EP0704518A1 - Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen - Google Patents

Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen Download PDF

Info

Publication number
EP0704518A1
EP0704518A1 EP95114026A EP95114026A EP0704518A1 EP 0704518 A1 EP0704518 A1 EP 0704518A1 EP 95114026 A EP95114026 A EP 95114026A EP 95114026 A EP95114026 A EP 95114026A EP 0704518 A1 EP0704518 A1 EP 0704518A1
Authority
EP
European Patent Office
Prior art keywords
pyrolysis
cyclone
gas
gasification
rotary kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95114026A
Other languages
English (en)
French (fr)
Inventor
Klaus Jungk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Publication of EP0704518A1 publication Critical patent/EP0704518A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/005Rotary drum or kiln gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen

Definitions

  • the invention relates to a method and a plant for the thermal utilization of waste materials containing organic and inorganic constituents, such as household waste, sewage sludge or the like, the waste materials being carbonized in a rotary kiln to form pyrolysis gas and the pyrolysis coke obtained during the smoldering after its mechanical processing in one Gasification cyclone is gasified with the addition of oxygen to a synthesis gas.
  • waste materials domestic waste, sewage sludge or the like
  • organic and inorganic constituents of the older but not prepublished patent application P 43 38 927.9, from which the invention is based
  • the shredded waste materials are carbonized in a rotary kiln with the formation of pyrolysis gas and
  • the pyrolysis coke obtained during the smoldering is gasified after its mechanical processing with separation of metals and other valuable substances in a gasification cyclone with the addition of oxygen to a synthesis gas, which is then used for its intended purpose.
  • the ingredients that cannot be gasified in high-temperature gasification are withdrawn from the gasification cyclone as molten slag, which after solidification can be deposited in a leach-resistant manner or used as a building material.
  • the hot pyrolysis gas drawn off from the rotary tube furnace as a smoldering reactor is thermally utilized in that it is burned in a waste heat boiler for the purpose of generating steam.
  • the hot pyrolysis gases drawn off from the rotary kiln as a smoldering reactor mainly consist of gaseous hydrocarbons and water vapor and small amounts of nitrogen, carbon monoxide, carbon dioxide and other gaseous pollutants, it cannot be avoided that the vaporous components of the hot pyrolysis gas cool down on the way condense in the waste heat boiler or afterwards in the flue gas duct.
  • the condensable pyrolysis gas constituents result in a mixture of water and liquid and solid hydrocarbons at room temperature, this mixture in turn resulting in a residue which has to be disposed of in a relatively complex manner.
  • the waste materials are carbonized in a rotary reactor, and the pyrolysis gas obtained during the smoldering is partially burned after gas cleaning at temperatures of 800 to 1200 ° C. and then by a red-hot one Layer of chunky foreign coke passed for the purpose of cracking crackable gas components.
  • the pyrolysis coke that is produced during the smoldering process is deposited after mechanical processing, i.e. the carbon contained in the pyrolysis coke is not used to generate energy.
  • the invention has for its object the thermal utilization of waste materials, such as household waste, sewage sludge, etc., described above, with organic and inorganic constituents with smoldering of the waste materials and to design high-temperature gasification of the pyrolysis coke in a gasification cyclone in such a way that, in addition to a leach-resistant slag, not a flue gas, but only a high-quality CO + H2-rich synthesis gas is produced without the risk of undesired formation of condensate during gas cooling.
  • waste materials such as household waste, sewage sludge, etc.
  • the pyrolysis gas obtained during the smoldering is introduced directly into the gasification cyclone in a hot, non-cooled state of, for example, approximately 400 to 650 ° C., in which the carbon of the pyrolysis coke and the hydrocarbons of the pyrolysis gas at temperatures above 1400 ° C to be converted to a CO + H2-rich synthesis gas.
  • the carbon of the pyrolysis coke and the hydrocarbons of the pyrolysis gas at temperatures above 1400 ° C to be converted to a CO + H2-rich synthesis gas.
