicht werden, daß der Bereich, in dem das Gas ionisiert wird, von demjenigen Bereich in radialer Richtung des Strömungskanals getrennt ist, in dem die mit Hilfe der Gasionen aufgeladenen Partikel zusammenstoßen. Auf diese Weise soll das Anlegen eines starken elektrischen Feldes ermöglicht werden, durch das die Lösung des in der US-A- 4 734 105 angegebenen Problems erzielt werden soll, nämlich die in Strömungsrichtung zur Abscheidung von Partikeln notwendige Strecke deutlich zu verkürzen. Es handelt sich demnach bei der in der US-A- 4 734 105 beschriebenen Vorrichtung um einen weiterentwickelten Elektrofilter.From US-A-4 734 105 is a method and a Device for separating solid or liquid particles known a gas flow by means of an electrical field. Here the particle-laden gas flow through a flow channel headed, in which several flat or flat curved Electrode pairs are arranged. At least the main electrodes have needle-shaped projections protruding into the flow channel with spherical or hemispherical tips on which there are corona discharges after application of an electric field and this leads to the ionization of gas molecules. The spherical or hemispherical tips of the needle-shaped Electrode extensions have a diameter that is larger than the diameter of the needle shaft. By means of two for example, grid-shaped auxiliary electrodes should be reached be that the area in which the gas is ionized by that area separated in the radial direction of the flow channel is where the particles charged with the help of the gas ions collide. In this way, the creation of a strong electric field are made possible by the Solution to the problem identified in US-A-4,734,105 to be achieved, namely in the direction of flow Separation of particles significantly shorten the necessary distance. It is accordingly the one in US Pat. No. 4,734,105 described device for a further developed Electrostatic precipitator.

Der Grundgedanke, die Kollisionsrate von sich in einem Gasstrom befindenden Partikeln durch Anlegen eines elektrischen Feldes zu erhöhen, ist also bekannt. Jedoch ist es bisher nicht gelungen, mit Hilfe der bekannten Methoden zur Partikelaufladung ein zumindest nahezu symmetrisch bipolar geladenes Aerosol bereit-zustellen, das im Hinblick auf eine Erhöhung der Kollisionswahrscheinlichkeit besonders wünschenswert ist.The basic idea, the collision rate of itself in a gas stream particles by applying an electric field it is known to increase. However, so far it has not been possible using the known methods for particle charging to provide at least almost symmetrically bipolar charged aerosol, with a view to increasing the probability of a collision is particularly desirable.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Behandlung gasgetragener Partikel, insbesondere zur elektrisch induzierten Agglomeration gasgetragener Partikel bereitzustellen, mit dem bzw. mit der es möglich ist, ein zumindest nahezu symmetrisch bipolar geladenes Aerosol bereitzustellen und gleichzeitig die Partikeldeposition während der Bereitstellung zu minimieren.The invention has for its object a method and a device for treating gas-borne particles, in particular for the electrically induced agglomeration of gas-borne Provide particles with which it is possible is an at least almost symmetrically bipolar charged aerosol to provide and at the same time the particle deposition during to minimize deployment.

Diese Aufgabe ist erfindungsgemäß mit einem Verfahren, das die im Anspruch 1 genannten Schritte aufweist, und mit einer Vorrichtung gelöst, die die im Anspruch 7 genannten Merkmale aufweist.This object is according to the invention with a method that has steps mentioned in claim 1, and with a device solved, which has the features mentioned in claim 7.

Demnach ist erkannt worden, daß es zur erfolgreichen bipolaren Aufladung gasgetragener, fester oder flüssiger Partikeln erforderlich ist, die gesamten Elektroden nadelförmig auszubilden und so anzuordnen, daß sich die Spitzen eines jeden Elektrodenpaares im Strömungskanal gegenüberliegen. Der Ausdruck "nadelförmig" soll die verwendeten Elektroden nicht hinsichtlich ihrer Größe beschränken, sondern sie lediglich in Bezug auf ihre Stiftform und ihre spitze charakterisieren, deren Rundungsdurchmesser kleiner als der Durchmesser des Elektrodenschaftes ist.Accordingly, it has been recognized that it is successful in bipolar Charging of gas-borne, solid or liquid particles is required is to make the entire electrodes needle-shaped and arranged so that the tips of each pair of electrodes face each other in the flow channel. The expression The electrodes used should not be "needle-shaped" with regard to limit their size, but only in relation characterize their pen shape and their tip Rounding diameter smaller than the diameter of the electrode shaft is.

Die Elektroden müssen dabei so beschaltet sein, daß sie erdfrei sind. Weiterhin muß sichergestellt sein, daß das elektrische Feld nur über die nadelförmigen Elektroden in den Strömungskanal eingekoppelt wird und letzterer im übrigen frei von äußeren elektrischen Feldern ist. Durch diese Maßnahmen wird erreicht, daß das elektrische Feld in einem räumlich eng begrenzten Bereich eingekoppelt wird, so daß die Partikelagglomeration im wesentlichen in Bereichen stattfindet, in denen kein äußeres elektrisches Feld vorhanden ist. Auf diese Weise wird verhindert, daß es bei unvollständiger Rekombination entgegengesetzt geladener Partikel zu einer Partikeldrift in Radialrichtung des Strömungskanals und damit zur Abscheidung von Partikeln im Strömungskanal kommt. Eine räumliche Trennung der Aufladezonen, d. h. eine Volumenstromteilung zur getrennten, polaritätsspezifischen Aufladung wie bei herkömmlichen Verfahren und Vorrichtungen üblich, ist erfindungsgemäß nicht mehr erforderlich, wodurch die Partikelabscheidung im Bereich der Aufladezonen weitgehend reduziert ist. Darüber hinaus führt, wie Versuche ergeben haben, das Fehlen eines äußeren elektrischen Feldes zu einer erhöhten Kollisionsrate des bipolar geladenen Aerosols und damit zu einer wirksameren Agglomeration. Auch ist beim erfindungsgemäßen Verfahren bzw. der erfindungsgemäßen Vorrichtung die erforderliche Beschaltung der Elektroden wegen des Fehlens zusätzlicher Hilfselektroden wesentlich einfacher.The electrodes must be wired so that they are ungrounded are. Furthermore, it must be ensured that the electrical Field only over the needle-shaped electrodes in the flow channel is coupled and the latter is otherwise free of external electrical fields. Through these measures achieved that the electric field in a spatially limited Area is coupled so that the particle agglomeration takes place mainly in areas where there is no external electric field. In this way prevents it from being reversed in the event of incomplete recombination charged particle to a particle drift in the radial direction of the flow channel and thus for the separation of Particles in the flow channel comes. A spatial separation of the Charging zones, d. H. a volume flow division for separate, polarity-specific charging as with conventional methods and devices usual, is no longer according to the invention required, whereby the particle separation in the area of Charging zones is largely reduced. In addition, as experiments have shown, the absence of an external electrical Field at an increased collision rate of the bipolar charged Aerosols and therefore more effective agglomeration. Also in the method according to the invention or the one according to the invention Device the necessary wiring of the electrodes due to the lack of additional auxiliary electrodes easier.

