EP0704867B1 - Release device with at least a current transformer - Google Patents

Release device with at least a current transformer Download PDF

Info

Publication number
EP0704867B1
EP0704867B1 EP95410110A EP95410110A EP0704867B1 EP 0704867 B1 EP0704867 B1 EP 0704867B1 EP 95410110 A EP95410110 A EP 95410110A EP 95410110 A EP95410110 A EP 95410110A EP 0704867 B1 EP0704867 B1 EP 0704867B1
Authority
EP
European Patent Office
Prior art keywords
current
shunt
circuit
magnetic
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95410110A
Other languages
German (de)
French (fr)
Other versions
EP0704867A1 (en
Inventor
Pascal Houbre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP0704867A1 publication Critical patent/EP0704867A1/en
Application granted granted Critical
Publication of EP0704867B1 publication Critical patent/EP0704867B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/123Automatic release mechanisms with or without manual release using a solid-state trip unit
    • H01H71/125Automatic release mechanisms with or without manual release using a solid-state trip unit characterised by sensing elements, e.g. current transformers

Definitions

  • current transformers provide the electrical energy required to operate at its own current in electrical circuits, or associated electronics.
  • Current transformers are installed on conductors of a power circuit to be protected. They provide electronic circuits with triggering of low intensity secondary currents proportional to currents very strong primaries.
  • the alternating secondary currents are rectified and regulated in order to to supply continuous supply voltages to the trigger circuits.
  • the consumption of the circuits being stable or little variable, the excess energy supplied by the transformers is dissipated by regulating circuits and by the transformers themselves.
  • the minimum secondary operating current corresponds to the consumption of trip circuits.
  • operation must usually be ensured between 0.1 and 10 times the rated current.
  • the devices must include large transformers capable of dissipating excess energy transformed into heat. For the same reasons the components power electronics of the control circuits must be oversized and fixed on bulky cooling devices.
  • Saturated iron current transformers reduce the secondary current to high current level and limit the power supplied to the regulation circuits.
  • the operation of saturated iron transformers does not resolve effectively the problems of size and heating over the entire operating range of the triggering device.
  • the object of the invention is a triggering device comprising at least one current transformer providing reduced power at high primary current.
  • the transformer has a magnetic shunt arranged in derivation on the part of the main magnetic circuit constituting the core of the secondary winding, the magnetic shunt comprising a total or partial air gap locally reducing the section of said shunt.
  • the current response of said transformer is not linear over the entire range of operation.
  • the magnetic shunt is positioned between the primary conductor and the secondary winding.
  • the section of the magnetic shunt near the air gap is greater than the section of the magnetic circuit at the location of the core the secondary winding.
  • the size of the air gap can vary in different places of the shunt section.
  • the air gap can be located substantially in the middle of the magnetic shunt or between the shunt and the main magnetic circuit.
  • the shunt and the main magnetic circuit form the same room.
  • At least one secondary winding has shielding electromagnetic.
  • said transformer current essentially providing electrical power for operation, is associated with a current measurement sensor.
  • the current measurement sensor is preferably a toroid of Rogowski.
  • FIG. 1 represents a block diagram of a trigger device installed in a circuit breaker.
  • FIG. 2 represents a known current transformer.
  • FIG. 3 represents a current transformer according to an embodiment of the invention can be part of a trigger device according to Figure 1.
  • FIGs 4 and 5 show two variants of current transformers according to Figure 3.
  • FIG. 6 represents the curves of the current responses of the transformers of FIGS. 2 and 3.
  • Figures 7a, 7b and 7c illustrate the currents for a particular point on curve 6.
  • Figures 8 to 11 show air gap variants of current transformers Figures 3 to 5.
  • FIG. 12 shows a transformer according to an embodiment of the invention associated with a torus of rogowski.
  • FIG. 1 shows a trigger device installed in a circuit breaker to protect an electrical network 1 against overloads or short-circuits.
  • Contacts 2 of the circuit breaker controlled by the trip device, establish or interrupt the current in the network conductors.
  • the opening of contacts 2 is controlled by a relay 3.
  • the triggering device comprises current transformers 4a, 4b and 4c associated with network conductors to supply the electrical energy necessary for operation of electronic circuits in a processing unit 25.
  • the windings current transformers are connected to a supply circuit 5 which rectifies the alternating current supplied by the secondary windings of the transformers and provides one or more regulated DC voltages.
  • a first tension continuous V1 is supplied to measuring and processing circuits, respectively 6 and 7, while a second direct voltage V2 supplies the relay 3.
  • the processing unit 25 includes relay 3 and circuits 5, 6 and 7.
  • Circuit 6 amplifies and activates forms signals representative of the currents of the conductors coming from the sensors 8a, 8b and 8c. Then, it sends them to the processing circuit 7. Circuit 7 sends an order to tripping 9 when the signals representative of the conductor currents exceed predetermined thresholds for predetermined times.
  • Sensors 8a, 8b and 8c can be, for example, measuring transformers, Rogowski toroids or Hall effect cells.
  • FIG. 2 represents a known current transformer which can be used as transformers 4a, 4b or 4c.
  • Said known current transformer has a circuit magnetic 10 and a secondary winding represented by a coil 11 and two wires of output 12.
  • the magnetic circuit generally consisting of stacked sheets, surrounds completely a conductor 13 of network 1 where the primary current of the transformer.
  • a part 14 of the magnetic circuit 10 passes through the center of the winding secondary and forms the core of the coil 12.
  • the transformers 4a, 4b and 4c of the device for triggering the Figure 1 are current transformers comprising a magnetic shunt to gap.
  • Figure 3 shows an embodiment of a transformer of this type.
  • a shunt magnetic 15, bypassed on the magnetic core 14 of the secondary winding, has an air gap 16.
  • Figures 4 and 5 show variants of transformers according to two other modes of realization of the invention.
  • the part of the magnetic circuit surrounding the primary conductor has a rounded shape including the magnetic shunt 15.
  • the transformer of figure 4 has an air gap located substantially in the middle of the shunt.
  • the transformer air gap Figure 5 is located between one end of the shunt and part of the magnetic circuit main 10 connecting an area close to the primary conductor and the core of the winding secondary. In this case the section of the magnetic shunt 15 near the air gap is greater than the section of the magnetic circuit at the location of the core 14 of the winding secondary.
  • the main magnetic circuit 10 and the shunt 15 form one piece. Said part may be constituted by stacked sheets or by other magnetic materials.
  • a first curve 17 represents the effective current response of a transformer of known type does with no shunt. The shape of curve 17 is almost linear. Secondary current Is is substantially proportional to the primary current Ip.
  • a second curve, 18, represents the effective current response of a transformer according to one embodiment of the invention comprising an air gap shunt.
  • the secondary currents of the two transformers corresponding to curves 17 and 18, have similar values.
  • the response curve 18 of the transformer including an air gap shunt becomes more weak than curve 17 of the transformer without shunt. For example, for a current of 800A the transformer with an air gap shunt, provides a secondary current of the order of 0.25 A (point 19 on curve 18) while the transformer without shunt provides a 0.8 A current.
  • the shapes of the primary and secondary currents are illustrated on the curves of FIGS. 7a, 7b and 7 c.
  • the sinusoidal primary current Ip having a value of 800 A, crosses the primary of a first transformer according to FIG. 2 and the primary of a second transformer according to Figure 3.
  • Figure 7b shows a secondary current Is1 of the first transformer.
  • the effective value of the current Is1 is 0.8 A and its shape is substantially sinusoidal.
  • Figure 7c shows a secondary current Is2 of the second transformer comprising a magnetic shunt according to an embodiment of the invention.
  • the current Is2 is deformed and its value, about 0.25 A, is much lower than that of the current Is1.
  • For a primary current Ip 800 A the power dissipated in the secondary winding of the first transformer without shunt is 9 W while the power dissipated in the winding of the second transformer with a magnetic shunt is only of 0.9W.
  • the response, of the secondary current Is as a function of the primary current Ip, of the transformers with an air gap shunt depends on the shape, surface and the thickness of the air gap.
  • the transformers in Figures 3 to 5 have thick air gaps constant and opening the entire section of shunts 15. However, other forms air gap are possible.
  • Figures 8 to 11 show various air gap variants.
  • the thickness of the air gap can be variable to improve the response at high level of current.
  • Figure 8 shows an air gap with different thickness in different places of the shunt section.
  • Figure 9 shows a shunt with a partial air gap.
  • a large part of the magnetic circuit of the shunt is cut by the air gap and a small part remains connected.
  • the attenuation begins with more primary currents low.
  • the magnetic shunt 15 can comprise several air gaps, for example an air gap 16 a total and a partial air gap 16 b as shown in FIG. 10.
  • FIG. 11 represents a shunt comprising a complex air gap.
  • the air gap includes a first transverse part 21 and a second part 22 and a longitudinal part 23 connecting the first and second transverse parts.
  • the effects of the air gap being essentially in the longitudinal part, this arrangement makes it possible to have a large air gap area and a large magnetic flux circulation at high primary current.
  • the air gap of the magnetic shunt is generally a notch left in the open air but it can be completely or partially filled with a solid non-magnetic material.
  • the air gap of the longitudinal part 23 of the shunt of FIG. 11 comprises a solid non-magnetic component 24. Said solid non-magnetic component prevents impurities from getting into the thickness of the air gap.
  • a thin air gap can advantageously consist of a screen made of solid non-magnetic material.
  • the primary conductor 13 crosses the magnetic circuit of a transformer according to the invention and the center of a toroid of Rogowski 26.
  • the secondary of the first transformer according to the invention supplies electronic circuits and the secondary of the Rogowski torus provides measurement circuits and processing the signal representative of the current flowing in the primary conductor.
  • the transformer and Rogowski torus are preferably fixed to each other, for example by overmolding.
  • the device of FIG. 12 includes an electromagnetic shielding 27.
  • the current transformers of a device according to the invention can have forms very varied.
  • the shunt with air gap is arranged between the primary conductor and the secondary winding.
  • the secondary winding would then find between the primary conductor and the shunt. This provision can be advantageous depending on the volume allocated to the current transformer.
  • a transformer according to the invention may include a magnetic circuit with a core of the secondary winding comprising a partial or total air gap and a magnetic shunt also comprising a partial or total air gap. This arrangement may allow better distribute the magnetic flux between the shunt and the core according to the value of the current primary.
  • the transformers have a single secondary winding, and only one shunt but the invention also applies to devices comprising transformers with several secondary windings and / or several shunts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Breakers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