  • n H m + H2O ⁇ CO + H2 to form the high-quality CO + H2-rich synthesis gas. Because the hot pyrolysis gas is not cooled and its H2O vapor content directly in the high-temperature gasification cyclone according to the gross reaction C. n H m + H2O ⁇ CO + H2 is implemented, there is no risk of undesired formation of condensate, and in this way, even when the synthesis gas obtained is cooled, there is no longer a mixture of water and liquid and solid hydrocarbons, this mixture being a residue to be disposed of.
  • the high-temperature gasification in the gasification cyclone takes place with substoichiometric oxygen supply, that is with an oxygen deficit at a lambda value of, for example, 0.4 to 0.8.
  • the CO + H2-rich synthesis gas and a molten lye-resistant slag are withdrawn from the gasification cyclone, the synthesis gas and molten slag being separated from one another in a lower furnace downstream of the gasification cyclone.
  • the cooled, molten slag can be used, for example, as a building material or processed into rock wool, and the almost nitrogen-free and steam-free CO + H2-rich synthesis gas can be used after cooling and cleaning.
  • the hot pyrolysis gas drawn off from the rotary tube furnace can be dedusted before introduction into the gasification cyclone and the dust can be introduced into the gasification cyclone. It is a dry pyrolysis gas dedusting at a temperature above the condensation temperature of the hydrocarbons carried in vapor form with the pyrolysis gas and of the water vapor.
  • the pyrolysis rotary kiln can be indirectly heated.
  • the pyrolysis rotary kiln can also be heated directly by branching off a portion of the processed smoldering residue or pyrolysis coke before its introduction into the gasification cyclone and recirculating it to the directly heated rotary kiln to form a hot immersion bed lying in the rotary kiln of which the waste materials introduced into the rotary kiln are carbonized.
  • the energy required to maintain the smoldering in the pyrolysis rotary kiln is introduced into the rotary kiln through the hot immersion bed from the recirculated uncooled smoldering residues, as well as through combustion of fuel, for example a part of the synthesis gas generated in the rotary kiln.
  • a plant according to the invention for the thermal utilization of waste materials containing organic and inorganic constituents with a pyrolysis rotary kiln and a high-temperature gasification cyclone is characterized in that the discharge of the pyrolysis rotary kiln for the pyrolysis coke is over a mechanical preparation is connected to the gasification cyclone, and the pyrolysis gas discharge from the rotary kiln is also connected to the gasification cyclone via a dust separator.
  • comminuted organic and inorganic constituents containing waste materials (10) such as household waste, sewage sludge or the like are introduced into a rotary pyrolysis furnace (11) and carbonized there to form pyrolysis gas (12), and the pyrolysis coke (13) obtained during the smoldering process is fed to its mechanical processing (14) with comminution, separation of metals and in inert substances (15) and, if necessary, further sorting stages.
  • the pyrolysis coke (16) After its mechanical preparation (14), the pyrolysis coke (16), brought to a grain size of ⁇ 3 mm, is introduced into a high-temperature gasification cyclone (17) and there with substoichiometrically introduced oxygen (18) or oxygen-enriched air at a temperature above 1400 ° C converted to a slag melt and to a synthesis gas, both phases (19) leaving the gasification cyclone or melting cyclone (17) downwards.
  • the pyrolysis gas (12) obtained during the smoldering in the rotary tube furnace (11) is also introduced into the same gasification cyclone (17) after its dust separation (20) in a hot, not cooled state via line (21), in which both the carbon of the pyrolysis coke (16 ) and the hydrocarbons of the pyrolysis gas (21) can be converted to a CO + H2-rich synthesis gas according to the gross reaction equations given above.
  • the water vapor contained in the pyrolysis gas (21) is consumed, so that when the synthesis gas cools, undesired condensates can no longer form, which in turn would mean a residual material which is difficult to dispose of.
  • the dust separated from the hot pyrolysis gas (12) in the dust separator (20) is introduced into the gasification cyclone (17) via line (22) and line (16).
  • the emerging from the gasification cyclone (17) phases (19) melt slag on the one hand and gas phase on the other hand are then separated from one another in a sub-furnace (23) into a slag (24) and into the high-quality CO + H2-rich synthesis gas (25).
