EP0727631B1 - Stahlrohr für Industrieöfen - Google Patents

Stahlrohr für Industrieöfen Download PDF

Info

Publication number
EP0727631B1
EP0727631B1 EP96100133A EP96100133A EP0727631B1 EP 0727631 B1 EP0727631 B1 EP 0727631B1 EP 96100133 A EP96100133 A EP 96100133A EP 96100133 A EP96100133 A EP 96100133A EP 0727631 B1 EP0727631 B1 EP 0727631B1
Authority
EP
European Patent Office
Prior art keywords
radiant tube
ceramic
sleeve
jet pipe
flange part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96100133A
Other languages
English (en)
French (fr)
Other versions
EP0727631A1 (de
Inventor
Joachim Dr.-Ing. Wünning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WS Warmeprozesstechnik GmbH
Original Assignee
WS Warmeprozesstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WS Warmeprozesstechnik GmbH filed Critical WS Warmeprozesstechnik GmbH
Publication of EP0727631A1 publication Critical patent/EP0727631A1/de
Application granted granted Critical
Publication of EP0727631B1 publication Critical patent/EP0727631B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/051Heat exchange having expansion and contraction relieving or absorbing means
    • Y10S165/052Heat exchange having expansion and contraction relieving or absorbing means for cylindrical heat exchanger
    • Y10S165/053Flexible or movable header or header element
    • Y10S165/057Flexing tubesheet