L'invention concerne un dispositif de déclenchement comportant :

  • au moins un transformateur de courant, associé à un conducteur d'un circuit à protéger traversé par un courant primaire, comportant un circuit magnétique principal entourant le conducteur du circuit à protéger et au moins un enroulement secondaire, une partie du circuit magnétique principal constituant le noyau de l'enroulement secondaire, et
  • une unité de traitement connectée audit enroulement secondaire du transformateur de courant.
The invention relates to a triggering device comprising:
  • at least one current transformer, associated with a conductor of a circuit to be protected crossed by a primary current, comprising a main magnetic circuit surrounding the conductor of the circuit to be protected and at least one secondary winding, part of the main magnetic circuit constituting the core of the secondary winding, and
  • a processing unit connected to said secondary winding of the current transformer.

Dans les dispositifs de déclenchement connus, des transformateurs de courant fournissent l'énergie électrique nécessaire au fonctionnement à propre courant de circuits électriques ou électroniques associés. Les transformateurs de courant sont installés sur des conducteurs d'un circuit de puissance à protéger. Ils fournissent à des circuits électroniques de déclenchement des courants secondaires de faible intensité proportionnels à des courants primaires très forts.In known trip devices, current transformers provide the electrical energy required to operate at its own current in electrical circuits, or associated electronics. Current transformers are installed on conductors of a power circuit to be protected. They provide electronic circuits with triggering of low intensity secondary currents proportional to currents very strong primaries.

De manière connue, les courants secondaires alternatifs sont redressés et régulés dans le but de fournir des tensions d'alimentation continues aux circuits de déclenchement. La consommation des circuits étant stable ou peu variable, l'énergie excédentaire fournie par les transformateurs est dissipée par des circuits de régulation et par les transformateurs eux-même.In known manner, the alternating secondary currents are rectified and regulated in order to to supply continuous supply voltages to the trigger circuits. The consumption of the circuits being stable or little variable, the excess energy supplied by the transformers is dissipated by regulating circuits and by the transformers themselves.

Généralement le courant secondaire minimal de fonctionnement correspond à la consommation des circuits de déclenchement. Lorsque le dispositif de déclenchement est installé dans un disjoncteur, le fonctionnement doit être habituellement assuré entre 0,1 et 10 fois le courant nominal.Generally the minimum secondary operating current corresponds to the consumption of trip circuits. When the trigger is installed in a circuit breaker, operation must usually be ensured between 0.1 and 10 times the rated current.

