EP0738778A1 - Compositions détergentes non-aqueuses liquides contenant des particules - Google Patents

Compositions détergentes non-aqueuses liquides contenant des particules Download PDF

Info

Publication number
EP0738778A1
EP0738778A1 EP95200982A EP95200982A EP0738778A1 EP 0738778 A1 EP0738778 A1 EP 0738778A1 EP 95200982 A EP95200982 A EP 95200982A EP 95200982 A EP95200982 A EP 95200982A EP 0738778 A1 EP0738778 A1 EP 0738778A1
Authority
EP
European Patent Office
Prior art keywords
composition
weight
nonaqueous
alkyl
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95200982A
Other languages
German (de)
English (en)
Inventor
Jean-Pol Boutique (Nmn)
James Pyott Johnston
Brian Jeffreys (Nmn)
Axel Meyer (Nmn)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP95200982A priority Critical patent/EP0738778A1/fr
Priority to JP8531755A priority patent/JPH11503789A/ja
Priority to PCT/US1996/004223 priority patent/WO1996033254A1/fr
Priority to CA 2216937 priority patent/CA2216937A1/fr
Publication of EP0738778A1 publication Critical patent/EP0738778A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • C11D1/652Mixtures of anionic compounds with carboxylic amides or alkylol amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2068Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • This invention relates to liquid laundry detergent products which are nonaqueous in nature and which are in the form of stable dispersions of particulate material such as bleaching agents and/or other detergent composition adjuvants.
  • Liquid detergent products are often considered to be more convenient to use than are dry powdered or particulate detergent products. Liquid detergents have therefore found substantial favor with consumers. Such liquid detergent products are readily measurable, speedily dissolved in the wash water, capable of being easily applied in concentrated solutions or dispersions to soiled areas on garments to be laundered and are non-dusting. They also usually occupy less storage space than granular products. Additionally, liquid detergents may have incorporated in their formulations materials which could not withstand drying operations without deterioration, which operations are often employed in the manufacture of particulate or granular detergent products.
  • liquid detergents have a number of advantages over granular detergent products, they also inherently possess several disadvantages.
  • detergent composition components which may be compatible with each other in granular products may tend to interact or react with each other in a liquid, and especially in an aqueous liquid, environment.
  • such components as enzymes, surfactants, perfumes, brighteners, solvents and especially bleaches and bleach activators can be especially difficult to incorporate into liquid detergent products which have an acceptable degree of chemical stability.
  • Nonaqueous liquid detergent compositions including those which contain reactive materials such as peroxygen bleaching agents, have been disclosed for example, in Hepworth et al., U.S. Patent 4,615,820, Issued October 17, 1986; Schultz et al., U.S. Patent 4,929,380, Issued May 29, 1990; Schultz et al., U.S.
  • the present invention provides nonaqueous liquid detergent compositions comprising a stable suspension of solid, substantially insoluble particulate material dispersed throughout a structured, surfactant-containing liquid phase.
  • Such compositions comprise A) from about 10% to 90% by weight of the composition of a surfactant mixture containing two specific types of surfactants, B) from about 20% to 80% by weight of the composition of a two-component nonaqueous diluent and C) from about 1% to 65% by weight of the composition of one or more types of particulate materials.
  • the surfactant mixture component of the compositions comprises both i) alkali metal or alkanolamine alkyl polyalkoxylate sulfates wherein the alkyl group contains from about 10 to 22 carbon atoms and the polyalkoxylate chain contains from about 1 to 15 C 2 -C 4 alkylene oxide moieties; and ii) polyhydroxy fatty acid amides of the formula: wherein R is a C 9 -C 17 alkyl or alkenyl, p is from 1 to 6, and Z is glycityl derived from a reduced sugar or alkoxylated derivatives thereof.
  • R is a C 9 -C 17 alkyl or alkenyl
  • p is from 1 to 6
  • Z is glycityl derived from a reduced sugar or alkoxylated derivatives thereof.
  • the nonaqueous liquid diluent component of the compositions comprises both i) alcohol alkoxylates of the formula R 1 (OC m H 2m ) n OH wherein R 1 is a C 2 -C 16 alkyl group, m is from 2 to 4, and n is from about 2 to 12; and ii) a nonaqueous, low-polarity organic solvent.
  • R 1 is a C 2 -C 16 alkyl group
  • m is from 2 to 4
  • n is from about 2 to 12
  • ii) a nonaqueous, low-polarity organic solvent are present in the nonaqueous liquid diluent in an alcohol alkoxylate to organic solvent weight ratio of from about 50:1 to 1:50.
  • the particulate material suspended in the nonaqueous liquid phase of the composition ranges in size from about 0.1 to 1500 microns and is substantially insoluble in the nonaqueous compositions herein.
  • This insoluble particulate material preferably comprises a peroxygen bleaching agent, but may also comprise bleach activators, ancillary anionic surfactants, organic detergent builders, inorganic alkalinity sources and combinations of these particulate material types.
  • nonaqueous liquid detergent compositions of this invention comprise a surfactant - and low-polarity solvent-containing liquid phase having dispersed therein as a solid phase certain types of particulate materials.
  • a surfactant - and low-polarity solvent-containing liquid phase having dispersed therein as a solid phase certain types of particulate materials.
  • the essential and optional components of the liquid and solid phases of the detergent compositions herein, as well as composition form, preparation and use, are described in greater detail as follows: All concentrations and ratios are on a weight basis unless otherwise specified.
  • the liquid phase of the detergent compositions herein essentially contains a certain type of surfactant mixture combined with a certain type of nonaqueous, liquid diluent.
  • the surfactant mixture essentially utilized as part of the liquid phase of the detergent compositions herein comprises a combination of a specific type of anionic surfactant and a specific type of nonionic surfactant.
  • the anionic surfactant is an alkyl polyalkoxylate sulfate and the nonionic is a polyhydroxy fatty acid amide.
  • Alkyl polyalkoxylate sulfates are also know as alkoxylated alkyl sulfates or alkyl ether sulfates. Such materials are those which correspond to the formula R 2 -O-(C m H 2m O) n -SO 3 M wherein R 2 is a C 10 -C 22 alkyl group, m is from 2 to 4, n is from about 1 to 15, and M is a salt-forming cation.
  • R 2 is a C 12 -C 18 alkyl, m is 2, n is from about 1 to 10, and M is sodium, potassium, ammonium, alkylammonium or alkanolammonium.
  • R 2 is a C 12 -C 16
  • m is 2
  • n is from about 1 to 6
  • M is sodium.
  • Ammonium, alkylammonium and alkanolammonium counterions are preferably avoided when the solid phase materials used in the compositions herein include a peroxygen bleaching agent.
  • the alkyl ether sulfate surfactant component of the surfactant mixture herein contain no more than about 50% by weight of such component of unalkoxylated alkyl sulfate materials. Preferably no more than about 30% by weight, most preferably no more than about 20% by weight of the anionic surfactant component will comprise unalkoxylated alkyl sulfates.
