EP0730161B1 - Procédé et appareil de test des dispositifs de protection d'un réseau Y-delta reél - Google Patents

Procédé et appareil de test des dispositifs de protection d'un réseau Y-delta reél Download PDF

Info

Publication number
EP0730161B1
EP0730161B1 EP96100668A EP96100668A EP0730161B1 EP 0730161 B1 EP0730161 B1 EP 0730161B1 EP 96100668 A EP96100668 A EP 96100668A EP 96100668 A EP96100668 A EP 96100668A EP 0730161 B1 EP0730161 B1 EP 0730161B1
Authority
EP
European Patent Office
Prior art keywords
earth
potential
protective
fault current
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96100668A
Other languages
German (de)
English (en)
Other versions
EP0730161A3 (fr
EP0730161A2 (fr
Inventor
Raimund Dr.-Ing. Schweiger
Herbert Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gossen-Metrawatt GmbH
Original Assignee
Gossen-Metrawatt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gossen-Metrawatt GmbH filed Critical Gossen-Metrawatt GmbH
Publication of EP0730161A2 publication Critical patent/EP0730161A2/fr
Publication of EP0730161A3 publication Critical patent/EP0730161A3/fr
Application granted granted Critical
Publication of EP0730161B1 publication Critical patent/EP0730161B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/14Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to occurrence of voltage on parts normally at earth potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches

Definitions

  • the invention relates to a method for checking protective measures in with Residual current protective devices equipped IT networks and a device for Performing this procedure.
  • the active parts of an ideal IT network In contrast to the TT network or TN network, the active parts of an ideal IT network not directly grounded. When there is a single earth fault in a phase of the ideal IT network Therefore, no earth fault current can flow, as this is done by grounding the active Parts of the ideal IT network closed circuit would be necessary.
  • a real IT network does not have a direct grounding of the active power supplies, However, from a certain network size, it is inevitably characterized by earth leakage currents connected consumer and through a capacitive coupling of the Grid phases towards earth. In such real IT networks, one can occurring single earth fault of a network phase a fault current flow, its size essentially depends on the line phase impedance to earth.
  • the grounding the phases in the real IT network with respect to earth are generally relatively high Earth resistance, so that in the case of a single earth fault, generally significantly lower Fault currents than in TN / TT networks occur because in TN / TT networks through the Direct earthing of the active power supplies specified relatively low earthing resistances which are the occurrence of a significant fault current in the event of a single earth fault enable.
  • Residual current circuit breakers necessary, which occur when a residual current occurs (e.g. by touching a phase directly) causes a network interruption.
  • a test current equal to the nominal residual current of the residual current device from a phase in front of the residual current device to one flow to another phase arranged after the residual current device, whereupon the residual current device must be triggered correctly.
  • the basic functionality of the residual current protective device is indeed hereby determined, but it is not ensured that the residual current device actually responds when there is a single earth fault.
  • test equipment also used to check the real IT network (e.g. Response of the residual current protective devices, measurement of the level of the residual current and the touch voltage) can be used.
  • the contact voltage is generally determined in this context by detecting a drop in the mains voltage, which occurs when a Fault current occurs in the event of a single earth fault.
  • a drop in the mains voltage which occurs when a Fault current occurs in the event of a single earth fault.
  • the voltage of each phase to earth as unchangeable be viewed so that about the amount of decrease in the line voltage also the amount of touch voltage can actually be detected.
  • This incalculable lowering of the mains voltage can be caused by deliberate Theoretically, generating a single earth fault can be prevented however, the real IT network would be converted into a TN network and the determined ones Measurement results would no longer be related to the real IT network.
  • the invention is based on the object of a method for checking of protective measures in IT networks equipped with residual current devices offer, which is based on those occurring in real IT networks Network conditions is tailored and an error-free determination of relevant Measured variables (such as contact voltage, fault current, earth resistance and Tripping point of the residual current device). Furthermore should a device for performing the method according to the invention is offered become.
  • the method according to the invention for checking protective measures in real IT networks provides for the use of a test device, in which - in addition to the usual Connection of a first connection to one of the network phases and the connection of one second connection to protective earth - a third probe connection is provided, which is connected to a neutral earth potential.
  • This neutral earth potential is like this spaced from the protective earth of the second connection to be measured, that at the Applying a residual current to the protective earth during testing and measurement of the real IT network there is no potential change in the neutral earth potential.
  • the method according to the invention sees an automatic termination of the check of the IT network if it is determined by the test device that the probe connection is not properly connected, an interruption in the probe line between Test device and probe connection is determined, or an excessive probe connection resistance (for example greater than 50 kOhm) is determined.
  • an excessive probe connection resistance for example greater than 50 kOhm
  • the method according to the invention provides for the application of a fault current I P between the at least one phase of the IT network and the protective earth, thereby reducing the potential the protective earth is raised by a certain amount.
  • the applied fault current I P flows in the real IT network with the test device connected as described, from the network phase tapped by the test device via the test device to protective earth and from protective earth via earth and the coupling impedance of the tapped network phase of the real IT Network back into the IT network and through the residual current device (s).
  • the potential of the protective earth is measured in relation to the neutral earth potential (to which the probe connection is connected) in the method according to the invention.
  • the measured potential is monitored. If a predetermined limit value (for example 25V or 50V) is exceeded, the method according to the invention provides for the test current I P to be switched off and the checking of the IT network to be ended automatically within a predefinable time interval. This automatic termination of the IT measurement mode takes place within the time intervals required in IEC 1010.
  • a predetermined limit value for example 25V or 50V
  • this potential check between the probe connection and protective earth can also be carried out before the fault current I P is applied and, if necessary for safety reasons, the test device can be switched off and the method according to the invention for checking IT networks can be terminated.
  • the contact voltage is detected by the method according to the invention, the voltage value occurring between the protective earth and the neutral earth potential during the measurement is detected.
  • the relaxation voltage is as described wrongly about the detection of the potential between protective earth and tapped Network phase detected.
  • this conventionally detected potential is due to the fact that it is described by the parallel connection of the tester with the coupling impedances of the Real IT network falsified network voltage change.
  • the method according to the invention thus allows an accurate and unadulterated determination the contact voltage by detecting the potential between protective earth and the neutral probe connection.
  • the contact voltage measured between the points described can now be measured by applying a fault current I P equal to the nominal fault current of the fault current protection device to be tested.