Definitions

  • jet pipes For the indirect heating or cooling of industrial furnaces so-called jet pipes are often used, which are built through openings in the furnace wall and there be sealed. Burners or Electric heaters, for heat dissipation cooling systems that are in the Jet pipe can be used.
  • As a material for the Beam tubes are often used in heat-resistant steel, increasingly also ceramics, because of the higher ones Temperature limit.
  • a ceramic flange is attached to the Beam pipe clamped between two metallic flanges, one of which is gas-tight connected to the furnace housing is.
  • up to temperatures of around 250 ° C are elastic Seals available that have the different expansion catch the flanges made of metal and ceramic. The contact pressure is often applied by spring elements.
  • Seals made of a relatively rigid material, e.g. E.g. metal rings, be used. They require defined surfaces on the ceramic flange attachment, i.e. an expensive one Grinding operation in its manufacture. There is also the risk of stress cracks in the ceramic, because the Contact forces with stiff seals must be high.
  • the temperatures on the flange are usually above 250 ° C, especially if at this point hot gases from Flow the burner or cooling system.
  • the US-PS 3747206 also known the outer metal tube of the heating element with pressed-on metal sleeves to understand.
  • the metal sleeves can have a radially extending one have collar-like section, which as Contact surface for a seal is used. So that can be done Mount the heating element on a sealed container wall.
  • An industrial burner is known from DE 41 32 236 C1 a ceramic jet pipe known in which the subject Pipe with a ceramic flange insert with an intermediate layer of a sealing ring on an inner shoulder of a tubular housing part is pressed.
  • a second sealing ring provided in one of the tubular housing part and the ceramic jet pipe limited annular gap is. Springs arranged inside the burner head press the ceramic jet pipe with its flange attachment to seal against the ones supported on the inner shoulder Sealing ring.
  • sealing rings are under heat load of over 250 ° C metal rings used, which is a ground Require flange approach.
  • the US-PS 3747206 also known the outer metal tube of the heating element with pressed-on metal sleeves to understand.
  • the metal sleeves can have a radially extending one have collar-like section, which as Contact surface for a seal is used. So that can be done Mount the heating element on a sealed container wall.
  • the ceramic jet pipe has a metallic one Flange part on that easily with one on a furnace wall provided flange can be screwed.
  • the arranged between the flange part and the jet pipe metallic sleeve acts both as a sealing device, as well as a holding device in relation to axial forces.
  • the one on the relevant end of the ceramic jet pipe shrunk-on section forms a with the jet pipe essentially gas-tight connection.
  • the sleeve is thin-walled i.e. it has a much smaller wall thickness on than the jet pipe.
  • the jet pipe, its wall thickness is between 4 and 10 mm, on the other hand, is stiff.
  • the Sleeve fits therefore when shrinking the outer Shape of the jet pipe, so that grinding work of the jet pipe can be omitted. Minor surface irregularities of the nozzle are tolerated because the Sleeve adapts to this. Can too Diameter tolerances or deviations from roundness of the jet pipe balanced to a certain extent become. The compressive stresses that arise during shrinking tolerates the ceramic well
  • the sleeve creates a robust connection to the Flange.
  • the connection is also to a certain extent Completely flexible, so that different thermal Expansion of the jet pipe and the flange part do not lead to stress cracks or leaks. In particular the jet pipe becomes with all occurring temperature differences kept free of larger tensile stresses.
  • the sleeve is with its first and second sections each formed tubular, the second section expanded from the first section.
  • the second section presents with its enlarging Diameter a transition member to the flange part with a larger inner diameter. Differences in expansion coefficients of the jet pipe and the flange part become special of the second section of the sleeve well balanced if the second section at least is partially conical.
  • a simple arrangement results when the sleeve lies with its second section from the flange part. To shorten the overall length, it is also possible to section of the sleeve connected to the flange part around the first section shrunk onto the jet pipe the sleeve. The second section lies then substantially concentric with the first section the sleeve.
  • the jet pipe is made of silicon carbide ceramic. This is extremely heat-resistant. However, it has one relatively high thermal conductivity, so that the in the end of the sleeve is heated relatively strongly. This warming holds the shrink connection between the sleeve and the nozzle, however, easily stood.
  • Beam pipe has a wall thickness of 4 to 7 mm. In contrast, the wall thickness of the sleeve is less than 1 mm, so that this is made elastic in comparison to the jet pipe and acts as a spring element.
  • the sleeve has a coefficient of expansion has in the relevant temperature range is less than or equal to that of the ceramic used.
  • the shrink connection is at all temperatures equally firm, or increases in strength higher temperatures.
  • Particularly advantageous are iron-nickel alloys with a low coefficient of expansion.
  • a sealant can be between the second section and the jet pipe are introduced.
  • a sealant is particularly suitable for this elevated temperatures, such as graphite, or a solder.
  • the sleeve fixes the jet pipe in the axial direction.
  • a support tube can also be provided, that of the welded to the sleeve or otherwise connected flange part and coaxial to the support tube is arranged. It is advantageous if that Support pipe with an annular gap limited with the jet pipe, see above that there is some radial play. This Game prevents tension from being introduced into the Jet pipe, which could lead to its destruction. It is advantageous if the annular gap from the Sleeve narrowed away so that the support tube one in the area its mouth area for the spray lance having. This will act on the jet pipe Bending moment between the mouth of the support tube and the Sleeve derived. Then almost the entire lever arm stands Length of the support tube available, which makes the resulting forces acting on the jet pipe bearable stay. In particular, they are smaller than reaction forces, when clamping the ceramic jet pipe occur only at its mouth.