  • the alkyl polyalkoxylate sulfate material used in the surfactant mixture can generally be present to the extent of from about 1% to 70% by weight of the compositions herein. More preferably, this material will be alkyl polyethoxylate sulfate and will comprise from about 5% to 40% by weight of the compositions herein. Most preferably, this alkyl polyethoxylate sulfate will comprise from about 10% to 30% by weight of the compositions herein.
  • the second component of the essential surfactant mixture dissolved in the liquid phase of the detergent compositions herein comprises a polyhydroxy fatty acid amide surfactant.
  • materials of this type of nonionic surfactant are those which conform to the formula: wherein R is a C 9-17 alkyl or alkenyl, p is from 1 to 6, and Z is glycityl derived from a reduced sugar or alkoxylated derivative thereof.
  • Such materials include the C 12 -C 18 N-methyl glucamides. Examples are N-methyl N-1-deoxyglucityl cocoamide and N-methyl N-1-deoxyglucityl oleamide. Processes for making polyhydroxy fatty acid amides are known and can be found, for example, in Wilson, U.S.
  • Patent 2,965,576 and Schwartz U.S. Patent 2,703,798, the disclosures of which are incorporated herein by reference.
  • the materials themselves and their preparation are also described in greater detail in Honsa, U.S. Patent 5,174,937, Issued December 26, 1992, which patent is also incorporated herein by reference.
  • polyhydroxy fatty acid amide nonionic used in the surfactant mixture can generally be present to the extent of from about 1% to 20% by weight of the composition. More preferably, polyhydroxy fatty acid amide nonionic can comprise from about 5% to 15% by weight of the compositions herein.
  • the alkyl polyalkoxylate sulfate and the polyhydroxy fatty acid amide surfactants must be employed in a sulfate to amide ratio from about 5:1 to 1:1. More preferably, the sulfate to amide ratio within the surfactant mixture will range from about 3:1 to 1:1.
  • the amount of the surfactant mixture component of the liquid phase of detergent compositions herein can vary depending upon the nature and amount of other composition components and depending upon the desired rheological properties of the ultimately formed composition. Generally, this surfactant mixture will be used in an amount comprising from about 10% to 90% by weight of the composition. More preferably, the surfactant mixture will comprise from about 15% to 50% by weight of the composition.
  • the hereinbefore described surfactant mixture is combined with a nonaqueous liquid diluent which itself contains two essential components. These two components are a liquid alcohol alkoxylate material and a nonaqueous, low-polarity organic solvent.
  • One essential component of the liquid diluent used to form the compositions herein comprises an alkoxylated fatty alcohol material.
  • Such materials are themselves also nonionic surfactants.
  • Such materials correspond to the general formula: R 1 (C m H 2m O) n OH wherein R 1 is a C 8 - C 16 alkyl group, m is from 2 to 4, and n ranges from about 2 to 12.
  • R 1 is an alkyl group, which may be primary or secondary, that contains from about 9 to 15 carbon atoms, more preferably from about 10 to 14 carbon atoms.
  • the alkoxylated fatty alcohols will be ethoxylated materials that contain from about 2 to 12 ethylene oxide moieties per molecule, more preferably from about 3 to 10 ethylene oxide moieties per molecule.
  • the alkoxylated fatty alcohol component of the liquid diluent will frequently have a hydrophilic-lipophilic balance (HLB) which ranges from about 3 to 17. More preferably, the HLB of this material will range from about 6 to 15, most preferably from about 8 to 15.
  • HLB hydrophilic-lipophilic balance
  • fatty alcohol alkoxylates useful as one of the essential components of the nonaqueous liquid diluent in the compositions herein will include those which are made from alcohols of 12 to 15 carbon atoms and which contain about 7 moles of ethylene oxide. Such materials have been commercially marketed under the trade names Neodol 25-7 and Neodol 23-6.5 by Shell Chemical Company.
  • Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with about 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C 12 - C 13 alcohol having about 9 moles of ethylene oxide and Neodol 91-10, an ethoxylated C 9 - C 11 primary alcohol having about 10 moles of ethylene oxide. Alcohol ethoxylates of this type have also been marketed by Shell Chemical Company under the Dobanol tradename.
  • Dobanol 91-5 is an ethoxylated C 9 -C 11 fatty alcohol with an average of 5 moles ethylene oxide and Dobanol 25-7 is an ethoxylated C 12 -C 15 fatty alcohol with an average of 7 moles of ethylene oxide per mole of fatty alcohol.
  • Suitable ethoxylated alcohols include Tergitol 15-S-7 and Tergitol 15-S-9 both of which are linear secondary alcohol ethoxylates that have been commercially marketed by Union Carbide Corporation.
  • the former is a mixed ethoxylation product of C 11 to C 15 linear secondary alkanol with 7 moles of ethylene oxide and the latter is a similar product but with 9 moles of ethylene oxide being reacted.
  • Alcohol ethoxylates useful in the present compositions are higher molecular weight nonionics, such as Neodol 45-11, which are similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14-15 carbon atoms and the number of ethylene oxide groups per mole being about 11. Such products have also been commercially marketed by Shell Chemical Company.
  • the alcohol alkoxylate component which is essentially utilized as part of the liquid diluent in the nonaqueous compositions herein will generally be present to the extent of from about 1% to 60% by weight of the composition. More preferably, the alcohol alkoxylate component will comprise about 5% to 40% by weight of the compositions herein. Most preferably, the essentially utilized alcohol alkoxylate component will comprise from about 10% to 25% by weight of the detergent compositions herein.
  • a second essential component of the liquid diluent which forms part of the liquid phase of the detergent compositions herein comprises nonaqueous, low-polarity organic solvent(s).
  • solvent is used herein to connote the non-surface active carrier or diluent portion of the liquid phase of the composition. While some of the essential and/or optional components of the compositions herein may actually dissolve in the "solvent"-containing liquid phase, other components will be present as particulate material dispersed within the “solvent"-containing liquid phase. Thus the term “solvent” is not meant to require that the solvent material be capable of actually dissolving all of the detergent composition components added thereto.
  • nonaqueous organic materials which are employed as solvents herein are those which are liquids of low polarity.
  • low-polarity liquids are those which have little, if any, tendency to dissolve one of the preferred types of particulate material used in the compositions herein, i.e., the peroxygen bleaching agents, sodium perborate or sodium percarbonate.
  • relatively polar solvents such as ethanol should not be utilized.
  • Suitable types of low-polarity solvents useful in the nonaqueous liquid detergent compositions herein do include alkylene glycol mono lower alkyl ethers, lower molecular weight polyethylene glycols, lower molecular weight methyl esters and amides, and the like.
