EP0731261B1 - Control method of a cooling circuit of an internal combustion engine, especially for motor vehicles - Google Patents

Control method of a cooling circuit of an internal combustion engine, especially for motor vehicles Download PDF

Info

Publication number
EP0731261B1
EP0731261B1 EP96100637A EP96100637A EP0731261B1 EP 0731261 B1 EP0731261 B1 EP 0731261B1 EP 96100637 A EP96100637 A EP 96100637A EP 96100637 A EP96100637 A EP 96100637A EP 0731261 B1 EP0731261 B1 EP 0731261B1
Authority
EP
European Patent Office
Prior art keywords
cooling medium
flow
temperature
fan
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96100637A
Other languages
German (de)
French (fr)
Other versions
EP0731261A1 (en
Inventor
Karsten Dipl.-Ing. Michels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP0731261A1 publication Critical patent/EP0731261A1/en
Application granted granted Critical
Publication of EP0731261B1 publication Critical patent/EP0731261B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/30Cooling after the engine is stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Definitions

  • the invention relates to a method for regulating a cooling circuit of an internal combustion engine, in particular of a motor vehicle, with at least one coolant pump for Setting a coolant flow, a cooler module, in which a heat exchange between an air flow adjustable by means of a blower and the coolant takes place at which the speed of the coolant pump and the speed of the fan at least in Depending on a temperature setpoint of the coolant can be regulated.
  • German patent application DE 38 10 174 A1 a device for regulating the Coolant temperature of an internal combustion engine for use in a motor vehicle described, in which the internal combustion engine on the one hand with coolant lines Heat exchanger (cooler module) and on the other hand is connected to a cooling water pump.
  • the cooling water circuit is closed by a cooling water connection line between the heat exchanger and the cooling water pump.
  • the heat exchanger is still a fan with adjustable speed for generating an air flow through the heat exchanger assigned.
  • the device further includes a control device, which in Dependency of a variable temperature setpoint of the cooling water both the cooling water flow generating coolant pump as well as the air flow through the heat exchanger generating blower controls. In the determination of the variable temperature setpoint the operating variables of the internal combustion engine are included.
  • the object of the invention is a method for regulating a cooling circuit to create for an internal combustion engine in which the power consumption of the coolant pump as well as the blower while maintaining an optimal coolant temperature is kept low.
  • the speed of the coolant pump and the speed are regulated of the blower by the control unit by comparing the time efficiencies of Coolant pump and blower for the heat flow transferred to the cooler module.
  • a heat transfer coefficient is used for this determined for the heat flow transferred to the cooler module. From this heat transfer coefficient, which is mainly from the heat transfer coefficient of the heat flow from the coolant into the material of the cooler module and from that Heat transfer coefficient of the heat flow from the cooler module into the flow Air depends, the partial derivatives are now based on the generated coolant flow and according to the airflow generated as a measure of the temporal efficiency of the Coolant pump and the blower formed.
  • a preferred further development provides that the temporal efficiencies of the coolant pump and the blower for the heat flow transferred to the cooler module to the the generation of the corresponding coolant flow or the corresponding air flow necessary energy input are related and thus comparative values for the efficiency-dependent control of the coolant pump and the fan can be obtained.
  • both the one to be applied must be in the control unit Energy for the coolant pump depending on the coolant flow generated with it as well as that to be applied for a specific air flow through the cooler module Energy stored depending on the driving speed of the motor vehicle.
  • a temperature limit for the coolant set which preferably the end of the warm-up phase of the internal combustion engine indicates, the control of the coolant pump and the blower depending the comparison of the time efficiencies for the heat flow transferred to the cooler module only after reaching this temperature limit.
  • the coolant pump maintains a coolant flow a predetermined differential temperature of the coolant between the entry into the internal combustion engine and generated its exit.
  • the coolant circuit has a second flow branch that does not have the cooler module the coolant temperature is adjusted until it is reached of the temperature setpoint via the connection of which its cross section can be changed Flow branch.
  • This connection is preferably a temperature-dependent Valve, e.g. B. realized a thermostat. If the temperature setpoint is exceeded is the speed of the coolant pump and the fan to maintain the temperature setpoint by comparing their temporal efficiencies depending on the temperature setpoint regulated.
  • the coolant circuit shown in FIG. 1 for an internal combustion engine 1 of a motor vehicle consists of several line branches a to f, the opening cross sections of which are controlled by a temperature-dependent valve 6 (thermostat).
  • the direction of rotation of the coolant flow, which is driven by the coolant pump 3, is indicated by arrows.
  • the line branch a is led via a cooler module 2 for cooling the coolant emerging from the internal combustion engine 1. Air is drawn in from outside the motor vehicle by the fan 4 arranged behind the radiator module 2. When flowing through the cooler module 2, a heat exchange takes place between the air flow m ⁇ l adjustable by the blower 4 and the coolant flow m ⁇ w .
  • a line branch b is provided, the cross section of which can be controlled by the temperature-dependent valve 6 in order to influence the coolant temperature.
  • the line branch c has an expansion tank 7 and serves to regulate the pressure in the entire coolant circuit.
  • a heat exchanger 8 for the interior heating of the motor vehicle and a cooler 9 and 10 for cooling the engine oil and the transmission oil are arranged in the additional line branches d to f. These line branches d to f are optional.
  • the corresponding cooling or heating functions can also be solved in other ways.
  • the coolant circuit includes a control unit 5, for example, the control unit of the internal combustion engine, the sen as an input signal the output signal S of the coolant temperature ⁇ w, is obtained at the outlet from the engine detected temperature sensor 11 and pump via the output signals S, S air and S therm both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.
  • a control unit 5 for example, the control unit of the internal combustion engine, the sen as an input signal the output signal S of the coolant temperature ⁇ w, is obtained at the outlet from the engine detected temperature sensor 11 and pump via the output signals S, S air and S therm both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.
  • the warm-up V1 of the internal combustion engine As illustrated in FIG. 2, three cases are distinguished in the method according to the invention; the warm-up V1 of the internal combustion engine, the driving mode V2 at the operating temperature of the coolant and the run-on V3.
  • the first step A1 it is checked whether the internal combustion engine 1 has been started., This is the case, a comparison is made of the coolant temperature ⁇ w, (output signal S sen of the temperature sensor 11) at the engine outlet to a termination of the warm-up phase ⁇ V1 characterizing temperature limit value w , warm. At a coolant temperature ⁇ w, below this temperature limit, warm-up V1 is detected. If the coolant temperature ⁇ w, the temperature limit ⁇ w, warml has been reached, the coolant circuit is controlled according to the algorithm for driving mode V2 at operating temperature.
  • the coolant circuit is controlled using an algorithm for the run-on V3. If the coolant temperature ⁇ w is below the temperature limit ⁇ w, then the control stops until the internal combustion engine 1 is started again.
  • the coolant temperature ⁇ w is compared in a first method step , is at the engine outlet with a coolant start temperature ⁇ w, start . If the coolant temperature is below the coolant start value ⁇ w, start , the coolant pump 3 starts with a delay of the time period t start in order to keep the heat flow from components of the internal combustion engine 1 into the coolant as low as possible and thus to achieve a faster heating of the components .
  • the coolant flow m ⁇ w generated by the coolant pump 3 is continuously increased until, for the first time, the minimum coolant flow m ⁇ w , min for maintaining the differential temperature setpoint ⁇ w, Mot is intended between Motorein- reaches and exits.
  • the control signal S pump, min for the coolant pump 3 is calculated in the control unit 5 from the minimum coolant flow m ⁇ w , min . From the first time the minimum coolant flow m ⁇ w , min is reached, the coolant pump 3 is regulated to maintain the differential temperature setpoint ⁇ w, Mot, coolant with a control signal S pump, warml .
  • the actual differential temperature ⁇ w, Mot, required for the control is derived from the heat flow Q ⁇ Mot from the internal combustion engine into the coolant, which in turn is calculated from the current coolant flow m ⁇ w , the current engine load L Mot and the engine speed n.
  • the heat flow Q ⁇ Mot is preferably stored as a map in the control unit 5 for the special internal combustion engine 1.
  • the control signal S pump for the coolant pump is therefore assigned a dynamic transmission behavior, the time constants T stg of which are selected so that the time behavior of the coolant pump corresponds approximately to the behavior of the heat flow Q ⁇ Mot from the internal combustion engine into the coolant.
  • the blower 4 is not activated, ie in addition to the airflow generated by the dynamic pressure from the vehicle movement, no further airflow m ⁇ l is generated by the cooler module 2.
  • the warm-up phase V1 has ended when the current coolant temperature ⁇ w, the temperature limit value den w, warml is reached for the first time.
  • the coolant temperature is also controlled as a function of a temperature setpoint ⁇ w, according to the algorithm for the Driving mode V2 takes place at operating temperature.
  • the temperature setpoint ⁇ w, set is first calculated.
  • the optimal temperature setpoint ⁇ w, for the given engine temperature with variable engine load L Mot , engine speed n and coolant flow m ⁇ w is stored.
  • the control temperature ⁇ w, therm results for the temperature-dependent valve 6, from which the control signal S therm is determined for the temperature-dependent valve 6.
  • the valve 6 regulates the coolant temperature ⁇ w via the coolant flow conditions between the line branch a led via the cooler module 2 and the line branch b.
  • the temperature setpoint is ⁇ w
  • the engine outlet is hot by a difference value ⁇ w
  • K ⁇ ⁇ k, l ⁇ 1 P L ⁇ K, wapu . 1 P wapu
  • the coolant circuit is simultaneously used to cool the engine oil via a cooler 9, the current oil temperature ⁇ oil can be monitored with a sensor (not shown). Exceeds the current oil temperature ⁇ oil has a temperature limit value ⁇ oil, cross so the coolant temperature is gradually ⁇ w, is lowered until the oil temperature ⁇ oil drops below this limit temperature value. The coolant temperature required for the selected engine temperature is then set again.
  • the dynamic behavior of the control in the event of brief changes in the engine load L Mot and the engine speed n is different for compliance with the differential temperature setpoint ⁇ w, Mot, setpoint and the temperature setpoint ⁇ w, setpoint.
  • the control according to the differential temperature setpoint ⁇ w, Mot, soll corresponds in its dynamics to that of warming up V1.
  • the regulation according to the temperature setpoint ⁇ w should be done faster by varying the valve current S therm and the speeds of the coolant pump 3 and fan 4.
  • a compromise must be found between an energetic optimum and the temperature constancy of the components of the internal combustion engine 1. For energy purposes, it makes sense to allow brief temperature changes in the components, such as those that occur during the overtaking process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors, insbesondere eines Kraftfahrzeuges, mit mindestens einer Kühlmittelpumpe zur Einstellung eines Kühlmittelstromes, einem Kühlermodul, in dem ein Wärmeaustausch zwischen einem mittels eines Gebläses einstellbaren Luftstroms und dem Kühlmittel erfolgt, bei dem die Drehzahl der Kühlmittelpumpe und die Drehzahl des Gebläses mindestens in Abhängigkeit eines Temperatur-Sollwertes des Kühlmittels geregelt werden.The invention relates to a method for regulating a cooling circuit of an internal combustion engine, in particular of a motor vehicle, with at least one coolant pump for Setting a coolant flow, a cooler module, in which a heat exchange between an air flow adjustable by means of a blower and the coolant takes place at which the speed of the coolant pump and the speed of the fan at least in Depending on a temperature setpoint of the coolant can be regulated.