  • the jet pipe is advantageous for heating a Furnace room with protective gas atmosphere can be used. It serves with its flange part separating two gas spaces, the Furnace room and the surrounding area.
  • the jet pipe is included its flange part screwed to a flange that a provided in a corresponding furnace wall, from the jet pipe penetrated opening is arranged.
  • FIG. 1 an industrial furnace 1 is shown, the Furnace chamber 2 through on its furnace wall 3 in a corresponding Opening 5 provided radiant tubes 7 indirectly heated is.
  • the jet pipe 7 passes through the in the furnace wall 3 provided opening 5 and is at one on the furnace wall provided flange 8 attached. That at his in the furnace chamber 2 protruding end is closed jet pipe 7 connected to a burner 11 at its open end 9, the connections 13, 15 for supplying fuel gas and air, and has a connection 17 for discharging flue gas.
  • the connection 17 is with an annular exhaust gas chamber 19 of a tubular housing part 21 in Connection, so that an exhaust duct delimited by the jet pipe 7 in the exhaust chamber located in the housing part 21 19 opens.
  • the jet pipe 7 is heated by combustion of the fuel gas supplied at 22, causing hot, Exhaust gases emerging from the jet pipe 7 are formed at the end 9.
  • a flange part 23 For connecting the jet pipe 7 to the furnace wall 3 or the flange 8 is provided with a flange part 23 thin-walled sleeve 25 provided, in detail 2 can be seen.
  • the flange part 23 sits concentrically to the rotationally symmetrical with respect to one Longitudinal center axis 27 formed beam tube 7.
  • the Flange part 23 has the shape of an annular disc and at 29 goes into a coaxial to the longitudinal central axis 27 extending support tube 30 over.
  • the support tube 30 is outgoing of the flange part 23 initially with a hollow cylinder a clearly exceeding the diameter of the jet pipe 7 Diameter formed.
  • the ceramic one Beam pipe 7 a diameter of 50 to 250 mm and one Has a wall thickness of 3 to 10 mm, usually 4 to 7 mm, shows that made of a metal such as steel Support tube 30 a comparable wall thickness, however a larger diameter by a few millimeters.
  • the Ratio of the wall thickness of the sleeve 25 to that of the jet pipe 7 is 1/10. Therefore, the sleeve 25 is related elastic on the thick-walled, rigid jet pipe 7.
  • to Connection to the jet pipe 7 is the sleeve 25 with a provided first, hollow-cylindrical section 40, which is shrunk onto the jet pipe 7. This means that the inside diameter of section 40 is smaller than the outside diameter of the jet pipe 7.
  • the section 40 of the sleeve 25 goes into a conical section 42, to which a hollow cylindrical section 44 and connect another conical section 46.
  • the Sleeve 25 is at its section 46 with the flange part 23 welded at a weld seam 48. This leads along of the entire inner circumference of the flange part 23 limited opening so that the sleeve 25, the jet pipe 7th seals gas-tight against the flange part 23.
  • the flange part 23 has in the immediate vicinity the weld 46 an axial annular groove 47, the welding the sleeve 25 to the flange part 23 facilitates.
  • the springy Sleeve 25 consists of a nickel-iron alloy, whose coefficient of thermal expansion is equal to or less is the coefficient of thermal expansion of the jet pipe 7. This keeps the gas tight by shrinking made connection between the section 40 of the sleeve 25 and the jet pipe 7 even when the End 9 of the jet pipe 7 obtained at temperatures that are greater than 300 ° C. Regardless of the temperature of the Jet pipe 7 exercises the elastically stretched portion 40 of the Sleeve 25 has a radially inward pressure force the jet pipe 7, which is easily taken up by this becomes.
  • a additional sealant between section 40 and the Beam pipe 7 are provided.
  • Graphite powder is used as a sealant or a solder.
  • the flange part 23 is fixed between the Oven wall 3 connected flange 8 and one on the housing part 21 provided flange 52 held.
  • flange 52 For connection of the flange part 23 with the flanges 8, 52 serve in 2 only schematically indicated screws 55.
  • the sealing of the jet pipe 7 against the furnace chamber 6 is provided in a simple manner by the sleeve 25, without the jet pipe 7 requiring special finishing, and without this being in danger of breaking.
  • the seal is reliable and safe, so that none Operating temperature exhaust gases or gases from the furnace atmosphere can penetrate to the outside. Differences in temperature-dependent Extentions between the annular flange part 23 and the jet pipe 7 are compensated by the sleeve 7. This non-rigid clamping offers a good one Protection against stress cracks in the jet pipe 7.
  • Das Flange part 23 consists of metal, for example steel, and can with the interposition of temperature-resistant seals 56, 57 easily against the neighboring ones, also made of metal seal existing flanges 56, 57.
  • the support tube 30 serves with his hollow cylindrical section 33 of the absorption of bending moments. Due to the dimensioning of section 33 in such a way that this at any temperature for which the jet pipe 7th is provided, the jet pipe 7 holds with play, generated section 33 no thermal stresses for that Nozzle 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Für die indirekte Beheizung oder Kühlung von Industrieöfen werden häufig sogenannte Strahlrohre benutzt, die durch Öffnungen in der Ofenwand eingebaut und dort abgedichtet werden. Zur Wärmezufuhr dienen Brenner oder Elektroheizungen, zur Wärmeabfuhr Kühlsysteme, die in das Strahlrohr eingesetzt werden. Als Werkstoff für die Strahlrohre wird vielfach hitzebeständiger Stahl verwendet, in zunehmendem Maße aber auch Keramik, wegen der höheren Temperaturgrenze.
Zur Befestigung und Abdichtung keramischer Strahlrohre in der Ofenwand wird ein keramischer Flanschansatz am Strahlrohr zwischen zwei metallischen Flanschen eingeklemmt, wovon einer gasdicht mit dem Ofengehäuse verbunden ist. Bis zu Temperaturen von etwa 250°C sind elastische Dichtungen verfügbar, die die unterschiedliche Ausdehnung der Flansche aus Metall- und Keramik auffangen. Die Anpreßkraft wird häufig durch Federelemente aufgebracht.
Bei Temperaturen über 250°C an den Flanschen müssen Dichtungen aus relativ steifem Material, z. Bsp. Metallringe, eingesetzt werden. Sie erfordern definierte Oberflächen am keramischen Flanschansatz, d.h. eine teure Schleifoperation bei dessen Herstellung. Außerdem besteht die Gefahr von Spannungsrissen in der Keramik, weil die Anpreßkräfte bei steifen Dichtungen hoch sein müssen.
Bei der für Strahlrohre besonders geeigneten SIC-Keramik mit einer Wärmeleitfähigkeit von über 50 W/mK steigen die Temperaturen am Flansch in der Regel über 250°C, insbesondere dann, wenn an dieser Stelle heiße Gase vom Brenner oder Kühlsystem vorbeiströmen.