  • the touch voltage can also be measured by applying a fault current I P that corresponds to part of the nominal fault current of the fault current protection device and can then be extrapolated to the actual value of the touch voltage (for a fault current equal to the nominal fault current).
  • the method according to the invention further provides the possibility of comparing the flowing fault current I P with a setpoint.
  • This setpoint can correspond, for example, to the nominal residual current at which the residual current protective device used in the real IT network to be checked responds. If the constant current flowing during measurement and testing does not reach this setpoint (for example due to excessive coupling impedances of the individual phases of the real IT network with respect to earth), it can be recognized that the residual current protective devices used have an excessive nominal residual current and thus to protect the checked real one IT network are not suitable.
  • the earth resistance can be easily calculated by the method according to the invention after the measurement has been completed from the determined contact voltage and the applied constant fault current in accordance with Ohm's law.
  • the device according to the invention for carrying out the described method according to the invention is characterized by an automatic switch-off device for switching off the method for checking the IT network. This automatic switch-off device responds automatically if there is no proper connection of the probe to the neutral earth potential.
  • the device according to the invention has an automatic switch-off device for interrupting the applied fault current I P , which responds for security reasons when a predetermined limit value of the potential difference between the neutral earth potential and the protective earth of the IT network is exceeded.
  • a computer of the device according to the invention is determined by using the Ohm's law the earth resistance Re from the contact voltage and the constant current applied.
  • the determined resistance value for the earth resistance Re is then displayed on a display device provided on the test device.
  • Fig. 1 shows a real IT network with the network phases L 12 , L 22 and L 32 , which are grounded relatively high impedance by coupling impedances 11, 12 and 13. 1 has otherwise ungrounded active parts 16 and an exemplary and grounded consumer M.
  • the (different) coupling impedances 11, 12 and 13 symbolize the capacitive coupling of the individual network phases L 12 occurring in the real IT network, L 22 and L 32 to earth.
  • a measuring device 2 with a first connection 3, a second connection 4 and a third probe connection 6 is now connected to the real IT network, that the first connection 3 is connected to a network phase (in the present case with the network phase L 32 ) of the IT network, the second connection 4 is connected to a protective earth 5 of the IT network and the third probe connection 6 via a probe line 14 with neutral Earth potential 7 is connected.
  • the neutral earth potential 7 is located at a distance 10 (at least 20 m) from the protective earth 5 and is therefore outside the voltage funnel of the protective earth 5.
  • a fault current I P to be measured now flows in the direction of arrow 8 via test device 2, earth resistance 9, protective earth 5, coupling impedances 11, 12 and fault current protection device 1 and active parts 16 (division depending on the three-phase phase position).
  • the flowchart according to FIG. 2 for the tripping test of residual current protective devices is based on a measuring setup according to FIG. 1 and first measures the mains voltage U mains . If this lies between a permissible lower limit ug or upper limit og, the potential between the neutral earth potential 7 and the protective earth 5 is measured by the test device 2 without fault current feed. If the measured probe voltage U probe exceeds the upper limit og, the further test of the present network, as in the TN / TT network, must be carried out without using the third probe connection 6 of the test device 2. This procedural step determines whether a real IT network is available.
  • the probe voltage U probe does not exceed the predetermined upper limit og, it is assumed that there is a real IT network and a constant current I dN is fed into the network via the test device 2, so that a fault current in the direction of flow 8 (cf. 1) flows.
  • the probe voltage U probe is under load (ie with fault current I P ) and it is checked whether the probe voltage U probe (between neutral earth potential and protective earth 5) exceeds a predefinable limit value (here 50V). In this case, the network check is terminated immediately for security reasons.
  • the actual current flowing in the flow direction 8 is detected by the test device 2 with the current actual value I. Since the constant current I dN has the magnitude of the nominal residual current, a triggering of the residual current protective device 1 is to be expected if a certain measuring time is exceeded. If this does not happen, it was found that the residual current device 1 is faulty.
  • the amount of the difference between the actual current value I and constant current I dN is continuously formed and it is determined whether this difference exceeds a limit value.
  • the tripping time t A is detected and displayed by the test device 2.
  • FIG. 3 shows the method according to the invention for measuring the contact voltage U idN with a measuring setup according to FIG. 1.
  • the U network is measured, compared with the lower limit ug and the upper limit og, and the voltage between the neutral earth potential 7 and the unloaded protective earth 5 added. If this voltage in turn does not exceed an upper limit value og which is dangerous to safety, a fraction of the constant current (for example half, a third, etc.) is now set on test device 2 according to FIG. 2 and in flow direction 8 according to FIG. 1 in analogy to the corresponding method step 2 fed into the real IT network.
  • a fraction of the constant current for example half, a third, etc.
  • the contact voltage U idN is recorded over time by integrating the probe voltage U probe between neutral earth potential 7 and protective earth 5. If the contact voltage U idN exceeds a limit value, the measuring process is stopped immediately for safety reasons. Otherwise, as in the method according to FIG. 2, the actual current value I is detected, and an absolute difference between the actual current value I and the constant current I dN fed in half, third, etc. is formed. If this difference in amount does not exceed a limit value ⁇ and the measuring time is over, the grounding resistance Re can be calculated and displayed from the determined contact voltage U idN and the set constant current I dN .
  • the contact voltage U idN is integrated until the end of the measuring time.
  • an earth fault for example due to excessive Coupling impedance 11, 12, 13
  • an insufficient fault current for tripping the so oversized and ineffective residual current device 1 flows.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Claims (10)