In der deutschen Offenlegungsschrift DE 38 10 174 A1 ist eine Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine für den Einsatz in einem Kraftfahrzeug beschrieben, bei der die Brennkraftmaschine über Kühlmittelleitungen einerseits mit einem Wärmetauscher (Kühlermodul) und andererseits mit einer Kühlwasserpumpe verbunden ist. Der Kühlwasserkreislauf wird geschlossen durch eine Kühlwasserverbindungsleitung zwischen dem Wärmetauscher und der Kühlwasserpumpe. Dem Wärmetauscher ist weiterhin ein in seiner Drehzahl regelbares Gebläse zum Erzeugen eines Luftstroms durch den Wärmetauscher zugeordnet. Die Einrichtung beinhaltet weiterhin eine Steuereinrichtung, die in Abhängigkeit eines variablen Temperatur-Sollwertes des Kühlwassers sowohl die den Kühlwasserstrom erzeugende Kühlmittelpumpe als auch den Luftstrom durch den Wärmetauscher erzeugende Gebläse steuert. In die Ermittlung des variablen Temperatur-Sollwertes fließen dabei Betriebsgrößen des Verbrennungskraftmotors ein.In the German patent application DE 38 10 174 A1 a device for regulating the Coolant temperature of an internal combustion engine for use in a motor vehicle described, in which the internal combustion engine on the one hand with coolant lines Heat exchanger (cooler module) and on the other hand is connected to a cooling water pump. The cooling water circuit is closed by a cooling water connection line between the heat exchanger and the cooling water pump. The heat exchanger is still a fan with adjustable speed for generating an air flow through the heat exchanger assigned. The device further includes a control device, which in Dependency of a variable temperature setpoint of the cooling water both the cooling water flow generating coolant pump as well as the air flow through the heat exchanger generating blower controls. In the determination of the variable temperature setpoint the operating variables of the internal combustion engine are included.

Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Regelung eines Kühlkreislaufes für einen Verbrennungskraftmotor zu schaffen, bei dem die Leistungsaufnahme der Kühlmittelpumpe als auch des Gebläses bei Einhaltung einer optimalen Kühlmitteltemperatur geringgehalten wird.The object of the invention is a method for regulating a cooling circuit to create for an internal combustion engine in which the power consumption of the coolant pump as well as the blower while maintaining an optimal coolant temperature is kept low.

Die Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen dargestellt. The object is achieved by the features of patent claim 1. Advantageous further training are presented in the subclaims.

Erfindungsgemäß erfolgt die Regelung der Drehzahl der Kühlmittelpumpe und der Drehzahl des Gebläses durch das Steuergerät über einen Vergleich der zeitlichen Wirkungsgrade von Kühlmittelpumpe und Gebläse für den am Kühlermodul übertragenen Wärmestrom.According to the invention, the speed of the coolant pump and the speed are regulated of the blower by the control unit by comparing the time efficiencies of Coolant pump and blower for the heat flow transferred to the cooler module.

Nach einer vorteilhaften Ausgestaltung der Erfindung wird dazu ein Wärmeübertragungskoeffizient für den am Kühlermodul übertragenen Wärmestrom ermittelt. Von diesem Wärmeübertragungskoeffizienten, der hauptsächlich von dem Wärmeübergangskoeffizienten des Wärmestroms vom Kühlmittel in das Material des Kühlermoduls und von dem Wärmeübergangskoeffizienten des Wärmestroms vom Kühlermodul in die durchströmende Luft abhängt, werden nun die partiellen Ableitungen nach dem erzeugten Kühlmittelstrom und nach dem erzeugten Luftstrom als Maß für den zeitlichen Wirkungsgrad der Kühlmittelpumpe und des Gebläses gebildet.According to an advantageous embodiment of the invention, a heat transfer coefficient is used for this determined for the heat flow transferred to the cooler module. From this heat transfer coefficient, which is mainly from the heat transfer coefficient of the heat flow from the coolant into the material of the cooler module and from that Heat transfer coefficient of the heat flow from the cooler module into the flow Air depends, the partial derivatives are now based on the generated coolant flow and according to the airflow generated as a measure of the temporal efficiency of the Coolant pump and the blower formed.

Eine bevorzugte Weiterbildung sieht dabei vor, daß die zeitlichen Wirkungsgrade der Kühlmittelpumpe und des Gebläses für den am Kühlermodul übertragenen Wärmestrom zu dem die Erzeugung des entsprechenden Kühlmittelstroms bzw. des entsprechenden Luftstroms notwendigen Energieeinsatz in Bezug gebracht werden und somit Vergleichswerte für die wirkungsgradabhängige Regelung der Kühlmittelpumpe und des Gebläses erhalten werden.A preferred further development provides that the temporal efficiencies of the coolant pump and the blower for the heat flow transferred to the cooler module to the the generation of the corresponding coolant flow or the corresponding air flow necessary energy input are related and thus comparative values for the efficiency-dependent control of the coolant pump and the fan can be obtained.

