EP0714151B1 - Breitbandige Monopolantenne in uniplanarer gedruckter Schaltungstechnik und Sende- und/oder Empfangsgerät mit einer derartiger Antenne - Google Patents

Breitbandige Monopolantenne in uniplanarer gedruckter Schaltungstechnik und Sende- und/oder Empfangsgerät mit einer derartiger Antenne Download PDF

Info

Publication number
EP0714151B1
EP0714151B1 EP95460040A EP95460040A EP0714151B1 EP 0714151 B1 EP0714151 B1 EP 0714151B1 EP 95460040 A EP95460040 A EP 95460040A EP 95460040 A EP95460040 A EP 95460040A EP 0714151 B1 EP0714151 B1 EP 0714151B1
Authority
EP
European Patent Office
Prior art keywords
antenna
radiating
antenna according
feeder
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95460040A
Other languages
English (en)
French (fr)
Other versions
EP0714151A1 (de
Inventor
Patrice Brachat
Christian Sabatier
Roger Behe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0714151A1 publication Critical patent/EP0714151A1/de
Application granted granted Critical
Publication of EP0714151B1 publication Critical patent/EP0714151B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the field of the invention is that of radio transmissions. More specifically, the invention relates to transmit and / or receive antennas, in particular for smaller equipment, such as portable devices.
  • the invention thus applies, in particular, to radiocommunication systems with mobiles.
  • the extension of radiocommunication networks with land mobile requires the development of portable autonomous stations having the dual functionality for transmitting and receiving microwave signals. These stations must therefore include an integrated antenna.
  • These antennas are generally in the form of a radiating element installed outside a metal case, for example of rectangular shape, constituting the shielding of one or more electronic cards ensuring in particular modulation and demodulation functions of microwave signals, in transmission and in reception respectively.
  • a first known type of antenna is the half-wave doublet, that is to say a doublet of length ⁇ / 2, with ⁇ the operating wavelength.
  • the half-wave doublet which generally consists of line elements two-wire (i.e. conductive cylindrical rods) supplied by a line power supply, has relatively broadband performance, which makes it usable in many applications.
  • balun traditionally presents itself as a transformer involving localized or distributed impedances, and allowing, when placed between an element radiating symmetrical and an asymmetrical power line, making the currents symmetrical on the radiating structure.
  • balun has the disadvantage major to require always a delicate development.
  • the half-wave doublets with cylindrical rods have difficult mechanical handling and too much space important (although reduced), the minimum length of the antenna being imposed by the length of the main strands, about ⁇ / 2.
  • a second type of antenna even more compact than the half-wave doublet, therefore has been designed.
  • This is the inverted F antenna, which consists of a conductive element horizontal rectangular and a vertical rectangular conductive element.
  • the element vertical ensures a short circuit function on the horizontal element, by connecting one of its ends to a ground plane.
  • this antenna has very dispersive characteristics in frequency, and therefore, consequently, a very low bandwidth, and for example of in the range of 2 to 3%. This is due to the fact that this antenna structure behaves much like a ⁇ / 4 resonator.
  • the bandwidth of an antenna is here defined as the frequency band on which the Stationary Wave Ratio (R.O.S) is less than 2. This last parameter represents the ability of the antenna to transmit the active power supplied to it, this which is most critical for small antennas.
  • This quantity is directly related to the input impedance of the antenna, which must be adapted to the impedance of the transmission line carrying the microwave signal to send and / or receive.
  • this impedance remains substantially constant (i.e. the R.O.S remains lower at 2, an R.O.S. equal to 1 corresponding to a perfect adaptation) over a large band of frequency.
  • a bandwidth of 2 to 3% as obtained using an F-antenna is generally insufficient.
  • document US 4,825,220 describes a radiating element comprising a dipole integrated into a "balun" structure.