Beim erfindungsgemäßen Verfahren bzw. der erfindungsgemäßen Vorrichtung brennen Koronen nicht wie im angegebenen Stand der Technik zwischen Elektroden, die sich auf ein- und derselben Seite eines Strömungskanals befinden, sondern zwischen den Spitzen von je zwei sich gegenüberliegend angeordneten Elektroden. Neben einer Verminderung des konstruktiven Aufwands führt diese Anordnung dazu, daß eine elektrostatische Zerstreuung gleichgeladener Gasionen im Bereich der Nadelspitzen erfolgt, so daß nahezu der gesamte Raum des Strömungskanals mit Ladungsträgern erfüllt ist, obwohl das zur Einkopplung dienende elektrische Feld räumlich stark begrenzt ist. Mit der erfindungsgemäßen Anordnung ist es durch Anlegen eines zumindest nahezu symmetrischen Potentialverhältnisses an sich gegenüberliegende Elektroden erstmals möglich, nahezu 100 % der gasgetragenen Partikeln so aufzuladen, daß sich ein nahezu symmetrisch bipolar geladenes Aerosol ergibt. Damit können nun auch Feinstaerosole, d. h. Aerosole, die im wesentlichen Partikel im Submikrometerbereich enthalten, also Partikel kleiner als 1 µm, bevorzugt kleiner als 0,5 µm und insbesondere kleiner als 0,1 µm, auf effiziente Weise agglomeriert werden.In the process according to the invention or the process according to the invention Device does not burn coronas as in the stated state of the Technology between electrodes that are on one and the same Side of a flow channel, but between the tips of two electrodes arranged opposite each other. In addition to a reduction in the design effort, this leads Arrangement for an electrostatic dispersion of equal charge Gas ions occur in the area of the needle tips, so that almost the entire space of the flow channel with charge carriers is satisfied, although the electrical coupling Field is very limited. With the invention It is arranged by creating an at least almost symmetrical Potential ratio on opposing electrodes possible for the first time, almost 100% of the gas-borne particles so charge that there is an almost symmetrical bipolar charged aerosol results. This means that fine aerosols, d. H. Aerosols, which are essentially particles in the submicron range contain, ie particles smaller than 1 µm, preferred less than 0.5 µm and in particular less than 0.1 µm be agglomerated efficiently.

Neben der Möglichkeit, herkömmliche Partikelabscheidetechniken durch Vorschalten des erfindungsgemäßen Verfahrens bzw. einer erfindungsgemäßen Vorrichtung auch für bisher nicht wirtschaftlich abscheidbare Partikeln einzusetzen, eröffnet sich auch die Möglichkeit, das erfindungsgemäße Verfahren oder eine erfindungsgemäße Vorrichtung im Rahmen von Feststoffsynthesen aus Gasphasenreaktionen zur gezielten Beeinflussung entstehender Agglomerate zu benutzen. Mit Hilfe der elektrisch induzierten Agglomeration können beispielsweise hinsichtlich Konzentration, Struktur und Größe quasi "in situ" spezifische Agglomeratstrukturen erzielt werden, die sich deutlich von jenen Agglomeratstrukturen unterscheiden, wie sie bei diffusionsmotivierter Agglomeration, d. h. Agglomeration aufgrund thermischer und turbulenter Diffusion, auftreten. Anwendungsbeispiele werden derzeit in der Glasfasersynthese, in der TiO2-Pigmentsynthese, in der Synthese von Matrixmaterial (Al2O3) für die Chip-Industrie sowie in der Halb- und Supraleitersynthese gesehen.In addition to the possibility of using conventional particle separation techniques by connecting the method according to the invention or a device according to the invention also for previously uneconomically separable particles, there is also the possibility of using the method according to the invention or a device according to the invention in the context of solid-state synthesis from gas phase reactions in order to influence agglomerates that arise to use. With the aid of the electrically induced agglomeration, for example, in terms of concentration, structure and size quasi-in situ specific agglomerate structures can be achieved which differ significantly from those agglomerate structures which occur in diffusion-motivated agglomeration, ie agglomeration due to thermal and turbulent diffusion. Application examples are currently seen in glass fiber synthesis, in TiO 2 pigment synthesis, in the synthesis of matrix material (Al 2 O 3 ) for the chip industry, and in semiconductors and superconductors.

Aus dem vorstehenden ergibt sich, daß das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung insbesondere zur elektrisch induzierten Agglomeration kleiner und kleinster gasgetragener Partikel geeignet sind, d.h., daß selbst Partikel agglomeriert werden können, deren Größe im Nanometer-Bereich liegt. It follows from the above that the method according to the invention and the device according to the invention in particular for electrically induced agglomeration of small and smallest gas-borne Particles are suitable, i.e. that even particles can be agglomerated, their size in the nanometer range lies.