  • the slag (24) is molten, which can be used for further processing, for example for the production of rock wool. After it has cooled, any existing pollutants, such as heavy metals, are incorporated in the slag so that they are resistant to leaching, so that the slag (24) can also be deposited without problems or used as a building material.
  • a subset (26) of the processed smoldering residues can be branched off and recirculated to the rotary kiln (11), which is directly heated in this case, to form a hot immersion bed in the rotary kiln (11), within which the rotary kiln imported waste materials (10) are carbonized.
  • the processed fine-grained smoldering residues (26) forming the immersion bed are recirculated uncooled into the rotary kiln (11), and part of the smoldering gases or pyrolysis gases released by the smoldering burns above the immersion bed in the rotary kiln (11) and maintains an almost self-sufficient operation of the smoldering process upright, which, if necessary, can be supported by burning additional fuel, for example a partial flow of the synthesis gas (25).
  • additional fuel for example a partial flow of the synthesis gas (25).
  • the existing immersion bed ensures that only carbonized gas components burn, while the waste materials (10) remain largely protected from contact with combustion oxygen by the immersion bed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Um die thermische Verwertung von organische und anorganische Bestandteile enthaltenen Abfallstoffen wie Hausmüll, Klärschlamm etc. mit Schwelung der Abfallstoffe und Hochtemperaturvergasung des Pyrolysekokses in einem Vergasungszyklon so zu gestalten, daß außer einer laugungsresistenten Schlacke nicht ein Rauchgas, sondern ausschließlich ein hochwertiges CO + H2-reiches Synthesegas entsteht, ohne daß die Gefahr einer unerwünschten Kondensatbildung bei der Gasabkühlung besteht, wird erfindungsgemäß vorgeschlagen, das bei der Schwelung erhaltene Pyrolysegas (12, 21) in heißem Zustand direkt in den Vergasungszyklon (17) einzuführen, in welchem der Kohlenstoff des Pyrolysekokses (16) sowie die Kohlenwasserstoffe des Pyrolysegases (21) bei Temperaturen oberhalb 1400°C zu einem CO + H2-reichen Synthesegas (25) umgesetzt werden. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren sowie eine Anlage zur thermischen Verwertung von organische und anorganische Bestandteile enthaltenden Abfallstoffen wie Hausmüll, Klärschlamm oder dergleichen, wobei die Abfallstoffe in einem Drehrohrofen unter Bildung von Pyrolysegas verschwelt werden und der bei der Schwelung erhaltene Pyrolysekoks nach seiner mechanischen Aufbereitung in einem Vergasungszyklon unter Zusatz von Sauerstoff zu einem Synthesegas vergast wird.
  • Beim Verfahren zur thermischen Verwertung von organische und anorganische Bestandteile enthaltenden Abfallstoffen (Hausmüll, Klärschlamm oder dergleichen) der älteren, aber nicht vorveröffentlichten Patentanmeldung P 43 38 927.9, von dem die Erfindung ausgeht, werden die zerkleinerten Abfallstoffe in einem Drehrohrofen unter Bildung von Pyrolysegas verschwelt und der bei der Schwelung erhaltene Pyrolysekoks wird nach seiner mechanischen Aufbereitung mit Abtrennung von Metallen und anderen Wertstoffen in einem Vergasungszyklon unter Zusatz von Sauerstoff zu einem Synthesegas vergast, welches dann seinem Verwendungszweck zugeführt wird. Die bei der Hochtemperatur-Vergasung nicht vergasungsfähigen Inhaltsstoffe werden aus dem Vergasungszyklon als schmelzflüssige Schlacke abgezogen, die nach ihrer Erstarrung laugungsresistent deponiert werden oder als Baustoff Verwendung finden kann. Das aus dem Drehrohrofen als Schwelreaktor abgezogene heiße Pyrolysegas wird dadurch thermisch verwertet, indem es in einem Abhitzekessel zwecks Dampferzeugung verbrannt wird.
  • Da die vom Drehrohrofen als Schwelreaktor abgezogenen heißen Pyrolysegase in der Hauptsache aus gasförmigen Kohlenwasserstoffen und Wasserdampf sowie geringen Anteilen an Stickstoff, Kohlenmonoxid, Kohlendioxid und anderen gasförmigen Schadstoffen bestehen, ist es nicht zu vermeiden, daß die dampfförmigen Komponenten des heißen Pyrolysegases auf dem Wege ihrer Abkühlung im Abhitzekessel oder danach im Rauchgaskanal kondensieren. Die kondensierbaren Pyrolysegasbestandteile ergeben aber bei Raumtemperatur ein Gemisch aus Wasser sowie flüssigen und festen Kohlenwasserstoffen, wobei dieses Gemisch wiederum einen Reststoff ergibt, der verhältnismäßig aufwendig entsorgt werden muß.