Les dispositifs doivent comporter des transformateurs de grande dimension aptes à dissiper l'énergie excédentaire transformée en chaleur. Pour les mêmes raisons les composants électroniques de puissance des circuits de régulation doivent être surdimensionnés et fixés sur des dispositifs de refroidissement volumineux. The devices must include large transformers capable of dissipating excess energy transformed into heat. For the same reasons the components power electronics of the control circuits must be oversized and fixed on bulky cooling devices.

Des transformateurs de courant à fer saturé permettent de réduire le courant secondaire à fort niveau de courant et de limiter la puissance fournie aux circuits de régulation. Cependant, le fonctionnement des transformateurs à fer saturé ne permet pas de résoudre efficacement les problèmes de taille et d'échauffement sur toute la plage de fonctionnement du dispositif de déclenchement.Saturated iron current transformers reduce the secondary current to high current level and limit the power supplied to the regulation circuits. However, the operation of saturated iron transformers does not resolve effectively the problems of size and heating over the entire operating range of the triggering device.

L'invention a pour but un dispositif de déclenchement comportant au moins un transformateur de courant fournissant une puissance réduite à fort courant primaire.The object of the invention is a triggering device comprising at least one current transformer providing reduced power at high primary current.

Ce but est atteint par le fait que le transformateur comporte un shunt magnétique disposé en dérivation sur la partie du circuit magnétique principal constituant le noyau de l'enroulement secondaire, le shunt magnétique comportant un entrefer total ou partiel réduisant localement la section dudit shunt.This object is achieved by the fact that the transformer has a magnetic shunt arranged in derivation on the part of the main magnetic circuit constituting the core of the secondary winding, the magnetic shunt comprising a total or partial air gap locally reducing the section of said shunt.

La réponse en courant dudit transformateur n'est pas linéaire sur toute la plage de fonctionnement.The current response of said transformer is not linear over the entire range of operation.

Selon un mode préférentiel de réalisation de l'invention, le shunt magnétique est positionné entre le conducteur primaire et l'enroulement secondaire.According to a preferred embodiment of the invention, the magnetic shunt is positioned between the primary conductor and the secondary winding.

Dans un mode particulier de réalisation, la section du shunt magnétique à proximité de l'entrefer est supérieure à la section du circuit magnétique à l'endroit du noyau de l'enroulement secondaire.In a particular embodiment, the section of the magnetic shunt near the air gap is greater than the section of the magnetic circuit at the location of the core the secondary winding.

La dimension de l'entrefer peut varier en différents endroits de la section du shunt.The size of the air gap can vary in different places of the shunt section.

L'entrefer peut être situé sensiblement au milieu du shunt magnétique ou entre le shunt et le circuit magnétique principal.The air gap can be located substantially in the middle of the magnetic shunt or between the shunt and the main magnetic circuit.

Selon un développement de l'invention, le shunt et le circuit magnétique principal forment une même pièce.According to a development of the invention, the shunt and the main magnetic circuit form the same room.

De préférence, au moins un enroulement secondaire comporte un blindage électromagnétique.Preferably, at least one secondary winding has shielding electromagnetic.

Dans des dispositifs selon un mode de réalisation de l'invention, ledit transformateur de courant, fournissant essentiellement l'énergie électrique de fonctionnement, est associé à un capteur de mesure de courant. Le capteur de mesure de courant est de préférence un tore de Rogowski.In devices according to an embodiment of the invention, said transformer current, essentially providing electrical power for operation, is associated with a current measurement sensor. The current measurement sensor is preferably a toroid of Rogowski.

Le dispositif selon l'invention est en particulier destiné à être utilisé dans des disjoncteurs. D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre, de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés sur lesquels :The device according to the invention is in particular intended to be used in circuit breakers. Other advantages and characteristics will emerge more clearly from the description which follows. follow, particular embodiments of the invention, given by way of examples not limiting, and shown in the accompanying drawings in which:

La figure 1 représente un schéma bloc d'un dispositif de déclenchement installé dans un disjoncteur.FIG. 1 represents a block diagram of a trigger device installed in a circuit breaker.

La figure 2 représente un transformateur de courant connu.FIG. 2 represents a known current transformer.

La figure 3 représente un transformateur de courant selon un mode de réalisation de l'invention pouvant faire partie d'un dispositif de déclenchement selon la figure 1.FIG. 3 represents a current transformer according to an embodiment of the invention can be part of a trigger device according to Figure 1.

Les figures 4 et 5 montrent deux variantes de transformateurs de courant selon la figure 3.Figures 4 and 5 show two variants of current transformers according to Figure 3.

La figure 6 représente les courbes des réponses en courant des transformateurs des figures 2 et 3.FIG. 6 represents the curves of the current responses of the transformers of FIGS. 2 and 3.

Les figures 7a, 7b et 7c illustrent les courants pour un point particulier de la courbe 6.Figures 7a, 7b and 7c illustrate the currents for a particular point on curve 6.

Les figures 8 à 11 montrent des variantes d'entrefer des transformateurs de courant des figures 3 à 5.Figures 8 to 11 show air gap variants of current transformers Figures 3 to 5.

La figure 12 montre un transformateur selon un mode de réalisation de l'invention associé à un tore de rogowski.FIG. 12 shows a transformer according to an embodiment of the invention associated with a torus of rogowski.

Le schéma bloc de la figure 1 représente un dispositif de déclenchement installé dans un disjoncteur pour protéger un réseau électrique 1 contre des surcharges ou des courts-circuits. Des contacts 2 du disjoncteur, contrôlés par le dispositif de déclenchement, établissent ou interrompent le courant dans les conducteurs du réseau. L'ouverture des contacts 2 est commandée par un relais 3.The block diagram in Figure 1 shows a trigger device installed in a circuit breaker to protect an electrical network 1 against overloads or short-circuits. Contacts 2 of the circuit breaker, controlled by the trip device, establish or interrupt the current in the network conductors. The opening of contacts 2 is controlled by a relay 3.

