EP0712972A1 - Reinforced concrete element - Google Patents

Reinforced concrete element Download PDF

Info

Publication number
EP0712972A1
EP0712972A1 EP95116996A EP95116996A EP0712972A1 EP 0712972 A1 EP0712972 A1 EP 0712972A1 EP 95116996 A EP95116996 A EP 95116996A EP 95116996 A EP95116996 A EP 95116996A EP 0712972 A1 EP0712972 A1 EP 0712972A1
Authority
EP
European Patent Office
Prior art keywords
concrete
elements
bar elements
matrix
concrete body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95116996A
Other languages
German (de)
French (fr)
Other versions
EP0712972B1 (en
Inventor
Horst Dr.-Ing. Kinkel
Wolfgang Dipl.-Ing. Kinkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0712972A1 publication Critical patent/EP0712972A1/en
Application granted granted Critical
Publication of EP0712972B1 publication Critical patent/EP0712972B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/012Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres

Definitions

  • the present invention relates to a concrete body, in particular a concrete body with concrete bar elements according to claim 1.
  • the invention further relates to concrete bar elements which can be introduced as additive material in surrounding concrete, and a manufacturing method therefor.
  • Fiber additives in concrete can be added with different objectives. If the goal is to increase the toughness, as with industrial floors, relatively long fibers are added, which can still transmit forces across the cracks even when the concrete expands. These fibers have a slip in the composite or are formed with end reinforcements and therefore have a large stretch length. This type of fiber reinforced concrete enables large stretches and leads to an even distribution of cracks.
  • Another goal of fiber reinforcement in concrete is to increase the tensile strength of the concrete.
  • the fibers required for this have a very good bond and great rigidity so that the micro-cracks in the concrete are reduced. Examples of this type of application are facade panels.
  • This fiber-reinforced concrete has only a low toughness, i.e. after the tensile strength is exceeded, it tears through.
  • the fibers used are short and have a rough surface.
  • Fibers work better, the higher the fiber content, the higher the fiber stiffness i.e. the modulus of elasticity and the better the bond between fiber and concrete matrix. With the usual fiber contents, the concrete has already cracked until the fibers have been stretched so much that they can absorb forces, i.e. Fibers common today improve the cracked concrete, but they are not stiff enough to delay cracking.
  • Reinforcing bars for concrete components are known. Compared to other reinforcements, the prestressing of the concrete means that they have a high degree of rigidity and, due to the favorable ratio of the absorbable force to the circumference, they have a very favorable bond behavior. However, the toughness of the concrete cannot be improved with concrete bar reinforcement
  • a concrete body made of a first concrete matrix is proposed with disordered or partially oriented, elongated prestressed concrete bar elements made of a second concrete matrix with tensioning elements arranged in the longitudinal direction of the concrete bar elements, the longitudinal extent of the concrete bar elements being small relative to the dimensions of the concrete body.
  • the rough concrete surface of the concrete bar elements results in a slip-free connection between the concrete bar element and the concrete matrix of the concrete body. This ensures a very good bond and high rigidity until the prestressed concrete bar elements are torn open, as is necessary to achieve high concrete tensile stresses. After the concrete bar elements have been torn open, the free stretching length of the clamping element becomes decisive for the stretchability of the concrete bar elements. This is the prerequisite for a ductile concrete structure.
  • the concrete rod fibers according to the present invention thus bring about both the increase in the concrete tensile strength and the increase in the toughness.
  • the tensioning elements are preferably designed with end anchorages.
  • the concrete body can be produced both in use and can also be used as a prefabricated component. Coordinated concrete bar elements of different cross-sections and different lengths can be used in the concrete body for better implementation of the concrete matrix in terms of quantity and dimensions.
  • fibers made of steel, glass, plastic or carbon can be used as fibers.
  • the concrete body can preferably be made of in-situ concrete.
  • the concrete body can preferably be designed as a tube, facade element or roof element.
  • the concrete body can be in the form of a liquid-tight component, industrial floor, road section or runway.
  • the elongated concrete bar elements according to the invention can be introduced into the surrounding concrete (first matrix) in an unordered manner and comprise a concrete matrix (second matrix) with prestressed tensioning elements arranged in the longitudinal direction.
  • the concrete bar elements can have a very small cross section, preferably 1 to 3 mm in diameter.
  • polymers can be present in whole or in part as binders in the concrete matrix.
  • the tensioning elements of the concrete bar elements can preferably contain plastic, glass, steel, carbon or ceramic.
  • the prestressing elements preferably consist of many individual wires or filaments, which are distributed as evenly as possible over the cross section for better bond behavior.
  • the prestressing elements preferably have, at their ends, anchoring thickenings made of the same or a different material.
  • the properties of the concrete matrix of the concrete bar elements are preferably set in such a way that they are embedded in the Creep shedding forces on the concrete matrix of the concrete body.
  • the concrete bar elements according to the invention can be produced by a method in which long tensioning elements are tensioned, concrete is applied around the tensioning elements by wetting or extrusion in a soft state, and after the concrete has hardened, the composite body obtained is cut into a large number of concrete bar elements.
  • Figure 1 describes a prestressed concrete bar element.
  • the concrete matrix (1) surrounds the tensioning element (2).
  • the tensioning element (2) preferably consists of rustproof materials such as glass fiber, carbon, aramid or comparable materials.
  • the end anchors (3) can by knots, loops or weaving the tensioning element, or but generated by gluing or welding. Both the adhesive itself and glued parts can be used as end anchors. Between the end anchors there is a stretch with a relatively poor bond that loosens after the fiber concrete has been torn open, thus allowing a large free stretching length of the tensioning element. Coupled with the low modulus of elasticity of the tensioning element, this results in great stiffness. This enables the use of relatively short concrete bar elements that still have a high degree of elasticity.
  • FIG. 2 shows the concrete bar elements (11) and (13) mixed into a concrete body (10).
  • the position of the concrete bar elements results from the mixing and pouring of the concrete.
  • the concrete bar elements work evenly in all directions.
  • the concrete of the concrete body (10) has already cracked under external load. However, the cracks are stopped by the concrete bar elements because they have a higher tensile strength. There is an increase in the tensile strength of the concrete body.
  • Figure 3 shows the state in which the external load has become so great that the crack load of the concrete bar elements (21) has been exceeded.
  • the cracks (22) from the concrete body (20) continue in the concrete bar elements (23).
  • the full stretch length of the tensioning element (24) comes into effect and there is an increase in the elasticity for the entire concrete body compared to the state without concrete rod elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Panels For Use In Building Construction (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