  • the ground plane of the line of unbalanced micro ribbon transmission is divided by a central slot so as to form a balanced transmission line acting with the slot located between part of the arms of the dipole formed.
  • the ground plane is used as such on a part of the microstrip supply line.
  • the invention particularly aims to overcome the drawbacks of the various known types of antenna, including those of half-wave dipoles and F-shaped antennas reversed.
  • an objective of the invention is to provide an antenna small footprint with a large pass.
  • the invention has in particular aims to provide such an antenna, whose bandwidth is at least of the order from 20 to 30% and having a reduced bulk especially in relation to an antenna in inverted F.
  • the invention also aims to provide a self-symmetrized antenna, and does not therefore requiring no balun.
  • the invention also aims to provide such an antenna, which can operate over a wide range of input impedances, and in particular for input impedances between 10 and 200 Ohms.
  • the antenna of the invention is therefore produced in printed technology, which allows considerable space savings and much easier mechanical maintenance.
  • the main surface of the conductive deposit constituting a plane of ground for the supply line, ensures that the supply is autosymmetrized.
  • the antenna according to the invention does not require the joint use of a balun.
  • the supply line feeds the radiating strand through the slit coupling.
  • the antenna according to the invention is based in particular on a new adaptation and inventive of the inverted F antenna. Indeed, the two-dimensional configuration of the inverted F antenna was projected in a single plane containing the entire antenna. In in other words, the radiating strand and the ground plane are no longer in two planes separate parallels, but in the same plane. Compared to the inverted F antenna, the antenna of the invention is therefore much more compact since it overcomes the height h between the radiating strand (or horizontal conducting element) and the ground plane.
  • the antenna of the invention has a much wider bandwidth than that of an inverted F antenna. This is explained in particular by the fact that for the inverted F antenna, the radiating strand is located just above the ground plane and forms with this a cavity which is very selective in frequency (generally 2 to 3% of bandwidth). On the other hand, in the case of the invention, the ground plane and the strand radiating are located in the same plane, so the cavity effect is much less marked. This achieves bandwidths close to 25%, and simultaneously cover the transmit band and the receive band.
  • said supply line and said coupling slot are cross at a point called cross point, said supply line having a end portion, or series stub, extending beyond said crossing point of a first adaptable length, and said coupling slot having a portion end, or parallel stub, extending beyond said crossing point by one second adaptable length.
  • At least one of the elements belonging to the group comprising said radiating strand, said main surface, and said coupling slot is shaped substantially rectangular.
  • said conductive deposit comprises at least two strands radiant, the longitudinal space between each of said radiating strands and said main surface forming a separate coupling slot.
  • the antenna comprises at least two feed lines, each of said radiating strands cooperating with one of said supply lines.
  • said radiating strand has at least one bend, so that said radiating strand extends at least partially along at least two sides of said main surface.
  • the overall size of the antenna is limited since the minimum antenna dimension is no longer linked to the total length of the radiating strand but only along the sides of the main surface of the conductive deposit.
  • said radiating strand has a variable width. So, the bandwidth of the antenna is increased.
  • said radiating strand exhibits at least one offset on the at least one of the longitudinal edges and / or at least one light on its surface.
  • the light on the surface of the radiating strand is for example a slot.
  • the antenna comprises also a ground plane placed at a predetermined distance from said line Power.
  • ground plane is without radiating element, it makes it possible to remove the stray radiation from the power line and get radiation in a half space only