Für die Ermittlung der zeitlichen Wirkungsgrade ist in dem Steuergerät sowohl die aufzubringende Energie für die Kühlmittelpumpe in Abhängigkeit des damit erzeugten Kühlmittelstroms als auch die für einen bestimmten Luftstrom durch das Kühlermodul aufzubringende Energie in Abhängigkeit der Fahrgeschwindigkeit des Kraftfahrzeuges abgelegt.To determine the temporal efficiency, both the one to be applied must be in the control unit Energy for the coolant pump depending on the coolant flow generated with it as well as that to be applied for a specific air flow through the cooler module Energy stored depending on the driving speed of the motor vehicle.

Gemäß einer Weiterbildung der Erfindung wird ein Temperaturgrenzwert für das Kühlmittel festgelegt, der vorzugsweise das Ende der Warmlaufphase des Verbrennungskraftmotors kennzeichnet, wobei die Regelung der Kühlmittelpumpe und des Gebläses in Abhängigkeit des Vergleiches der zeitlichen Wirkungsgrade für den am Kühlermodul übertragenen Wärmestrom nur nach Erreichen dieses Temperaturgrenzwertes erfolgt. Unterhalb dieses Temperaturgrenzwertes wird nur von der Kühlmittelpumpe ein Kühlmittelstrom zur Einhaltung einer vorgegebenen Differenztemperatur des Kühlmittels zwischen dem Eintritt in den Verbrennungskraftmotor und seinem Austritt erzeugt.According to a development of the invention, a temperature limit for the coolant set, which preferably the end of the warm-up phase of the internal combustion engine indicates, the control of the coolant pump and the blower depending the comparison of the time efficiencies for the heat flow transferred to the cooler module only after reaching this temperature limit. Below this temperature limit only the coolant pump maintains a coolant flow a predetermined differential temperature of the coolant between the entry into the internal combustion engine and generated its exit.

Wenn der Kühlmittelkreislauf einen zweiten Strömungszweig, der nicht über das Kühlermodul geführt ist, aufweist, erfolgt die Einstellung der Kühlmitteltemperatur bis zum Erreichen des Temperatur-Sollwertes über die Zuschaltung dieses in seinem Querschnitt veränderbaren Strömungszweiges. Diese Zuschaltung wird vorzugsweise über ein temperaturabhängiges Ventil, z. B. einen Thermostaten realisiert. Bei Überschreitung des Temperatur-Sollwertes wird die Drehzahl der Kühlmittelpumpe und des Gebläses zur Einhaltung des Temperatur-Sollwertes über den Vergleich ihrer zeitlichen Wirkungsgrade in Abhängigkeit des Temperatur-Sollwertes geregelt.If the coolant circuit has a second flow branch that does not have the cooler module the coolant temperature is adjusted until it is reached of the temperature setpoint via the connection of which its cross section can be changed Flow branch. This connection is preferably a temperature-dependent Valve, e.g. B. realized a thermostat. If the temperature setpoint is exceeded is the speed of the coolant pump and the fan to maintain the temperature setpoint by comparing their temporal efficiencies depending on the temperature setpoint regulated.

Nachfolgend soll die Erfindung anhand eines Ausführungsbeispiels näher beschrieben werden. Die zugehörigen Zeichnungen zeigen

Figur 1
eine schematische Darstellung eines Kühlmittelkreislaufes,
Figur 2
ein Ablaufdiagramm für das gesamte Regelverfahren,
Figur 3
ein Ablaufdiagramm für die Regelung in der Warmlaufphase des Verbrennungskraftmotors und
Figur 4
ein Ablaufdiagramm für die Regelung der Betriebstemperatur.
The invention will be described in more detail below using an exemplary embodiment. The associated drawings show
Figure 1
1 shows a schematic illustration of a coolant circuit,
Figure 2
a flow diagram for the entire control process,
Figure 3
a flowchart for the control in the warm-up phase of the internal combustion engine and
Figure 4
a flow chart for the regulation of the operating temperature.

Der in Figur 1 gezeigte Kühlmittelkreislauf für einen Verbrennungskraftmotor 1 eines Kraftfahrzeuges besteht aus mehreren Leitungszweigen a bis f, deren Öffnungsquerschnitte über ein temperaturabhängiges Ventil 6 (Thermostat) gesteuert werden. Die Umlaufrichtung des Kühlmittelstromes, der über die Kühlmittelpumpe 3 angetrieben wird, ist mit Hilfe von Pfeilen gekennzeichnet. Der Leitungszweig a ist zur Kühlung des aus dem Verbrennungskraftmotors 1 austretenden Kühlmittels über ein Kühlermodul 2 geführt. Durch das hinter dem Kühlermodul 2 angeordnete Gebläse 4 wird von außerhalb des Kraftfahrzeugs Luft angezogen. Beim Durchströmen des Kühlermoduls 2 findet ein Wärmeaustausch zwischen dem durch das Gebläse 4 einstellbaren Luftstrom m ˙l und dem Kühlmittelstrom m ˙w statt. Weiterhin ist ein Leitungszweig b vorgesehen, dessen Querschnitt zur Beeinflussung der Kühlmitteltemperatur vom temperaturabhängigen Ventil 6 steuerbar ist. Der Leitungszweig c weist einen Ausgleichsbehälter 7 auf und dient zur Druckregulierung im gesamten Kühlmittelkreislauf. In den zusätzlichen Leitungszweigen d bis f sind ein Wärmetauscher 8 für die Innenraumheizung des Kraftfahrzeuges und jeweils ein Kühler 9 und 10 zur Kühlung des Motoröls und des Getriebeöls angeordnet. Diese Leitungszweige d bis f sind fakultativ vorgesehen. Die entsprechenden Kühl- bzw. Heizfunktionen können auch auf anderem Wege gelöst werden.The coolant circuit shown in FIG. 1 for an internal combustion engine 1 of a motor vehicle consists of several line branches a to f, the opening cross sections of which are controlled by a temperature-dependent valve 6 (thermostat). The direction of rotation of the coolant flow, which is driven by the coolant pump 3, is indicated by arrows. The line branch a is led via a cooler module 2 for cooling the coolant emerging from the internal combustion engine 1. Air is drawn in from outside the motor vehicle by the fan 4 arranged behind the radiator module 2. When flowing through the cooler module 2, a heat exchange takes place between the air flow m ˙ l adjustable by the blower 4 and the coolant flow m ˙ w . Furthermore, a line branch b is provided, the cross section of which can be controlled by the temperature-dependent valve 6 in order to influence the coolant temperature. The line branch c has an expansion tank 7 and serves to regulate the pressure in the entire coolant circuit. A heat exchanger 8 for the interior heating of the motor vehicle and a cooler 9 and 10 for cooling the engine oil and the transmission oil are arranged in the additional line branches d to f. These line branches d to f are optional. The corresponding cooling or heating functions can also be solved in other ways.

Weiterhin beinhaltet der Kühlmittelkreislauf ein Steuergerät 5, beispielsweise das Steuergerät des Verbrennungskraftmotors, das als Eingangssignal das Ausgangssignal Ssen eines die Kühlmitteltemperatur ϑw,ist am Motoraustritt erfassenden Temperatursensors 11 erhält und über die Ausgangssignale Spump, Sluft und Stherm sowohl die Drehzahl der Kühlmittelpumpe 3 und des Gebläses 4 als auch das temperaturabhängige Ventil 6 steuert. Furthermore, the coolant circuit includes a control unit 5, for example, the control unit of the internal combustion engine, the sen as an input signal the output signal S of the coolant temperature θ w, is obtained at the outlet from the engine detected temperature sensor 11 and pump via the output signals S, S air and S therm both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.

Im Weiteren soll das vom Steuergerät 5 durchzuführende Regelverfahren des Kühlmittelkreislaufes näher beschrieben werden. Die Figuren 2 bis 4 zeigen zur Erläuterung Ablaufdiagramme dieses Regelverfahrens.Furthermore, the control method of the coolant circuit to be carried out by the control unit 5 is intended are described in more detail. Figures 2 to 4 show flow diagrams for explanation this control procedure.