Le dispositif de déclenchement comporte des transformateurs de courant 4a, 4b et 4c associés aux conducteurs du réseau pour fournir l'énergie électrique nécessaire au fonctionnement de circuits électroniques d'une unité de traitement 25. Les enroulements secondaires des transformateurs de courant sont connectés à un circuit d'alimentation 5 qui redresse le courant alternatif fourni par les enroulements secondaires des transformateurs et fournit une ou plusieurs tensions continues régulées. Par exemple, une première tension continue V1 est fournie à des circuits de mesure et de traitement, respectivement 6 et 7, alors qu'une seconde tension continue V2 alimente le relais 3. L'unité de traitement 25 comprend le relais 3 et les circuits 5, 6 et 7.The triggering device comprises current transformers 4a, 4b and 4c associated with network conductors to supply the electrical energy necessary for operation of electronic circuits in a processing unit 25. The windings current transformers are connected to a supply circuit 5 which rectifies the alternating current supplied by the secondary windings of the transformers and provides one or more regulated DC voltages. For example, a first tension continuous V1 is supplied to measuring and processing circuits, respectively 6 and 7, while a second direct voltage V2 supplies the relay 3. The processing unit 25 includes relay 3 and circuits 5, 6 and 7.

Des capteurs 8a, 8b et 8c de mesure de courant, associés aux conducteurs du réseau, ont des enroulements secondaires connectés au circuit de mesure 6. Le circuit 6 amplifie et met en forme des signaux représentatifs des courants des conducteurs venant des capteurs 8a, 8b et 8c. Ensuite, il les envoie au circuit 7 de traitement. Le circuit 7 envoie un ordre de déclenchement 9 lorsque les signaux représentatifs des courants des conducteurs dépassent des seuils prédéterminés pendant des temps prédéterminés. Les capteurs 8a, 8b et 8c peuvent être, par exemple, des transformateurs de mesure, des tores de Rogowski ou des cellules à effet Hall.Current measurement sensors 8a, 8b and 8c, associated with the network conductors, have secondary windings connected to the measurement circuit 6. Circuit 6 amplifies and activates forms signals representative of the currents of the conductors coming from the sensors 8a, 8b and 8c. Then, it sends them to the processing circuit 7. Circuit 7 sends an order to tripping 9 when the signals representative of the conductor currents exceed predetermined thresholds for predetermined times. Sensors 8a, 8b and 8c can be, for example, measuring transformers, Rogowski toroids or Hall effect cells.

La figure 2 représente un transformateur de courant connu pouvant être utilisé comme transformateurs 4a, 4b ou 4c. Ledit transformateur de courant connu comporte un circuit magnétique 10 et un enroulement secondaire représenté par une bobine 11 et deux fils de sortie 12. Le circuit magnétique, constitué généralement de tôles empilées, entoure complètement un conducteur 13 du réseau 1 où circule le courant primaire du transformateur. Une partie 14 du circuit magnétique 10 passe au centre de l'enroulement secondaire et forme le noyau de la bobine 12.FIG. 2 represents a known current transformer which can be used as transformers 4a, 4b or 4c. Said known current transformer has a circuit magnetic 10 and a secondary winding represented by a coil 11 and two wires of output 12. The magnetic circuit, generally consisting of stacked sheets, surrounds completely a conductor 13 of network 1 where the primary current of the transformer. A part 14 of the magnetic circuit 10 passes through the center of the winding secondary and forms the core of the coil 12.

Les transformateurs de courant comme celui de la figure 2 ont une réponse en courant sensiblement linéaire sur une large plage de fonctionnement. Lorsque le courant primaire augmente, le courant secondaire augmente aussi et une grande partie de la puissance excédentaire est dissipée dans le transformateur et le circuit d'alimentation 5.Current transformers like the one in figure 2 have a current response substantially linear over a wide operating range. When the primary current increases, the secondary current also increases and a large part of the power excess is dissipated in the transformer and the power circuit 5.

Selon l'invention, les transformateurs 4a, 4b et 4c du dispositif de déclenchement de la figure 1 sont des transformateurs de courant comportant un shunt magnétique à entrefer.According to the invention, the transformers 4a, 4b and 4c of the device for triggering the Figure 1 are current transformers comprising a magnetic shunt to gap.

La figure 3 montre un mode de réalisation d'un transformateur de ce type. Un shunt magnétique 15, mis en dérivation sur le noyau magnétique 14 de l'enroulement secondaire, comporte un entrefer 16.Figure 3 shows an embodiment of a transformer of this type. A shunt magnetic 15, bypassed on the magnetic core 14 of the secondary winding, has an air gap 16.

A bas niveau de courant primaire, seule une très faible portion du flux magnétique peut passer par le shunt et traverser l'entrefer. La quasi totalité du flux passe alors par le noyau magnétique. Lorsque le courant primaire augmente la proportion de flux magnétique pouvant passer par le shunt augmente et la proportion de flux passant par le noyau diminue. L'entrefer du shunt provoque un comportement non linéaire du transformateur. Le flux magnétique traversant l'entrefer augmente très rapidement lorsque l'induction magnétique produite par le courant primaire circulant dans le conducteur 13 dépasse un certain seuil, qui est déterminé par la taille et la forme de l'entrefer.At low primary current level, only a very small portion of the magnetic flux can go through the shunt and cross the air gap. Almost the entire flow then passes through the nucleus magnetic. When the primary current increases the proportion of magnetic flux able to pass through the shunt increases and the proportion of flux passing through the nucleus decreases. The shunt air gap causes non-linear behavior of the transformer. The flow magnetic flow across the air gap increases very quickly when magnetic induction produced by the primary current flowing in the conductor 13 exceeds a certain threshold, which is determined by the size and shape of the air gap.

Les figures 4 et 5 montrent des variantes de transformateurs selon deux autres modes de réalisation de l'invention. La partie du circuit magnétique entourant le conducteur primaire a une forme arrondie comportant le shunt magnétique 15. Le transformateur de la figure 4 comporte un entrefer situé sensiblement au milieu de shunt. L'entrefer du transformateur de la figure 5 est situé entre une extrémité du shunt et une partie du circuit magnétique principal 10 reliant une zone proche du conducteur primaire et le noyau de l'enroulement secondaire. Dans ce cas la section du shunt 15 magnétique à proximité de l'entrefer est supérieure à la section du circuit magnétique à l'endroit du noyau 14 de l'enroulement secondaire.Figures 4 and 5 show variants of transformers according to two other modes of realization of the invention. The part of the magnetic circuit surrounding the primary conductor has a rounded shape including the magnetic shunt 15. The transformer of figure 4 has an air gap located substantially in the middle of the shunt. The transformer air gap Figure 5 is located between one end of the shunt and part of the magnetic circuit main 10 connecting an area close to the primary conductor and the core of the winding secondary. In this case the section of the magnetic shunt 15 near the air gap is greater than the section of the magnetic circuit at the location of the core 14 of the winding secondary.