Allerdings hat sich auch herausgestellt, daß das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung dazu geeignet sind, größere und hoch unipolar geladene, gasgetragene Partikel zu neutralisieren. Mit größeren Partikeln sind hier Partikel gemeint, die größer als ungefähr 1 bis 2 µm und insbesondere größer als 5 µm sind. Messungen der Ladungsverteilung im Partikelgrößenbereich oberhalb von etwa 1,5 µm haben gezeigt, daß auch hier bei bipolarer Beschaltung der Elektroden ein bipolar geladenes Aerosol erzeugt wird. Überraschenderweise ist jedoch bei diesen größeren Partikeln die Anzahl der Elementarladungen pro Partikel nicht signifikant größer als bei wesentlich kleineren Partikeln, die mit dem erfindungsgemäßen Verfahren bzw. der erfindungsgemäßen Vorrichtung behandelt worden sind. Aufgrund theoretischer Überlegungen wurde eigentlich erwartet, daß die Zahl der Elementarladungen ungefähr proportional zur Partikelgröße sein müßte.However, it has also been found that the invention The method and the device according to the invention are suitable for this are larger and highly unipolar charged, gas-borne Neutralize particles. With larger particles are here Particles are meant that are larger than approximately 1 to 2 µm and in particular are larger than 5 µm. Charge distribution measurements in the particle size range above about 1.5 µm have shown that even with bipolar wiring of the electrodes a bipolar charged aerosol is generated. Surprisingly for these larger particles, however, is the number of elementary charges per particle not significantly larger than at much smaller particles with the invention Process and the device according to the invention have been treated are. Due to theoretical considerations actually expects the number of elementary charges to be roughly proportional should be to particle size.

Somit ist es erfindungsgemäß möglich, sehr stark unipolar auf-geladene größere Partikel (ca. 500 bis 1000 Elementarladungen pro Partikel) in ein symmetrisch bipolar geladenes Aerosol umzuwandeln, wobei jedes Partikel nur noch etwa 20 oder weniger Elementarladungen aufweist. Ein solcher Wert gilt bei den angesprochenen, größeren Partikeln (bevorzugt größer als 2 µm und insbesondere größer als 5 µm) schon als nahezu neutral. Zwar sind elektrische Wechselwirkungen zwischen den einzelnen Partikeln noch vorhanden, jedoch wirken sich diese aufgrund der geringen Mobilität der größeren Partikel nicht auf die Partikeldynamik aus. Das bedeutet, daß mit Hilfe des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung Probleme vermieden werden können, die in Prozessapparaturen durch die Anwesenheit hoch aufgeladener und insbesondere hoch unipolar aufgeladener Partikel auftreten können. Als Beispiele für die erwähnten Probleme seien die unerwünschte elektrische Zerstreuung, die Ablagerung von Partikeln an Wänden aller Art sowie die Aufladung der gesamten Prozessapparatur und eine daraus resultierende Funkenentladung an der Apparatur genannt. It is thus possible according to the invention to charge very strongly unipolarly larger particles (approx. 500 to 1000 elementary charges per particle) into a symmetrically bipolar charged aerosol, each particle being only about 20 or less Has elementary charges. Such a value applies to the larger particles (preferably larger than 2 µm and especially larger than 5 µm) as almost neutral. Though are electrical interactions between the individual particles still present, however, these affect due to the low mobility of the larger particles does not affect the particle dynamics out. That means that with the help of the invention Method and the device according to the invention problems can be avoided by in process equipment the presence of highly charged and especially highly unipolar charged particles can occur. As examples of the problems mentioned are the undesired electrical dispersion, the deposition of particles on walls of all kinds as well the charging of the entire process equipment and one of them resulting spark discharge called on the equipment.

Bei kleineren und kleinsten Partikeln haben Messungen ergeben, daß die Zahl der elektrischen Elementarladungen pro Partikel nach der Aufladung mittels des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung ebenfalls im Bereich von 10 bis 20 liegt. Eine stärkere Aufladung ist aufgrund physikalischer Grenzen im Submikrometerbereich jedoch nicht realisierbar. Im übrigen reicht bei kleinen und kleinsten Partikeln die genannte geringe Anzahl an Elementarladungen zur Erhöhung der Agglomerationsrate vollkommen aus, da kleinere Partikel, insbesondere Partikel mit einer Größe im Nanometer-Bereich, eine sehr hohe Mobilität besitzen, weshalb auch kleinste attraktive Wechselwirkungen zwischen den einzelnen Partikeln die Partikeldynamik deutlich beeinflussen.With smaller and smallest particles, measurements have shown that the number of electrical charges per particle after charging using the method according to the invention or the device according to the invention also in the range of 10 to 20. A stronger charge is due to physical However, limits in the submicrometer range cannot be achieved. For small and very small particles, that is enough mentioned small number of elementary charges to increase the Agglomeration rate completely due to smaller particles, in particular Particles with a size in the nanometer range, one have very high mobility, which is why even the smallest attractive Interactions between the individual particles the particle dynamics influence significantly.

Ein entscheidender Vorteil des erfindungsgemäßen Verfahrens bzw. einer erfindungsgemäßen Vorrichtung ist in der Fokussierwirkung der nadelförmigen Elektroden zu sehen, deren gegenüberliegende Anordnung es ermöglicht, entgegengesetzt geladene Partikel in unmittelbarer Nähe und in einem räumlich eng begrenzten Bereich zu generieren, wodurch die Agglomerationsgeschwindigkeit gegenüber herkömmlichen Verfahren bzw. Vorrichtungen wesentlich erhöht ist und eine Abscheidung von Partikeln, insbesondere im Bereich der Koronaelektroden, stark reduziert ist.A decisive advantage of the method according to the invention or a device according to the invention is in the focusing action of the needle-shaped electrodes can be seen, their opposite Arrangement enables oppositely charged particles in the immediate vicinity and in a spatially limited area Generate area, reducing the agglomeration speed compared to conventional methods or devices is significantly increased and a separation of particles, in particular in the area of the corona electrodes, is greatly reduced.