Wie in Figur 2 verdeutlicht, werden im erfindungsgemäßen Verfahren drei Fälle unterschieden; der Warm lauf V1 des Verbrennungskraftmotors, der Fahrbetrieb V2 bei Betriebstemperatur des Kühlmittels und der Nachlauf V3. Im ersten Verfahrensschritt A1 wird überprüft, ob der Verbrennungskraftmotor 1 gestartet wurde., ist dies der Fall, erfolgt ein Vergleich der Kühlmitteltemperatur ϑw,ist (Ausgangssignal Ssen des Temperatursensors 11) am Motoraustritt mit einem die Beendigung der Warmlaufphase V1 kennzeichnenden Temperaturgrenzwert ϑw,warml. Bei einer Kühlmitteltemperatur ϑw,ist unterhalb dieses Temperaturgrenzwertes wird auf Warm lauf V1 erkannt. Hat die Kühlmitteltemperatur ϑw,ist den Temperaturgrenzwert ϑw,warml erreicht, wird der Kühlmittelkreislauf nach dem Algorithmus für den Fahrbetrieb V2 bei Betriebstemperatur gesteuert.As illustrated in FIG. 2, three cases are distinguished in the method according to the invention; the warm-up V1 of the internal combustion engine, the driving mode V2 at the operating temperature of the coolant and the run-on V3. In the first step A1, it is checked whether the internal combustion engine 1 has been started., This is the case, a comparison is made of the coolant temperature θ w, (output signal S sen of the temperature sensor 11) at the engine outlet to a termination of the warm-up phase θ V1 characterizing temperature limit value w , warm. At a coolant temperature ϑ w, below this temperature limit, warm-up V1 is detected. If the coolant temperature ϑ w, the temperature limit ϑ w, warml has been reached, the coolant circuit is controlled according to the algorithm for driving mode V2 at operating temperature.

Ist der Verbrennungskraftmotor 1 nicht gestartet, wird überprüft, ob die Kühlmitteltemperatur ϑw,ist einen Temperaturgrenzwert ϑw,nach überschreitet, d. h. der Verbrennungskraftmotor 1 muß weiter gekühlt werden. In diesem Fall erfolgt die Regelung des Kühlmittelkreislaufs mit einem Algorithmus für den Nachlauf V3. Liegt die Kühlmitteltemperatur ϑw,ist unterhalb des Temperaturgrenzwertes ϑw,nachl stoppt die Regelung bis zum erneuten Starten des Verbrennungskraftmotors 1.If the internal combustion engine 1 is not started, it is checked whether the coolant temperature θ w, is a temperature limit value θ w, exceeds by, that the internal combustion engine 1 needs to be cooled further. In this case, the coolant circuit is controlled using an algorithm for the run-on V3. If the coolant temperature ϑ w is below the temperature limit ϑ w, then the control stops until the internal combustion engine 1 is started again.

In der Warmlaufphase V1, deren Ablauf in Figur 3 dargestellt ist, erfolgt in einem ersten Verfahrensschritt der Vergleich der Kühlmitteltemperatur ϑw,ist am Motoraustritt mit einer Kühlmittelanfangstemperatur ϑw,start. Wenn die Kühlmitteltemperatur unterhalb des Kühlmittelanfangswertes ϑw,start liegt, startet die Kühlmittelpumpe 3 mit einer Verzögerung der Zeitdauer tstart, um den Wärmestrom von Bauteilen des Verbrennungskraftmotors 1 in das Kühlmittel so gering wie möglich zu halten und damit ein schnelleres Aufheizen der Bauteile zu erreichen. Nach Ablauf der Zeitdauer tstart oder dem Erreichen des Temperaturanfangswertes ϑw,start wird der durch die Kühlmittelpumpe 3 erzeugte Kühlmittelstrom m ˙w kontinuierlich vergrößert, bis erstmalig der minimale Kühlmittelstrom m ˙w ,min für die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll zwischen Motorein- und austritt erreicht ist. Aus dem minimalen Kühlmittelstrom m ˙w ,min wird im Steuergerät 5 das Ansteuersignal Spump,min für die Kühlmittelpumpe 3 berechnet. Ab dem erstmaligen Erreichen des minimalen Kühlmittelstroms m ˙w ,min wird die Kühlmittelpumpe 3 auf die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll des Kühlmittels mit einem Ansteuersignal Spump,warml geregelt. Der für die Regelung notwendige Differenztemperatur-lstwert Δϑw,Mot,ist ergibt sich aus dem Wärmestrom Q ˙Mot vom Verbrennungskraftmotor in das Kühlmittel, der sich wiederum aus dem momentanen Kühlmittelstrom m ˙w , der momentanen Motorlast LMot und der Motordrehzahl n errechnet. Vorzugsweise ist der Wärmestrom Q ˙Mot als Kennfeld im Steuergerät 5 für den speziellen Verbrennungskraftmotor 1 abgelegt.In the warm-up phase V1, the sequence of which is shown in FIG. 3, the coolant temperature ϑ w is compared in a first method step , is at the engine outlet with a coolant start temperature ϑ w, start . If the coolant temperature is below the coolant start value ϑ w, start , the coolant pump 3 starts with a delay of the time period t start in order to keep the heat flow from components of the internal combustion engine 1 into the coolant as low as possible and thus to achieve a faster heating of the components . After the time period t start or when the temperature start value ϑ w, start has been reached, the coolant flow m ˙ w generated by the coolant pump 3 is continuously increased until, for the first time, the minimum coolant flow m ˙ w , min for maintaining the differential temperature setpoint Δϑ w, Mot is intended between Motorein- reaches and exits. The control signal S pump, min for the coolant pump 3 is calculated in the control unit 5 from the minimum coolant flow m ˙ w , min . From the first time the minimum coolant flow m ˙ w , min is reached, the coolant pump 3 is regulated to maintain the differential temperature setpoint Δϑ w, Mot, coolant with a control signal S pump, warml . The actual differential temperature Δϑ w, Mot, required for the control is derived from the heat flow Q ˙ Mot from the internal combustion engine into the coolant, which in turn is calculated from the current coolant flow m ˙ w , the current engine load L Mot and the engine speed n. The heat flow Q ˙ Mot is preferably stored as a map in the control unit 5 for the special internal combustion engine 1.

Nach dem Erreichen des minimalen Kühlmittelstroms m ˙w ,min sollte das Reagieren der Kühlmittelpumpe 3 auf kurzfristige Motorlast- und Drehzahländerungen verhindert werden. Da aufgrund der thermischen Trägheit des Verbrennungskraftmotors 1 kurzzeitige Änderungen der Motorlast LMot und der Motordrehzahl n für den Wärmestrom Q ˙Mot in das Kühlmittel keine Rolle spielen, würde das Mitführen der Drehzahl der Kühlmittelpumpe 3 einen unnötigen Energieverbrauch darstellen. Das Ansteuersignal Spump für die Kühlmittelpumpe wird daher mit einem dynamischen Übertragungsverhalten belegt, dessen Zeitkonstanten Tstg so gewählt sind, daß das Zeitverhalten der Kühlmittelpumpe etwa dem Verhalten des Wärmestroms Q ˙Mot vom Verbrennungskraftmotor in das Kühlmittel entspricht.After reaching the minimum coolant flow m ˙ w , min , the reaction of the coolant pump 3 to short-term engine load and speed changes should be prevented. Since, due to the thermal inertia of the internal combustion engine 1, brief changes in the engine load L Mot and the engine speed n play no role for the heat flow Q ˙ Mot in the coolant, carrying the speed of the coolant pump 3 would represent unnecessary energy consumption. The control signal S pump for the coolant pump is therefore assigned a dynamic transmission behavior, the time constants T stg of which are selected so that the time behavior of the coolant pump corresponds approximately to the behavior of the heat flow Q ˙ Mot from the internal combustion engine into the coolant.