  • a preferred type of nonaqueous, low-polarity solvent for use herein comprises the mono-, di-, tri-, or tetra-C 2 -C 3 alkylene glycol mono C 2 -C 6 alkyl ethers.
  • the specific examples of such compounds include diethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, dipropolyene glycol monoethyl ether, and dipropylene glycol monobutyl ether.
  • Diethylene glycol monobutyl ether and dipropylene glycol monobutyl ether are especially preferred.
  • Compounds of the type have been commercially marketed under the tradenames Dowanol, Carbitol, and Cellosolve.
  • nonaqueous, low-polarity organic solvent useful herein comprises the lower molecular weight polyethylene glycols (PEGs).
  • PEGs polyethylene glycols
  • Such materials are those having molecular weights of at least about 150.
  • PEGs of molecular weight ranging from about 200 to 600 are most preferred.
  • non-polar, nonaqueous solvent comprises lower molecular weight methyl esters.
  • Such materials are those of the general formula: R 1 -C(O)-OCH 3 wherein R 1 ranges from 1 to about 18.
  • suitable lower molecular weight methyl esters include methyl acetate, methyl propionate, methyl octanoate, and methyl dodecanoate.
  • the nonaqueous, low-polarity organic solvent(s) employed should, of course, be compatible and non-reactive with other composition components, e.g., bleach and/or activators, used in the liquid detergent compositions herein.
  • a solvent component will generally be utilized in an amount of from about 1% to 60% by weight of the composition. More preferably, the nonaqueous, low-polarity organic solvent will comprise from about 5% to 40% by weight of the composition, most preferably from about 10% to 25% by weight of the composition.
  • the ratio of alcohol alkoxylate to organic solvent within the liquid diluent can be used to vary the rheological properties of the detergent compositions eventually formed.
  • the weight ratio of alcohol alkoxylate to organic solvent will range from about 50:1 to 1:50. More preferably, this ratio will range from about 2:1 to 1:2.
  • the amount of total liquid diluent in the compositions herein will be determined by the type and amounts of other composition components and by the desired composition properties. Generally, the liquid diluent will comprise from about 20% to 80% by weight of the compositions herein. More preferably, the liquid diluent will comprise from about 40% to 60% by weight of the composition.
  • the nonaqueous detergent compositions herein also essentially comprise a solid phase of particulate material which is dispersed and suspended within the liquid phase.
  • particulate material will range in size from about 0.1 to 1500 microns. More preferably such material will range in size from about 5 to 200 microns.
  • the particulate material utilized herein can comprise one or more types of detergent composition components which in particulate form are substantially insoluble in the nonaqueous liquid phase of the composition.
  • the types of particulate materials which can be utilized are described in detail as follows:
  • the most preferred type of particulate material useful for forming the solid phase of the detergent compositions herein comprises particles of a peroxygen bleaching agent.
  • a peroxygen bleaching agent may be organic or inorganic in nature. Inorganic peroxygen bleaching agents are frequently utilized in combination with a bleach activator.
  • Useful organic peroxygen bleaching agents include percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, Issued November 20, 1984; European Patent Application EP-A-133,354, Banks et al., Published February 20, 1985; and U.S. Patent 4,412,934, Chung et al., Issued November 1, 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid (NAPAA) as described in U.S. Patent 4,634,551, Issued January 6, 1987 to Burns et al.
  • NAPAA 6-nonylamino-6-oxoperoxycaproic acid
  • Inorganic peroxygen bleaching agents may also be used in particulate form in the detergent compositions herein.
  • Inorganic bleaching agents are in fact preferred.
  • Such inorganic peroxygen compounds include alkali metal perborate and percarbonate materials, most preferably the percarbonates.
  • sodium perborate e.g. mono- or tetra-hydrate
  • Suitable inorganic bleaching agents can also include sodium or potassium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide.
  • Persulfate bleach e.g., OXONE, manufactured commercially by DuPont
  • OXONE manufactured commercially by DuPont
  • inorganic peroxygen bleaches will be coated with silicate, borate, sulfate or water-soluble surfactants.
  • coated percarbonate particles are available from various commercial sources such as FMC, Solvay Interox, Tokai Denka and Degussa.
  • Inorganic peroxygen bleaching agents e.g., the perborates, the percarbonates, etc.
  • bleach activators which lead to the in situ production in aqueous solution (i.e., during use of the compositions herein for fabric laundering/bleaching) of the peroxy acid corresponding to the bleach activator.
  • Various non-limiting examples of activators are disclosed in U.S. Patent 4,915,854, Issued April 10, 1990 to Mao et al.; and U.S. Patent 4,412,934 Issued November 1, 1983 to Chung et al.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • R 1 N(R 5 )C(O)R 2 C(O)L or R 1 C(O)N(R 5 )R 2 C(O)L wherein R 1 is an alkyl group containing from about 6 to about 12 carbon atoms, R 2 is an alkylene containing from 1 to about 6 carbon atoms, R 5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenol sulfonate.
  • bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl) oxybenzenesulfonate, (6-decanamidocaproyl)oxybenzenesulfonate and mixtures thereof as described in the hereinbefore referenced U.S. Patent 4,634,551. Such mixtures are characterized herein as (6-C 8 -C 10 alkamido-caproyl)oxybenzenesulfonate.
  • Another class of useful bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al. in U.S. Patent 4,966, 723, Issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin-type is:
  • Still another class of useful bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae: wherein R 6 is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms.
  • lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, Issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
  • peroxygen bleaching agents are used as all or part of the essentially present particulate material, they will generally comprise from about 1% to 30% by weight of the composition. More preferably, peroxygen bleaching agent will comprise from about 1% to 20% by weight of the composition. Most preferably, peroxygen bleaching agent will be present to the extent of from about 3% to 15% by weight of the composition.
  • bleach activators can comprise from about 0.5% to 20%, more preferably from about 1% to 10%, by weight of the composition. Frequently, activators are employed such that the molar ratio of bleaching agent to activator ranges from about 1:1 to 10:1, more preferably from about 1.5:1 to 5:1. In addition, it has been found that bleach activators, when agglomerated with certain acid such as citric acid, are more chemically stable.
  • Another possible type of particulate material which can be suspended in the nonaqueous liquid detergent compositions herein includes ancillary anionic surfactants which are fully or partially insoluble in the nonaqueous liquid phase.