  • said ground plane is a conductive deposit of same shape as that located on the second face of said substrate plate, comprising a main surface and at least one radiating strand.
  • the ground plane makes it possible to obtain a symmetrical radiation of each side of the antenna.
  • said supply line has an impedance substantially between 10 Ohms and 200 Ohms.
  • the length of said radiating strand is substantially understood between ⁇ / 8 and ⁇ / 4, ⁇ being the wavelength of said microwave signals.
  • the invention also relates to a device for transmitting and / or receiving microwave signals, comprising at least one antenna as described above.
  • the invention therefore relates to a reduced-size antenna with wide bandwidth.
  • This antenna is in particular intended to equip portable devices, and for example transmitters / receivers of radiocommunication networks with land mobiles.
  • FIGS. 1A and 1B which are respectively a top view and a view of side, illustrate a first embodiment of the invention.
  • the antenna comprises a substrate plate 1 (not shown in FIG. 1), a supply line 2 and a conductive deposit 3.
  • the supply line 2 is located on a first face (the lower face by example) of the substrate plate 1. This is for example a microstrip line.
  • the conductive deposit 3, for example of copper, is located on a second face (the upper side for example) of the substrate plate 1 and can decompose (fictitiously, since it is in practice made in one piece) in three parts: a main surface 4, an intermediate part 5 and a radiating strand 6.
  • the main surface 4 (rectangular in this example) of the conductive deposit 3 constitutes a ground plan for the supply line 2 located on the other side of the substrate plate 1.
  • the antenna therefore generates symmetrical currents on the strand radiating 6.
  • the antenna of the invention is autosymmetrized.
  • the radiating strand 6 is rectangular and has a first end connected to the main surface 4 of the conductive deposit 3 by the intermediate part 5, and a second free end extending partially along one side of the surface main 4 of the driver depot 3.
  • the length of the radiating strand 6 is close to ⁇ / 4, with ⁇ the wavelength the antenna.
  • the antenna of the invention which is planar and whose maximum length is ⁇ / 4, has a smaller footprint than that of a dipole of length ⁇ / 2 or else than that of an inverted F antenna of length ⁇ / 4 but whose radiating strand is spaced a height h from the ground plane.
  • the antenna of the invention not only has a very small footprint but also a large bandwidth. Indeed, the main surface 4 of the depot conductor 3 behaves like a ground plane, especially with respect to the line supply 2 and the coupling slot 7, and very little vis-à-vis the radiating strand 6, this which greatly reduces the selectivity of the antenna. In addition, the cavity effect (and therefore the antenna selectivity) is much less marked than for an inverted F antenna since the ground plane (that is to say the main surface 4 of the conductive deposit 3) and the radiating strand 6 are located in the same plane.
  • the antenna according to the invention has a bandwidth of 20 to 30% and can be easily incorporated inside an ultra-light portable handset.
  • the longitudinal space between the radiating strand 6 and the main surface 4 of the conductive deposit 3 forms a coupling slot 7 through which the supply line 2 supplies the radiating strand 6.
  • the coupling slot 7 is also rectangular.
  • FIG 2 is a partial detailed view of the antenna shown in Figure 1A.
  • the antenna of the invention includes a serial stub and a parallel stub. These series and parallel stubs allow adaptation of the antenna according to the known principle of double stub adaptation, on a wide frequency band.
  • FIG. 3 presents a variation curve, as a function of the frequency, of the standing wave ratio (or ROS) for an example of antenna according to the first mode of embodiment of FIGS. 1A and 2.
  • This curve is used to calculate the bandwidth [f1, f2], defined here as the frequency band for which the ROS remains below 2.
  • This bandwidth can also expressed as a percentage, obtained by dividing the width (f2, f1) of the bandwidth by the central frequency f3 of this band.
  • the antenna according to the invention therefore has a bandwidth wide enough to simultaneously cover the transmission band and the transmission band reception.