Während der Warmlaufphase V1 wird das Gebläse 4 nicht angesteuert, d. h. es wird neben dem durch den Staudruck aus der Fahrzeugbewegung erzeugten Luftstrom kein weiterer Luftstrom m ˙l durch das Kühlermodul 2 erzeugt. Die Warmlaufphase V1 ist beendet, wenn erstmalig die momentane Kühlmitteltemperatur ϑw,ist den Temperaturgrenzwert ϑw,warml erreicht.During the warm-up phase V1, the blower 4 is not activated, ie in addition to the airflow generated by the dynamic pressure from the vehicle movement, no further airflow m ˙ l is generated by the cooler module 2. The warm-up phase V1 has ended when the current coolant temperature ϑ w, the temperature limit value den w, warml is reached for the first time.

Beim Erreichen des Temperaturgrenzwertes ϑw,warml (Figur 4) findet neben der Regelung in Abhängigkeit des Differenztemperatur-Sollwertes -Sollwertes Δϑw,Mot,soll auch eine Regelung der Kühlmitteltemperatur in Abhängigkeit eines Temperatur-Sollwertes ϑw,soll nach dem Algorithmus für den Fahrbetrieb V2 bei Betriebstemperatur statt. Hierfür wird zunächst der Temperatur-Sollwert ϑw,soll errechnet. Dazu liegt im Steuergerät 5 ein Kennfeld vor, in dem der optimale Temperatur-Sollwert ϑw,soll für die vorgegebene Motortemperatur bei variabler Motorlast LMot, Motordrehzahl n und Kühlmittelstrom m ˙w abgelegt ist. Aus diesem variablen Temperatur-Sollwert ϑw,soll am Motoraustritt, dem Kühlmittelstrom m ˙w und dem Wärmestrom Q ˙Mot vom Verbrennungskraftmotor 1 in das Kühlmittel ergibt sich die Regeltemperatur ϑw,therm für das temperaturabhängige Ventil 6, aus der das Ansteuersignal Stherm für das temperaturabhängige Ventil 6 ermittelt wird. Wie auch in einem herkömmlichen Kühlkreislauf regelt das Ventil 6 über die Kühlmittelströmungsverhältnisse zwischen dem über das Kühlermodul 2 geführten Leitungszweig a und dem Leitungszweig b die Kühlmitteltemperatur ϑw,ist.When the temperature limit value ϑ w, warml (FIG. 4) is reached, in addition to the control as a function of the differential temperature setpoint setpoint Δϑ w, Mot, the coolant temperature is also controlled as a function of a temperature setpoint ϑ w, according to the algorithm for the Driving mode V2 takes place at operating temperature. To do this, the temperature setpoint ϑ w, set is first calculated. For this purpose, there is a map in the control unit 5 in which the optimal temperature setpoint ϑ w, for the given engine temperature with variable engine load L Mot , engine speed n and coolant flow m ˙ w , is stored. From this variable temperature setpoint ϑ w, at the engine outlet, the coolant flow m ˙ w and the heat flow Q ˙ Mot from the internal combustion engine 1 into the coolant, the control temperature ϑ w, therm results for the temperature-dependent valve 6, from which the control signal S therm is determined for the temperature-dependent valve 6. As in a conventional cooling circuit, the valve 6 regulates the coolant temperature ϑ w via the coolant flow conditions between the line branch a led via the cooler module 2 and the line branch b.

Aus der Berechnung des minimalen Kühlmittelstromes m ˙w ,min ergibt sich die erforderliche Mindestdrehzahl der Kühlmittelpumpe 3 und damit das optimale Ansteuersignal Spump, min. From the calculation of the minimum coolant flow m und w , min , the required minimum speed of the coolant pump 3 and thus the optimal control signal S pump, min .

Überschreitet die momentane Kühlmitteltemperatur ϑw,ist den Temperatursollwert ϑw,soll am Motoraustritt um einen Differenzwert Δϑw,heiß, so wird entweder die Drehzahl der Kühlmittelpumpe 3 und damit der Kühlmittelstrom m ˙w oder die Drehzahl des Gebläses 4 und damit der Luftstrom m ˙l gesteigert. Ob es energetisch sinnvoller ist, die Drehzahl der Kühlmittelpumpe 3 oder des Gebläses 4 zu verändern, wird einem zeitlichen Vergleich ihrer Wirkungsgrade für die Wärmeabfuhr am Kühlermodul 2 entnommen. Die Wärmeabfuhr bzw. der Wärmestrom Q ˙w,k am Kühlermodul 2 hängt vom Wärmedurchgangskoeffizienten k ab, der sich aus den Wärmeübergangskoeffizienten Kühlmittel-Kühlermodul und Kühlermodul-Luft ergibt und nach der Formel: k = 1 Ak · ( m l.m w ) 0,8 a k · m w 0,8 +b k · m l 0,8 +c k ( m l · m w )0,8 berechnet wird, wobei Ak die Fläche am Kühlermodul 2 und ak, bk und ck Konstanten für die Berechnung des Wärmedurchgangskoeffizienten sind.If the current coolant temperature exceeds ϑ w, the temperature setpoint is ϑ w, and if the engine outlet is hot by a difference value Δϑ w, then either the speed of the coolant pump 3 and thus the coolant flow m ˙ w or the speed of the fan 4 and thus the air flow m ˙ l increased. Whether it makes more sense in terms of energy to change the speed of the coolant pump 3 or of the blower 4 can be seen from a time comparison of their efficiencies for the heat dissipation at the cooler module 2. The heat dissipation or the heat flow Q ˙ w, k at the cooler module 2 depends on the heat transfer coefficient k, which results from the heat transfer coefficients coolant-cooler module and cooler module-air and according to the formula: k = 1 A k · ( m l . m w ) 0.8 a k · m w 0.8 + b k · m l 0.8 + c k ( m l · m w ) 0.8 is calculated, where A k is the area on the cooler module 2 and a k , b k and c k are constants for the calculation of the heat transfer coefficient.

Um die Effektivität der Veränderung des Luftstroms m ˙l und des Kühlmittelstroms m ˙w zu beurteilen werden die partiellen Ableitungen gebildet:

Figure 00060001
Figure 00060002
In order to assess the effectiveness of the change in the air flow m ˙ l and the coolant flow m ˙ w , the partial derivatives are formed:
Figure 00060001
Figure 00060002

Für jeden Betriebspunkt des Kühlermoduls ergibt sich damit die Größe der Wärmeabfuhrsteigerung pro Masseneinheit der beteiligten Stoffe. Setzt man diese Werte jetzt im Bezug zum Energieeinsatz PL, Pwapu, den man für die Bereitstellung des Kühlmittelstroms bzw. Luftstroms benötigt, erhält man einen Vergleichswert Kη zur Beurteilung der günstigsten Betriebspunktänderung. Kη = η k,l·1 P L η K,wapu .1 P wapu For each operating point of the cooler module, the size of the increase in heat dissipation per unit mass of the substances involved is obtained. If these values are now related to the energy input P L , P wapu, which is required for the provision of the coolant flow or air flow, a comparison value K η is obtained to assess the most favorable change in the operating point. K η = η k, l · 1 P L η K, wapu . 1 P wapu

Ist der Vergleichswert Kη > 1 ist es Wirkungsgrad günstiger den Luftstrom m ˙l zu steigern. Für Kη < 1 sollte der Kühlmittelstrom m ˙w erhöht werden.If the comparison value K η > 1, it is more efficient to increase the air flow m ˙ l . For K η <1, the coolant flow m ˙ w should be increased.

Wenn der Kühlmittelkreislauf, wie in Figur 1 gezeigt, über einen Kühler 9 gleichzeitig zur Kühlung des Motoröls verwendet wird, kann mit einem nicht dargestellten Sensor die momentane Öltemperatur ϑÖl überwacht werden. Überschreitet die momentane Öltemperatur ϑÖl einen Grenztemperaturwert ϑÖl,grenz so wird schrittweise die Kühlmitteltemperatur ϑw,ist gesenkt, bis die Öltemperatur ϑÖl wieder unter diesen Grenztemperaturwert sinkt. Danach wird wieder die für die gewählte Motortemperatur benötigte Kühlmitteltemperatur eingestellt.If, as shown in FIG. 1, the coolant circuit is simultaneously used to cool the engine oil via a cooler 9, the current oil temperature ϑ oil can be monitored with a sensor (not shown). Exceeds the current oil temperature θ oil has a temperature limit value θ oil, cross so the coolant temperature is gradually θ w, is lowered until the oil temperature θ oil drops below this limit temperature value. The coolant temperature required for the selected engine temperature is then set again.