  • anionic surfactant with such solubility properties comprises primary or secondary alkyl sulfate anionic surfactants.
  • Such surfactants are those produced by the sulfation of higher C 8 -C 20 fatty alcohols.
  • R typically a linear C 8 - C 20 hydrocarbyl group, which may be straight chain or branched chain
  • M is a water-solubilizing cation.
  • R is typically a C 10 - C 14 alkyl
  • M is alkali metal.
  • R is about C 12 and M is sodium.
  • Conventional secondary alkyl sulfates may also be utilized as the essential anionic surfactant component of the solid phase of the compositions herein.
  • Conventional secondary alkyl sulfate surfactants are those materials which have the sulfate moiety distributed randomly along the hydrocarbyl "backbone" of the molecule. Such materials may be depicted by the structure: CH 3 (CH 2 ) n (CHOSO 3 - M + ) (CH 2 ) m CH 3 wherein m and n are integers of 2 or greater and the sum of m + n is typically about 9 to 15, and M is a water-solubilizing cation.
  • ancillary anionic surfactants such as alkyl sulfates will generally comprise from about 1% to 10% by weight of the composition, more preferably from about 1% to 5% by weight of the composition.
  • Alkyl sulfate used as all or part of the particulate material is prepared and added to the compositions herein separately from the unalkoxylated alkyl sulfate material which may form part of the alkyl ether sulfate surfactant component essentially utilized as part of the liquid phase herein.
  • particulate material which can be suspended in the nonaqueous liquid detergent compositions herein comprises an organic detergent builder material which serves to counteract the effects of calcium, or other ion, water hardness encountered during laundering/bleaching use of the compositions herein.
  • organic detergent builder material which serves to counteract the effects of calcium, or other ion, water hardness encountered during laundering/bleaching use of the compositions herein.
  • examples of such materials include the alkali metal, citrates, succinates, malonates, fatty acids, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates. Specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids and citric acid.
  • organic phosphonate type sequestering agents such as those which have been sold by Monsanto under the Dequest tradename and alkanehydroxy phosphonates. Citrate salts are highly preferred.
  • suitable organic builders include the higher molecular weight polymers and copolymers known to have builder properties.
  • such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic acid copolymers and their salts, such as those sold by BASF under the Sokalan trademark.
  • Another suitable type of organic builder comprises the water-soluble salts of higher fatty acids, i.e., "soaps".
  • these include alkali metal soaps such as the sodium, potassium, ammonium, and alkylolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms, and preferably from about 12 to about 18 carbon atoms.
  • Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids.
  • Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap.
  • insoluble organic detergent builders can generally comprise from about 2% to 20% by weight of the compositions herein. More preferably, such builder material can comprise from about 4% to 10% by weight of the composition.
  • particulate material which can be suspended in the nonaqueous liquid detergent compositions herein can comprise a material which serves to render aqueous washing solutions formed from such compositions generally alkaline in nature.
  • Such materials may or may not also act as detergent builders, i.e., as materials which counteract the adverse effect of water hardness on detergency performance.
  • alkalinity sources examples include water-soluble alkali metal carbonates, bicarbonates, borates, silicates and metasilicates.
  • water-soluble phosphate salts may also be utilized as alkalinity sources. These include alkali metal pyrophosphates, orthophosphates, polyphosphates and phosphonates. Of all of these alkalinity sources, alkali metal carbonates such as sodium carbonate are the most preferred.
  • the alkalinity source if in the form of a hydratable salt, may also serve as a desiccant in the nonaqueous liquid detergent compositions herein.
  • the presence of an alkalinity source which is also a desiccant may provide benefits in terms of chemically stabilizing those composition components such as the peroxygen bleaching agent which may be susceptible to deactivation by water.
  • the alkalinity source will generally comprise from about 1% to 15% by weight of the compositions herein. More preferably, the alkalinity source can comprise from about 2% to 10% by weight of the composition. Such materials, while water-soluble, will generally be insoluble in the nonaqueous detergent compositions herein. Thus such materials will generally be dispersed in the nonaqueous liquid phase in the form of discrete particles.
  • the detergent compositions herein can, and preferably will, contain various optional components.
  • Such optional components may be in either liquid or solid form.
  • the optional components may either dissolve in the liquid phase or may be dispersed within the liquid phase in the form of fine particles or droplets.
  • the detergent compositions herein may, in addition to the alkyl sulfates hereinbefore described, also contain other types of surfactant materials. Such additional surfactants must, of course, be compatible with other composition components and must not substantially adversely affect composition rheology, stability or performance.
  • Optional surfactants can be of the anionic, nonionic, cationic, and/or amphoteric type. If employed, optional surfactants will generally comprise from about 1% to 20% by weight of the compositions herein, more preferably from about 5% to 10% by weight of the compositions herein.
  • anionic surfactant material which may be optionally added to the detergent compositions herein comprises carboxylate-type anionics.
  • Carboxylate-type anionics include the C 10 -C 18 alkyl alkoxy carboxylates (especially the EO 1 to 5 ethoxycarboxylates) and the C 10 -C 18 sarcosinates, especially oleoyl sarcosinate.
  • Another common type of anionic surfactant material which may be optionally employed comprises the sulfonated anionic surfactants. Such materials include the C 8 -C 18 alkylbenzene sulfonates, the C 8 -C 18 paraffin sulfonates, and the C 8 -C 18 olefin sulfonates.
  • a preferred type of optional nonionic surfactant comprises surfactants which are ethylene oxide (EO) - propylene oxide (PO) block polymers.
  • Materials of this type are well known nonionic surfactants which have been marketed under the tradename Pluronic. These materials are formed by adding blocks of ethylene oxide moieties to the ends of polypropylene glycol chains to adjust the surface active properties of the resulting block polymers.
  • Pluronic block polymer nonionics of this type are described in greater detail in Davidsohn and Milwidsky; Synthetic Detergents, 7th Ed. ; Longman Scientific and Technical (1987) at pp. 34-36 and pp. 189-191 and in U.S. Patents 2,674,619 and 2,677,700. All of these publications are incorporated herein by reference.
  • Pluronic type nonionic surfactants are believed to function as effective suspending agents for the particulate material which is dispersed in the liquid phase of the detergent compositions herein.