  • Figure 4 presents a variation curve, in a Smith chart, of the input impedance for the previous antenna example.
  • the antenna is not, in this example, perfectly optimized. Indeed, better centering of the loop relative to the center of the abacus Smith would increase the performance of the antenna.
  • the impedance of the power line carrying the HF signal to was set at 50 ⁇ , but this value does not constitute a characteristic decisive, because the input impedance of the antenna according to the invention can take any value between 10 and 200 ⁇ .
  • FIG. 5 presents a top view of a second embodiment of the antenna according to the invention.
  • This second embodiment differs from the first in that that the radiating strand 6 has an elbow 51 and extends along two sides of the main surface 4 of the conductive deposit 3.
  • the overall size of the antenna is further reduced. If the length of radiating strand 6 is equal to ⁇ / 4, we can, by creating a elbow 51 at mid-length, reach dimensions close to ⁇ / 8. It is clear that the elbow 51 is not necessarily in the center of the radiating strand 6, or else that the radiating strand 6 may include more than one bend, so as to extend along more than two sides of the main surface 4.
  • FIG. 6 presents a top view of a third embodiment of the antenna according to the invention.
  • This third embodiment differs from the first in that the radiating strand 6 has a variable width over its length. This width variable, when chosen appropriately, increases bandwidth of the antenna.
  • the radiating strand 6 has a recess 61, 62 on each of its longitudinal edges. It should be noted that in other embodiments, the radiating strand 6 may have a slit in the middle, or have several recesses on each of its longitudinal edges, or present one or more recesses on only one of its longitudinal edges.
  • FIG. 7 shows a top view of a fourth embodiment of the antenna according to the invention.
  • the antenna comprises several radiating strands 6 A , 6 B , 6 C , 6 D (four in this example).
  • Each radiating strand 6 A , 6 B , 6 C , 6 D is connected to the main surface 4 by an intermediate part 5 A , 5 B , 5 C , 5 D , and each longitudinal space comprised between a radiating strand 6 A , 6 B , 6 C , 6 D and the main surface 4 forms a separate coupling slot 6 A , 6 B , 6 C , 6 D.
  • the radiating strands 6 A , 6 B , 6 C , 6 D may or may not be identical.
  • a single supply line can supply all the radiating strands 6 A , 6 B , 6 C , 6 D , or else several supply lines can be used.
  • a single supply line can supply all the radiating strands 6 A , 6 B , 6 C , 6 D , or else several supply lines can be used.
  • the antenna comprises means 71 for shaping the HF signals received from a main supply line (not shown) and to be transmitted on the various secondary supply lines 2 A , 2 B , 2 C , 2 D associated with the different radiating strands 6 A , 6 B , 6 C , 6 D.
  • the elements (dividers, phase shifters) constituting the means 71 for shaping signals can be produced by different lengths of supply lines, by hybrid rings, or by any other solution known to those skilled in the art profession and performing the desired function.
  • the antenna may for example include another ground plane, placed at a predetermined distance from the supply line and separated from it by air or by a dielectric.
  • the antenna comprises the successive layers following: a ground plane, a dielectric, a supply line, a plate substrate and a conductive deposit.
  • the role of the additional ground plane is for example remove stray radiation from the power line and obtain a radiation in half a space only.
  • the additional ground plane is produced under form of a conductive deposit also comprising a main surface and a strand radiating associated with a slit. In this case, we obtain a symmetrical radiation of each side of the antenna.
  • a strand radiating can have a variable width and extend on two sides of the surface main of the driver's depot.
  • the invention also relates to any device for transmitting and / or receiving microwave signals equipped with an antenna according to the invention.
  • Possibly, such device can comprise several antennas, and in particular a transmitting antenna and a receiving antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Transceivers (AREA)