  1. Procédé de vérification des mesures de protection dans des réseaux réels réalisés selon le schéma IT équipés de dispositifs de protection à courant différentiel résiduel,
       caractérisé par le déroulement des étapes suivantes :
    a) prévision d'un appareil de test (2) raccordé d'une manière connue par une première connexion (3) à au moins une des phases d'un réseau selon schéma IT, par une deuxième connexion (4) à la terre de protection (5) et par une troisième connexion de sonde (6) à un potentiel de terre neutre (7), lequel est espacé d'une terre de protection (5) à mesurer d'une manière telle qu'il n'est pas affecté par la variation de potentiel de la terre de protection (5) lorsqu'il est soumis à un courant différentiel résiduel Ip pendant le test et la mesure,
    b) arrêt automatique du mode de mesure IT de l'appareil de test en cas de survenue d'un des états suivants :
    ba) détection d'un raccordement défectueux de la connexion de sonde (6),
    bb) détection d'une coupure de la ligne de sonde (14) entre appareil de test (2) et connexion de sonde (6),
    bc) détection d'une trop grande résistance de la connexion de sonde,
    c) application d'un courant différentiel résiduel Ip entre au moins une phase et la terre de protection (5), suite à quoi le potentiel de la terre de protection (5) s'élève d'une certaine valeur,
    d) mesure du potentiel de la terre de protection (5) par rapport au potentiel de terre neutre (7) et contrôle du potentiel de la terre de protection (5) quant au dépassement d'une valeur limite définissable, p. ex. 25 V ou 50 V, ainsi que
    e) arrêt automatique du mode de mesure IT de l'appareil de test (2) par coupure du courant d'essai Ip au sein d'un intervalle de temps définissable en cas de dépassement de la valeur limite mentionnée à l'étape de procédé d).
  2. Procédé selon la revendication 1,
       caractérisé par le fait qu'il est effectué, avant l'application du courant différentiel résiduel Ip, selon caractéristique c) de la revendication 1, une vérification du potentiel entre la connexion de sonde (6) et la terre de protection (5) non soumise au courant d'essai Ip et qu'une coupure automatique intervient en cas de dépassement d'un seuil définissable du mode de mesure IT de l'appareil de test (2).
  3. Procédé selon l'une des revendications 1 ou 2 précédentes,
       caractérisé par le fait que la valeur de tension apparaissant pendant la mesure entre la terre de protection (5) et le potentiel de terre neutre (7) est définie et saisie en tant que tension de contact UidN.
  4. Procédé selon la revendication 3,
       caractérisé par le fait que la tension de contact UidN est mesurée avec le courant différentiel résiduel nominal du dispositif de protection à courant différentiel résiduel (2).
  5. Procédé selon la revendication 3,
       caractérisé par le fait que la tension de contact UidN est mesurée avec une partie du courant différentiel résiduel nominal du dispositif de protection à courant différentiel résiduel (2) et extrapolée pour le courant différentiel résiduel nominal.
  6. Procédé selon l'une des revendications précédentes,
       caractérisé par le fait que le courant différentiel résiduel Ip est appliqué pendant la mesure et le test sous forme de courant constant IdN et contrôlé quant à sa coïncidence avec une valeur de consigne.
  7. Procédé selon la revendication 6,
       caractérisé par le fait qu'une fois la mesure terminée, la résistance de terre (9) se calcule à partir de la tension de contact UidN et du courant constant IdN.
  8. Dispositif de mise en application du procédé conforme à l'une des revendications précédentes à l'aide d'un appareil de test (2) raccordable au moyen d'une première connexion (3) à une phase d'un réseau selon schéma IT, par une deuxième connexion (4), à la terre de protection (5) du réseau selon schéma IT et présentant une source de courant constant permettant de générer un courant différentiel résiduel (IB) provenant d'au moins une des phases ainsi qu'une connexion de sonde (6) à laquelle peut être raccordée une sonde se trouvant à un potentiel de terre neutre (7), l'appareil de test (2) présentant un dispositif de mesure servant à saisir la différence de potentiel entre le potentiel de terre neutre (7) et la terre de protection (5),
       caractérisé par le fait que le dispositif présente un dispositif de coupure automatique pour la coupure du mode de mesure IT réglable manuellement, qui, après exécution d'une mesure de tension et de résistance entre la connexion de sonde (6) et la terre de protection (5), vérifie le raccordement correct de la connexion de sonde (6) et, en l'absence de raccordement correct, quitte automatiquement le mode de mesure IT.
  9. Dispositif selon la revendication 8,
       caractérisé par le fait qu'il est prévu un autre dispositif de coupure automatique pour interrompre le courant différentiel résiduel Ip, qui se déclenche en cas de dépassement d'une valeur limite définissable de la différence de potentiel entre le potentiel de terre neutre et la terre de protection (5) du réseau selon schéma IT.
  10. Dispositif selon l'une des revendications 8 et 9,
       caractérisé par le fait que l'appareil de test (2) présente un calculateur qui calcule la résistance de terre (9) à partir de la tension de contact UidN et du courant constant IdN et l'affiche au moyen d'un dispositif d'affichage (15) prévu sur l'appareil de test (2).
EP96100668A 1995-03-01 1996-01-18 Procédé et appareil de test des dispositifs de protection d'un réseau Y-delta reél Expired - Lifetime EP0730161B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19507060A DE19507060B4 (de) 1995-03-01 1995-03-01 Verfahren sowie Vorrichtung zur Überprüfung von Schutzmaßnahmen in realen IT-Netzen
DE19507060 1995-03-01