  • Beim Verfahren zur Erzeugung von brennbaren Gasen aus Abfallstoffen der EP-B 0 152 912 werden die Abfallstoffe in einem Drehreaktor verschwelt, und das bei der Schwelung gewonnene Pyrolysegas wird nach einer Gasreinigung bei Temperaturen von 800 bis 1200°C teilweise verbrannt und dann durch eine glühende Schicht von stückigem Fremdkoks zum Zwecke des Crackens crackbarer Gasbestandteile geleitet. Der bei der Schwelung anfallende ausgeschwelte Pyrolysekoks wird nach einer mechanischen Aufbereitung deponiert, das heißt der im Pyrolysekoks enthaltene Kohlenstoff wird nicht zur Energieerzeugung herangezogen.
  • Schließlich ist aus der DE-Z "Müll und Abfall" 8/1993, Seiten 569 bis 572 ein "Schwel-Brenn-Verfahren" zur thermischen Entsorgung von Abfällen wie Hausmüll und Klärschlamm bekannt, bei dem die Abfälle in einer Drehtrommel bei ca. 450°C verschwelt werden. Der anfallende feste Schwelreststoff wird dann nach seiner mechanischen Aufbereitung in einer Brennkammer bei einer Temperatur von ca. 1300°C verbrannt, und zwar unter Einsatz des von der Schweltrommel abgezogenen brennbaren Pyrolysegases, welches in derselben Brennkammer verbrannt wird. Bei diesem bekannten Verfahren fallen als gasförmige Produkte ausschließlich Rauchgase an, keinesfalls ein Synthesegas oder Brenngas.
  • Der Erfindung liegt die Aufgabe zugrunde, die eingangs beschriebene thermische Verwertung von organische und anorganische Bestandteile enthaltenen Abfallstoffen wie Hausmüll, Klärschlamm etc. mit Schwelung der Abfallstoffe und Hochtemperaturvergasung des Pyrolysekokses in einem Vergasungszyklon so zu gestalten, daß außer einer laugungsresistenten Schlacke nicht ein Rauchgas, sondern ausschließlich ein hochwertiges CO + H₂-reiches Synthesegas entsteht, ohne daß die Gefahr einer unerwünschten Kondensatbildung bei der Gasabkühlung besteht.
  • Diese Aufgabe wird verfahrensmäßig mit den Maßnahmen des Anspruchs 1 und vorrichtungsmäßig mit den Maßnahmen des Anspruchs 4 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
  • Charakteristisch für das erfindungsgemäße Verfahren ist, daß das bei der Schwelung erhaltene Pyrolysegas in heißem nicht abgekühltem Zustand von zum Beispiel ca. 400 bis 650°C direkt in den Vergasungszyklon eingeführt wird, in welchem der Kohlenstoff des Pyrolysekokses sowie die Kohlenwasserstoffe des Pyrolysegases bei Temperaturen oberhalb 1400°C zu einem CO + H₂-reichen Synthesegas umgesetzt werden. Im Hochtemperatur-Vergasungszyklon erfolgt also eine möglichst vollständige Ausnutzung sowohl des im Pyrolysekoks enthaltenen Kohlenstoffs nach der Bruttoreaktion C + 1/2 O₂ → CO
    Figure imgb0001
    als auch der im Pyrolysegas enthaltenen Kohlenwasserstoffe nach der Bruttoreaktion C n H m + H₂O → CO + H₂
    Figure imgb0002
    zur Bildung des hochwertigen CO + H₂-reichen Synthesegases. Weil das heiße Pyrolysegas nicht abgekühlt wird und sein H₂O-Dampfanteil direkt im Hochtemperatur-Vergasungszyklon gemäß der Bruttoreaktion C n H m + H₂O → CO + H₂
    Figure imgb0003
    umgesetzt wird, ist die Gefahr einer unerwünschten Kondensatbildung nicht gegeben, und auf diese Weise entsteht auch bei der Abkühlung des gewonnenen Synthesegases kein Gemisch mehr aus Wasser sowie flüssigen und festen Kohlenwasserstoffen, wobei dieses Gemisch ein zu entsorgender Reststoff wäre. Die Hochtemperaturvergasung im Vergasungszyklon erfolgt bei unterstöchiometrischer Sauerstoffzufuhr, das heißt mit einem Sauerstoffunterschuß bei einem Lamda-Wert von zum Beispiel 0,4 bis 0,8. Aus dem Vergasungszyklon werden das CO + H₂-reiche Synthesegas sowie eine schmelzflüssige laugungsresistente Schlacke abgezogen, wobei Synthesegas und Schlackenschmelze in einem dem Vergasungszyklon nachgeschalteten Unterofen voneinander getrennt werden. Die abgekühlte schmelzflüssige Schlacke kann beispielsweise als Baustoff verwendet oder zu Steinwolle verarbeitet werden, und das nahezu stickstoffreie und wasserdampffreie CO + H₂-reiche Synthesegas kann nach seiner Abkühlung und Reinigung seiner Verwendung zugeführt werden.
  • Nach einem weiteren Merkmal der Erfindung kann das aus dem Drehrohrofen abgezogene heiße Pyrolysegas vor Einführung in den Vergasungszyklon entstaubt und der Staub in den Vergasungszyklon eingeführt werden. Es handelt sich dabei um eine trockene Pyrolysegasentstaubung bei einer Temperatur oberhalb der Kondensationstemperatur der dampfförmig mit dem Pyrolysegas mitgeführten Kohlenwasserstoffe sowie des Wasserdampfes.