  • the detergent compositions herein may also optionally contain one or more types of inorganic detergent builders beyond those listed hereinbefore that also function as alkalinity sources.
  • optional inorganic builders can include, for example, aluminosilicates such as zeolites. Aluminosilicate zeolites, and their use as detergent builders are more fully discussed in Corkill et al., U.S. Patent No. 4,605,509; Issued August 12, 1986, the disclosure of which is incorporated herein by reference.
  • crystalline layered silicates such as those discussed in this '509 U.S. patent, are also suitable for use in the detergent compositions herein.
  • optional inorganic detergent builders can comprise from about 2% to 15% by weight of the compositions herein.
  • the detergent compositions herein may also optionally contain one or more types of detergent enzymes.
  • Such enzymes can include proteases, amylases, cellulases and lipases. Such materials are known in the art and are commercially available. They may be incorporated into the nonaqueous liquid detergent compositions herein in the form of suspensions, "marumes" or "prills".
  • Another suitable type of enzyme comprises those in the form of slurries of enzymes in nonionic surfactants, e.g., the enzymes marketed by Novo Nordisk under the tradename "SL” or the microencapsulated enzymes marketed by Novo Nordisk under the tradename "LDP.”
  • Enzymes added to the compositions herein in the form of conventional enzyme prills are especially preferred for use herein.
  • Such prills will generally range in size from about 100 to 1,000 microns, more preferably from about 200 to 800 microns and will be suspended throughout the nonaqueous liquid phase of the composition.
  • Prills in the compositions of the present invention have been found, in comparison with other enzyme forms, to exhibit especially desirable enzyme stability in terms of retention of enzymatic activity over time.
  • compositions which utilize enzyme prills need not contain conventional enzyme stabilizing such as must frequently be used when enzymes are incorporated into aqueous liquid detergents.
  • nonaqueous liquid detergent compositions herein will typically comprise from about 0.001% to 5%, preferably from about 0.01% to 1% by weight, of a commercial enzyme preparation.
  • Protease enzymes for example, are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • the detergent compositions herein may also optionally contain a chelating agent which serves to chelate metal ions, e.g., iron and/or manganese, within the nonaqueous detergent compositions herein.
  • a chelating agent which serves to chelate metal ions, e.g., iron and/or manganese, within the nonaqueous detergent compositions herein.
  • Such chelating agents thus serve to form complexes with metal impurities in the composition which would otherwise tend to deactivate composition components such as the peroxygen bleaching agent.
  • Useful chelating agents can include amino carboxylates, phosphonates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof.
  • Amino carboxylates useful as optional chelating agents include ethylenediaminetetraacetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetrapropionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, ethylenediaminedisuccinates and ethanoldiglycines.
  • the alkali metal salts of these materials are preferred.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of this invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylene-phosphonates) as DEQUEST.
  • these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Preferred chelating agents include hydroxyethyldiphosphonic acid (HEDP), diethylene triamine penta acetic acid (DTPA), ethylenediamine disuccinic acid (EDDS) and dipicolinic acid (DPA) and salts thereof.
  • the chelating agent may, of course, also act as a detergent builder during use of the compositions herein for fabric laundering/bleaching.
  • the chelating agent if employed, can comprise from about 0.1% to 4% by weight of the compositions herein. More preferably, the chelating agent will comprise from about 0.2% to 2% by weight of the detergent compositions herein.
  • the detergent compositions herein may also optionally contain a polymeric material which serves to enhance the ability of the composition to maintain its solid particulate components in suspension.
  • a polymeric material which serves to enhance the ability of the composition to maintain its solid particulate components in suspension.
  • Such materials may thus act as thickeners, viscosity control agents and/or dispersing agents.
  • Such materials are frequently polymeric polycarboxylates but can include other polymeric materials such as polyvinylpyrrolidone (PVP).
  • Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight of the polymer.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000, and most preferably from about 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, salts.
  • Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, Diehl, U.S. Patent 3,308,067, issued March 7, 1967. Such materials may also perform a builder function.
  • the optional thickening, viscosity control and/or dispersing agents should be present in the compositions herein to the extent of from about 0.1% to 4% by weight. More preferably, such materials can comprise from about 0.5% to 2% by weight of the detergents compositions herein.
  • the detergent compositions herein may also optionally contain bleach activators which are liquid in form at room temperature and which can be added as liquids to the nonaqueous liquid phase of the detergent compositions herein.
  • One such liquid bleach activator is acetyl triethyl citrate (ATC).
  • ATC acetyl triethyl citrate
  • Other examples include glycerol triacetate and nonanoyl valerolactam.
  • Liquid bleach activators can be dissolved in the nonaqueous liquid phase of the compositions herein.
  • the detergent compositions herein may also optionally contain conventional brighteners, suds suppressors, silicone oils, bleach catalysts, and/or perfume materials.
  • Such brighteners, suds suppressors, silicone oils, bleach catalysts, and perfumes must, of course, be compatible and non-reactive with the other composition components in a nonaqueous environment. If present, brighteners suds suppressors and/or perfumes will typically comprise from about 0.1% to 2% by weight of the compositions herein.
  • Suitable bleach catalysts include the manganese based complexes disclosed in US 5,246,621, US 5,244,594, US 5,114,606 and US 5,114,611.
  • nonaqueous liquid detergent compositions herein are in the form of bleaching agent and/or other materials in particulate form as a solid phase suspended in and dispersed throughout a nonaqueous liquid phase.
  • the nonaqueous liquid phase will comprise from about 35% to 99%, more preferably from about 50% to 95%, by weight of the composition with the dispersed solid phase comprising from about 1% to 65%, more preferably from about 5% to 50%, by weight of the composition.
  • the particulate-containing liquid detergent compositions of this invention are substantially nonaqueous (or anhydrous) in character. While very small amounts of water may be incorporated into such compositions as an impurity in the essential or optional components, the amount of water should in no event exceed about 5% by weight of the compositions herein. More preferably, water content of the nonaqueous detergent compositions herein will comprise less than about 1% by weight.