The concrete body (10) is made from a first concrete matrix which contains concrete rods (1,11,13) which are made from a second concrete matrix. The rods may have different cross sections and different lengths and are relatively smaller than the concrete body. The concrete matrix (1) encloses a tensioning element (2) which may consist of a non-rusting material such as glass fibre, carbon or plastics. The end anchor points (3) may be produced by a thickening of the reinforcing material, or by another material.

Description

Die vorliegende Erfindung betrifft einen Betonkörper, insbesondere einen Betonkörper mit Betonstabelementen gemäß Anspruch 1. Die Erfindung betrifft weiterhin Betonstabelemente, die als Zuschlagsmaterial in Umgebungsbeton einbringbar sind, sowie ein Herstellungsverfahren dafür.The present invention relates to a concrete body, in particular a concrete body with concrete bar elements according to claim 1. The invention further relates to concrete bar elements which can be introduced as additive material in surrounding concrete, and a manufacturing method therefor.

Es ist bekannt, Beton zur Erhöhung der Zugfestigkeit und der Zähigkeit mit Fasern zu durchsetzen. Dazu werden Stahlfasern, üblicherweise mit 0.15 bis 2 mm Durchmesser und Längen von 10 bis 50 mm, verwendet oder es kommen dünne Fasern aus Glas oder Kunststoff zur Anwendung. Die Fasern werden meistens in den Beton eingemischt. Dabei zeigt sich eine Grenze für die Verarbeitbarkeit des Betons, die je nach Fasertyp bei 3 bis 5 Vol% liegt. Mit speziellen, nur begrenzt verwendbaren Verfahren lassen sich Fasergehalte von ca. 15 Vol% erreichen. Bei diesen Verfahren werden die Fasern nicht eingemischt, sondern der Beton wird in die Fasern infiltriert.It is known to impregnate concrete with fibers to increase tensile strength and toughness. Steel fibers, usually 0.15 to 2 mm in diameter and lengths of 10 to 50 mm, are used for this, or thin fibers made of glass or plastic are used. The fibers are usually mixed into the concrete. This shows a limit for the workability of the concrete, which is 3 to 5 vol% depending on the type of fiber. With special processes that can only be used to a limited extent, fiber contents of approx. 15% by volume can be achieved. In this process, the fibers are not mixed in, but the concrete is infiltrated into the fibers.