Bevorzugt wird das durch den Strömungskanal fließende Aerosol in Strömungsrichtung gesehen wiederholt bipolar aufgeladen, um die bei einer Agglomeration entgegengesetzt geladener Partikel auftretende Ladungsrekombination auszugleichen und eine hohe Kollisionsrate zu gewährleisten. Durch die wiederholte bipolare Aufladung des Aerosols kann auch die Agglomeratgröße gezielt beeinflußt werden. Versuche haben ergeben, daß die stufenweise Zuschaltung weiterer Elektrodenpaare zu einer zusätzlichen Verschiebung der sich ergebenden Partikelgrößenverteilung in Bereiche größerer Partikelgrößen führt. Eine Sättigung der Agglomerationswirkung aufgrund mehrfacher bipolarer Aufladung des Aerosols konnte nicht festgestellt werden. The aerosol flowing through the flow channel is preferred repeatedly bipolar charged in the flow direction the agglomeration of oppositely charged particles charge recombination occurring and a high Ensure collision rate. Due to the repeated bipolar Charging the aerosol can also target the agglomerate size to be influenced. Experiments have shown that the gradual Connection of additional electrode pairs for an additional shift the resulting particle size distribution in areas leads to larger particle sizes. Saturation of the agglomeration effect due to multiple bipolar charging of the Aerosols could not be determined.

Es hat sich ferner herausgestellt, daß es besonders vorteilhaft ist, den Bereich, in dem das elektrische Feld in den Strömungskanal eingekoppelt wird, so klein wie möglich zu halten. Dies wird gemäß einer bevorzugten Ausführungsform einer erfindungsgemäßen Vorrichtung dadurch erreicht, daß der Schaft jeder Elektrode von einer elektrischen Isolierung umgeben ist, so daß der Bereich der Ladungsgenerierung auf die Spitzen der nadelförmigen Elektroden beschränkt ist.It has also been found to be particularly advantageous is the area in which the electric field enters the flow channel is coupled in to keep it as small as possible. This is according to a preferred embodiment of an inventive Device achieved in that the shaft of each electrode is surrounded by electrical insulation so that the Area of charge generation on the tips of the needle-shaped Electrodes is limited.

Die Wandung des Strömungskanals besteht bevorzugt entweder aus elektrisch isolierendem Kunststoff oder aus einem Metall, das innen mit einer elektrisch isolierenden Beschichtung versehen ist. Die fokussierende Wirkung der nadelförmigen Elektroden bezüglich des elektrischen Feldes wird auf diese Weise noch erhöht.The wall of the flow channel preferably consists of either electrically insulating plastic or a metal that provided with an electrically insulating coating on the inside is. The focusing effect of the needle-shaped electrodes regarding the electric field this way elevated.

Die Erfindung wird im folgenden anhand schematischer Zeichnungen eines Ausführungsbeispiels näher erläutert. Es zeigt:

Fig. 1
eine erfindungsgemäße Vorrichtung in perspektivischer, teilweise aufgebrochener Darstellung, und
Fig. 2
eine in der Vorrichtung gemäß Fig. 1 zum Einsatz kommende, nadelförmige Elektrode in auseinandergezogener Darstellung.
The invention is explained in more detail below with the aid of schematic drawings of an exemplary embodiment. It shows:
Fig. 1
a device according to the invention in perspective, partially broken away, and
Fig. 2
an exploded view of a needle-shaped electrode used in the device according to FIG. 1.

Eine Vorrichtung 10 zur elektrisch induzierten Agglomeration gasgetragener Partikel besteht im wesentlichen aus einem geschlossenen Strömungskanal 12, durch den in Pfeilrichtung ein Aerosol strömt, das gasgetragene Partikel 14 enthält, die fest oder flüssig sein können. Die Wandungen des Strömungskanals 12, d. h. die Deckfläche 16, die Bodenfläche 18 und die beiden Seitenflächen, bestehen aus Metall, das innen mit einer elektrisch isolierenden Beschichtung versehen ist. Ebensogut können die Wandungen aber auch aus einem elektrisch isolierenden Kunststoff bestehen. Der besseren Erkennbarkeit wegen ist die dem Betrachter zugewandte Seitenfläche des Strömungskanals 12 lediglich in der Figur durchsichtig dargestellt. A device 10 for electrically induced agglomeration gas-borne particles essentially consist of a closed one Flow channel 12 through the in the direction of the arrow Aerosol flows containing gas-borne particles 14 that are solid or can be liquid. The walls of the flow channel 12 d. H. the top surface 16, the bottom surface 18 and the two side surfaces, are made of metal, the inside with an electric insulating coating is provided. They can just as well But walls also made of an electrically insulating plastic consist. Because of the better recognizability it is that Side face of the flow channel 12 facing the observer only shown transparently in the figure.