  • Der Pyrolyse-Drehrohrofen kann indirekt beheizt sein. Nach einem weiteren Merkmal der Erfindung kann der Pyrolyse-Drehrohrofen aber auch direkt beheizt werden, indem eine Teilmenge des aufbereiteten Schwelreststoffes bzw. Pyrolysekokses vor dessen Einführung in den Vergasungszyklon abgezweigt und zum direkt beheizten Drehrohrofen rezirkuliert wird zwecks Bildung eines im Drehrohrofen liegenden heißen Tauchbetts, innerhalb dessen die in den Drehrohrofen eingeführten Abfallstoffe verschwelt werden. Die zur Aufrechterhaltung der Schwelung im Pyrolyse-Drehrohrofen erforderliche Energie wird in den Drehrohrofen durch das heiße Tauchbett aus den rezirkulierten ungekühlten Schwelreststoffen eingebracht, sowie auch durch Verbrennung von Brennstoff, zum Beispiel einer Teilmenge des erzeugten Synthesegases im Drehrohrofen.
  • Eine erfindungsgemäße Anlage zur thermischen Verwertung von organische und anorganische Bestandteile enthaltenen Abfallstoffen mit Pyrolyse-Drehrohrofen und Hochtemperatur-Vergasungszyklon ist dadurch gekennzeichnet, daß der Austrag des Pyrolyse-Drehrohrofens für den Pyrolysekoks über eine mechanische Aufbereitung mit dem Vergasungszyklon verbunden ist, und der Pyrolysegas-Abzug des Drehrohrofens über einen Staubabscheider ebenfalls mit dem Vergasungszyklon verbunden ist.
  • Die Erfindung und deren weitere Merkmale und Vorteile werden anhand des in der Zeichnung schematisch dargestellten Ausführungsbeispieles näher erläutert.
  • Gemäß zeichnerischem Ausführungsbeispiel werden zerkleinerte organische und anorganische Bestandteile enthaltene Abfallstoffe (10) wie Hausmüll, Klärschlamm oder dergleichen in einen Pyrolyse-Drehrohrofen (11) eingeführt und dort unter Bildung von Pyrolysegas (12) verschwelt, und der bei der Schwelung erhaltene Pyrolysekoks (13) wird seiner mechanischen Aufbereitung (14) mit Zerkleinerung, Abtrennung von Metallen sowie in Inertstoffen (15) sowie ggfs. weiteren Sortierstufen zugeführt.
  • Nach seiner mechanischen Aufbereitung (14) wird der Pyrolysekoks (16), gebracht auf eine Komgröße von < 3 mm, in einen Hochtemperatur-Vergasungszyklon (17) eingebracht und dort mit unterstöchiometrisch eingebrachtem Sauerstoff (18) oder sauerstoffangereicherter Luft bei einer Temperatur oberhalb 1400°C zu einer Schlackenschmelze sowie zu einem Synthesegas umgesetzt, wobei beide Phasen (19) den Vergasungszyklon bzw. Schmelzzyklon (17) nach unten verlassen. Das bei der Schwelung im Drehrohrofen (11) erhaltene Pyrolysegas (12) wird nach seiner Staubabscheidung (20) in heißem nicht abgekühlten Zustand über Leitung (21) ebenfalls in denselben Vergasungszyklon (17) eingeführt, in welchem also sowohl der Kohlenstoff des Pyrolysekokses (16) als auch die Kohlenwasserstoffe des Pyrolysegases (21) nach den oben angegebenen Bruttoreaktionsgleichungen zu einem CO + H₂-reichen Synthesegas umgesetzt werden. Dabei wird der im Pyrolysegas (21) enthaltene Wasserdampfanteil verbraucht, so daß sich bei einer Abkühlung des Synthesegases keine unerwünschten Kondensate mehr bilden können, die einen wiederum aufwendig zu entsorgenden Reststoff bedeuten würden.
  • Der im Staubabscheider (20) vom heißen Pyrolysegas (12) abgetrennte Staub wird über Leitung (22) sowie Leitung (16) in den Vergasungszyklon (17) eingeführt. Die aus dem Vergasungszyklon (17) austretenden Phasen (19) Schlackenschmelze einerseits und Gasphase andererseits werden in einem Unterofen (23) anschließend in eine Schlacke (24) sowie in das hochwertige CO + H₂-reiche Synthesegas (25) voneinander getrennt. Die Schlacke (24) liegt schmelzflüssig vor, was für eine Weiterverarbeitung, beispielsweise zur Herstellung von Steinwolle ausgenutzt werden kann. Nach ihrer Abkühlung sind in die Schlacke etwa vorhandene Schadstoffe wie beispielsweise Schwermetalle laugungsresistent eingebunden, so daß die Schlacke (24) auch problemlos deponiert werden oder als Baustoff Verwendung finden kann.
  • Wie in der Zeichnung durch gestrichelte Linie angezeigt, kann eine Teilmenge (26) der aufbereiteten Schwelreststoffe abgezweigt und zum in diesem Falle direkt beheizten Drehrohrofen (11) rezirkuliert werden zwecks Bildung eines im Drehrohrofen (11) liegenden heißen Tauchbettes, innerhalb dessen die in den Drehrohrofen eingeführten Abfallstoffe (10) verschwelt werden. Die das Tauchbett bildenden aufbereiteten feinkörnigen Schwelreststoffe (26) werden ungekühlt in den Drehrohrofen (11) rezirkuliert, und ein Teil der durch die Schwelung freigesetzten Schwelgase bzw. Pyrolysegase verbrennt oberhalb des Tauchbettes im Drehrohrofen (11) und hält dort einen nahezu autarken Betrieb des Schwelvorganges aufrecht, der im Bedarfsfall aber durch Verbrennung von zusätzlich zugeführtem Brennstoff, zum Beispiel eines Teilstroms des erzeugten Synthesegases (25), unterstützt werden kann. Innerhalb des Pyrolyse-Drehrohrofens (11) sorgt das vorhandene Tauchbett dafür, daß nur Schwelgasanteile verbrennen, während die Abfallstoffe (10) durch das Tauchbett vor einem Kontakt mit Verbrennungssauerstoff weitgehend geschützt bleiben.