Faserzusätze im Beton können mit unterschiedlichen Zielsetzungen beigegeben werden. Wenn die Zähigkeitserhöhung, wie bei Industriefußböden, das Ziel ist, werden relativ lange Fasern zugegeben, die auch bei großer Betondehnung noch Kräfte über die Risse hinweg übertragen können. Diese Fasern haben einen Schlupf im Verbund oder sind mit Endverstärkungen ausgebildet und haben dadurch eine große Dehnlänge. Diese Art von faserverstärkten Beton ermöglicht große Dehnungen und führt zu einer gleichmäßigen Rißverteilung.Fiber additives in concrete can be added with different objectives. If the goal is to increase the toughness, as with industrial floors, relatively long fibers are added, which can still transmit forces across the cracks even when the concrete expands. These fibers have a slip in the composite or are formed with end reinforcements and therefore have a large stretch length. This type of fiber reinforced concrete enables large stretches and leads to an even distribution of cracks.

Eine andere Zielsetzung bei der Faserverstärkung von Beton ist die Erhöhung der Zugfestigkeit des Betons. Die dazu notwendigen Fasern haben einen sehr guten Verbund und große Steifigkeit, damit die Mikrorisse des Betons reduziert werden. Beispiele für diese Art der Anwendung sind Fassadenplatten. Dieser faserverstärkte Beton hat nur eine geringe Zähigkeit, d.h. nach dem Überschreiten der Zugfestigkeit reißt er durch. Die verwendeten Fasern sind kurz und haben eine rauhe Oberfläche.Another goal of fiber reinforcement in concrete is to increase the tensile strength of the concrete. The fibers required for this have a very good bond and great rigidity so that the micro-cracks in the concrete are reduced. Examples of this type of application are facade panels. This fiber-reinforced concrete has only a low toughness, i.e. after the tensile strength is exceeded, it tears through. The fibers used are short and have a rough surface.

Fasern wirken um so besser, je höher der Fasergehalt, je höher die Fasersteifigkeit d.h. der E-Modul und je besser der Verbund zwischen Faser und Betonmatrix ist. Bei den üblichen Fasergehalten ist der Beton schon gerissen bis die Fasern so viel Dehnung erfahren haben, daß sie Kräfte aufnehmen können, d.h. heute übliche Fasern bewirken eine Verbesserung des gerissenen Betons, sie sind aber nicht steif genug, die Rissbildung zu verzögern.Fibers work better, the higher the fiber content, the higher the fiber stiffness i.e. the modulus of elasticity and the better the bond between fiber and concrete matrix. With the usual fiber contents, the concrete has already cracked until the fibers have been stretched so much that they can absorb forces, i.e. Fibers common today improve the cracked concrete, but they are not stiff enough to delay cracking.

Betonstabbewehrungen für Betonbauteile sind bekannt. Sie haben gegenüber anderen Bewehrungen durch die Vorspannung des Betons im Gebrauchszustand eine hohe Steifigkeit und durch das günstige Verhältnis aufnehmbare Kraft zu Umfang ein sehr günstiges Verbundverhalten. Die Zähigkeit des Betons kann jedoch mit Betonstabbewehrungen nicht verbessert werdenReinforcing bars for concrete components are known. Compared to other reinforcements, the prestressing of the concrete means that they have a high degree of rigidity and, due to the favorable ratio of the absorbable force to the circumference, they have a very favorable bond behavior. However, the toughness of the concrete cannot be improved with concrete bar reinforcement

Es ist daher Aufgabe der Erfindung Betonkörper bereitzustellen, die eine hohe Zugfestigkeit und Zähigkeit aufweisen.It is therefore an object of the invention to provide concrete bodies which have high tensile strength and toughness.

Zur Lösung dieser Aufgabe wird ein Betonkörper aus einer ersten Betonmatrix vorgeschlagen mit ungeordneten oder teilweise orientiert eingebetteten, länglichen vorgespannten Betonstabelementen aus einer zweiten Betonmatrix mit in Längsrichtung der Betonstabelemente angeordneten Spannelementen, wobei die Längserstreckung der Betonstabelemente relativ zu den Abmessungen des Betonkörpers klein ist.To solve this problem, a concrete body made of a first concrete matrix is proposed with disordered or partially oriented, elongated prestressed concrete bar elements made of a second concrete matrix with tensioning elements arranged in the longitudinal direction of the concrete bar elements, the longitudinal extent of the concrete bar elements being small relative to the dimensions of the concrete body.