In der Deckfläche 16 und der Bodenfläche 18 des Strömungskanals 12 sind gegenüber diesem elektrisch isoliert stift- bzw. nadelförmige Elektroden 20, 22 befestigt, die die Flächen 16 und 18 durchdringen und sich von ihnen aus rechtwinklig je gleich weit in den Strömungskanal 12 hineinerstrecken. Die Elektroden 20 und 22, deren Aufbau genauer aus Fig. 2 hervorgeht, sind über eine in Fig. 1 nur angedeutete elektrische Leitung 24 mit einer nicht gezeigten Hochspannungsgleichstromquelle verbunden und erdfrei geschaltet, d. h. die in Fig. 1 oberen Elektroden 20 sind mit dem Pluspol der Gleichspannungsstromquelle verbunden, während die jeweils gegenüberliegenden, unteren Elektroden 22 mit dem Minuspol der Gleichspannungsstromquelle verbunden sind. Der Begriff "erdfrei" soll demnach hier bedeuten, daß keine der Elektroden 20 und 22 auf Masse gelegt ist, sondern tatsächlich mit einem Plus- bzw. Minuspotential verbunden ist. Statt der Gleichspannungsstromquelle kann auch eine Hochspannungswechselstromquelle verwendet werden.In the top surface 16 and the bottom surface 18 of the flow channel 12 are pin-shaped or needle-shaped in relation to this Electrodes 20, 22 attached to surfaces 16 and 18 penetrate and from them at right angles each the same distance extend into the flow channel 12. The electrodes 20 and 22, the structure of which is shown in more detail in FIG an electrical line 24 only indicated in FIG. 1 with a High voltage DC power source not shown connected switched floating, d. H. the upper electrodes 20 in FIG. 1 are connected to the positive pole of the DC voltage source, while the opposite, lower electrodes 22 are connected to the negative pole of the DC voltage source. The term "floating" should therefore mean here that none of the Electrodes 20 and 22 are connected to ground, but actually is connected with a plus or minus potential. Instead of the DC power source can also be a high voltage AC power source be used.

Je eine Elektrode 20 und eine Elektrode 22 bilden zusammen ein Elektrodenpaar 20, 22, dessen Spitzen 26 sich in einem Abstand, der im Bereich von zumindest etwa 10 mm bis etwa 40 mm liegen kann, direkt gegenüberliegen. Bei einem sehr großen Strömungskanal kann der Abstand der Spitzen 26 auch deutlich mehr als 40 mm betragen.One electrode 20 and one electrode 22 form one together Electrode pair 20, 22, the tips 26 of which are at a distance, which are in the range of at least about 10 mm to about 40 mm can be directly opposite. With a very large flow channel the distance between the tips 26 can also be significantly more than 40 mm.

Fünf solcher Elektrodenpaare 20, 22 sind in der Deckfläche 16 bzw. der Bodenfläche 18 mit einem Abstand von je 10 cm in Strömungsrichtung mittig angeordnet. Der Abstand, in dem aufeinanderfolgende Elektrodenpaare in Strömungsrichtung angeordnet sind, ergibt sich aus der Verweilzeit, die Partikel 14 zwischen aufeinanderfolgenden Elektrodenpaaren 20, 22 haben sollen, hängt also von der Geometrie des verwendeten Strömungskanals und der Strömungsgeschwindigkeit des Aerosols ab. Es hat sich herausgestellt, daß die Verweilzeit zwischen in Strömungsrichtung aufeinanderfolgenden Elektrodenpaaren 20, 22 vorteilhaft im Bereich einer Sekunde liegt. Five such electrode pairs 20, 22 are in the top surface 16 or the bottom surface 18 with a distance of 10 cm in the flow direction arranged in the middle. The distance at which successive Electrode pairs arranged in the flow direction are from the residence time, the particles 14 between successive pairs of electrodes 20, 22 should have depends on the geometry of the flow channel used and the flow rate of the aerosol. It has found that the dwell time between in the direction of flow successive pairs of electrodes 20, 22 advantageous is in the range of one second.

Durch Anlegen der Gleichspannungsstromquelle in der beschriebenen Weise wird an den sich gegenüberliegenden Spitzen 26 der Elektroden 20 und 22 ein elektrisches Potential bereitgestellt, das zur Erzeugung einer stabilen Koronaentladung an jeder Spitze 26 ausreicht. Hierzu sind Feldstärken von etwa 2.000 V/cm erforderlich. Beträgt der Abstand zwischen den Spitzen 26 eines Elektrodenpaares 20, 22 beispielsweise 20 mm, so muß dennoch eine Spannung von etwa 4.000 V an die Elektroden 20 und 22 angelegt werden.By applying the DC voltage source described in the The way is at the opposite tips 26 of the Electrodes 20 and 22 provided an electrical potential, to create a stable corona discharge at each tip 26 is sufficient. Field strengths of around 2,000 V / cm are required for this required. The distance between the tips 26 is one Electrode pair 20, 22, for example 20 mm, must nevertheless a voltage of about 4,000 V across electrodes 20 and 22 be created.

Die aufgrund den zwischen den Spitzen 26 stabil brennenden Koronen erzeugten, lokal sehr hohen elektrischen Feldstärken führen zur Ionisation des Trägergases. Die so erzeugten Gasionen und die freien Elektronen bewirken anschließend durch eine Kollision mit den gasgetragenen Partikeln deren Aufladung. Dabei ist das Potentialverhältnis zwischen den Elektroden 20 und 22 so eingestellt, daß eine weitgehend symmetrische, bipolare Aufladung des durch den Strömungskanal 12 geleiteten Aerosols erfolgt. Die Agglomeration der aufgeladenen Partikeln findet zum Teil schon im Bereich der Aufladezone, d. h. zwischen den Elektroden 20 und 22, im wesentlich jedoch unmittelbar stromabwärts statt. Außerhalb der Aufladezonen ist wegen des durch die Spitzen 26 stark fokussierten elektrischen Feldes und wegen der gegenüber dem Strömungskanal 12 elektrisch isolierten Elektroden 20 und 22 kein äußeres elektrisches Feld vorhanden.The due to the stable burning corons between the tips 26 generated, locally very high electrical field strengths for ionization of the carrier gas. The gas ions generated in this way and the free electrons then cause a collision with the gas-borne particles their charging. Here is the potential ratio between electrodes 20 and 22 set so that a largely symmetrical, bipolar charging of the aerosol passed through the flow channel 12. The agglomeration of the charged particles takes place on Part already in the area of the charging zone, d. H. between the electrodes 20 and 22, but essentially immediately downstream instead of. Outside of the charging zones is because of the peaks 26 highly focused electric field and because of the electrodes electrically insulated from the flow channel 12 20 and 22 there is no external electric field.