Für Heizelemente von Geschirrspülmaschinen ist es aus der US-PS 3747206 darüber hinaus bekannt, das äußere Metallrohr des Heizelements mit aufgepressten Metallhülsen zu fassen. Die Metallhülsen können einen sich radial erstreckenden kragenartigen Abschnitt aufweisen, der als Anlagefläche für eine Dichtung dient. Damit lässt sich das Heizelement an einer Behälterwand abgedichtet montieren.
Aus der DE 41 32 236 C1 ist ein Industriebrenner mit einem keramischen Strahlrohr bekannt, bei dem das betreffende Rohr mit einem keramischen Flanschansatz unter Zwischenlage eines Dichtungsringes an eine Innenschulter eines rohrförmigen Gehäuseteiles angedrückt ist. Zur Fixierung und weiteren Abdichtung ist ein zweiter Dichtungsring vorgesehen, der in einem von dem rohrförmigen Gehäuseteil und dem keramischen Strahlrohr begrenzten Ringspalt angeordnet ist. Innerhalb des Brennerkopfes angeordnete Federn drücken das keramische Strahlrohr mit seinem Flanschansatz zur Abdichtung gegen den sich an der Innenschulter abstützenden Dichtungsring.
Als Dichtungsringe werden bei Wärmebelastung von über 250 °C Metallringe verwendet, die einen geschliffenen Flanschansatz erfordern.
Für Heizelemente von Geschirrspülmaschinen ist es aus der US-PS 3747206 darüber hinaus bekannt, das äußere Metallrohr des Heizelements mit aufgepressten Metallhülsen zu fassen. Die Metallhülsen können einen sich radial erstreckenden kragenartigen Abschnitt aufweisen, der als Anlagefläche für eine Dichtung dient. Damit lässt sich das Heizelement an einer Behälterwand abgedichtet montieren.
Daraus ergibt sich die Aufgabe, ein robustes Strahlrohr für Industrieöfen, mit verbesserter und vereinfachter Abdichtung zu schaffen.
Diese Aufgabe wird durch ein Strahlrohr mit den Merkmalen des Patentanspruchs 1 gelöst.
Das keramische Strahlrohr weist einen metallischen Flanschteil auf, der problemlos mit einem an einer Ofenwand vorgesehenen Flansch verschraubt werden kann. Die zwischen dem Flanschteil und dem Strahlrohr angeordnete metallische Hülse wirkt sowohl als Dichtungseinrichtung, als auch als Halteeinrichtung in Bezug auf Axialkräfte. Der auf das betreffende Ende des keramischen Strahlrohres aufgeschrumpfte Abschnitt bildet mit dem Strahlrohr eine im wesentlichen gasdichte Verbindung. Die Hülse ist dünnwandig, d.h. sie weist eine wesentlich geringere Wanddicke auf als das Strahlrohr. Das Strahlrohr, dessen Wanddicke zwischen 4 und 10 mm liegt, ist demgegenüber steif. Die Hülse paßt sich deshalb beim Aufschrumpfen der äußeren Form des Strahlrohres an, so daß eine Schleifbearbeitung des Strahlrohres entfallen kann. Kleinere Oberflächenunregelmäßigkeiten des Strahlrohres werden toleriert, denn die Hülse paßt sich an diese an. Auch können Durchmessertoleranzen oder Abweichungen von der Rundheit des Strahlrohres bis zu einem gewissen Grad ausgeglichen werden. Die beim Schrumpfen entstehenden Druckspannungen verträgt die Keramik bei entsprechender Wanddicke gut.
Die Hülse schafft eine robuste Verbindung zu dem Flanschteil. Die Verbindung ist außerdem bis zu einem gewissen Grade nachgiebig, so daß unterschiedliche thermische Ausdehnungen des Strahlrohres und des Flanschteiles nicht zu Spannungsrissen oder Undichtigkeiten führen. Insbesondere wird das Strahlrohr bei allen auftretenden Temperaturdifferenzen von größeren Zugspannungen frei gehalten.
Die Hülse ist mit ihrem ersten und ihrem zweiten Abschnitt jeweils rohrförmig ausgebildet, wobei sich der zweite Abschnitt ausgehend von dem ersten Abschnitt erweitert. Der zweite Abschnitt stellt mit seinem sich vergrößernden Durchmesser ein Übergangsglied zu dem Flanschteil mit größerem Innendurchmesser dar. Unterschiede der Ausdehnungskoeffizienten des Strahlrohres und des Flanschteiles werden von dem zweiten Abschnitt der Hülse besonders gut ausgeglichen, wenn der zweite Abschnitt wenigstens bereichsweise konisch ausgebildet ist.
Eine einfache Anordnung ergibt sich, wenn die Hülse mit ihrem zweiten Abschnitt von dem Flanschteil abliegt. Zur Verkürzung der Baulänge ist es auch möglich, den zweiten, mit dem Flanschteil verbundenen Abschnitt der Hülse um den ersten, auf das Strahlrohr aufgeschrumpften Abschnitt der Hülse zu stülpen. Der zweite Abschnitt liegt dann im wesentlichen konzentrisch zu dem ersten Abschnitt der Hülse.
Für die meisten Anwendungsfälle ist es vorteilhaft, wenn das Strahlrohr aus Siliziumkarbid-Keramik besteht. Diese ist hochgradig wärmefest. Allerdings weist sie eine relativ hohe Wärmeleitfähigkeit auf, so daß sich das in der Hülse gefaßte Ende relativ stark erwärmt. Dieser Erwärmung hält die Schrumpfverbindung zwischen der Hülse und dem Strahlrohr jedoch ohne weiteres stand. Das üblicherweise einen Durchmesser zwischen 50 und 250 mm aufweisende Strahlrohr hat eine Wanddicke von 4 bis 7 mm. Demgegenüber liegt die Wanddicke der Hülse bei weniger als 1 mm, so daß diese im Vergleich zu dem Strahlrohr elastisch ausgebildet ist und als Federelement wirkt.
Es ist vorteilhaft, wenn die Hülse einen Ausdehnungskoeffizienten aufweist, der im betreffenden Temperaturbereich kleiner oder gleich dem der verwendeten Keramik ist. In diesem Fall ist die Schrumpfverbindung bei allen Temperaturen gleich fest, bzw. nimmt in ihrer Festigkeit zu höheren Temperaturen hin noch zu. Besonders vorteilhaft sind Eisen-Nickel-Legierungen mit geringem Ausdehnungskoeffizienten.
Um die Gasdichtigkeit zwischen der Hülse und dem Strahlrohr noch zu erhöhen, kann ein Dichtmittel zwischen den zweiten Abschnitt und das Strahlrohr eingebracht werden. Dazu eignet sich insbesondere ein Dichtmittel für erhöhte Temperaturen, wie Graphit, oder ein Lötmittel.
Die Hülse fixiert das Strahlrohr in axialer Richtung. Zum Schutz vor Biegebeanspruchungen, die insbesondere bei von der Vertikalen abweichender Anordnung des Strahlrohres auftreten, kann zusätzlich ein Stützrohr vorgesehen sein, das von dem mit der Hülse verschweißten bzw. anderweitig verbundenen Flanschteil ausgeht und koaxial zu dem Stützrohr angeordnet ist. Dabei ist es vorteilhaft, wenn das Stützrohr mit dem Strahlrohr einen Ringspalt begrenzt, so daß ein gewisses radiales Spiel vorhanden ist. Dieses Spiel verhindert das Einleiten von Spannungen in das Strahlrohr, die zur Zerstörung desselben führen könnten. Dabei ist es vorteilhaft, wenn sich der Ringspalt von der Hülse weg verengt, so daß das Stützrohr einen im Bereich seiner Mündung liegenden Anlagebereich für das Strahlrohr aufweist. Damit wird ein auf das Strahlrohr einwirkendes Biegemoment zwischen der Mündung des Stützrohres und der Hülse abgeleitet. Als Hebelarm steht dann nahezu die gesamte Länge des Stützrohres zur Verfügung, wodurch die resultierenden, auf das Strahlrohr einwirkenden Kräfte erträglich bleiben. Insbesondere sind sie kleiner als Reaktionskräfte, die bei Einspannung des keramischen Strahlrohres allein bei seiner Mündung auftreten.