Claims (4)

  1. Verfahren zur thermischen Verwertung von organische und anorganische Bestandteile enthaltenen Abfallstoffen wie Hausmüll, Klärschlamm oder dergleichen, wobei die Abfallstoffe (10) in einem Drehrohrofen (11) unter Bildung von Pyrolysegas (12) verschwelt werden und der bei der Schwelung erhaltene Pyrolysekoks (13) nach seiner mechanischen Aufbereitung (14) in einem Vergasungszyklon (17) unter Zusatz von Sauerstoff (18) zu einem Synthesegas vergast wird, dadurch gekennzeichnet, daß das bei der Schwelung erhaltene Pyrolysegas (12, 21) in heißem Zustand direkt in den Vergasungszyklon (17) eingeführt wird, in welchem der Kohlenstoff des Pyrolysekokses (16) sowie die Kohlenwasserstoffe des Pyrolysegases (21) bei Temperaturen oberhalb 1400°C zu einem CO + H₂-reichen Synthesegas (25) umgesetzt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das heiße Pyrolysegas (12) vor Einführung in den Vergasungszyklon (17) bei einer Temperatur oberhalb der Kondensationstemperatur der dampfförmig mitgeführten Kohlenwasserstoffe sowie des Wasserdampfes entstaubt (20) und der Staub (22) in den Vergasungszyklon (17) eingeführt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Teilmenge (26) der aufbereiteten Schwelreststoffe abgezweigt und zum direkt beheizten Drehrohrofen (11) rezirkuliert wird zwecks Bildung eines im Drehrohrofen (11) liegenden heißen Tauchbettes, innerhalb dessen die in den Drehrohrofen eingeführten Abfallstoffe (10) verschwelt werden.
  4. Anlage zur thermischen Verwertung von organische und anorganische Bestandteile enthaltenen Abfallstoffen, insbesondere zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 3, gekennzeichnet durch einen Pyrolyse-Drehrohrofen (11), dessen Austrag (13) für den Pyrolysekoks über eine mechanische Aufbereitung (14) mit einem Vergasungs-Schmelzzyklon (17) verbunden ist, und der Pyrolysegas-Abzug (12) des Drehrohrofens (11) über einen Staubabscheider (20) ebenfalls mit dem Vergasungs-Schmelzzyklon (17) verbunden ist.
EP95114026A 1994-09-30 1995-09-07 Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen Withdrawn EP0704518A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4435144 1994-09-30
DE19944435144 DE4435144A1 (de) 1994-09-30 1994-09-30 Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen

Publications (1)

Publication Number Publication Date
EP0704518A1 true EP0704518A1 (de) 1996-04-03

Family

ID=6529725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95114026A Withdrawn EP0704518A1 (de) 1994-09-30 1995-09-07 Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen

Country Status (2)

Country Link
EP (1) EP0704518A1 (de)
DE (1) DE4435144A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025790A1 (de) * 1997-11-13 1999-05-27 Umwelttechnik Stefan Bothur Verfahren zur herstellung von synthesegas oder flüssigen kohlenwasserstoffen aus nachwachsenden, zellulosehaltigen roh- oder abfallstoffen
NL1018543C2 (nl) * 2001-07-13 2003-01-14 Droan B V Werkwijze voor het in meerdere stappen vergassen van afval of biomassa.
DE102009018350A1 (de) * 2009-04-23 2010-10-28 Aimes Gmbh Umwandlungsvorrichtung zum Umwandeln von Biomasse in Kohlenwasserstoffverbindungen, Verfahren zum wenigstens teilweisen Umwandeln von Biomasse in Kohlenwasserstoffverbindungen, Nutzgas und Feststoff, sowie Verfahren zum wenigstens teilweisen Umwandeln von kontaminierten Stoffen in CO2
CN105602626A (zh) * 2015-12-21 2016-05-25 郭凯 气化炉及其生活垃圾无害气化能源工艺方法
AT522258A1 (de) * 2019-03-06 2020-09-15 Next Generation Elements Gmbh Verfahren zur Rückgewinnung zumindest eines in einer Biomasse enthaltenen Wertstoffes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044437A1 (de) 2010-09-06 2012-03-08 Pyrolyse Gbr Vertreten Durch Karl Friedrich Hisza Verfahren zur thermischen Behandlung organischer Ausgangsstoffe oder eines Gemisches organischer und anorganischer Ausgangsstoffe sowie Vorrichtung dazu

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200341A1 (de) * 1991-11-18 1993-05-19 Kloeckner Humboldt Deutz Ag Verfahren und vorrichtung zur hochtemperaturvergasung feinkoerniger brennwertreicher organischer abfallstoffe
EP0545241A1 (de) * 1991-11-29 1993-06-09 Noell Energie- und Entsorgungstechnik GmbH Verfahren zur thermischen Verwertung von Abfallstoffen
DE4325029A1 (de) * 1993-07-26 1994-03-31 Siemens Ag Einrichtung zur thermischen Abfallentsorgung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2087054B (en) * 1980-09-19 1984-03-21 Shinryo Air Cond Method and apparatus for incinerating sewage sludge
DE3828534A1 (de) * 1988-08-23 1990-03-08 Gottfried Dipl Ing Roessle Verfahren zur verwertung von energiehaltiger masse, vorrichtung zur durchfuehrung des verfahrens und verwendung eines bei der verwertung anfallenden produkts
DE4040377C1 (de) * 1990-12-17 1992-02-06 Thermoselect Ag, Vaduz, Li
DE4209549A1 (de) * 1992-03-24 1993-09-30 Vaw Ver Aluminium Werke Ag Verfahren zur thermischen Behandlung von Reststoffen, z.B. zur Trennung und Verwertung von Metallverbunden mit organischen Anteilen, mittels einer Kombination aus Pyrolyse und Vergasung
DE4402838A1 (de) * 1994-01-31 1994-06-09 Siemens Ag Einrichtung zur Müllverarbeitung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200341A1 (de) * 1991-11-18 1993-05-19 Kloeckner Humboldt Deutz Ag Verfahren und vorrichtung zur hochtemperaturvergasung feinkoerniger brennwertreicher organischer abfallstoffe
EP0545241A1 (de) * 1991-11-29 1993-06-09 Noell Energie- und Entsorgungstechnik GmbH Verfahren zur thermischen Verwertung von Abfallstoffen
DE4325029A1 (de) * 1993-07-26 1994-03-31 Siemens Ag Einrichtung zur thermischen Abfallentsorgung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025790A1 (de) * 1997-11-13 1999-05-27 Umwelttechnik Stefan Bothur Verfahren zur herstellung von synthesegas oder flüssigen kohlenwasserstoffen aus nachwachsenden, zellulosehaltigen roh- oder abfallstoffen
NL1018543C2 (nl) * 2001-07-13 2003-01-14 Droan B V Werkwijze voor het in meerdere stappen vergassen van afval of biomassa.
DE102009018350A1 (de) * 2009-04-23 2010-10-28 Aimes Gmbh Umwandlungsvorrichtung zum Umwandeln von Biomasse in Kohlenwasserstoffverbindungen, Verfahren zum wenigstens teilweisen Umwandeln von Biomasse in Kohlenwasserstoffverbindungen, Nutzgas und Feststoff, sowie Verfahren zum wenigstens teilweisen Umwandeln von kontaminierten Stoffen in CO2
CN105602626A (zh) * 2015-12-21 2016-05-25 郭凯 气化炉及其生活垃圾无害气化能源工艺方法
CN105602626B (zh) * 2015-12-21 2018-03-06 郭凯 气化炉及其生活垃圾无害气化能源工艺方法
AT522258A1 (de) * 2019-03-06 2020-09-15 Next Generation Elements Gmbh Verfahren zur Rückgewinnung zumindest eines in einer Biomasse enthaltenen Wertstoffes