Die fünf Elektrodenpaare 20, 22 sorgen dafür, daß die während der Verweilzeit des Aerosols im Strömungskanal 12 stattfindende Agglomeration entgegengesetzt geladener Partikel und die dabei auftretende Ladungsrekombination, die zu einer Reduktion des attraktiven Wechselwirkungspotentials innerhalb des Partikelkollektivs führt, ausgeglichen und überkompensiert und damit eine hohe Kollisionsrate über die gesamte Länge des Strömungskanals 12 aufrechterhalten wird. Bei gezielter Überkompensation kann durch die wiederholte bipolare Aufladung des Aerosols die entstehende Agglomeratgröße im Sinne einer Vergrößerung derselben beeinflußt werden. The five pairs of electrodes 20, 22 ensure that the during the residence time of the aerosol taking place in the flow channel 12 Agglomeration of oppositely charged particles and the same Charge recombination occurring, which leads to a reduction of the attractive interaction potential within the particle collective leads, balanced and overcompensated and thus one high collision rate over the entire length of the flow channel 12 is maintained. With targeted overcompensation due to the repeated bipolar charging of the aerosol Agglomerate size in the sense of increasing it to be influenced.

Fig. 2 zeigt den Aufbau einer nadelförmigen Elektrode 20 und deren Befestigung in der Deckfläche 16 genauer. Die Elektroden 22 sind gleich aufgebaut und in gleicher Weise in der Bodenfläche 18 des Strömungskanals 12 befestigt.Fig. 2 shows the structure of a needle-shaped electrode 20 and their fastening in the top surface 16 more precisely. The electrodes 22 are constructed identically and in the same way in the bottom surface 18 of the flow channel 12 attached.

Das Herzstück der Elektrode 20 ist eine dünne lange Edelstahlnadel 28, an deren bezüglich des Strömungskanals 12 innerem Ende die Spitze 26 ausgebildet ist. Auf dem größeren Teil der Edelstahlnadel 28 ist ein Außengewinde 30 vorhanden. Der Teil des Nadelschaftes 31, der im betriebsfertigen Zustand in den Strömungskanal 12 hineinragt, ist von einer elektrischen Isolation 32 umschlossen, die nur die Spitze 26 freiläßt und somit vom schaftseitigen Ende der Spitze 26 bis zum Beginn des Außengewindes 30 reicht.The heart of the electrode 20 is a thin long stainless steel needle 28, at the inner with respect to the flow channel 12 End 26 is formed. On the larger part of the Stainless steel needle 28 has an external thread 30. The part of the needle shaft 31, which is in the operational state in the Flow channel 12 protrudes from an electrical insulation 32 enclosed, which only leaves the tip 26 and thus from the shaft end of the tip 26 to the start of the external thread 30 is enough.

Mit ihrem Außengewinde 30 wird die Edelstahlnadel 28 in eine Messinghülse 34 geschraubt, die hierfür eine Durchgangsbohrung 36 mit einem passenden Innengewinde 38 aufweist. An ihrem dem Strömungskanal 12 zugewandten Ende hat die Messinghülse 34 ein Außengewinde 40, mit dem sie in die Deckfläche 16 einschraubbar ist, in der hierzu ein Loch mit einem entsprechenden Innengewinde vorgesehen ist. Zum leichteren Einschrauben der Messinghülse 34 ist an ihrem dem Strömungskanal 12 abgewandten Ende ein Maulbzw. Ringschlüsselansatz 42 ausgebildet.With its external thread 30, the stainless steel needle 28 is in a Screwed brass sleeve 34, which has a through hole for this 36 with a suitable internal thread 38. At their the End facing the flow channel 12 has the brass sleeve 34 External thread 40, with which it can be screwed into the cover surface 16 is in this a hole with a corresponding internal thread is provided. For easier screwing in of the brass sleeve 34 is a mouth or at its end facing away from the flow channel 12. Ring wrench attachment 42 formed.

Der elektrische Anschluß der Elektrode 20 erfolgt mittels einer weiteren Hülse 44, die ebenfalls eine Durchgangsbohrung mit einem zum Außengewinde 30 der Edelstahlnadel 28 passenden Innengewinde aufweist. Diese Hülse 44, die mit der hier nicht dargestellten Leitung 24 verbunden ist, wird auf den Teil des Außengewindes 30 geschraubt, der nach außen aus der Messinghülse 34 herausragt. Mit 46 ist ein an der Hülse 44 angebrachtes Griffstück bezeichnet, das gleichzeitig zur elektrischen Isolation dient.The electrical connection of the electrode 20 takes place by means of a another sleeve 44, which also has a through hole with a internal thread matching the external thread 30 of the stainless steel needle 28 having. This sleeve 44, which with the not shown here Line 24 is connected to the part of the external thread 30 screwed out of the brass sleeve 34 protrudes. At 46 is a handle attached to the sleeve 44 called that at the same time for electrical insulation serves.

Claims (18)