Das Strahlrohr ist vorteilhaft zur Beheizung eines Ofenraumes mit Schutzgasatmosphäre verwendbar. Es dient mir seinem Flanschteil der Trennung zweier Gasräume, dem Ofenraum und der Umgebung. Dazu ist das Strahlrohr mit seinem Flanschteil mit einem Flansch verschraubt, der an einer in einer entsprechenden Ofenwand vorgesehenen, von dem Strahlrohr durchgriffenen Öffnung angeordnet ist.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen:
  • Fig. 1 einen Industrieofen, an dessen Ofenwand ein mittels eines Industriebrenners beheiztes Strahlrohr abgedichtet gehalten ist, in einer schematischen und ausschnittsweisen Schnittdarstellung, und
  • Fig. 2 die Ofenwand mit dem Strahlrohr nach Fig. 1 in einer vergrößerten, ausschnittsweisen und schematischen Schnittdarstellung.
  • In Fig. 1 ist ein Industrieofen 1 dargestellt, dessen Ofenraum 2 durch an seiner Ofenwand 3 in einer entsprechenden Öffnung 5 vorgesehene Strahlrohre 7 indirekt beheizt ist. Das Strahlrohr 7 durchgreift die in der Ofenwand 3 vorgesehene Öffnung 5 und ist an einem an der Ofenwand vorgesehenen Flansch 8 befestigt. Das an seinem in den Ofenraum 2 ragenden Ende geschlossene Strahlrohr 7 ist an seinem offenen Ende 9 mit einem Brenner 11 verbunden, der Anschlüsse 13, 15 zur Zuführung von Brenngas und Luft, sowie einen Anschluß 17 zur Ausleitung von Rauchgas aufweist. Der Anschluß 17 steht mit einer ringförmigen Abgaskammer 19 eines rohrförmigen Gehäuseteils 21 in Verbindung, so daß ein von dem Strahlrohr 7 begrenzter Abgaskanal in die in dem Gehäuseteil 21 befindliche Abgaskammer 19 mündet. Erwärmt wird das Strahlrohr 7 durch Verbrennung des zugeführten Brenngases bei 22, wodurch heiße, an dem Ende 9 aus dem Strahlrohr 7 austretende Abgase entstehen.
    Zur Verbindung des Strahlrohres 7 mit der Ofenwand 3 bzw. dem Flansch 8 ist eine mit einem Flanschteil 23 versehene dünnwandige Hülse 25 vorgesehen, die im einzelnen aus Fig. 2 ersichtlich ist. Der Flanschteil 23 sitzt konzentrisch zu dem rotationssymmetrisch bezüglich einer Längsmittelachse 27 ausgebildeten Strahlrohr 7. Der Flanschteil 23 weist die Form einer Ringscheibe auf und geht bei 29 in ein sich koaxial zu der Längsmittelachse 27 erstreckendes Stützrohr 30 über. Das Stützrohr 30 ist ausgehend von dem Flanschteil 23 zunächst hohlzylindrisch mit einem den Durchmesser des Strahlrohres 7 deutlich übersteigenden Durchmesser ausgebildet. Es verläuft von dem Ende 9 des Strahlrohres 7 weg, und geht dann über einen konischen Abschnitt 32 in einen engeren hohlzylindrischen Abschnitt 33 über, der mit dem Strahlrohr einen engen Ringspalt 35 begrenzt. Während das aus Keramik bestehende Strahlrohr 7 einen Durchmesser von 50 bis 250 mm und eine Wanddicke von 3 bis 10 mm, meist 4 bis 7 mm, aufweist, weist das aus einem Metall wie bspw. Stahl hergestellte Stützrohr 30 eine vergleichbare Wanddicke, dabei jedoch einen um einige Millimeter größeren Durchmesser auf.
    Die zur Verbindung des Strahlrohres 7 mit dem Flanschteil 23 vorgesehene Hülse 25 hingegen weist durchgehend eine Wanddicke auf, die kleiner als 1 mm ist. Das Verhältnis der Wanddicke der Hülse 25 zu der des Strahlrohres 7 liegt bei 1/10. Deshalb ist die Hülse 25 in Bezug auf das dickwandige, steife Strahlrohr 7 elastisch. Zur Verbindung mit dem Strahlrohr 7 ist die Hülse 25 mit einem ersten, hohlzylindrisch ausgebildeten Abschnitt 40 versehen, der auf das Strahlrohr 7 aufgeschrumpft ist. Dies bedeutet, daß der Innendurchmesser des Abschnittes 40 geringer ist, als der Außendurchmesser des Strahlrohres 7. An seiner dem Ende 9 des Strahlrohres 7 zugewandten Seite geht der Abschnitt 40 der Hülse 25 in einen konischen Abschnitt 42 über, an den ein hohlzylindrischer Abschnitt 44 und ein weiterer konischer Abschnitt 46 anschließen. Die Hülse 25 ist an ihrem Abschnitt 46 mit dem Flanschteil 23 bei einer Schweißnaht 48 verschweißt. Diese führt entlang des gesamten inneren Umfanges der von dem Flanschteil 23 begrenzten Öffnung, so daß die Hülse 25 das Strahlrohr 7 gasdicht gegen den Flanschteil 23 abdichtet.
    Der Flanschteil 23 weist in unmittelbarer Nachbarschaft der Schweißnaht 46 eine axiale Ringnut 47 auf, die das Anschweißen der Hülse 25 an den Flanschteil 23 erleichtert.
    Die im Vergleich zu dem Strahlrohr federnd ausgebildete Hülse 25 besteht aus einer Nickel-Eisen-Legierung, deren Temperaturausdehnungskoeffizient gleich oder kleiner ist als der Temperaturausdehnungskoeffizient des Strahlrohres 7. Dadurch bleibt die gasdichte durch Aufschrumpfen hergestellte Verbindung zwischen dem Abschnitt 40 der Hülse 25 und dem Strahlrohr 7 auch bei einer Erwärmung des Endes 9 des Strahlrohres 7 auf Temperaturen erhalten, die größer als 300 °C sind. Unabhängig von der Temperatur des Strahlrohres 7 übt der elastisch gedehnte Abschnitt 40 der Hülse 25 eine radial nach innen gerichtete Druckkraft auf das Strahlrohr 7 aus, die von diesem ohne weiteres aufgenommen wird.
    Zur Verbesserung der Abdichtung zwischen dem Abschnitt 40 der Hülse 25 und dem Strahlrohr 7 kann, insbesondere wenn dieses eine rauhere Oberfläche aufweist, ein zusätzliches Dichtmittel zwischen dem Abschnitt 40 und dem Strahlrohr 7 vorgesehen werden. Als Dichtmittel dient Graphitpulver oder ein Lötmittel.
    Der Flanschteil 23 ist zwischen dem ortsfest mit der Ofenwand 3 verbundenen Flansch 8 und einem an dem Gehäuseteil 21 vorgesehenen Flansch 52 gehalten. Zur Verbindung des Flanschteiles 23 mit den Flanschen 8, 52 dienen in Fig. 2 lediglich schematisch angedeutete Schrauben 55.
    Die Abdichtung des Strahlrohres 7 gegen den Ofenraum 6 wird durch die Hülse 25 auf einfache Weise erbracht, ohne daß das Strahlrohr 7 besonderer Feinbearbeitung bedürfte, und ohne daß dieses bruchgefährdet wäre. Die Abdichtung ist zuverlässig und sicher, so daß bei keiner Betriebstemperatur Abgase oder Gase der Ofenatmosphäre nach außen dringen können. Unterschiede der temperaturabhängigen Ausdehnungen zwischen dem ringförmigen Flanschteil 23 und dem Strahlrohr 7 werden von der Hülse 7 ausgeglichen. Diese nicht starre Einspannung bietet einen guten Schutz gegen Spannungsrisse des Strahlrohres 7. Das Flanschteil 23 besteht aus Metall, bspw. Stahl, und läßt sich unter Zwischenlage temperaturfester Dichtungen 56, 57 problemlos gegen die benachbarten, ebenfalls aus Metall bestehenden Flansche 56, 57 abdichten.
    Während die Hülse 25 das Strahlrohr 7 in axialer und radialer Richtung hält, dient das Stützrohr 30 mit seinem hohlzylindrischen Abschnitt 33 der Aufnahme von Biegemomenten. Aufgrund der Bemessung des Abschnittes 33 derart, daß dieser bei jeder Temperatur, für die das Strahlrohr 7 vorgesehen ist, das Strahlrohr 7 mit Spiel hält, erzeugt der Abschnitt 33 keine thermischen Spannungen für das Strahlrohr 7.