Claims (13)

  1. Sende- und/oder Empfangsantenne für Mikrowellensignale, die aufweist:
    eine Substratplatte (1);
    mindestens eine Versorgungsleitung (2; 2A bis 2D), die auf einer ersten Fläche dieser Substratplatte liegt;
    einen leitenden Belag (3), der auf einer zweiten Fläche angeordnet ist, welche der ersten Fläche der Substratplatte (1) gegenüber liegt, um folgendes zu definieren:
    eine Hauptfläche (4), die als Erdungsebene für die Versorgungsleitung (2; 2A bis 2D) wirkt;
    mindestens eine abstrahlende Ader (6; 6A bis 6D) mit einem ersten Ende, das mit der Hauptfläche (4) verbunden ist und einem zweiten freien Ende, das sich mindestens teilweise entlang von mindestens einer Seite der Hauptfläche (4) erstreckt;
    dadurch gekennzeichnet, dass ein sich zwischen einer jeden abstrahlenden Ader (6; 6A bis 6D) und der Hauptfläche (4) in Längsrichtung erstreckender Raum einen Koppelschlitz (7; 7A bis 7D) mit einer Versorgungsleitung bildet.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, dass die Versorgungsleitung (2; 2A bis 2D) und der Koppelschlitz (7; 7A bis 7D) sich an einem Kreuzungspunkt genannten Punkt kreuzen und,
    dass die Versorgungsleitung (2; 2A bis 2D) ein Endteil oder eine Serienblindleitung aufweist, das bzw. die sich über den Kreuzungspunkt einer ersten anpassungsfähigen Länge hinaus erstreckt und,
    dass der Koppelschlitz (7; 7A bis 7D) ein Endteil oder eine Parallelblindleitung aufweist, das bzw. die sich über den Kreuzungspunkt einer zweiten anpassungsfähigen Länge hinaus erstreckt.
  3. Antenne nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mindestens eines der Elemente aus der Gruppe, zu der die abstrahlende Ader (6; 6A bis 6D), die Hauptfläche (4) und der Koppelschlitz (7; 7A bis 7D) gehören, in etwa eine rechteckige Form aufweist.
  4. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der leitende Belag (3) mindestens zwei abstrahlende Adern (6A bis 6D) umfasst, wobei der Längsraum zwischen jeder abstrahlenden Ader und der Hauptfläche einen verschiedenen Koppelschlitz (7A bis 7D) bildet.
  5. Antenne nach Anspruch 4, dadurch gekennzeichnet, dass sie mindestens zwei Versorgungsleitungen (2A bis 2D) umfasst, wobei jede der abstrahlenden Adern (6A bis 6D) mit einer der Versorgungsleitungen zusammenwirkt.
  6. Antenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die abstrahlende Ader (6; 6A bis 6D) mindestens eine Biegung (51) aufweist, so dass sich diese abstrahlende Ader zumindest teilweise entlang von mindestens zwei Seiten der Hauptfläche (41) erstreckt.
  7. Antenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Breite der abstrahlenden Ader (6; 6A bis 6D) variabel ist.
  8. Antenne nach Anspruch 7, dadurch gekennzeichnet, dass die abstrahlende Ader (6; 6A bis 6D) mindestens eine Seitenverschiebung (61, 62) über mindestens einem der Längsränder und/oder mindestens eine Unterbrechung, beispielsweise einen Schlitz, auf der Fläche aufweist.
  9. Antenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie ebenfalls eine zusätzliche Erdungsfläche aufweist, welche mit einem vorgegebenen Abstand der Versorgungsleitung überlagert ist, wobei diese zusätzliche Erdungsfläche kein abstrahlendes Element bildet, wodurch erreicht wird, dass die Antenne nur in einem Halbraum abstrahlt.
  10. Antenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie ebenfalls eine zusätzliche Erdungsfläche aufweist, welche mit einem vorgegebenen Abstand der Versorgungsleitung überlagert ist, wobei diese zusätzliche Erdungsfläche ein leitender Belag ist, der dieselbe Form aufweist, wie der auf der zweiten Fläche der Substratplatte angebrachte Belag, wobei sie eine Hauptfläche und mindestens eine abstrahlende Ader umfasst und wobei diese zusätzliche Erdungsfläche das symmetrische Abstrahlen der Antenne auf beide Seiten derselben ermöglicht.
  11. Antenne nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Versorgungsleitung (2; 2A bis 2D) einen Eingangswiderstand aufweist, der in etwa zwischen 10 Ohm und 200 Ohm liegt.
  12. Antenne nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Länge der abstrahlenden Ader (6; 6A bis 6D) in etwa zwischen λ/8 und λ/4 liegt, wobei λ die Wellenlänge der Mikrowellenstrahlung ist.
  13. Mikrowellen Sende- und/oder Empfangsvorrichtung, dadurch gekennzeichnet, dass sie mindestens eine Antenne nach einem der Ansprüche 1 bis 12 umfasst.
EP95460040A 1994-11-22 1995-11-06 Breitbandige Monopolantenne in uniplanarer gedruckter Schaltungstechnik und Sende- und/oder Empfangsgerät mit einer derartiger Antenne Expired - Lifetime EP0714151B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9414198 1994-11-22
FR9414198A FR2727250A1 (fr) 1994-11-22 1994-11-22 Antenne large bande monopole en technologie imprimee uniplanaire et dispositif d'emission et/ou de reception incorporant une telle antenne