  1. Process for treating gas-borne particles, in particular for the electrically induced agglomeration of such particles, comprising the steps of:
    directing a particle-laden flow of gas through a closed flow duct, and
    coupling an electric field which is suitable for the ionization of the gas flowing through the flow duct into the flow duct by means of at least one electrode pair,
    characterized by
    the ionization of the gas between needle-shaped electrodes that have opposing polarity, are wired to be ungrounded and are disposed radially opposite each other in the flow duct thus causing an agglomeration of the particles in the flow duct essentially in regions without an outside electric field.
  2. Process according to claim 1,
    characterized in that the particles are essentially symmetrically bipolarly charged.
  3. Process according to claim 1 or claim 2,
    characterized in that the particles are repeatedly bipolarly charged in the direction of flow.
  4. Process according to one of claims 1 to 3,
    characterized in that the particles are charged in a direct current voltage field.
  5. Process according to one of the preceding claims,
    characterized in that the electric field is focussed in a spatially very narrowly defined region between the tips of the needle-shaped electrodes.
  6. Process according to one of the preceding claims,
    characterized in that the particles to be charged are smaller than 1 µm, preferably smaller than 0.5 µm, and especially smaller than 0.1 µm.
  7. Apparatus for carrying out the process according to one of claims 1 to 6, comprising a closed flow duct (12) and a plurality of electrodes (20, 22) arranged therein, all of which are needle-shaped, are insulated with respect to the walls of the flow duct and are arranged in pairs radially opposite each other in the flow duct (12), and further comprising a current source which is connected to the electrodes (20, 22) and the strength of which is sufficient to produce corona discharges between the electrodes (20, 33) of each electrode pair (20 and 22) having opposing polarity and being wired to be ungrounded.
  8. Apparatus according to claim 7,
    characterized in that the potential ratio applied to the oppositely disposed electrodes (20 and 22) is at least substantially symmetrical.
  9. Apparatus according to claim 7 or claim 8,
    characterized in that a plurality of electrode pairs (20, 22) are arranged in succession in the flow duct (12).
  10. Apparatus according to one of claims 7 to 9,
    characterized in that the current source is a source of high-voltage direct current.
  11. Apparatus according to one of claims 7 to 10,
    characterized in that the needle shaft (31) of each electrode (20 and 22) is surrounded by an electrical insulation (32).
  12. Apparatus according to one of claims 9 to 11,
    characterized in that the electrode pairs (20, 22) are spaced from each other in the flow direction by at least approximately 10 cm.
  13. Apparatus according to one of claims 7 to 12,
    characterized in that the oppositely disposed tips (26) of each electrode pair (20, 22) are spaced from each other by about 10 mm to 40 mm.
  14. Apparatus according to one of claims 7 to 13,
    characterized in that the electrodes (20 and 22) are secured in the duct wall by means of two sleeves (34, 44).
  15. Apparatus according to one of claims 7 to 14,
    characterized in that the duct wall is made of electrically insulating plastic material.
  16. Apparatus according to one of claims 7 to 14,
    characterized in that the duct wall is made of metal and is provided on the inside with an electrically insulating coating.
  17. Use of an apparatus according to one of claims 7 to 16 to neutralize highly unipolarly charged, gas-borne particles.
  18. Use according to claim 17,
    characterized in that the particles are larger than 1.5 µm, preferably larger than 2 µm and especially larger than 5 µm.
EP95906297A 1994-01-13 1995-01-04 Process and device for treating gasborne particles Expired - Lifetime EP0740585B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4400827A DE4400827C1 (en) 1994-01-13 1994-01-13 Process and device for the electrically induced agglomeration of gas-borne particles
DE4400827 1994-01-13
PCT/EP1995/000026 WO1995019226A1 (en) 1994-01-13 1995-01-04 Process and device for treating gasborne particles

Publications (2)

Publication Number Publication Date
EP0740585A1 EP0740585A1 (en) 1996-11-06
EP0740585B1 true EP0740585B1 (en) 1998-08-05

Family

ID=6507853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95906297A Expired - Lifetime EP0740585B1 (en) 1994-01-13 1995-01-04 Process and device for treating gasborne particles

Country Status (10)

Country Link
US (1) US5824137A (en)
EP (1) EP0740585B1 (en)
JP (1) JP3115326B2 (en)
AT (1) ATE169246T1 (en)
BR (1) BR9506491A (en)
CA (1) CA2181138A1 (en)
DE (2) DE4400827C1 (en)
ES (1) ES2120723T3 (en)
WO (1) WO1995019226A1 (en)
ZA (1) ZA95276B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004375A (en) * 1994-01-13 1999-12-21 Gutsch; Andreas Process and apparatus to treat gasborne particles
GB9605574D0 (en) * 1996-03-16 1996-05-15 Mountain Breeze Ltd Treatment of particulate pollutants
DE19615111A1 (en) * 1996-04-17 1997-10-23 Degussa Oxides
US6228149B1 (en) 1999-01-20 2001-05-08 Patterson Technique, Inc. Method and apparatus for moving, filtering and ionizing air
US6482253B1 (en) * 1999-09-29 2002-11-19 John P. Dunn Powder charging apparatus
FR2818451B1 (en) * 2000-12-18 2007-04-20 Jean Marie Billiotte ELECTROSTATIC ION EMISSION DEVICE FOR DEPOSITING A QUASI HOMOGENEOUS AMOUNT OF IONS ON THE SURFACE OF A MULTITUDE OF AEROSOL PARTICLES WITHIN A MOVING FLUID.
US6589314B1 (en) 2001-12-06 2003-07-08 Midwest Research Institute Method and apparatus for agglomeration
JP4409516B2 (en) * 2006-01-16 2010-02-03 財団法人大阪産業振興機構 Charged nanoparticle manufacturing method, charged nanoparticle manufacturing system, and charged nanoparticle deposition system
US8167984B1 (en) 2008-03-28 2012-05-01 Rogers Jr Gilman H Multistage electrically charged agglomeration system
DE102009021631B3 (en) * 2009-05-16 2010-12-02 Gip Messinstrumente Gmbh Method and device for generating a bipolar ion atmosphere by means of electrical junction discharge
CN104136551B (en) 2011-10-24 2016-09-21 埃迪亚贝拉努沃有限公司 Produce the improvement technique of carbon black
EP2772309B1 (en) 2013-03-01 2015-06-03 Brandenburgische Technische Universität Cottbus-Senftenberg Device for separating particles from a gas flow charged with particles and method
CN109387463A (en) * 2017-08-08 2019-02-26 财团法人交大思源基金会 It can prevent the high efficiency static fine liquid phase sampler of sampling error
CN107626452A (en) * 2017-10-11 2018-01-26 江苏中建材环保研究院有限公司 A kind of wet electrical dust precipitator pre electrified formula flow straightening grid
DE102018205332A1 (en) * 2018-04-10 2019-10-10 BSH Hausgeräte GmbH Electrostatic filter unit and ventilation unit with electrostatic filter unit
US11772103B2 (en) * 2020-03-27 2023-10-03 Praan Inc. Filter-less intelligent air purification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1407534A1 (en) * 1960-09-21 1969-04-10 G A Messen Jaschin Fa Electrostatic precipitator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE144509C (en) *
US1962555A (en) * 1931-07-09 1934-06-12 Int Precipitation Co Method and apparatus for electrical precipitations
US2758666A (en) * 1952-04-10 1956-08-14 Phillips Petroleum Co Carbon black separation
FR1379191A (en) * 1963-12-11 1964-11-20 Trion Method and device for ionizing particles in suspension in a gas stream
US3768258A (en) * 1971-05-13 1973-10-30 Consan Pacific Inc Polluting fume abatement apparatus
US3826063A (en) * 1973-05-21 1974-07-30 T Festner Electrostatic agglomeration apparatus
US4071688A (en) * 1976-08-18 1978-01-31 Uop Inc. Method and article for protecting a precipitator discharge electrode
DE2646798C2 (en) * 1976-10-16 1982-12-16 Haug & Co KG, 7022 Leinfelden-Echterdingen Device for the electrical charging of liquid or solid particles in a gas, especially air flow and application of the charged particles to surfaces
JPS5364878A (en) * 1976-11-19 1978-06-09 Matsushita Electric Ind Co Ltd Electric dust collector
US4391614A (en) * 1981-11-16 1983-07-05 Kelsey-Hayes Company Method and apparatus for preventing lubricant flow from a vacuum source to a vacuum chamber
US4477263A (en) * 1982-06-28 1984-10-16 Shaver John D Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas
EP0185966B1 (en) * 1984-12-21 1989-01-25 BBC Brown Boveri AG Process and device for cleaning a gas stream containing solid or liquid particles in suspension
US4670026A (en) * 1986-02-18 1987-06-02 Desert Technology, Inc. Method and apparatus for electrostatic extraction of droplets from gaseous medium
DE3737343A1 (en) * 1986-11-18 1988-05-26 Bbc Brown Boveri & Cie Device for concentrating and agglomerating solid or liquid particles suspended in a gas flow
JP3066833B2 (en) * 1989-09-08 2000-07-17 高砂熱学工業株式会社 Air cleaning device, air cleaning method and clean room