    Claims (10)

    1. Keramisches Strahlrohr (7) für Industrieöfen, das endseitig über eine zwei Gasräume trennende Dichtungseinrichtung an einem Flanschteil abgedichtet gehalten und das mit einem Brenner (11) verbunden und durch Verbrennung des zugeführten Brenngases erwärmt ist, dadurch gekennzeichnet, daß die Dichtungseinrichtung eine dünnwandige metallische Hülse (25) ist, die in Bezug auf das dickwandige keramische Strahlrohr elastisch ausgebildet ist und die einen ersten, auf das keramische Strahlrohr (7) aufgeschrumpften Abschnitt (40) aufweist, der über einen zweiten Abschnitt (42, 44, 46) mit dem Flanschteil (23) größeren Durchmessers abgedichtet verbunden ist.
    2. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Abschnitt (42, 44, 46) wenigstens bereichsweise konisch ausgebildet ist.
    3. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Hülse (25) mit dem Flanschteil (23) verschweißt ist.
    4. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Hülse (25) derart auf das Strahlrohr (7) aufgeschrumpft ist, daß der erste Abschnitt (40) von dem Flanschteil (23) abliegt.
    5. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß das Strahlrohr (7) aus einer Siliziumkarbid-Keramik besteht.
    6. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Hülse (25) eine Wanddicke aufweist, die kleiner als 1 mm ist.
    7. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Hülse (25) einen Ausdehnungskoeffizienten aufweist, der wenigstens in dem Temperaturintervall von Umgebungstemperatur bis zur Betriebstemperatur kleiner oder gleich dem Ausdehnungskoeffizienten der verwendeten Keramik ist.
    8. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem ersten Abschnitt (40) und dem Strahlrohr (7) ein Dichtmittel eingebracht ist.
    9. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Hülse (25) mit einem Stützrohr (30) verbunden ist, das mit dem Flanschteil (23) verbunden ist und das sich von der Hülse (25) weg das Strahlrohr (7) umgebend erstreckt.
    10. Strahlrohr nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Strahlrohr (7) mit seinem Flanschteil (23) mit einem Flansch (8) verschraubt ist, der an einer in einer entsprechenden Ofenwand (3) vorgesehenen, von dem Strahlrohr (7) durchgriffenen Öffnung (5) angeordnet ist.
    EP96100133A 1995-02-17 1996-01-08 Stahlrohr für Industrieöfen Expired - Lifetime EP0727631B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19505401A DE19505401C1 (de) 1995-02-17 1995-02-17 Strahlrohr für Industrieöfen
    DE19505401 1995-02-17