Also Published As

Publication number Publication date
DE4435144A1 (de) 1996-04-04

Similar Documents

Publication Publication Date Title
EP0545241B1 (de) Verfahren zur thermischen Verwertung von Abfallstoffen
DE4446803C2 (de) Verfahren und Vorrichtung zur thermischen und stofflichen Verwertung von Rest- und Abfallstoffen
DE4404673C2 (de) Verfahren zur Erzeugung von Brenngas
DE3310534C2 (de)
EP0441788B1 (de) Allothermes verfahren zur erzeugung eines brenngases aus müll oder aus müll zusammen mit kohle und vorrichtung zur durchführung des verfahrens
EP0594231A1 (de) Verfahren zum Vergassen von brennbare Bestandteile enthaltenden Abfallstoffen
DE3611429A1 (de) Verfahren zur abfallzersetzung
DE4209549A1 (de) Verfahren zur thermischen Behandlung von Reststoffen, z.B. zur Trennung und Verwertung von Metallverbunden mit organischen Anteilen, mittels einer Kombination aus Pyrolyse und Vergasung
WO1994021751A1 (de) Verfahren und einrichtung zum entsorgen von abfall
EP1187891B1 (de) Verfahren und vorrichtung zur entsorgung von abfallgütern
EP0704518A1 (de) Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen
DE19536383C2 (de) Verfahren und Vorrichtung zur Vergasung von heizwertarmen Brennstoffen
EP0894843A1 (de) Verfahren und Vorrichtung zur Vergasung kompaktierter und kompaktierfähiger organischer Materialien
DE19853717C2 (de) Verfahren und Vorrichtungen zur Vergasung kompaktierter organischer Materialien
EP2148135B1 (de) Verfahren und Vorrichtung zur thermischen Behandlung von Abfallgütern
DE19513832B4 (de) Verfahren zur Verwertung von Rest- und Abfallstoffen durch Kombination einer Wirbelschichtthermolyse mit einer Flugstromvergasung
DE19730385C5 (de) Verfahren zur Erzeugung von Brenn- und Synthesegas aus Brennstoffen und brennbaren Abfällen und eine Vorrichtung zur Durchführung des Verfahrens
DE10010358A1 (de) Verfahren und Vorrichtung zum Vergasen von brennbarem Material
DE19937188C1 (de) Verfahren zur Verwertung von Gasen aus dem Absetzbecken
DE19718184C2 (de) Vorrichtung zur energetischen Nutzung von Brennstoffen, insbesondere Biobrennstoffen
WO1997046639A1 (de) Verfahren zur erzeugung von gas
AT396880B (de) Verfahren zur abfallzersetzung
DE4317806C1 (de) Allothermer Gasgenerator und Verfahren zur Erzeugung von Brenngas mittels des allothermen Gasgenerators
DE3405213A1 (de) Verfahren zur herstellung eines reinen, alkalifreien treibgases aus einem alkalihaltigen festen oder fluessigen brennstoff
DE2933402C2 (de) Verfahren und Anlage zum Herstellen von Schwelgas, Wassergas und Koks aus festen Brennstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR LI

17P Request for examination filed

Effective date: 19960713

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTZ AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19980818

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19991005