Die rauhe Betonoberfläche der Betonstabelemente ergibt eine schlupffreie Verbindung zwischen Betonstabelement und der Betonmatrix des Betonkörpers. Damit ist bis zum Aufreißen der vorgespannten Betonstabelemente ein sehr guter Verbund und hohe Steifigkeit gegeben, wie sie zur Erzielung hoher Betonzugspannungen erforderlich ist. Nach dem Aufreißen der Betonstabelemente wird die freie Dehnlänge des Spannelementes maßgebend für die Dehnfähigkeit der Betonstabelemente. Damit ist die Voraussetzung für eine duktile Betonkonstruktion gegeben. Die Betonstabfasern gemäß vorliegender Erfindung bewirken also beides, sowohl die Erhöhung der Betonzugfestigkeit, als auch die Erhöhung der Zähigkeit. Um diesen Effekt zu verstärken werden die Spannelemente vorzugsweise mit Endverankerungen ausgebildet.The rough concrete surface of the concrete bar elements results in a slip-free connection between the concrete bar element and the concrete matrix of the concrete body. This ensures a very good bond and high rigidity until the prestressed concrete bar elements are torn open, as is necessary to achieve high concrete tensile stresses. After the concrete bar elements have been torn open, the free stretching length of the clamping element becomes decisive for the stretchability of the concrete bar elements. This is the prerequisite for a ductile concrete structure. The concrete rod fibers according to the present invention thus bring about both the increase in the concrete tensile strength and the increase in the toughness. In order to reinforce this effect, the tensioning elements are preferably designed with end anchorages.

Erfindungsgemäß kann der Betonkörper sowohl bei Gebrauch hergestellt werden als auch als vorgefertigtes Bauteil verwendet werden. Im Betonkörper können zur besseren Durchsetzung der Betonmatrix in Menge und Abmessungen aufeinander abgestimmte Betonstabelemente unterschiedlichen Querschnitts und unterschiedlicher Länge verwendet werden.According to the invention, the concrete body can be produced both in use and can also be used as a prefabricated component. Coordinated concrete bar elements of different cross-sections and different lengths can be used in the concrete body for better implementation of the concrete matrix in terms of quantity and dimensions.

Es ist weiterhin möglich den Betonkörper mit zusätzlichen Bewehrungselementen zu verstärken oder den Betonkörper selbst zusätzlich vorzuspannen. Dabei sind als Fasern beispielsweise Fasern aus Stahl, Glas, Kunststoff oder Carbon verwendbar.It is also possible to reinforce the concrete body with additional reinforcement elements or to additionally preload the concrete body itself. For example, fibers made of steel, glass, plastic or carbon can be used as fibers.

Der Betonkörper kann vorzugsweise in Ortbeton hergestellt sein. Vorzugsweise kann der Betonkörper als Rohr, Fassadenelement oder Dachelement ausgebildet sein. Außerdem kann der Betonkörper als ein flüssigkeitsdichtes Bauteil, Industriefußboden, Straßenabschnitt oder Landebahn vorliegen.The concrete body can preferably be made of in-situ concrete. The concrete body can preferably be designed as a tube, facade element or roof element. In addition, the concrete body can be in the form of a liquid-tight component, industrial floor, road section or runway.

Die erfindungsgemäßen, länglichen Betonstabelemente können ungeordnet in den Umgebungsbeton (erste Matrix) eingebracht werden und umfassen eine Betonmatrix (zweite Matrix) mit in Längsrichtung angeordneten und vorgespannten Spannelementen. Die Betonstabelemente können einen sehr kleinen Querschnitt von vorzugsweise 1 bis 3 mm Durchmesser haben. In den Betonstabelementen können als Bindemittel in der Betonmatrix ganz oder teilweise Polymere vorliegen. Die Spannelemente der Betonstabelemente können vorzugsweise Kunststoff, Glas, Stahl, Carbon oder Keramik enthalten. Dabei bestehen die Vorspannelemente vorzugsweise aus vielen einzelnen Drähten oder Filamenten, die zum besseren Verbundverhalten sich möglichst gleichmäßig über den Querschnitt verteilen. Die Vorspannelemente haben vorzugsweise an ihren Enden als Verankerungen wirkende Verdickungen aus dem gleichen oder einem anderen Material. Die Betonmatrix der Betonstabelemente wird vorzugsweise in ihren Eigenschaften so eingestellt, daß sie im eingebetteten Zustand durch Kriechverkürzungen Kräfte auf die Betonmatrix des Betonkörpers abgibt.The elongated concrete bar elements according to the invention can be introduced into the surrounding concrete (first matrix) in an unordered manner and comprise a concrete matrix (second matrix) with prestressed tensioning elements arranged in the longitudinal direction. The concrete bar elements can have a very small cross section, preferably 1 to 3 mm in diameter. In the concrete bar elements, polymers can be present in whole or in part as binders in the concrete matrix. The tensioning elements of the concrete bar elements can preferably contain plastic, glass, steel, carbon or ceramic. The prestressing elements preferably consist of many individual wires or filaments, which are distributed as evenly as possible over the cross section for better bond behavior. The prestressing elements preferably have, at their ends, anchoring thickenings made of the same or a different material. The properties of the concrete matrix of the concrete bar elements are preferably set in such a way that they are embedded in the Creep shedding forces on the concrete matrix of the concrete body.