  • the particulate-containing nonaqueous liquid detergent compositions herein will be relatively viscous and phase stable under conditions of commercial marketing and use of such compositions. Frequently the viscosity of the compositions herein will range from about 300 to 5,000 cps, more preferably from about 500 to 3,000 cps. For purposes of this invention, viscosity is measured with a Brookfield Viscometer using a RV #5 spindle at 50 rpm.
  • nonaqueous liquid detergent compositions herein can be prepared by combining the essential and optional components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form the phase stable compositions herein.
  • essential and certain preferred optional components will be combined in a particular order and under certain conditions.
  • a co-melted admixture of the two essential components of the surfactant mixture is formed by heating an admixture of the alkyl polyalkoxylate sulfate anionic surfactant and the polyhydroxy fatty acid amide nonionic surfactant along with some or all of the low polarity organic solvent.
  • a co-melted admixture can generally be formed by heating the surfactant/solvent mixture to a temperature from about 30°C to 100°C.
  • the alcohol alkoxylate nonionic can be added at this point provided the temperature of the mixture does not exceed 80°C during such addition.
  • the co-melted admixture formed as hereinbefore described is maintained under shear agitation at a temperature from about 40°C to 100°C for a period of from about 2 minutes to 20 hours.
  • a vaccuum can be applied to the admixture at this point.
  • the co-melt/diluent combination is cooled to a temperature of from about 0°C to 30°C.
  • This cooling step serves to form a structured, surfactant-containing liquid base into which the particulate material of the detergent compositions herein can be added and dispersed.
  • Particulate material is added in a fourth process step by combining the particulate material with the liquid base which is maintained under conditions of shear agitation.
  • the liquid base which is maintained under conditions of shear agitation.
  • an alkyl sulfate anionic surfactant e.g., sodium lauryl sulfate
  • particles of substantially all of an organic builder e.g., citrate and/or fatty acid, and/or an alkalinity source, e.g., sodium carbonate
  • an organic builder e.g., citrate and/or fatty acid
  • an alkalinity source e.g., sodium carbonate
  • Other solid form optional ingredients can then be added to the composition at this point. Agitation of the mixture is continued, and if necessary, can be increased at this point to form a uniform dispersion of insoluble solid phase particulates within the liquid phase.
  • the particles of the highly preferred peroxygen bleaching agent can be added to the composition, again while the mixture is maintained under shear agitation.
  • the peroxygen bleaching agent material By adding the peroxygen bleaching agent material last, or after all or most of the other components, and especially after alkalinity source particles, have been added, desirable stability benefits for the peroxygen bleach can be realized. If enzyme prills are incorporated, they are preferably added to the nonaqueous liquid matrix last.
  • agitation of the mixture is continued for a period of time sufficient to form compositions having the requisite viscosity and phase stability characteristics. Frequently this will involve agitation for a period of from about 1 to 30 minutes.
  • one or more of the solid components may be added to the agitated mixture as a slurry of particles premixed with a minor portion of one or more of the liquid components.
  • a premix of a small fraction of the alcohol alkoxylate and/or nonaqueous, low-polarity solvent with particles of the organic builder material and/or the particles of the inorganic alkalinity source and/or particles of a bleach activator may be separately formed and added as a slurry to the agitated mixture of composition components. Addition of such slurry premixes should precede addition of peroxygen bleaching agent and/or enzyme particles which may themselves be part of a premix slurry formed in analogous fashion.
  • compositions of this invention can be used to form aqueous washing solutions for use in the laundering and bleaching of fabrics.
  • an effective amount of such compositions is added to water, preferably in a conventional fabric laundering automatic washing machine, to form such aqueous laundering/bleaching solutions.
  • the aqueous washing/bleaching solution so formed is then contacted, preferably under agitation, with the fabrics to be laundered and bleached therewith.
  • An effective amount of the liquid detergent compositions herein added to water to form aqueous laundering/bleaching solutions can comprise amounts sufficient to form from about 500 to 7,000 ppm of composition in aqueous solution. More preferably, from about 1,000 to 3,000 ppm of the detergent compositions herein will be provided in aqueous washing/bleaching solution.
  • compositions according to the present invention and two sodium carbonate-containing formulations of the present invention are prepared. These compositions are described in Table I.
  • Composition A the liquid base of the compositions of the present invention, is prepared by co-melting and admixing all of its components at 50°C. It is a translucid structured liquid in which air bubbles remain entrapped.
  • Compositions B and C are formed by adding the sodium carbonate particles at the top of the Composition A base liquid. Both compositions B and C exhibit very good solid suspending properties. Most of the sodium carbonate particles remain in suspension within the product after four weeks of storage at room temperature.
  • a bleach-containing nonaqueous liquid laundry detergent is prepared having the composition as set forth in Table II.
  • Surfactant preparation by-products 2.0 Solids Na Topped palm kernel fatty soaps 6.0 Na 3 Citrate, anhydrous 2.0 Sodium percarbonate 10.0 Sodium carbonate 8.59 Sodium hydroxyethyl diphosphonate (HEDP) 1.84 Brightener 0.15 Silicone Oil DB-100 0.47 100% ⁇
  • composition is prepared in the general manner as hereinbefore described.
  • This composition is a stable anhydrous heavy duty liquid laundry detergent which provides excellent stain and soil removal performance when used in normal fabric laundering operations.
  • a bleach-containing nonaqueous liquid laundry detergent is prepared having the composition as set forth in Table III.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
EP95200982A 1995-04-19 1995-04-19 Compositions détergentes non-aqueuses liquides contenant des particules Withdrawn EP0738778A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP95200982A EP0738778A1 (fr) 1995-04-19 1995-04-19 Compositions détergentes non-aqueuses liquides contenant des particules
JP8531755A JPH11503789A (ja) 1995-04-19 1996-03-27 非水性の粒子含有液体洗剤組成物
PCT/US1996/004223 WO1996033254A1 (fr) 1995-04-19 1996-03-27 Compositions non aqueuses de detergent liquide particulaire
CA 2216937 CA2216937A1 (fr) 1995-04-19 1996-03-27 Compositions non aqueuses de detergent liquide particulaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95200982A EP0738778A1 (fr) 1995-04-19 1995-04-19 Compositions détergentes non-aqueuses liquides contenant des particules