    Publications (2)

    Publication Number Publication Date
    EP0727631A1 EP0727631A1 (de) 1996-08-21
    EP0727631B1 true EP0727631B1 (de) 2002-08-28

    Family

    ID=7754251

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96100133A Expired - Lifetime EP0727631B1 (de) 1995-02-17 1996-01-08 Stahlrohr für Industrieöfen

    Country Status (4)

    Country Link
    US (1) US5762489A (de)
    EP (1) EP0727631B1 (de)
    JP (1) JP3665407B2 (de)
    DE (2) DE19505401C1 (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    IT1292577B1 (it) * 1997-05-23 1999-02-08 Worgas Bruciatori Srl Bruciatore di gas cilindrico.
    DE19808405A1 (de) * 1998-02-27 1999-09-02 Kromschroeder Prozeswaerme Gmb Strahlrohranordnung
    DE19924731C2 (de) 1999-05-31 2001-07-19 Aichelin Gmbh Halterung zur temperaturbeständigen Festlegung eines Rohres
    SE0100948L (sv) * 2001-03-19 2002-09-20 Sandvik Ab Brännare för gas
    FR2828731B1 (fr) * 2001-08-14 2004-10-22 Inst Francais Du Petrole Installation de conversion chimique d'une charge presentant une surface reduite d'echange de chaleur
    DE202008009065U1 (de) * 2008-07-04 2008-10-09 WS Wärmeprozesstechnik GmbH Strahlungsheizanordnung mit Verzugkompensation
    DE102008048972B4 (de) * 2008-09-25 2012-07-12 Ibs Industrie-Brenner-Systeme Gmbh Strahlrohranordnung mit einer Verbindungseinrichtung
    US9482140B2 (en) * 2014-05-01 2016-11-01 Electro-Motive Diesel, Inc. Mounting system for aftertreatment component
    US10865151B2 (en) 2015-05-19 2020-12-15 Basf Se Gas-tight, heat-permeable multilayer ceramic composite tube