Publications (2)

Publication Number Publication Date
EP0714151A1 EP0714151A1 (de) 1996-05-29
EP0714151B1 true EP0714151B1 (de) 2003-09-03

Family

ID=9469188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95460040A Expired - Lifetime EP0714151B1 (de) 1994-11-22 1995-11-06 Breitbandige Monopolantenne in uniplanarer gedruckter Schaltungstechnik und Sende- und/oder Empfangsgerät mit einer derartiger Antenne

Country Status (5)

Country Link
US (1) US5835063A (de)
EP (1) EP0714151B1 (de)
JP (1) JPH08256009A (de)
DE (1) DE69531655T2 (de)
FR (1) FR2727250A1 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138050A (en) * 1997-09-17 2000-10-24 Logitech, Inc. Antenna system and apparatus for radio-frequency wireless keyboard
EP0929115A1 (de) * 1998-01-09 1999-07-14 Nokia Mobile Phones Ltd. Antenne für mobiles Kommunikationsgerät
US5929813A (en) * 1998-01-09 1999-07-27 Nokia Mobile Phones Limited Antenna for mobile communications device
US6016126A (en) * 1998-05-29 2000-01-18 Ericsson Inc. Non-protruding dual-band antenna for communications device
WO2000046873A1 (en) * 1999-02-02 2000-08-10 Qualcomm Incorporated Wireless phone design for improving radiation performance
US6140970A (en) * 1999-04-30 2000-10-31 Nokia Mobile Phones Limited Radio antenna
US6414640B1 (en) * 2000-04-18 2002-07-02 Nokia Corporation Antenna assembly, and associated method, which exhibits circular polarization
FR2811478A1 (fr) * 2000-07-05 2002-01-11 Eaton Corp Antenne plane a alimentation gamma
JP3830358B2 (ja) * 2001-03-23 2006-10-04 日立電線株式会社 平板アンテナおよびそれを備えた電気機器
US6456243B1 (en) 2001-06-26 2002-09-24 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
JP3622959B2 (ja) * 2001-11-09 2005-02-23 日立電線株式会社 平板アンテナの製造方法
KR100454103B1 (ko) * 2002-01-30 2004-10-26 주식회사 선우커뮤니케이션 광대역 특성을 갖는 비대칭 평판형 다이폴 안테나 및 이를이용한 다이폴 안테나 어레이 구조
US6573867B1 (en) 2002-02-15 2003-06-03 Ethertronics, Inc. Small embedded multi frequency antenna for portable wireless communications
JP3656610B2 (ja) * 2002-03-27 2005-06-08 日立電線株式会社 板状アンテナおよびそれを備えた電気機器
US6943730B2 (en) * 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
US6744410B2 (en) * 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
GB0210601D0 (en) * 2002-05-09 2002-06-19 Koninkl Philips Electronics Nv Antenna arrangement and module including the arrangement
JP3690375B2 (ja) 2002-07-09 2005-08-31 日立電線株式会社 板状多重アンテナおよびそれを備えた電気機器
US6911940B2 (en) * 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US6859175B2 (en) 2002-12-03 2005-02-22 Ethertronics, Inc. Multiple frequency antennas with reduced space and relative assembly
US7084813B2 (en) * 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
JP2004208223A (ja) * 2002-12-26 2004-07-22 Alps Electric Co Ltd 2バンド共用パッチアンテナ
TW574767B (en) * 2003-01-13 2004-02-01 Uniwill Comp Corp Antenna and shield assembly and wireless transmission module thereof
US6919857B2 (en) * 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
JP2004343402A (ja) * 2003-05-15 2004-12-02 Nippon Antenna Co Ltd アンテナ装置