Das dynamische Verhalten der Regelung bei kurzzeitigen Veränderungen der Motorlast LMot und der Motordrehzahl n ist für die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll und des Temperatur-Sollwertes ϑw,soll unterschiedlich. Die Regelung nach dem Differenztemperatur-Sollwert Δϑw,Mot,soll entspricht in ihrer Dynamik der des Warmlaufs V1. Die Regelung nach dem Temperatur-Sollwert ϑw,soll mittels Variation des Ventilstroms Stherm sowie der Drehzahlen von Kühlmittelpumpe 3 und Gebläse 4 muß schneller erfolgen. Bei der Auslegung muß ein Kompromiß gefunden werden zwischen einem energetischen Optimum und der Temperaturkonstanz der Bauteile des Verbrennungskraftmotors 1. Für die Energiebetrachtung ist es sinnvoll, kurzzeitige Temperaturänderungen der Bauteile, wie sie zum Beispiel beim Überholvorgang entstehen, zuzulassen. Optimiert man in Richtung Temperaturkonstanz der Bauteile des Verbrennungskraftmotors, so kann man durch die Reaktion auf Veränderungen der Motorlast eine Vorsteuerung gegenüber der Veränderung der Kühlmitteltemperatur ϑw,ist bzw. des Wärmestroms Q ˙Mot in das Kühlmittel erreichen. Wird ein Motorbetriebspunkt eingestellt, der einen erhöhten Wärmestrom Q ˙Mot in das Kühlmittel zur Folge hätte, so kann man durch Steuerung des temperaturabhängigen Ventils 6 kälteres Kühlmittel in den Verbrennungskraftmotor pumpen, was einen höheren Wärmestrom Q ˙Mot in das Kühlmittel und damit geringere Bauteiltemperaturschwankungen zur Folge hätte. Weiterhin kann im Vorgriff der Kühlmittelstrom m ˙w oder der Luftstrom m ˙l erhöht werden. Dies empfiehlt sich insbesondere, wenn das Ventil 6 aufgrund seiner Bauart nicht in der Lage ist, schnellen Änderungen zu folgen. The dynamic behavior of the control in the event of brief changes in the engine load L Mot and the engine speed n is different for compliance with the differential temperature setpoint Δϑ w, Mot, setpoint and the temperature setpoint ϑ w, setpoint. The control according to the differential temperature setpoint Δϑ w, Mot, soll corresponds in its dynamics to that of warming up V1. The regulation according to the temperature setpoint ϑ w, should be done faster by varying the valve current S therm and the speeds of the coolant pump 3 and fan 4. When designing, a compromise must be found between an energetic optimum and the temperature constancy of the components of the internal combustion engine 1. For energy purposes, it makes sense to allow brief temperature changes in the components, such as those that occur during the overtaking process. If one optimizes in the direction of constant temperature of the components of the internal combustion engine, then by reacting to changes in the engine load, one can control the change in the coolant temperature ϑ w, or the heat flow Q ˙ Mot into the coolant. If an engine operating point is set which would result in an increased heat flow Q ˙ Mot into the coolant, 6 cooler coolant can be pumped into the internal combustion engine by controlling the temperature-dependent valve, which results in a higher heat flow Q ˙ Mot in the coolant and thus lower component temperature fluctuations Episode. Furthermore, the coolant flow m ˙ w or the air flow m ˙ l can be increased in advance. This is particularly recommended if the valve 6 is not able to follow rapid changes due to its design.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
VerbrennungskraftmotorInternal combustion engine
22nd
KühlermodulCooler module
33rd
KühlmittelpumpeCoolant pump
44th
Gebläsefan
55
SteuergerätControl unit
66
temperaturabhängiges Ventiltemperature dependent valve
77
Ausgleichsbehältersurge tank
88th
WärmetauscherHeat exchanger
99
Kühlercooler
1010th
Kühlercooler
1111
TemperatursensorTemperature sensor
a - fa - f
LeitungszweigeLine branches
m ˙w , min m ˙ w , min
minimaler Kühlmittelstromminimal coolant flow
m ˙w m ˙ w
KühlmittelstromCoolant flow
m ˙ l m ˙ l
LuftstromAirflow
ϑw,warml ϑ w, warm
Temperaturgrenzwert für den Warm laufTemperature limit for warm-up
Δϑw,Mot,ist Δϑ w, Mot, is
Differenztemperatur-lstwertDifferential temperature actual value
Δϑw,Mot,soll Δϑ w, Mot, should
Differenztemperatur-SollwertDifferential temperature setpoint
ϑw,soll ϑ w, should
TemperatursollwertTemperature setpoint
ϑw,nach ϑ w, after
Temperaturgrenzwert für den NachlaufTemperature limit for the wake
tstart t start
Zeitdauer der VerzögerungDuration of the delay
ϑw,start ϑ w, start
TemperaturanfangswertInitial temperature value
ϑw,therm ϑ w, therm
Regeltemperatur des temperaturabhängigen VentilsControl temperature of the temperature-dependent valve
Δϑw,heiß Δϑ w, hot
DifferenzwertDifference value
ϑw,ist ϑ w, is
momentane Temperatur des Kühlmittels am MotoraustrittCurrent temperature of the coolant at the engine outlet
LMot L Mot
MotorlastEngine load
nn
MotordrehzahlEngine speed
BEZUGSZEICHENLISTEREFERENCE SIGN LIST

Q ˙w,k Q ˙ w, k
Wärmestrom am KühlermodulHeat flow at the cooler module
Q ˙Mot Q ˙ Mot
WärmestromHeat flow
V1V1
WarmlaufWarm up
V2V2
Fahrbetrieb bei BetriebstemperaturDriving operation at operating temperature
V3V3
Nachlauftrailing
Ssen S sen
Ausgangssignal des TemperatursensorsOutput signal of the temperature sensor
Spump S pump
Ansteuersignal für den KühlmittelstromControl signal for the coolant flow
Spump,min S pump, min
Ansteuersignal für den minimalen KühlmittelstromControl signal for the minimum coolant flow
Spump,warml S pump, warm
Ansteuersignal für den Kühlmittelstrom in der WarmlaufphaseControl signal for the coolant flow in the warm-up phase
Stherm S therm
Ansteuersignal für das VentilControl signal for the valve
Sluft S air
Ansteuersignal für das GebläseControl signal for the fan
Tstg T stg
ZeitkonstanteTime constant
ϑÖl ϑ oil
ÖltemperaturOil temperature
ϑÖl,Grenz ϑ oil, limit
GrenztemperaturwertLimit temperature value
A1 A 1
VerfahrensschrittProcedural step
kk
WärmedurchgangskoeffizientHeat transfer coefficient
Ak A k
Fläche am KühlermodulSurface on the cooler module
ak, bk, ck a k, b k, c k
KonstantenConstants
PL P L
Energieeinsatz für das GebläseEnergy use for the blower
Pwapu P wapu
Energieeinsatz für die KühlmittelpumpeUse of energy for the coolant pump
Kη K η
VergleichswertComparative value
ηk,wapu η k, wapu
Wrkungsgrad der KühlmittelpumpeDegree of efficiency of the coolant pump
ηk,l η k, l
Wirkungsgrad des GebläsesFan efficiency

Claims (9)