Dans un mode préféré de réalisation, le circuit magnétique principal 10 et le shunt 15 forment une même pièce. Ladite pièce peut être constituée par des tôles empilées ou par d'autres matériaux magnétiques.In a preferred embodiment, the main magnetic circuit 10 and the shunt 15 form one piece. Said part may be constituted by stacked sheets or by other magnetic materials.

Des courbes de réponse du courant secondaire Is en fonction du courant primaire Ip des transformateurs de courant des figures 2 et 3 sont représentées sur la figure 6. Une première courbe 17 représente la réponse en courant efficace d'un transformateur de type connu ne comportant pas de shunt. L'allure de la courbe 17 est quasi linéaire. Le courant secondaire Is est sensiblement proportionnel au courant primaire Ip. Une seconde courbe, 18, représente la réponse en courant efficace d'un transformateur selon un mode de réalisation de l'invention comportant un shunt à entrefer.Response curves of the secondary current Is as a function of the primary current Ip of current transformers of Figures 2 and 3 are shown in Figure 6. A first curve 17 represents the effective current response of a transformer of known type does with no shunt. The shape of curve 17 is almost linear. Secondary current Is is substantially proportional to the primary current Ip. A second curve, 18, represents the effective current response of a transformer according to one embodiment of the invention comprising an air gap shunt.

Tant que le courant primaire Ip est faible les courants secondaires des deux transformateurs correspondant aux courbes 17 et 18, ont des valeurs voisines. Lorsque le courant augmente, la courbe de réponse 18 du transformateur comportant un shunt à entrefer devient plus faible que la courbe 17 du transformateur sans shunt. Par exemple, pour un courant de 800A le transformateur avec un shunt à entrefer, fournit un courant secondaire de l'ordre de 0, 25 A (point 19 sur la courbe 18) alors que le transformateur sans shunt fournit un courant de 0,8 A. As long as the primary current Ip is low, the secondary currents of the two transformers corresponding to curves 17 and 18, have similar values. When the current increases, the response curve 18 of the transformer including an air gap shunt becomes more weak than curve 17 of the transformer without shunt. For example, for a current of 800A the transformer with an air gap shunt, provides a secondary current of the order of 0.25 A (point 19 on curve 18) while the transformer without shunt provides a 0.8 A current.

Les formes des courants primaire et secondaire sont illustrées sur les courbes des figures 7a, 7b et 7 c. Le courant primaire Ip sinusoïdal, ayant une valeur de 800 A, traverse le primaire d'un premier transformateur selon la figure 2 et le primaire d'un second transformateur selon la figure 3. La figure 7b montre un courant secondaire Is1 du premier transformateur. La valeur efficace du courant Is1 est de 0,8 A et sa forme est sensiblement sinusoïdale. La figure 7c montre un courant secondaire Is2 du second transformateur comportant un shunt magnétique selon un mode de réalisation de l'invention. Le courant Is2 est déformé et sa valeur, environ 0,25 A, est très inférieure à celle du courant Is1. Pour un courant primaire Ip = 800 A la puissance dissipée dans l'enroulement secondaire du premier transformateur sans shunt est de 9 W alors que la puissance dissipée dans l'enroulement du second transformateur comportant un shunt magnétique n'est que de 0,9W.The shapes of the primary and secondary currents are illustrated on the curves of FIGS. 7a, 7b and 7 c. The sinusoidal primary current Ip, having a value of 800 A, crosses the primary of a first transformer according to FIG. 2 and the primary of a second transformer according to Figure 3. Figure 7b shows a secondary current Is1 of the first transformer. The effective value of the current Is1 is 0.8 A and its shape is substantially sinusoidal. Figure 7c shows a secondary current Is2 of the second transformer comprising a magnetic shunt according to an embodiment of the invention. The current Is2 is deformed and its value, about 0.25 A, is much lower than that of the current Is1. For a primary current Ip = 800 A the power dissipated in the secondary winding of the first transformer without shunt is 9 W while the power dissipated in the winding of the second transformer with a magnetic shunt is only of 0.9W.

La réponse, du courant secondaire Is en fonction du courant primaire Ip, des transformateurs comportant un shunt à entrefer dépend de la forme, de la surface et de l'épaisseur de l'entrefer. Les transformateurs des figures 3 à 5 ont des entrefers d'épaisseur constante et ouvrant la totalité de la section des shunts 15. Cependant d'autres formes d'entrefer sont possibles. Les figures 8 à 11 montrent diverses variantes d'entrefer.The response, of the secondary current Is as a function of the primary current Ip, of the transformers with an air gap shunt depends on the shape, surface and the thickness of the air gap. The transformers in Figures 3 to 5 have thick air gaps constant and opening the entire section of shunts 15. However, other forms air gap are possible. Figures 8 to 11 show various air gap variants.

L'épaisseur de l'entrefer peut être variable pour améliorer la réponse à fort niveau de courant. La figure 8 montre un entrefer ayant une épaisseur différente en différents endroits de la section du shunt.The thickness of the air gap can be variable to improve the response at high level of current. Figure 8 shows an air gap with different thickness in different places of the shunt section.

La figure 9 montre un shunt comportant un entrefer partiel. Dans ce mode de réalisation, une grande partie du circuit magnétique du shunt est coupée par l'entrefer et une petite partie reste reliée. Dans ce cas, l'atténuation commence avec des courants primaires plus bas.Figure 9 shows a shunt with a partial air gap. In this embodiment, a large part of the magnetic circuit of the shunt is cut by the air gap and a small part remains connected. In this case, the attenuation begins with more primary currents low.

Le shunt magnétique 15 peut comporter plusieurs entrefers, par exemple un entrefer 16 a total et un entrefer 16 b partiel comme représenté sur la figure 10.The magnetic shunt 15 can comprise several air gaps, for example an air gap 16 a total and a partial air gap 16 b as shown in FIG. 10.

La figure 11 représente un shunt comportant un entrefer complexe. L'entrefer comprend une première partie 21 et une seconde partie 22 transversales et une partie longitudinale 23 reliant les première et seconde parties transversales. Les effets de l'entrefer étant essentiellement dans la partie longitudinale, cette disposition permet d'avoir une grande surface d'entrefer et une circulation du flux magnétique importante à fort courant primaire. FIG. 11 represents a shunt comprising a complex air gap. The air gap includes a first transverse part 21 and a second part 22 and a longitudinal part 23 connecting the first and second transverse parts. The effects of the air gap being essentially in the longitudinal part, this arrangement makes it possible to have a large air gap area and a large magnetic flux circulation at high primary current.