Publications (3)

Publication Number Publication Date
EP0730161A2 EP0730161A2 (fr) 1996-09-04
EP0730161A3 EP0730161A3 (fr) 1998-03-11
EP0730161B1 true EP0730161B1 (fr) 2002-05-29

Family

ID=7755304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100668A Expired - Lifetime EP0730161B1 (fr) 1995-03-01 1996-01-18 Procédé et appareil de test des dispositifs de protection d'un réseau Y-delta reél

Country Status (4)

Country Link
EP (1) EP0730161B1 (fr)
DE (2) DE19507060B4 (fr)
ES (1) ES2177684T3 (fr)
NO (1) NO314058B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822808A1 (de) * 1998-05-20 1999-11-25 Metrawatt Gmbh Gossen Verfahren und Vorrichtung zur Erkennung und Überprüfung eines IT-Netzes
FR3077169B1 (fr) * 2018-01-19 2020-01-10 Renault S.A.S Adaptation automatique du regime de neutre en v2h

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1137115B (de) * 1961-09-25 1962-09-27 Schutzapp Ges Paris U Co M B H Schaltungsanordnung zur Pruefung von Fehlerstrom- und Fehlerspannungsschutzschaltern
FR1372466A (fr) * 1963-05-10 1964-09-18 Charbonnages De France Procédé et dispositif perfectionnés de contrôle d'isolement par rapport à la terre d'un réseau électrique alternatif
AT310847B (de) * 1972-02-16 1973-10-25 Gottfried Biegelmeier Dr Prüfgerät für Fehlerstromschutzschaltungen
US3898557A (en) * 1973-11-12 1975-08-05 Daltec Systems Inc Electrical device for testing a ground fault circuit interrupter
DE3835710A1 (de) * 1988-10-20 1990-05-03 Asea Brown Boveri Messverfahren und schaltungsanordnung zur ueberpruefung von schutzmassnahmen in wechselspannungsnetzen
DE3835677C2 (de) * 1988-10-20 1997-07-17 Metrawatt Gmbh Gossen Meßverfahren und Schaltungsanordnung zur Ermittlung des Auslösestroms von FI-Schaltern