Die erfindungsgemäßen Betonstabelemente können nach einem Verfahren hergestellt werden, bei dem lange Spannelemente gespannt werden, Beton um die Spannelemente herum durch Benetzen oder Extrusion in weichem Zustand aufgebracht wird und nach dem Erhärten des Betons der erhaltene Verbundkörper zu einer Vielzahl von Betonstabelementen durchtrennt wird.The concrete bar elements according to the invention can be produced by a method in which long tensioning elements are tensioned, concrete is applied around the tensioning elements by wetting or extrusion in a soft state, and after the concrete has hardened, the composite body obtained is cut into a large number of concrete bar elements.

Im folgenden wird die Erfindung anhand von Zeichnungen und Ausführungsbeispielen erläutert. Es zeigt:

  • Figur 1 (a) eine Seitenansicht eines Längsschnitts durch ein erfindungsgemäßes, vorgespanntes Betonstabelement;
  • Figur 1 (b) eine Vorderansicht eines erfindungsgemäßen, vorgespannten Betonstabelements;
  • Figur 2 ein Querschnitt durch einen Betonkörper mit eingebetteten Betonstabelementen und angedeuteter Rißbildung;.
  • Figur 3 ein weiterer Querschnitt durch einen Betonkörper mit eingebetteten Betonstabelementen und angedeuteter Rißbildung;.
The invention is explained below with reference to drawings and exemplary embodiments. It shows:
  • Figure 1 (a) is a side view of a longitudinal section through a prestressed concrete bar element according to the invention;
  • Figure 1 (b) is a front view of a prestressed concrete bar element according to the invention;
  • Figure 2 shows a cross section through a concrete body with embedded concrete bar elements and indicated cracking.
  • Figure 3 shows a further cross section through a concrete body with embedded concrete bar elements and indicated cracking.

Figur 1 beschreibt ein vorgespanntes Betonstabelement. Die Betonmatrix (1) umgibt das Spannelement (2). Als Betonmatrix können sowohl sehr feinkörnige Betone, wie auch kunststoffhaltige Betone eingesetzt werden. Das Spannelement (2) besteht vorzugsweise aus nichtrostenden Materialien wie Glasfaser, Carbon, Aramid oder vergleichbaren Materialien. Die Endverankerungen (3) können durch Knoten, Schlingen oder Weben des Spannelements, oder aber durch Kleben oder Verschweißen erzeugt werden. Dabei können sowohl der Klebstoff selbst, als auch aufgeklebte Teile als Endverankerung eingesetzt werden. Zwischen den Endverankerungen entsteht eine Strecke mit relativ schlechtem Verbund, der sich nach Aufreißen des Faserbetons löst und damit eine große freie Dehnlänge des Spannelements ermöglicht. Verbunden mit dem geringen E-Modul des Spannelements ergibt sich dadurch eine große Dehnsteifigkeit. Das ermöglicht eine Verwendung von relativ kurzen Betonstabelementen, die trotzdem eine hohe Dehnfähigkeit haben.Figure 1 describes a prestressed concrete bar element. The concrete matrix (1) surrounds the tensioning element (2). Both very fine-grained concretes and plastic-containing concretes can be used as the concrete matrix. The tensioning element (2) preferably consists of rustproof materials such as glass fiber, carbon, aramid or comparable materials. The end anchors (3) can by knots, loops or weaving the tensioning element, or but generated by gluing or welding. Both the adhesive itself and glued parts can be used as end anchors. Between the end anchors there is a stretch with a relatively poor bond that loosens after the fiber concrete has been torn open, thus allowing a large free stretching length of the tensioning element. Coupled with the low modulus of elasticity of the tensioning element, this results in great stiffness. This enables the use of relatively short concrete bar elements that still have a high degree of elasticity.

Figur 2 zeigt die in ein Betonkörper (10) eingemischten Betonstabelemente (11) und (13). Die Lage der Betonstabelemente ergibt sich beim Mischen und Einbringen des Betons. Die Betonstabelemente wirken gleichmäßig in alle Richtungen. In Figur 2 ist der Beton des Betonkörpers (10) unter äußerer Belastung bereits gerissen. Die Risse werden jedoch durch die Betonstabelemente gestoppt, da diese eine höhere Zugfestigkeit haben. Es kommt zu einer Erhöhung der Zugfestigkeit des Betonkörpers.FIG. 2 shows the concrete bar elements (11) and (13) mixed into a concrete body (10). The position of the concrete bar elements results from the mixing and pouring of the concrete. The concrete bar elements work evenly in all directions. In Figure 2, the concrete of the concrete body (10) has already cracked under external load. However, the cracks are stopped by the concrete bar elements because they have a higher tensile strength. There is an increase in the tensile strength of the concrete body.