Publications (1)

Publication Number Publication Date
EP0738778A1 true EP0738778A1 (fr) 1996-10-23

Family

ID=8220199

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95200982A Withdrawn EP0738778A1 (fr) 1995-04-19 1995-04-19 Compositions détergentes non-aqueuses liquides contenant des particules

Country Status (4)

Country Link
EP (1) EP0738778A1 (fr)
JP (1) JPH11503789A (fr)
CA (1) CA2216937A1 (fr)
WO (1) WO1996033254A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000507A2 (fr) * 1996-06-28 1998-01-08 The Procter & Gamble Company Compositions detergentes non aqueuses contenant des precurseurs de blanchiment
WO1998000510A3 (fr) * 1996-06-28 1998-07-02 Procter & Gamble Composition detergente liquide non aqueuse contenant des precurseurs de blanchiment
WO1999000481A1 (fr) * 1997-06-27 1999-01-07 The Procter & Gamble Company Compositions detergentes non aqueuses contenant des particules et des compositions de precurseurs de blanchiment
WO1999000482A1 (fr) * 1997-06-27 1999-01-07 The Procter & Gamble Company Compositions detergentes non aqueuses renfermant des particules ainsi qu'un agent de blanchiment
WO1999029827A1 (fr) * 1997-12-11 1999-06-17 The Procter & Gamble Company Compositions de detergent liquide non aqueux contenant des composes d'argile d'amine quaternisee ethoxylee
WO2001066685A1 (fr) * 2000-03-08 2001-09-13 Henkel Kommanditgesellschaft Auf Aktien Detergents liquides non aqueux a activateurs de blanchiment liquides
CN1091642C (zh) * 1996-12-06 2002-10-02 株式会社日本触媒 高级仲醇烷氧基化物混合物、其制备方法、以及使用该成分的洗涤剂和乳化剂
DE10313457A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Wasch- oder Reinigungsmittel
DE10313456A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Formstabile Reinigungsmittelportion
DE10313458A1 (de) * 2003-03-25 2004-11-18 Henkel Kgaa Wasch- oder Reinigungsmittel
WO2011088089A1 (fr) 2010-01-12 2011-07-21 The Procter & Gamble Company Intermédiaires et tensioactifs utiles dans des compositions de nettoyage ménager et d'hygiène personnelle, et leurs procédés de fabrication
WO2012112828A1 (fr) 2011-02-17 2012-08-23 The Procter & Gamble Company Sulfonates d'alkylphényle linéaires d'origine biologique
WO2012138423A1 (fr) 2011-02-17 2012-10-11 The Procter & Gamble Company Compositions comprenant des mélanges de sulfonates d'alkylphényle c10-c13
US10662396B2 (en) 2017-09-27 2020-05-26 Ecolab Usa Inc. Use of propoxylated surfactant or polymer in foaming applications to control viscoelasticity in highly active liquid formulations

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897188B2 (en) 2001-07-17 2005-05-24 Ecolab, Inc. Liquid conditioner and method for washing textiles
US8110537B2 (en) 2003-01-14 2012-02-07 Ecolab Usa Inc. Liquid detergent composition and methods for using
US7682403B2 (en) 2004-01-09 2010-03-23 Ecolab Inc. Method for treating laundry
CN102105443B (zh) 2008-03-28 2014-05-28 埃科莱布有限公司 磺基过氧羧酸、它们的制备和用作漂白剂和抗微生物剂的方法
US8809392B2 (en) 2008-03-28 2014-08-19 Ecolab Usa Inc. Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents
US8871807B2 (en) 2008-03-28 2014-10-28 Ecolab Usa Inc. Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
WO2013148200A1 (fr) 2012-03-30 2013-10-03 Ecolab Usa Inc. Utilisation de l'acide peracétique/peroxyde d'hydrogène et d'agents réducteurs de peroxyde pour le traitement des fluides de forage, des fluides frac, des eaux refoulées et des eaux usées
US10165774B2 (en) 2013-03-05 2019-01-01 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants
US20140256811A1 (en) 2013-03-05 2014-09-11 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
US8822719B1 (en) 2013-03-05 2014-09-02 Ecolab Usa Inc. Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring
WO2018237255A1 (fr) 2017-06-22 2018-12-27 Ecolab Usa Inc. Blanchiment à l'aide d'acide peroxyformique et d'un catalyseur à l'oxygène

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120659A2 (fr) * 1983-03-28 1984-10-03 Imperial Chemical Industries Plc Compositions détergentes
FR2603297A1 (fr) * 1986-08-28 1988-03-04 Colgate Palmolive Co Compositions detergentes liquides stabilisees a l'aide d'un sulfonate d'alkyle superieur ou d'un sulfate d'alkyle superieur polyether et leur procede d'utilisation
WO1992002610A1 (fr) * 1990-08-02 1992-02-20 Henkel Kommanditgesellschaft Auf Aktien Detergents liquides
WO1992006158A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Compositions detergentes contenant un amide de l'acide gras de polyhydroxy et un sulfate d'alkyle alcoxyle
WO1992009678A1 (fr) * 1990-11-26 1992-06-11 S.B. Chemicals Limited Compositions detergentes liquides
EP0572723A1 (fr) * 1992-06-02 1993-12-08 The Procter & Gamble Company Compositions détergentes liquides structurées
WO1994024246A1 (fr) * 1993-04-08 1994-10-27 The Procter & Gamble Company Agents tensioactifs a base de sulfate d'alkyle (2,3) secondaire utilises dans des compositions detersives avec des amides d'acide gras polyhydroxy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703798A (en) * 1950-05-25 1955-03-08 Commercial Solvents Corp Detergents from nu-monoalkyl-glucamines
DE1072347B (fr) * 1956-05-14
DE3621536A1 (de) * 1986-06-27 1988-01-07 Henkel Kgaa Fluessiges waschmittel und verfahren zu seiner herstellung
DE3808695A1 (de) * 1988-03-16 1989-10-05 Henkel Kgaa Fluessiges waschmittel
US5174927A (en) * 1990-09-28 1992-12-29 The Procter & Gamble Company Process for preparing brightener-containing liquid detergent compositions with polyhydroxy fatty acid amines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120659A2 (fr) * 1983-03-28 1984-10-03 Imperial Chemical Industries Plc Compositions détergentes
US4615820A (en) * 1983-03-28 1986-10-07 Imperial Chemical Industries Plc Detergent compositions
FR2603297A1 (fr) * 1986-08-28 1988-03-04 Colgate Palmolive Co Compositions detergentes liquides stabilisees a l'aide d'un sulfonate d'alkyle superieur ou d'un sulfate d'alkyle superieur polyether et leur procede d'utilisation
WO1992002610A1 (fr) * 1990-08-02 1992-02-20 Henkel Kommanditgesellschaft Auf Aktien Detergents liquides
WO1992006158A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Compositions detergentes contenant un amide de l'acide gras de polyhydroxy et un sulfate d'alkyle alcoxyle
WO1992009678A1 (fr) * 1990-11-26 1992-06-11 S.B. Chemicals Limited Compositions detergentes liquides
EP0572723A1 (fr) * 1992-06-02 1993-12-08 The Procter & Gamble Company Compositions détergentes liquides structurées
WO1994024246A1 (fr) * 1993-04-08 1994-10-27 The Procter & Gamble Company Agents tensioactifs a base de sulfate d'alkyle (2,3) secondaire utilises dans des compositions detersives avec des amides d'acide gras polyhydroxy