Also Published As

Publication number Publication date
DE19507060B4 (de) 2005-01-20
EP0730161A3 (fr) 1998-03-11
NO314058B1 (no) 2003-01-20
NO960857D0 (no) 1996-03-01
NO960857L (no) 1996-09-04
EP0730161A2 (fr) 1996-09-04
DE19507060A1 (de) 1996-09-05
DE59609245D1 (de) 2002-07-04
ES2177684T3 (es) 2002-12-16

Similar Documents

Publication Publication Date Title
DE102006022686B4 (de) Messanordnung zur Ermittlung des Isolationswiderstandes einer elektrischen Vorrichtung oder einer Anlage
EP3524985B1 (fr) Dispositif et procédé pour une surveillance de l'isolation à reconnaissance d'un conducteur extérieur défectueux dans un système d'alimentation électrique triphasé isolé terre
WO2010106059A1 (fr) Procédé et dispositif de contrôle de l'isolement d'un réseau it
EP3485549B1 (fr) Procédé destiné à éviter un courant de fuite à la terre dangereux de hautes fréquences pour un système d'entraînement électrique
EP3625863B1 (fr) Localisation d'un défaut de terre dans un réseau it
DE102014204038A1 (de) Verfahren und Vorrichtungen zur selektiven Isolationsüberwachung in ungeerdeten IT-Stromversorgungssystemen
EP3351951A1 (fr) Procédé et dispositif de détection d'une rupture d'une connexion de fils de protection au moyen d'un spectre de courant de fuite
DE102015214615A1 (de) Verfahren und Vorrichtungen zur erweiterten Isolationsfehlersuche mit multifunktionalem Prüfstrom
EP3931926B1 (fr) Détection d'une perte à la terre dans un réseau à courant continu
EP3916939B1 (fr) Procédé pour une protection de conduites et agencement de protection
EP0909956B1 (fr) Procédé et détermination de la résistance d'un réseau de distribution électrique
EP3069359A1 (fr) Procédé et dispositif de surveillance de condensateurs de traversée pour réseau de courant alternatif triphasé
EP3723220B1 (fr) Emplacements d'une perte à la terre dans un réseau à courant continue
WO2012017015A2 (fr) Procédé et dispositif de détection de courants vagabonds
EP2289137A1 (fr) Ensemble et procédé pour produire un signal d erreur
EP3589963B1 (fr) Procédé et dispositif de surveillance de passages de condensateur pour un réseau à courant alternatif
EP3451477A1 (fr) Détection d'une erreur dans un système de transmission de courant continu
EP0730161B1 (fr) Procédé et appareil de test des dispositifs de protection d'un réseau Y-delta reél
DE4418124C2 (de) Vorrichtung zum Erkennen einer Isolationsverschlechterung an Stromversorgungsleitungen
AT406091B (de) Verfahren zur reparatur- und wiederholungsprüfung von elektrischen geräten sowie vorrichtung zur durchführung des verfahrens
DE10037432A1 (de) Vorrichtung und Verfahren zur Überwachung einer Kondensatordurchführung
DE102020109000B4 (de) Verfahren und Vorrichtung zur Überwachung der Schutztrennung bei einem Stromerzeuger
EP1001270B1 (fr) Procédé pour tester une connexion à la terre
WO2003073577A1 (fr) Dispositif de controle destine a un disjoncteur comportant un declencheur electronique
EP3723223A1 (fr) Emplacements d'une perte à la terre dans un réseau à courant continue

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES IT SE

17P Request for examination filed

Effective date: 19980408

17Q First examination report despatched

Effective date: 20010702

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT SE

REF Corresponds to:

Ref document number: 59609245

Country of ref document: DE

Date of ref document: 20020704

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2177684

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150129

Year of fee payment: 20

Ref country code: IT

Payment date: 20150126

Year of fee payment: 20

Ref country code: ES

Payment date: 20150122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150123

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609245

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160119