KR100544675B1 (ko) * 2003-10-18 2006-01-23 한국전자통신연구원 마이크로스트립 패치 어레이 안테나를 이용한 위성신호중계 장치
KR100594964B1 (ko) * 2003-12-24 2006-06-30 한국전자통신연구원 광대역 편파 고정형 역 엘형 안테나
JP4213634B2 (ja) 2004-06-24 2009-01-21 インターナショナル・ビジネス・マシーンズ・コーポレーション 通信機能を備えた携帯情報端末
US7432860B2 (en) * 2006-05-17 2008-10-07 Sony Ericsson Mobile Communications Ab Multi-band antenna for GSM, UMTS, and WiFi applications
US9317798B2 (en) * 2007-08-29 2016-04-19 Intelleflex Corporation Inverted F antenna system and RFID device having same
KR101472371B1 (ko) 2007-09-21 2014-12-15 삼성전자주식회사 다중 주파수 대역 사용을 위한 안테나 및 이를 이용하는안테나 시스템
FR2925772A1 (fr) * 2007-12-21 2009-06-26 Thomson Licensing Sas Dispositif rayonnant multi secteurs presentant un mode omnidirectionnel
KR100960961B1 (ko) 2008-02-15 2010-06-03 경기대학교 산학협력단 메타머터리얼 구조를 이용한 소형 이중 대역 모노폴 안테나
TWI388086B (zh) * 2008-10-28 2013-03-01 Wistron Neweb Corp 槽孔天線
CN101740856B (zh) * 2008-11-06 2013-09-18 启碁科技股份有限公司 槽孔天线
FR2942676A1 (fr) * 2009-02-27 2010-09-03 Thomson Licensing Systeme d'antennes compact a diversite d'ordre 2.
TWI393291B (zh) * 2009-03-27 2013-04-11 Acer Inc 一種單極槽孔天線
TWI451631B (zh) 2010-07-02 2014-09-01 Ind Tech Res Inst 一種多頻天線以及使天線可多頻操作之方法
US8610626B2 (en) 2010-12-09 2013-12-17 Industrial Technology Research Institute Antenna with slot
TWI483464B (zh) * 2011-10-20 2015-05-01 Acer Inc 通訊裝置及其天線結構
GB201210114D0 (en) * 2012-06-08 2012-07-25 Ucl Business Plc Antenna configuration for use in a mobile communication device
TWI508367B (zh) 2012-09-27 2015-11-11 Ind Tech Res Inst 通訊裝置及其天線元件之設計方法
US9252502B2 (en) 2013-06-18 2016-02-02 Telefonaktiebolaget L M Ericsson (Publ) Inverted F-antennas at a wireless communication node
DE202014002207U1 (de) * 2014-02-18 2014-04-09 Antennentechnik Abb Bad Blankenburg Gmbh Mehrbereichsantenne für eine Empfangs- und/oder Sendeeinrichtung für den mobilen Einsatz
US9742063B2 (en) * 2014-06-13 2017-08-22 Arcadyan Technology Corporation External LTE multi-frequency band antenna
CN104134857B (zh) * 2014-08-01 2016-05-18 清华大学 一种八频段平面印刷手机天线
EP3367504B1 (de) 2017-02-27 2019-01-23 Sick AG Antenne für eine rfid-lesevorrichtung und verfahren zum senden und/oder empfangen von rfid-signalen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311422A1 (fr) * 1975-05-15 1976-12-10 France Etat Doublet replie en plaques
US4072951A (en) * 1976-11-10 1978-02-07 The United States Of America As Represented By The Secretary Of The Navy Notch fed twin electric micro-strip dipole antennas
FR2487588A1 (fr) * 1980-07-23 1982-01-29 France Etat Doublets replies en plaques pour tres haute frequence et reseaux de tels doublets
US4825220A (en) * 1986-11-26 1989-04-25 General Electric Company Microstrip fed printed dipole with an integral balun
JP3239435B2 (ja) * 1992-04-24 2001-12-17 ソニー株式会社 平面アンテナ
FR2699740B1 (fr) * 1992-12-23 1995-03-03 Patrice Brachat Antenne large bande à encombrement réduit, et dispositif d'émission et/ou de réception correspondant.
US5539414A (en) * 1993-09-02 1996-07-23 Inmarsat Folded dipole microstrip antenna
FR2709604B1 (fr) * 1993-09-02 1995-10-20 Sat Antenne pour appareil radio portatif.