Figur 3 zeigt den Zustand, in dem die äußere Belastung so groß geworden ist, daß die Rißlast der Betonstabelementen (21) überschritten wurde. Die Risse (22) aus dem Betonkörper (20) setzen sich in den Betonstabelementen fort (23). In diesem Zustand kommt die volle Dehnungslänge des Spannelements (24) zur Wirkung und es stellt sich für den gesamten Betonkörper gegenüber dem Zustand ohne Betonstabelemente eine Erhöhung der Dehnfähigkeit ein.Figure 3 shows the state in which the external load has become so great that the crack load of the concrete bar elements (21) has been exceeded. The cracks (22) from the concrete body (20) continue in the concrete bar elements (23). In this state, the full stretch length of the tensioning element (24) comes into effect and there is an increase in the elasticity for the entire concrete body compared to the state without concrete rod elements.

Claims (20)

Betonkörper (10) aus einer ersten Betonmatrix mit ungeordneten oder teilweise orientiert eingebetteten länglichen vorgespannten Betonstabelementen (1,11,13,21,23) aus einer zweiten Betonmatrix mit in Längsrichtung der Betonstabelemente angeordneten Spannelementen, wobei die Längserstreckung der Betonstabelemente relativ zu den Abmessungen des Betonkörpers klein ist.Concrete body (10) from a first concrete matrix with disorganized or partially oriented embedded elongated prestressed concrete bar elements (1,11,13,21,23) from a second concrete matrix with tensioning elements arranged in the longitudinal direction of the concrete bar elements, the longitudinal extent of the concrete bar elements relative to the dimensions of the Concrete body is small. Betonkörper (10) nach Anspruch 1 dadurch gekennzeichnet, daß zur besseren Durchsetzung der Betonmatrix in Menge und Abmessungen aufeinander abgestimmte Betonstabelemente unterschiedlichen Querschnitts und unterschiedlicher Länge verwendet werden.Concrete body (10) according to claim 1, characterized in that, for better enforcement of the concrete matrix in terms of quantity and dimensions, coordinated concrete bar elements of different cross-sections and different lengths are used. Betonkörper (10) nach einem der Ansprüche 1 oder 2 dadurch gekennzeichnet, daß er zusätzlich mit Bewehrungselementen verstärkt ist.Concrete body (10) according to one of claims 1 or 2, characterized in that it is additionally reinforced with reinforcement elements. Betonkörper (10) nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, daß er durch in die erste Betonmatrix eingelegte Spannglieder vorgespannt ist.Concrete body (10) according to one of Claims 1 to 3, characterized in that it is prestressed by tendons inserted into the first concrete matrix. Betonkörper (10) nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß er zusätzlich Fasern aus Stahl, Glas, Kunststoff oder Carbon enthält.Concrete body (10) according to one of claims 1 to 4, characterized in that it additionally contains fibers made of steel, glass, plastic or carbon. Betonkörper (10) nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß er als vorgefertigtes Bauteil vorliegt.Concrete body (10) according to one of claims 1 to 5, characterized in that it is present as a prefabricated component. Betonkörper (10) nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß er in Ortbeton hergestellt ist.Concrete body (10) according to one of claims 1 to 5, characterized in that it is made in in-situ concrete. Betonkörper (10) nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß er als Rohr ausgebildet ist.Concrete body (10) according to one of claims 1 to 5, characterized in that it is designed as a tube. Betonkörper (10) nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß er als Fassadenelement ausgebildet ist.Concrete body (10) according to one of claims 1 to 4, characterized in that it is designed as a facade element. Betonkörper (10) nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß er als Dachelement ausgebildet ist.Concrete body (10) according to one of claims 1 to 5, characterized in that it is designed as a roof element. Betonkörper (10) nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß er als flüssigkeitsdichtes Bauteil vorliegt.Concrete body (10) according to one of claims 1 to 5, characterized in that it is present as a liquid-tight component. Betonkörper (10) nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß er als