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165959A (en) * 1996-06-28 2000-12-26 The Procter & Gamble Company Nonaqueous detergent compositions containing bleach precursors
WO1998000507A3 (fr) * 1996-06-28 1998-05-28 Procter & Gamble Compositions detergentes non aqueuses contenant des precurseurs de blanchiment
WO1998000510A3 (fr) * 1996-06-28 1998-07-02 Procter & Gamble Composition detergente liquide non aqueuse contenant des precurseurs de blanchiment
WO1998000507A2 (fr) * 1996-06-28 1998-01-08 The Procter & Gamble Company Compositions detergentes non aqueuses contenant des precurseurs de blanchiment
US6455485B1 (en) 1996-06-28 2002-09-24 The Procter & Gamble Company Nonaqueous liquid detergent compositions containing bleach precursors
CN1091642C (zh) * 1996-12-06 2002-10-02 株式会社日本触媒 高级仲醇烷氧基化物混合物、其制备方法、以及使用该成分的洗涤剂和乳化剂
US6207634B1 (en) 1997-06-27 2001-03-27 The Procter & Gamble Company Non-aqueous, particulate-containing detergent compositions containing bleach
WO1999000482A1 (fr) * 1997-06-27 1999-01-07 The Procter & Gamble Company Compositions detergentes non aqueuses renfermant des particules ainsi qu'un agent de blanchiment
WO1999000481A1 (fr) * 1997-06-27 1999-01-07 The Procter & Gamble Company Compositions detergentes non aqueuses contenant des particules et des compositions de precurseurs de blanchiment
WO1999029827A1 (fr) * 1997-12-11 1999-06-17 The Procter & Gamble Company Compositions de detergent liquide non aqueux contenant des composes d'argile d'amine quaternisee ethoxylee
US6384008B1 (en) 1997-12-11 2002-05-07 The Procter & Gamble Company Non-aqueous liquid detergent compositions containing ethoxylated quaternized amine clay compounds
WO2001066685A1 (fr) * 2000-03-08 2001-09-13 Henkel Kommanditgesellschaft Auf Aktien Detergents liquides non aqueux a activateurs de blanchiment liquides
DE10011273A1 (de) * 2000-03-08 2001-09-20 Henkel Kgaa Flüssigwaschmittel mit flüssigen Bleichaktivatoren
DE10313456A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Formstabile Reinigungsmittelportion
DE10313457A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Wasch- oder Reinigungsmittel
DE10313458A1 (de) * 2003-03-25 2004-11-18 Henkel Kgaa Wasch- oder Reinigungsmittel
WO2011088089A1 (fr) 2010-01-12 2011-07-21 The Procter & Gamble Company Intermédiaires et tensioactifs utiles dans des compositions de nettoyage ménager et d'hygiène personnelle, et leurs procédés de fabrication
US8933131B2 (en) 2010-01-12 2015-01-13 The Procter & Gamble Company Intermediates and surfactants useful in household cleaning and personal care compositions, and methods of making the same
WO2012112828A1 (fr) 2011-02-17 2012-08-23 The Procter & Gamble Company Sulfonates d'alkylphényle linéaires d'origine biologique
WO2012138423A1 (fr) 2011-02-17 2012-10-11 The Procter & Gamble Company Compositions comprenant des mélanges de sulfonates d'alkylphényle c10-c13
US9193937B2 (en) 2011-02-17 2015-11-24 The Procter & Gamble Company Mixtures of C10-C13 alkylphenyl sulfonates
US10662396B2 (en) 2017-09-27 2020-05-26 Ecolab Usa Inc. Use of propoxylated surfactant or polymer in foaming applications to control viscoelasticity in highly active liquid formulations
US11136533B2 (en) 2017-09-27 2021-10-05 Ecolab Usa Inc. Use of propoxylated surfactant or polymer in foaming applications to control viscoelasticity in highly active liquid formulations
US11549083B2 (en) 2017-09-27 2023-01-10 Ecolab Usa Inc. Use of propoxylated surfactant or polymer in foaming applications to control viscoelasticity in highly active liquid formulations

Also Published As

Publication number Publication date
CA2216937A1 (fr) 1996-10-24
WO1996033254A1 (fr) 1996-10-24
JPH11503789A (ja) 1999-03-30

Similar Documents

Publication Publication Date Title
EP0842256B1 (fr) Compositions detergentes liquides non aqueuses contenant des particules et un agent tensioactif a base de sulfonate de benzene d'alkyle
EP0783563B1 (fr) Compositions detergentes liquides non aqueuses contenant un agent de blanchiment
US5814592A (en) Non-aqueous, particulate-containing liquid detergent compositions with elasticized, surfactant-structured liquid phase
US6281187B1 (en) Non-aqueous, speckle-containing liquid detergent compositions
US6277804B1 (en) Preparation of non-aqueous, particulate-containing liquid detergent compositions with surfactant-structured liquid phase
US6576602B1 (en) Nonaqueous, particulate-containing liquid detergent compositions with surfactant-structured liquid phase
EP0738778A1 (fr) Compositions détergentes non-aqueuses liquides contenant des particules
EP0907711B2 (fr) Compositions detergentes non aqueuses et comprenant un tensioactif specifique de sulfonate alkylbenzene
EP0784669A1 (fr) Procede de preparation de compositions detergentes liquides, non aqueuses et contenant un agent de blanchiment
US20030100468A1 (en) Nonaqueous, particulate-containing liquid detergent compositions with alkyl benzene sulfonate surfactant
WO1998000518A1 (fr) Preparation de compositions detergents liquides non aqueuses contenant des particules, avec pretraitement des elements secs
WO1998000515A1 (fr) Compositions nettoyantes liquides non aqueuses contenant des particules enrobees
CA2258667A1 (fr) Compositions detergentes non aqueuses comprenant un tensioactif specifique d'alkyle benzene sulfonate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19970421

17Q First examination report despatched

Effective date: 19990615

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19991228