  1. Method for controlling a cooling circuit of an internal combustion engine, in particular of a motor vehicle, having at least one cooling medium pump for the purpose of adjusting a cooling medium flow, having a cooler module in which heat is exchanged between an airflow which can be adjusted by means of a fan, and the cooling medium and further having a control device which regulates the rotational speed of the cooling medium pump and the rotational speed of the fan at least in dependence upon a desired temperature value of the cooling medium, characterised in that the rotational speed of the cooling medium pump (3) and the rotational speed of the fan (4) is in addition regulated by way of a comparison of the levels of efficiency with respect to time (ηk,wapu,ηk,l) of the cooling medium pump (3) and of the fan (4) for the heat flow (Q ˙k) transmitted at the cooler module (2).
  2. Method according to claim 1, characterised in that the heat transition coefficient (k) for the transmitted heat flow (Q ˙k) is ascertained at the cooler module (2) and from this heat transition coefficient (k) are formed the partial derivatives according to the cooling medium flow (m ˙w) produced by the cooling medium pump and according to the air flow (m ˙l) produced by the fan as a measurement for the level of efficiency with respect to time (ηk,wapu,ηk,l).
  3. Method according to claim 2, characterised in that the levels of efficiency with respect to time (ηk,wapu,ηk,l) of the cooling medium pump (3) and of the fan (4) for the heat flow (Q ˙k) transmitted at the cooler module (2) are taken into consideration with respect to the amount of energy (Pwapu,PL) necessary to produce the corresponding cooling medium (m ˙w) and the corresponding air flow (m ˙l) and thus comparative values (kη,wapu,kη,l) are obtained for the purpose of controlling the cooling medium pump and the fan in dependence upon the level of efficiency.
  4. Method according to claim 3, characterised in that the energy (Pwapu) to be provided for the cooling medium pump (3) is stored in the control device (5) in dependence upon the cooling medium flow to be produced (m ˙w).
  5. Method according to claim 3 or 4 for controlling a cooling circuit of a motor vehicle, characterised in that the energy (PL) which is to be provided for the process of controlling the fan (4) is stored in a control device in dependence upon the air flow (m ˙l) to be produced and of the travel velocity of the motor vehicle.
  6. Method according to any one of claims 1 to 5, characterised in that the cooling medium pump (3) and the fan (4) are controlled as a function of a comparison of the level of efficiency with respect to time (ηk,wapu,ηk,l) for the heat flow (Q ˙k) transmitted at the cooler module (1) only after a temperature limit value (w,warml) for the cooling medium is achieved.
  7. Method according to claim 6, characterised in that the temperature limit value (w,wrml) characterises the end of a warm running period after the start-up of the internal combustion engine (1).
  8. Method according to claim 6 or 7, characterised in that below the temperature limit value (w,warml) the cooling medium flow (m ˙w) produced by the cooling medium pump (3) for the purpose of maintaining a differential temperature (Δw,Mot,soll) of the cooling medium between the inlet and the outlet of the internal combustion engine is regulated but no air flow (m ˙ l ) is produced by the fan (4).
  9. Method according to any one of claims 1 to 8 characterised in that the cooling medium temperature (w,ist) is adjusted until the desired temperature value (w,soll) is achieved by switching in a second flow branch whose diameter can be changed by virtue of a temperature-dependent valve (6), which flow branch is not routed via the cooler module (2), and upon the desired temperature value (w,soll) being exceeded the rotational speed of the cooling medium pump or of the fan is regulated by way of comparing the level of efficiency (ηk,wapu,ηk,l) with respect to time in dependence upon the desired temperature value (w,soll).
EP96100637A 1995-03-08 1996-01-18 Control method of a cooling circuit of an internal combustion engine, especially for motor vehicles Expired - Lifetime EP0731261B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19508102 1995-03-08
DE19508102A DE19508102C1 (en) 1995-03-08 1995-03-08 Method for regulating a cooling circuit of an internal combustion engine, in particular for motor vehicles

Publications (2)

Publication Number Publication Date
EP0731261A1 EP0731261A1 (en) 1996-09-11
EP0731261B1 true EP0731261B1 (en) 1998-06-03

Family

ID=7755954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100637A Expired - Lifetime EP0731261B1 (en) 1995-03-08 1996-01-18 Control method of a cooling circuit of an internal combustion engine, especially for motor vehicles

Country Status (4)