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2405152A (en) * 1943-02-20 1946-08-06 Sulzer Ag Packing for cylindrical parts
    US2632503A (en) * 1948-04-27 1953-03-24 Standard Oil Dev Co Tubular radiant gas burner
    GB957518A (en) * 1959-07-23 1964-05-06 Anneliese Bleckmann Improvements in and relating to the fixing of tubular electric heating elements
    DE1565466A1 (de) * 1964-11-16 1969-09-25 Czepek & Co Befestigungsvorrichtung fuer einen von aussen durch eine Behaelteroeffnung einsteckbaren Rohrheizkoerper
    US3425675A (en) * 1966-12-14 1969-02-04 Alco Standard Corp Burner tube assembly for heat treating furnace
    US3747206A (en) * 1970-05-25 1973-07-24 J Pease Method of making a heating element and fitting assembly
    US4134449A (en) * 1976-12-02 1979-01-16 Hague International Bellows sealing arrangement
    GB2145482B (en) * 1983-08-22 1986-08-13 Heat Transfer Technology Sealing joints between consenting member
    DE4132236C1 (de) * 1991-09-27 1992-10-15 Ws Waermeprozesstechnik Gmbh, 7253 Renningen, De

    Also Published As

    Publication number Publication date
    EP0727631A1 (de) 1996-08-21
    US5762489A (en) 1998-06-09
    DE19505401C1 (de) 1996-04-04
    DE59609581D1 (de) 2002-10-02
    JPH08312924A (ja) 1996-11-26
    JP3665407B2 (ja) 2005-06-29

    Similar Documents

    Publication Publication Date Title
    EP0164576B1 (de) Industriebrenner für gasförmige oder flüssige Brennstoffe
    EP0727631B1 (de) Stahlrohr für Industrieöfen
    EP0534105B1 (de) Industriebrenner mit rekuperativer Luftvorwärmung, insbesondere zur Beheizung von Ofenräumen von Industrieöfen
    EP0904512B1 (de) Hitzeschildanordnung, insbesondere für strukturteile von gasturbinenanlagen
    EP0171624B1 (de) Abgasleitung für Kraftfahrzeugmotoren
    EP0538293A1 (de) Plasmabrenner für übertragenen lichtbogen.
    EP0191910B1 (de) Keramisches Flammrohr für das Mantelstrahlheizrohr eines Industriebrenners
    DE3844554C2 (de)
    CH660700A5 (de) Abschirmvorrichtung fuer einen giessstrahl aus fluessigem material.
    EP0282497A1 (de) Halterung einer abgasleitung.
    EP0759502A1 (de) Ausgleichsanordnung
    DE2140401A1 (de) Flammrohr fuer gasturbinen
    EP0939270B1 (de) Strahlrohranordnung
    DE3700443C2 (de)
    EP0519303B1 (de) Heissluftwärmetauscher
    WO2019201654A1 (de) Vorrichtung zur dichtenden verbindung zweier rohrelemente
    DE19610501A1 (de) Verfahrenstechnische Einrichtung mit perforiertem emaillierten Aufnahmeteil
    DE3223082C2 (de) Weichstoffkompensator sowie Verfahren zu dessen Vorwärmen und Kühlen
    DE2721663C3 (de) Dichtung zur Abdichtung des Strahlrohres
    EP1058050B1 (de) Halterung zur temperaturbeständigen Festlegung eines Rohres
    DE19501422A1 (de) Wasserkammer eines Wärmetauschers
    JP2874110B2 (ja) 高温用バルブ
    EP4122594A1 (de) Wärmetauscher zum kühlen von spaltgas
    CH474733A (de) Wärmeaustauscher
    EP0913620A2 (de) Verbindungssystem zur Verbindung zweier Kanalstücke eines von einem heissen Fluid durchströmbaren Kanals

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    17P Request for examination filed

    Effective date: 19961220

    17Q First examination report despatched

    Effective date: 19990412

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020828

    REF Corresponds to:

    Ref document number: 59609581

    Country of ref document: DE

    Date of ref document: 20021002

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030530

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20120126

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20130122

    Year of fee payment: 18

    Ref country code: FR

    Payment date: 20130213

    Year of fee payment: 18

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20140108

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140108

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140131

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150131

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59609581

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140108