L'entrefer du shunt magnétique est généralement une entaille laissée à l'air libre mais il peut être rempli totalement ou partiellement par un matériau non magnétique solide. L'entrefer de la partie longitudinale 23 du shunt de la figure 11 comporte un composant non magnétique solide 24..Ledit composant non magnétique solide évite que des impuretés puissent se mettre dans l'épaisseur de l'entrefer. Un entrefer de faible épaisseur peut être avantageusement constitué par un écran en matériau non magnétique solide.
Le courant électrique fourni par les transformateurs décrits ci-dessus alimente les circuits électroniques d'alimentation ou de régulation, mais il peut aussi être utilisé pour des fonctions de déclenchement. Le courant est alors mesuré et traité par les circuits électroniques pour fournir un ordre de déclenchement si certaines valeurs sont dépassées.
The air gap of the magnetic shunt is generally a notch left in the open air but it can be completely or partially filled with a solid non-magnetic material. The air gap of the longitudinal part 23 of the shunt of FIG. 11 comprises a solid non-magnetic component 24. Said solid non-magnetic component prevents impurities from getting into the thickness of the air gap. A thin air gap can advantageously consist of a screen made of solid non-magnetic material.
The electrical current supplied by the transformers described above supplies the electronic supply or regulation circuits, but it can also be used for tripping functions. The current is then measured and processed by the electronic circuits to provide a trip order if certain values are exceeded.

Les transformateurs de courant avec circuits magnétiques peuvent être associés à des transformateurs à air de type Rogowski. Sur la figure 12, le conducteur primaire 13 traverse le circuit magnétique d'un transformateur selon l'invention et le centre d'un tore de Rogowski 26. Le secondaire du premier transformateur selon l'invention alimente des circuits électroniques et le secondaire du tore de Rogowski fournit à des circuits de mesure et de traitement le signal représentatif du courant circulant dans le conducteur primaire. Le transformateur et le tore de Rogowski sont de préférence fixés l'un à l'autre, par exemple par un surmoulage.Current transformers with magnetic circuits can be combined with Rogowski type air transformers. In FIG. 12, the primary conductor 13 crosses the magnetic circuit of a transformer according to the invention and the center of a toroid of Rogowski 26. The secondary of the first transformer according to the invention supplies electronic circuits and the secondary of the Rogowski torus provides measurement circuits and processing the signal representative of the current flowing in the primary conductor. The transformer and Rogowski torus are preferably fixed to each other, for example by overmolding.

Pour des courants primaires Ip de valeurs très élevées, il est possible que la partie du circuit magnétique entourée par un enroulement secondaire ne soit pas saturée. Des forts courants primaires de conducteurs voisins peuvent alors induire des flux électromagnétiques extérieurs et générer des courants secondaires supplémentaires dans l'enroulement secondaire.For primary currents Ip with very high values, it is possible that the part of the circuit magnetic surrounded by a secondary winding is not saturated. Strong currents primary of neighboring conductors can then induce electromagnetic flux external and generate additional secondary currents in the winding secondary.

Pour limiter ces effets, le dispositif de la figure 12 comporte un blindage électromagnétique 27.To limit these effects, the device of FIG. 12 includes an electromagnetic shielding 27.

Les transformateurs de courant d'un dispositif selon l'invention, peuvent avoir des formes très variées. Dans les circuits magnétiques décrits ci-dessus et montrés sur les figures, le shunt avec entrefer est disposé entre le conducteur primaire et l'enroulement secondaire. Cependant il est tout à fait possible de disposer le shunt en dérivation sur le noyau de la bobine secondaire à l'opposé du conducteur primaire. L'enroulement secondaire se trouverait alors entre le conducteur primaire et le shunt. Cette disposition peut être avantageuse en fonction du volume alloué au transformateur de courant. The current transformers of a device according to the invention can have forms very varied. In the magnetic circuits described above and shown in the figures, the shunt with air gap is arranged between the primary conductor and the secondary winding. However, it is quite possible to place the shunt in derivation on the core of the secondary coil opposite the primary conductor. The secondary winding would then find between the primary conductor and the shunt. This provision can be advantageous depending on the volume allocated to the current transformer.

Les circuits principaux des transformateurs montrés sur les figures 3 à 5 sont généralement fermés mais ils peuvent eux mêmes comporter des entrefers. Par exemple, un transformateur selon l'invention peut comporter un circuit magnétique avec un noyau de l'enroulement secondaire comportant un entrefer partiel ou total et un shunt magnétique comportant lui aussi un entrefer partiel ou total. Cette disposition peut permettre de mieux répartir le flux magnétique entre le shunt et le noyau en fonction de la valeur du courant primaire.The main circuits of the transformers shown in Figures 3 to 5 are generally closed but they may themselves have air gaps. For example, a transformer according to the invention may include a magnetic circuit with a core of the secondary winding comprising a partial or total air gap and a magnetic shunt also comprising a partial or total air gap. This arrangement may allow better distribute the magnetic flux between the shunt and the core according to the value of the current primary.

Dans les modes de réalisation décrits plus haut les transformateurs comportent un seul enroulement secondaire, et un seul shunt mais l'invention s'applique également à des dispositifs comportant des transformateurs à plusieurs enroulements secondaires et/ou à plusieurs shunts.In the embodiments described above, the transformers have a single secondary winding, and only one shunt but the invention also applies to devices comprising transformers with several secondary windings and / or several shunts.

Claims (10)