Country Link
US (1) US5619957A (en)
EP (1) EP0731261B1 (en)
DE (2) DE19508102C1 (en)
ES (1) ES2117455T3 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016774A (en) * 1995-12-21 2000-01-25 Siemens Canada Limited Total cooling assembly for a vehicle having an internal combustion engine
US5660149A (en) * 1995-12-21 1997-08-26 Siemens Electric Limited Total cooling assembly for I.C. engine-powered vehicles
DE19719792B4 (en) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Method and device for regulating the temperature of a medium
JP3891512B2 (en) * 1997-05-29 2007-03-14 日本サーモスタット株式会社 Cooling control device and cooling control method for internal combustion engine
DE19728724A1 (en) * 1997-07-04 1999-01-07 Bayerische Motoren Werke Ag Heat flow bandage in motor vehicles
DE19728814A1 (en) * 1997-07-05 1999-01-07 Behr Thermot Tronik Gmbh & Co Cooling system for an internal combustion engine of a motor vehicle
DE19741861B4 (en) 1997-09-23 2004-07-22 Daimlerchrysler Ag Device for controlling the cooling water circuit for an internal combustion engine
DE19743828A1 (en) * 1997-10-03 1999-04-08 Behr Gmbh & Co Procedure for operating air-conditioning plant for car
EP0960759B1 (en) 1998-05-26 2002-02-13 Ford Global Technologies, Inc. Heating for the passenger compartment of a motor vehicle
US6178928B1 (en) 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
FR2803334B1 (en) 1999-12-30 2002-03-22 Valeo Thermique Moteur Sa DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE ENGINE IN A HOT START STATE
JP4140160B2 (en) * 2000-01-20 2008-08-27 株式会社デンソー Cooling device for liquid-cooled internal combustion engine
DE10016435B4 (en) * 2000-04-01 2014-03-13 Deere & Company Ventilation device for an agricultural vehicle
FR2808305B1 (en) * 2000-04-27 2002-11-15 Valeo Thermique Moteur Sa METHOD AND DEVICE FOR COOLING A VEHICLE HEAT ENGINE
FR2808304B1 (en) * 2000-04-27 2002-11-15 Valeo Thermique Moteur Sa COOLING DEVICE AT THE STOP OF A MOTOR VEHICLE HEAT ENGINE
BE1013435A3 (en) * 2000-05-12 2002-01-15 Atlas Copco Airpower Nv Power generator.
KR100348588B1 (en) * 2000-07-07 2002-08-14 국방과학연구소 Cooling system for vehicles
US6374780B1 (en) 2000-07-07 2002-04-23 Visteon Global Technologies, Inc. Electric waterpump, fluid control valve and electric cooling fan strategy
US6684826B2 (en) * 2001-07-25 2004-02-03 Toyota Jidosha Kabushiki Kaisha Engine cooling apparatus
JP3809349B2 (en) * 2001-07-25 2006-08-16 トヨタ自動車株式会社 Cooling device for internal combustion engine
FR2831209B1 (en) * 2001-10-24 2004-09-10 Robert Valot DEVICE HAVING THE OBJECTIVE OF OVERALL CONTROL OF THE COOLING FUNCTION FOR HEAT ENGINES EMPLOYING A COOLING LIQUID, BY PROVIDING A VARIABLE FLOW PUMP AND AN INTEGRATED COMPUTER
DE60108646T2 (en) 2001-10-31 2006-01-26 Visteon Global Technologies, Inc., Van Buren Township Method for engine cooling
DE10163944A1 (en) * 2001-12-22 2003-07-03 Bosch Gmbh Robert Method for controlling electrically operable components of a cooling system, computer program, control unit, cooling system and internal combustion engine
DE10163943A1 (en) * 2001-12-22 2003-07-03 Bosch Gmbh Robert Method for controlling electrically operable components of a cooling system, computer program, control unit, cooling system and internal combustion engine
US6802283B2 (en) 2002-07-22 2004-10-12 Visteon Global Technologies, Inc. Engine cooling system with variable speed fan
US6668766B1 (en) 2002-07-22 2003-12-30 Visteon Global Technologies, Inc. Vehicle engine cooling system with variable speed water pump
US6668764B1 (en) 2002-07-29 2003-12-30 Visteon Global Techologies, Inc. Cooling system for a diesel engine
US6745726B2 (en) 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine
GB0220521D0 (en) * 2002-09-04 2002-10-09 Ford Global Tech Inc A motor vehicle and a thermostatically controlled valve therefor
DE10248552B4 (en) * 2002-10-18 2015-03-05 Bayerische Motoren Werke Aktiengesellschaft Cooling circuit for an internal combustion engine with a shut-off water pump
US6904762B2 (en) * 2003-10-14 2005-06-14 Ford Global Technologies, Llc Pump pressure limiting method
US7302329B2 (en) * 2005-04-14 2007-11-27 Gm Global Technology Operations, Inc. Apparatus, system and method for magnetorheological clutch diagnostics
DE102005035121B4 (en) * 2005-07-23 2021-03-11 Att Automotivethermotech Gmbh Device for heating a motor vehicle
US7296543B2 (en) * 2006-04-06 2007-11-20 Gm Global Technology Operations, Inc. Engine coolant pump drive system and apparatus for a vehicle
JP4277046B2 (en) * 2007-02-28 2009-06-10 トヨタ自動車株式会社 Cooling device for internal combustion engine
US20090205588A1 (en) * 2008-02-15 2009-08-20 Bilezikjian John P Internal combustion engine with variable speed coolant pump
GB2475079B (en) * 2009-11-05 2015-02-18 Ford Global Tech Llc Cooling systems
JP4860746B2 (en) * 2009-11-24 2012-01-25 アイシン精機株式会社 Engine cooling system
DE102009056575B4 (en) * 2009-12-01 2014-01-02 Continental Automotive Gmbh Method and device for determining a modeled temperature value in an internal combustion engine and method for plausibility of a temperature sensor
DE102009056783B4 (en) * 2009-12-03 2014-01-02 Continental Automotive Gmbh Method and device for determining a simplified modeled coolant temperature value for a cooling circuit of an internal combustion engine
WO2011104885A1 (en) * 2010-02-26 2011-09-01 トヨタ自動車 株式会社 Device for controlling internal combustion engine
JP5811932B2 (en) * 2012-04-05 2015-11-11 株式会社デンソー Heat source cooling device
FR2989424B1 (en) * 2012-04-17 2015-10-02 Peugeot Citroen Automobiles Sa METHOD AND DEVICE FOR THERMOREGULATION OF A MOTOR VEHICLE ENGINE
FR3016400B1 (en) * 2014-01-15 2016-02-05 Renault Sas METHOD FOR ESTIMATING A COOLANT TEMPERATURE AND COOLING SYSTEM FOR A MOTOR VEHICLE DRIVE MOTOR
US9523306B2 (en) * 2014-05-13 2016-12-20 International Engine Intellectual Property Company, Llc. Engine cooling fan control strategy
JP6123741B2 (en) * 2014-06-20 2017-05-10 トヨタ自動車株式会社 Cooler
CN104712411A (en) * 2015-03-19 2015-06-17 聂玉峰 Intelligent oil cooling system for automobile engine and working method
CN106640324B (en) * 2017-01-03 2019-03-19 北京长安汽车工程技术研究有限责任公司 A kind of control method and control device of electronic vehicle fan
CN115341988B (en) * 2022-09-06 2023-09-22 三一汽车制造有限公司 Engineering equipment heat dissipation control method and device and engineering equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2384106A1 (en) * 1977-03-16 1978-10-13 Sev Marchal IC engine cooling system - has pump driven by electric motor with control circuit receiving constant voltage input and variable input from temp. transducer
DE3024209A1 (en) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Liq. cooling system for automobile engine with electronic control - regulating circulation pump or variable selective blocking element and by=pass line
FR2495687B1 (en) * 1980-12-10 1985-11-29 Peugeot Aciers Et Outillage SAFETY CIRCUIT FOR A DEVICE FOR CONTROLLING THE TEMPERATURE OF A COOLING FLUID OF AN INTERNAL COMBUSTION ENGINE
JPS5874824A (en) * 1981-10-29 1983-05-06 Nissan Motor Co Ltd Cooling device of engine
FR2531489B1 (en) * 1982-08-05 1987-04-03 Marchal Equip Auto COOLING DEVICE OF AN INTERNAL COMBUSTION ENGINE
FR2554165B1 (en) * 1983-10-28 1988-01-15 Marchal Equip Auto METHOD FOR CONTROLLING THE TEMPERATURE OF THE COOLING LIQUID OF AN INTERNAL COMBUSTION ENGINE AND DEVICE FOR IMPLEMENTING IT
JPS62247112A (en) * 1986-03-28 1987-10-28 Aisin Seiki Co Ltd Cooling system control device for internal combustion engine
DE3738412A1 (en) * 1987-11-12 1989-05-24 Bosch Gmbh Robert ENGINE COOLING DEVICE AND METHOD
US5079488A (en) * 1988-02-26 1992-01-07 General Electric Company Electronically commutated motor driven apparatus
DE3810174C2 (en) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Device for regulating the coolant temperature of an internal combustion engine, in particular in motor vehicles
DE69325044T2 (en) * 1992-02-19 1999-09-30 Honda Giken Kogyo K.K., Tokio/Tokyo Machine cooling system
DE4238364A1 (en) * 1992-11-13 1994-05-26 Behr Gmbh & Co Device for cooling drive components and for heating a passenger compartment of an electric vehicle

Also Published As

Publication number Publication date
US5619957A (en) 1997-04-15
EP0731261A1 (en) 1996-09-11
DE19508102C1 (en) 1996-07-25
ES2117455T3 (en) 1998-08-01
DE59600233D1 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
EP0731261B1 (en) Control method of a cooling circuit of an internal combustion engine, especially for motor vehicles
EP0731260B1 (en) Control method for a cooling circuit of an internal combustion engine
EP1509687B1 (en) Method for regulating the heat of an internal combustion engine for vehicles
DE69925671T2 (en) Control system for total cooling of an internal combustion engine
DE19719792B4 (en) Method and device for regulating the temperature of a medium
EP1940636B1 (en) Control device for an engine-independent heater, heating system, and method for controlling an engine-independent heater
DE10359581B4 (en) Method for controlling a vehicle engine cooling system
EP1611325B1 (en) Propulsion system and method for optimising power supply to the cooling system thereof
DE19540591C2 (en) Method for regulating the volume flow distribution in a coolant circuit for motor vehicles with an engine and device for carrying out the method
DE102018127409A1 (en) STRATEGY / METHOD FOR CONTROLLING AN EQUATION-BASED COOLING SYSTEM
DE102013206499A1 (en) Apparatus and method for controlling the coolant temperature of a fuel cell system
EP1399656B1 (en) Method for monitoring a coolant circuit of an internal combustion engine
DE2806708C2 (en) Device for regulating the temperature of a cooling system of an internal combustion engine, in particular for motor vehicles
DE102009056616B4 (en) Method for distributing heat in a coolant circuit of a vehicle
DE60013082T2 (en) Cooling control device of a vehicle internal combustion engine during a hot start
DE10260260B4 (en) Engine cooling system
DE3430397C2 (en) Internal combustion engine with evaporative cooling
DE19711682A1 (en) Vehicle heater deriving heat from hydraulic circuit constriction
DE10133243B4 (en) Vehicle air conditioning
EP1523612B1 (en) Method and device for regulating the temperature of a coolant in an internal combustion engine
EP1375213B1 (en) Method for operating a cooling- and heating circuit of a motor vehicle
DE60214515T2 (en) DEVICE AND METHOD FOR COOLING A CONTROL DEVICE OF AN INTERNAL COMBUSTION ENGINE
DE19858988A1 (en) Heating system for the interior of a vehicle
DE2651243C2 (en) Heating for motor vehicles with a thermostatically controlled water-cooled engine
DE10143093A1 (en) Operation of vehicle coolant- and heating systems, stores excessive quantities of heat in coolant, through raised coolant temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB

17P Request for examination filed

Effective date: 19970311

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971110

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REF Corresponds to:

Ref document number: 59600233

Country of ref document: DE

Date of ref document: 19980709

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2117455

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040129

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060131

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801