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1407534A1 (en) * 1960-09-21 1969-04-10 G A Messen Jaschin Fa Electrostatic precipitator

Also Published As

Publication number Publication date
MX9602771A (en) 1998-06-28
CA2181138A1 (en) 1995-07-20
DE4400827C1 (en) 1995-04-20
ZA95276B (en) 1995-09-21
ATE169246T1 (en) 1998-08-15
US5824137A (en) 1998-10-20
BR9506491A (en) 1997-10-07
JP3115326B2 (en) 2000-12-04
ES2120723T3 (en) 1998-11-01
DE59503073D1 (en) 1998-09-10
WO1995019226A1 (en) 1995-07-20
JPH09507429A (en) 1997-07-29
EP0740585A1 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
EP0740585B1 (en) Process and device for treating gasborne particles
DE3234100C2 (en) Plasma arc device for applying coatings
DD242568A5 (en) METHOD AND DEVICE FOR DISCHARGING A SOLID OR LIQUID PARTICLE IN SUSPENSION CONTAINING GAS STREAM BY MEANS OF AN ELECTRIC FIELD
DE2646798C2 (en) Device for the electrical charging of liquid or solid particles in a gas, especially air flow and application of the charged particles to surfaces
DD281892A5 (en) DEVICE FOR TRANSPORTING AIR
CH625974A5 (en)
DD271611A3 (en) SPRAY GUN WITH ELECTRIC KINETIC POWDER RECHARGE
DE3238793C2 (en) Method and device for cleaning gases
WO2006074888A1 (en) Method and device for electrostatically charging and separating particles that are difficult to separate
DE3314168C2 (en) Method and device for cleaning gases from electrically conductive particles
EP0238970B1 (en) Process and device for agglomerating electrically opposed solid or fluid particles suspended in a gas stream
DE3121054C2 (en) "Process and device for electrostatic dust separation
EP2284442A2 (en) Electrostatic separator and heating system
DE3609698A1 (en) Device and method for ionisation or neutralisation of a gas flow and the particles contained in it
DE2151220C3 (en) Device for electrostatic charging and separation of mass particles
EP0715894A1 (en) Electrostatic filter unit
EP0745430A2 (en) Cleaning method and apparatus for coating powder
DE102008028166A1 (en) Device for producing atmospheric cold plasma jet, has discharge tube, which has wall made up of dielectric material and central electrode, which is arranged centrically inside discharge tube in longitudinal direction
DE102006033945A1 (en) Compact electrical air filter device`s high voltage controlling method, involves navigating high voltage of electrical air filter device after production of sparkover as long as number of sparkovers is reduced or sparkover is ended
CH617363A5 (en) Method and apparatus for the electrostatic precipitation of particles from a gaseous medium
DE1557087A1 (en) Electrostatic device for failing
DE2555547B2 (en) Device for the electrostatic application or spraying of material particles
CH620057A5 (en) Device for ionising gases
DE102005013987B3 (en) Apparatus for neutralizing electrically charged aerosol particles flowing in tube, comprising ante-chamber(s) supplied with ionized gas over gas-permeable region(s) of tube side(s)
DE1757115A1 (en) Electro-aerodynamic failure device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971209

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

REF Corresponds to:

Ref document number: 169246

Country of ref document: AT

Date of ref document: 19980815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980810

REF Corresponds to:

Ref document number: 59503073

Country of ref document: DE

Date of ref document: 19980910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120723

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19981022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000103

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20000124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010105

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

EUG Se: european patent has lapsed

Ref document number: 95906297.7

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010801

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

BERE Be: lapsed

Owner name: GUTSCH ANDREAS

Effective date: 20020131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030131

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050104