  1. A trip device comprising :
    at least one current transformer (4a, 4b, 4c), associated to a conductor (13) of a circuit (1) to be protected through which a primary current (Ip) flows, comprising a main magnetic circuit (10) surrounding the conductor of the circuit to be protected and at least one secondary winding (11, 12), a part (14) of the main magnetic circuit forming the core of the secondary winding (11), and
    a processing unit (25) connected to said secondary winding of the current transformer,
    a device characterized in that the transformer comprises a magnetic shunt (15) branch-connected on the part (14) of the main magnetic circuit forming the core of the secondary winding, the magnetic shunt (15) comprising a total or partial air-gap (16) locally reducing the cross section of said shunt.
  2. The device according to claim 1 characterized in that the magnetic shunt is positioned between the primary conductor (13) and the secondary winding (11).
  3. The device according to one of the claims 1 and 2 characterized in that the thickness of the air-gap (16) is variable.
  4. The device according to any one of the claims 1 to 3 characterized in that the cross section of the magnetic shunt (15) near to the air-gap is larger than the cross section of the magnetic circuit at the place where the core (14) of the secondary winding is situated.
  5. The device according to any one of the claims 1 to 4 characterized in that the air-gap (16) is arranged appreciably in the middle of the magnetic shunt (15).
  6. The device according to any one of the claims 1 to 4 characterized in that the air-gap (16) is arranged between the shunt (15) and the main magnetic circuit (10).
  7. The device according to any one of the claims 1 to 6 characterized in that the shunt (15) and the main magnetic circuit (10) form a single part.
  8. The device according to any one of the claims 1 to 7 characterized in that it comprises a current transformer (4a, 4b, 4c) connected to a power supply circuit (5) of the processing unit (25), and a current sensor (8a, 8b, 8c, 26) connected to a measuring circuit (6) of the processing unit, the current transformer being associated to the current sensor (8a, 8b, 8c, 26) on the same conductor (13) of the circuit to be protected.
  9. The device according to claim 8 characterized in that the current measuring sensor (8a, 8b, 8c, 26) is a Rogowski toroid.
  10. The device according to claim 1 characterized in that at least one secondary winding comprises an electromagnetic shielding (27).
EP95410110A 1994-09-29 1995-09-19 Release device with at least a current transformer Expired - Lifetime EP0704867B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9411814A FR2725320B1 (en) 1994-09-29 1994-09-29 TRIGGERING DEVICE HAVING AT LEAST ONE CURRENT TRANSFORMER
FR9411814 1994-09-29

Publications (2)

Publication Number Publication Date
EP0704867A1 EP0704867A1 (en) 1996-04-03
EP0704867B1 true EP0704867B1 (en) 1999-12-01

Family

ID=9467528

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95410110A Expired - Lifetime EP0704867B1 (en) 1994-09-29 1995-09-19 Release device with at least a current transformer

Country Status (9)

Country Link
US (1) US5726846A (en)
EP (1) EP0704867B1 (en)
JP (1) JP3868522B2 (en)
KR (1) KR100337677B1 (en)
CN (1) CN1052103C (en)
DE (1) DE69513612T2 (en)
ES (1) ES2139865T3 (en)
FR (1) FR2725320B1 (en)
MY (1) MY113940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008049432A1 (en) 2008-09-25 2010-04-01 Siemens Aktiengesellschaft Circuit breaker and current transformer for a circuit breaker

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9612504D0 (en) * 1996-06-14 1996-08-14 Smiths Industries Ltd Current transformer assemblies
DE19706019A1 (en) * 1997-02-07 1998-08-13 Siemens Ag Low-voltage circuit breakers with optionally installable measuring transducers
CA2333616A1 (en) * 1998-05-07 1999-11-11 Airpax Corporation, L.L.C. Ac current sensor having high accuracy and large bandwidth
FR2802017B1 (en) 1999-12-03 2004-05-14 Schneider Electric Ind Sa HIGH-INTENSITY THREE-PHASE CUTTING APPARATUS WITH TWO PHASE TWIN POLES, PROVIDED WITH MAGNETIC COMPENSATION CIRCUITS
US6433981B1 (en) * 1999-12-30 2002-08-13 General Electric Company Modular current sensor and power source
US6459349B1 (en) 2000-03-06 2002-10-01 General Electric Company Circuit breaker comprising a current transformer with a partial air gap
DE10240351A1 (en) * 2002-08-28 2004-03-11 Siemens Ag Transducer arrangement for feeding a trigger magnet
CN1826272A (en) 2003-07-23 2006-08-30 株式会社基亚里 Tray for frozen food, frozen food package, frozen sushi package and method for thawing frozen sushi
US8355230B2 (en) * 2003-12-08 2013-01-15 Siemens Industry, Inc. Extended instantaneous protection
ITBG20030062A1 (en) * 2003-12-30 2005-06-30 Abb Service Srl POWER SUPPLY FOR AN ELECTRONIC PROTECTION DEVICE TO BE USED IN A LOW VOLTAGE SWITCH.
US8538560B2 (en) * 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US7561387B2 (en) * 2005-10-19 2009-07-14 Eaton Corporation Current transformer including a low permeability shunt and a trip device employing the same
KR100792484B1 (en) 2006-09-13 2008-01-08 피에스텍주식회사 Electronic metering out-fit
FR2910162B1 (en) * 2006-12-18 2009-12-11 Schneider Electric Ind Sas ELECTRICALLY INSULATED MEASURING SIGNAL COUPLING DEVICE AND ELECTRICAL APPARATUS COMPRISING SUCH A DEVICE
FR2910173B1 (en) * 2006-12-18 2012-05-04 Schneider Electric Ind Sas ELECTRIC ISOLATION CURRENT MEASURING DEVICE, ELECTRONIC TRIGGER, AND CIRCUIT BREAKER COMPRISING SUCH A DEVICE
AT506454B1 (en) * 2008-02-22 2015-10-15 Egston System Electronics Eggenburg Gmbh CONVERTER ARRANGEMENT
WO2009154748A2 (en) * 2008-06-17 2009-12-23 Rosemount Inc. Rf adapter for field device with low voltage intrinsic safety clamping
US8694060B2 (en) 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
US8929948B2 (en) * 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
JP5255698B2 (en) * 2008-06-17 2013-08-07 ローズマウント インコーポレイテッド Wireless adapter for field devices with variable voltage drop
EP2249368B1 (en) * 2009-05-08 2018-06-13 Rockwell Automation Technologies, Inc. Circuit breaker system
US8456782B2 (en) 2009-05-08 2013-06-04 Rockwell Automation Technologies, Inc. Cost effective design for a current transformer with an integrated magnetic actuator
US8681466B2 (en) 2009-05-08 2014-03-25 Rockwell Automation Technologies, Inc. Magnetic core coupling in a current transformer with integrated magnetic actuator
US9674976B2 (en) * 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
US8626087B2 (en) * 2009-06-16 2014-01-07 Rosemount Inc. Wire harness for field devices used in a hazardous locations
CN101908413B (en) * 2010-07-27 2012-10-03 上海诺雅克电气有限公司 Current transformer for supplying power for electronic device
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
DE102010061766A1 (en) 2010-11-23 2012-01-19 Siemens Aktiengesellschaft Switch i.e. low voltage circuit breaker, has power source including current transformer with iron core having winding formed from diamagnetic materials so that large short-circuit current flows through electrical resistor of winding
CN102136358B (en) 2011-01-13 2012-12-19 上海诺雅克电气有限公司 Power supply current transformer for electronic protection
CN102800471A (en) * 2011-05-26 2012-11-28 北京人民电器厂有限公司 Quick saturation current transformer
DE102011077707B4 (en) 2011-06-17 2015-02-12 Siemens Aktiengesellschaft Switch, in particular circuit breaker, and method for triggering a switch
DE102011082170A1 (en) 2011-09-06 2013-03-07 Siemens Aktiengesellschaft Current converter i.e. iron-core converter, for use in low-voltage power switch, has tertiary coil whose ends are electrically connected with one another, where tertiary coil is wrapped around part of magnetic core by through hole
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
JP2013130447A (en) * 2011-12-21 2013-07-04 Tamura Seisakusho Co Ltd Loop core for current sensor and current sensor
WO2015117661A1 (en) * 2014-02-06 2015-08-13 Abb S.P.A. Device for monitoring a current of a primary conductor with respect to a predetermined current threshold, and related trip assembly and switching device
CN105336484B (en) * 2014-08-06 2018-05-01 上海电科电器科技有限公司 Current transformer
US9953790B1 (en) * 2016-10-11 2018-04-24 Eaton Intelligent Power Limited Electrical switching apparatus and sensing assembly therefor
EP3613066A4 (en) * 2017-04-19 2020-12-02 Narayan Powertech Pvt. Ltd. Current transformer with current branches on primary conductor
KR102003943B1 (en) * 2018-01-25 2019-07-31 엘에스산전 주식회사 Power current transformer assembly for circuit breaker
WO2020070316A1 (en) * 2018-10-05 2020-04-09 Abb Schweiz Ag Magnetic core arrangement, inductive device and installation device
FR3089340B1 (en) 2018-11-29 2020-10-30 Schneider Electric Ind Sas Current transformer, protection device and electrical circuit breaker comprising such a transformer
KR102153970B1 (en) 2018-12-26 2020-09-09 엘에스일렉트릭(주) Current transformer for air circuit breaker
DE102022202957A1 (en) * 2022-03-25 2023-09-28 Siemens Aktiengesellschaft DC/DC converter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH412097A (en) * 1964-06-19 1966-04-30 Oerlikon Maschf Saturation current transformer
DE1638602B1 (en) * 1967-09-12 1970-09-24 Siemens Ag Current transformer with an iron core system that contains an iron core that is sheared by means of at least one air gap
US3962661A (en) * 1975-04-22 1976-06-08 International Telephone And Telegraph Corporation Magnetically shunted current transformer
EP0012629A1 (en) * 1978-12-19 1980-06-25 Fanuc Ltd. Electrical reactors
SE419009B (en) * 1979-10-26 1981-07-06 Sten Trolle INductance coil AND SET OF MANUFACTURING A SUIT
DE3017368A1 (en) * 1980-05-07 1981-11-12 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt LINE TRANSFORMER FOR A TELEVISION RECEIVER
FR2532793A1 (en) * 1982-09-08 1984-03-09 Merlin Gerin Short-circuit and differential hybrid trip unit equipped with a current transformer with common homopolar torus.
US4613841A (en) * 1983-11-30 1986-09-23 General Electric Company Integrated transformer and inductor
GB8617507D0 (en) * 1986-07-17 1986-08-28 Vickers Systems Ltd Transformers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008049432A1 (en) 2008-09-25 2010-04-01 Siemens Aktiengesellschaft Circuit breaker and current transformer for a circuit breaker