Industriefußböden, Straßenabschnitt oder Landebahn vorliegt.Concrete body (10) according to one of claims 1 to 5, characterized in that it is present as an industrial floor, road section or runway. Als ungeordnet in Umgebungsbeton einbringbares Zuschlagsmaterial verwendbare längliche Betonstabelemente (1) aus einer Betonmatrix mit in Längsrichtung angeordneten und vorgespannten Spannelementen (2).Elongated concrete bar elements (1) made of a concrete matrix with prestressed tensioning elements (2) arranged in the longitudinal direction can be used as aggregate material which can be introduced into surrounding concrete in a disordered manner. Betonstabelemente (1) nach Anspruch 13 dadurch gekennzeichnet, daß die Elemente einen sehr kleinen Querschnitt von vorzugsweise 1 bis 3 mm Durchmesser haben.Concrete bar elements (1) according to claim 13, characterized in that the elements have a very small cross section, preferably 1 to 3 mm in diameter. Betonstabelemente (1) nach einem der Ansprüche 13 oder 14 dadurch gekennzeichnet, daß als Bindemittel in der Betonmatrix ganz oder teilweise Polymere vorliegen.Concrete bar elements (1) according to one of Claims 13 or 14, characterized in that polymers are present in whole or in part as binders in the concrete matrix. Betonstabelemente (1) nach einem der Ansprüche 13 bis 15 dadurch gekennzeichnet, daß sie Vorspannelemente aus Kunststoff, Glas, Stahl, Carbon oder Keramik enthalten.Concrete bar elements (1) according to one of Claims 13 to 15, characterized in that they contain prestressing elements made of plastic, glass, steel, carbon or ceramic. Betonstabelemente (1) nach Anspruch 16 dadurch gekennzeichnet, daß die Spannelemente (2) aus vielen einzelnen Drähten oder Filamenten bestehen, die zum besseren Verbundverhalten sich möglichst gleichmäßig über den Querschnitt verteilen.Concrete bar elements (1) according to claim 16, characterized in that the tensioning elements (2) consist of many individual wires or filaments which are distributed as evenly as possible over the cross-section for better bond behavior. Betonstabelemente (1) nach einem der Ansprüche 13, 14, 16, 17 dadurch gekennzeichnet, daß die Betonmatrix der Verstärkungselemente in ihren Eigenschaften so eingestellt ist, daß sie im eingebetteten Zustand durch Kriechverkürzungen Kräfte auf die Umgebungsbetonmatrix abgibt.Concrete bar elements (1) according to one of claims 13, 14, 16, 17, characterized in that the properties of the concrete matrix of the reinforcing elements are set in such a way that, in the embedded state, they release forces on the surrounding concrete matrix by creeping shortening. Betonstabelemente (1) nach einem der Ansprüche 13 bis 18 dadurch gekennzeichnet, daß die Spannelemente (2) an ihren Enden als Verankerungen wirkende Verdickungen (3) aus dem gleichen oder einem anderen Material aufweisen.Concrete bar elements (1) according to one of Claims 13 to 18, characterized in that the tensioning elements (2) have, at their ends, thickenings (3) which act as anchorings and which are made of the same or a different material. Verfahren zur Herstellung der Betonstabelemente (1) nach einem der Ansprüche 13 bis 18 dadurch gekennzeichnet, daß lange Spannelemente (2) gespannt werden, der Beton um die Spannelemente herum durch Benetzen oder Extrusion in weichem Zustand angebracht wird und nach dem Erhärten des Betons der erhaltene Verbundkörper zu einer Vielzahl von Betonstabelementen durchtrennt wird.Method for producing the concrete bar elements (1) according to one of claims 13 to 18, characterized in that long tensioning elements (2) are tensioned, the concrete is applied around the tensioning elements by wetting or extrusion in a soft state, and after the concrete has hardened, the obtained one Composite body is cut to a variety of concrete bar elements.
EP95116996A 1994-11-04 1995-10-27 Reinforced concrete element Expired - Lifetime EP0712972B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4439534A DE4439534A1 (en) 1994-11-04 1994-11-04 Concrete body with reinforcement
DE4439534 1994-11-04

Publications (2)

Publication Number Publication Date
EP0712972A1 true EP0712972A1 (en) 1996-05-22
EP0712972B1 EP0712972B1 (en) 2002-03-06

Family

ID=6532553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95116996A Expired - Lifetime EP0712972B1 (en) 1994-11-04 1995-10-27 Reinforced concrete element

Country Status (2)