Also Published As

Publication number Publication date
FR2727250A1 (fr) 1996-05-24
DE69531655T2 (de) 2004-06-24
US5835063A (en) 1998-11-10
FR2727250B1 (de) 1997-02-07
DE69531655D1 (de) 2003-10-09
JPH08256009A (ja) 1996-10-01
EP0714151A1 (de) 1996-05-29

Similar Documents

Publication Publication Date Title
EP0714151B1 (de) Breitbandige Monopolantenne in uniplanarer gedruckter Schaltungstechnik und Sende- und/oder Empfangsgerät mit einer derartiger Antenne
EP0604338B1 (de) Wenig Raum beanspruchende, breitbandige Antenne mit zugehörigem Sendeempfänger
EP2047558B1 (de) Isotrope antenne und diesbezüglicher messsensor
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
FR2752646A1 (fr) Antenne imprimee plane a elements superposes court-circuites
EP3669422A1 (de) Patch-antenne mit zwei verschiedenen strahlungsmodi mit zwei getrennten arbeitsfrequenzen, vorrichtung mit einer solchen antenne
EP0542595A1 (de) Mikrostreifenleiterantenne, insbesondere für Fernsprechübertragungen von Satelliten
EP1075043A1 (de) Antenne mit übereinanderliegenden Resonanzstrukturen und Multibandfunkkommunikationsendgerät mit einer derartigen Antenne
EP0403910A1 (de) Strahlendes, diplexes Element
EP1073143A1 (de) Dualpolarisierte gedruckte Antenne und entsprechende Gruppenantenne
EP0954055A1 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
FR2817661A1 (fr) Dispositif pour la reception et/ou l'emission de signaux multifaisceaux
EP0888647A1 (de) Wendelantenne mit integrierter breitbandspeisung und verfahren zu deren herstellung
EP0098192B1 (de) Multiplexanordnung zum Zusammenfügen von zwei Frequenzbändern
EP3258543A1 (de) Wlan-kompaktantenne mit reflektor aus metamaterial
EP2643886A1 (de) Flachantenne mit erweiterter bandbreite
EP1466384A1 (de) Einrichtung zum empfangen und/oder emittieren elektromagnetischer wellen mit strahlungs-diversity
EP2610966B1 (de) Kompakte Breitbandantenne von sehr geringer Dicke und mit doppelten orthogonalen linearen Polarisierungen, die für den V/UHF-Bandbereich konzipiert ist
EP0605338B1 (de) Streifenleitungsantenne mit zwei Polarisationen und entsprechende Vorrichtung zum Senden/Empfangen
FR2833764A1 (fr) Dispositif pour la reception et/ou l'emission de signaux electromagnetiques polarises circulairement
EP0463263B1 (de) Zirkular polarisierte Rundum-Antenne mit grösstem Gewinn in horizontaler Richtung
EP0860894B1 (de) Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen
EP0860895A1 (de) Resonanzantenne zum Senden oder Empfangen polarisierter Wellen
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
CA2808511A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19960903

17Q First examination report despatched

Effective date: 20000829

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69531655

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101025

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101026

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69531655

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601