Also Published As

Publication number Publication date
JPH08180790A (en) 1996-07-12
CN1052103C (en) 2000-05-03
KR960012057A (en) 1996-04-20
MY113940A (en) 2002-06-29
CN1129347A (en) 1996-08-21
FR2725320B1 (en) 1996-10-31
US5726846A (en) 1998-03-10
DE69513612D1 (en) 2000-01-05
ES2139865T3 (en) 2000-02-16
EP0704867A1 (en) 1996-04-03
DE69513612T2 (en) 2000-05-31
JP3868522B2 (en) 2007-01-17
FR2725320A1 (en) 1996-04-05
KR100337677B1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
EP0704867B1 (en) Release device with at least a current transformer
EP1736784B1 (en) Differential current measuring apparatus, tripping device and switchgear
EP0326459B1 (en) Static tripping device with a circuit for instantaneous tripping independent of the supply voltage
EP0791999B1 (en) Electronic trip device with a power supply
EP0061364A1 (en) Low voltage circuit breaker with adjustable hybrid triggering
GB2360135A (en) Current transformer with partial air gap
EP3232526A1 (en) Device for detecting a fault current
EP0099784B1 (en) Electronic analogue circuit breaker tripping device for the protection against overintensities in an ac network
EP0677907B1 (en) Overcurrent protection device
FR2936352A1 (en) Circuit breaker for interrupting current that passes in conductor, has magnetic branch with additional magnetic resistance that is reduced automatically for current higher than rated current of breaker by magnetic forces producing in branch
FR2737922A1 (en) CURRENT SENSOR AND ELECTRICAL DEVICE COMPRISING SAME
EP0936716B2 (en) Differential protection device
EP0841670B1 (en) Current transformer, trip device and circuit breaker comprising such a transformer
EP1260821B1 (en) Detectiont transformer for a differential protection device and protection device using such a transformer
EP2686931B1 (en) Series current limiter with magnetic circuit having holes and windows
EP0074297B2 (en) Hybrid compensated current transformer
EP0828265B1 (en) Current transformer and protective relay comprising such transformer
EP1628377B1 (en) Protection device for electrical installations against overvoltages comprising a spark gap with a triggering circuit
FR2850803A1 (en) Differential interrupter for use in electrical distribution outlet, has thermal protector with thermal detector to change state of electricity where detector is connected between upper and lower parts of toroidal core
EP0813283A1 (en) Differential protection device having immunity against nuisance tripping
EP0295234A1 (en) Process and device for protecting and monitoring transformer-fed electrical installations and the transformer itself
FR2709616A1 (en) Differential circuit breaker and surge limiter
FR2697383A1 (en) Electrical device for interrupting the passage of a current.
EP0998003B1 (en) Differential protection device with multiple-voltage test circuit
FR2826176A3 (en) Switch detecting contact separation circuit breaker having contacts and click fit mechanism surveying defective state and circuit breaker coupling element amplifier connecting switching mechanism.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19960924

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 69513612

Country of ref document: DE

Date of ref document: 20000105

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000113

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2139865

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: EUROPATENT S.A.S.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 69513612

Country of ref document: DE

Effective date: 20111228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130813

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130916

Year of fee payment: 19

Ref country code: GB

Payment date: 20130918

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130913

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140729

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140919

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69513612

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140920