Country Link
EP (1) EP0712972B1 (en)
DE (2) DE4439534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015100386A1 (en) * 2015-01-13 2016-07-14 Technische Universität Dresden Reinforcing rod of filament composite and method for its production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022132727A1 (en) 2022-12-08 2024-06-13 H.R. GmbH & Co. KG Base plate and method for producing such a base plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400507A (en) * 1966-09-12 1968-09-10 Ellamac Inc Structural members with preformed concrete reinforcing devices
DE2759161A1 (en) * 1977-12-31 1979-07-12 Strabag Bau Ag Prestressed concrete tension bar reinforced with glass fibre rod - with cured resin binder having unaligned glass fibres to take up internal stresses
DE2930939A1 (en) * 1979-07-31 1981-02-05 Heidelberger Zement Ag Mechanical reinforcement of mouldings contg. inorganic binders - using bundles fibres carrying row of projections forming anchors in mouldings
US4945694A (en) * 1989-04-20 1990-08-07 John Mitchell Building module
EP0501879A1 (en) * 1991-02-27 1992-09-02 Cogema (Compagnie Generale Des Matieres Nucleaires) Concrete and method of pre-stressing; container made of such concrete
EP0621381A1 (en) * 1993-04-22 1994-10-26 Horst Dr.-Ing. Kinkel Prestressed reinforcement element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400507A (en) * 1966-09-12 1968-09-10 Ellamac Inc Structural members with preformed concrete reinforcing devices
DE2759161A1 (en) * 1977-12-31 1979-07-12 Strabag Bau Ag Prestressed concrete tension bar reinforced with glass fibre rod - with cured resin binder having unaligned glass fibres to take up internal stresses
DE2930939A1 (en) * 1979-07-31 1981-02-05 Heidelberger Zement Ag Mechanical reinforcement of mouldings contg. inorganic binders - using bundles fibres carrying row of projections forming anchors in mouldings
US4945694A (en) * 1989-04-20 1990-08-07 John Mitchell Building module
EP0501879A1 (en) * 1991-02-27 1992-09-02 Cogema (Compagnie Generale Des Matieres Nucleaires) Concrete and method of pre-stressing; container made of such concrete
EP0621381A1 (en) * 1993-04-22 1994-10-26 Horst Dr.-Ing. Kinkel Prestressed reinforcement element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015100386A1 (en) * 2015-01-13 2016-07-14 Technische Universität Dresden Reinforcing rod of filament composite and method for its production

Also Published As

Publication number Publication date
DE59510089D1 (en) 2002-04-11
DE4439534A1 (en) 1996-05-09
EP0712972B1 (en) 2002-03-06

Similar Documents

Publication Publication Date Title
EP0710313B1 (en) Anchorage device for high-performance fiber composite cables
DE69929540T2 (en) FIBER-REINFORCED CEMENT MATERIAL WITH IMPROVED TOASTNESS AND DURABILITY
DE60017070T2 (en) Surface reinforcement for beams, columns, slabs o. D
DE102018102317A1 (en) Final anchoring of reinforcing fibers
DE102016111176A1 (en) Concrete reinforcement grid element, process for its production and its use
EP1259679B1 (en) Anchoring for a pre-tensioned and/or loaded strength member and anchor sleeve
DE2952783A1 (en) Multiphase construction material with low sensitivity to impact - where concrete contg. metal, polymer, and/or glass fibres, is reinforced by steel rods or plate
DE2930939C2 (en) Process for the mechanical reinforcement of moldable and / or hardenable materials
DE2322271C2 (en) Process for the mechanical reinforcement of moldable and / or hardenable materials
DE19525508A1 (en) Laminate coating for reinforced concrete or brickwork
EP0712972B1 (en) Reinforced concrete element
DE102006038130B3 (en) Production of supporting structures, e.g. lattice masts, comprises winding continuous strand of impregnated carbon fibers horizontally, vertically ands diagonally over connectors to produce lattice
EP1282751B1 (en) Steel fibers
EP0895558B1 (en) Reinforcing bar
DE2705483C2 (en)
DE10039830B4 (en) Use of annular fiber composites as reinforcing elements in concrete
AT166309B (en) Method and device for generating prestressing in concrete reinforcement
WO2009049571A1 (en) Structural element, particularly plate-shaped structural element made of concrete and concrete aggregate material
DE2504122B2 (en) REINFORCED CONCRETE COMPONENT PRE-TENSIONED IN THE FITTING BED
EP3947844B1 (en) Prestressed concrete body, method for its production and use thereof
DE102021115774A1 (en) Device and method for producing a flat component with prestressed textile reinforcement
WO2008095211A1 (en) Disc-shaped body for fibres
WO1998032934A1 (en) Flat strip lamella and its use for reinforcing building components
AT504836B1 (en) BODY ON FIBERS AND REINFORCING BARS
DE102019105493A1 (en) Textile reinforcement structure for a component, manufacturing process for a reinforcement structure, component and semi-finished part

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19961121

17Q First examination report despatched

Effective date: 19990907

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59510089

Country of ref document: DE

Date of ref document: 20020411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020516

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST