EP0697051B1 - False ceiling - Google Patents

False ceiling Download PDF

Info

Publication number
EP0697051B1
EP0697051B1 EP94915072A EP94915072A EP0697051B1 EP 0697051 B1 EP0697051 B1 EP 0697051B1 EP 94915072 A EP94915072 A EP 94915072A EP 94915072 A EP94915072 A EP 94915072A EP 0697051 B1 EP0697051 B1 EP 0697051B1
Authority
EP
European Patent Office
Prior art keywords
false ceiling
holes
ceiling
panels
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94915072A
Other languages
German (de)
French (fr)
Other versions
EP0697051A1 (en
Inventor
Helmut Fuchs
Dietmar Eckoldt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to SI9430031T priority Critical patent/SI0697051T1/en
Priority claimed from PCT/EP1994/001227 external-priority patent/WO1994024382A1/en
Publication of EP0697051A1 publication Critical patent/EP0697051A1/en
Application granted granted Critical
Publication of EP0697051B1 publication Critical patent/EP0697051B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/001Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B2001/8263Mounting of acoustical elements on supporting structure, e.g. framework or wall surface
    • E04B2001/8281Flat elements mounted parallel to a supporting surface with an acoustically active air gap between the elements and the mounting surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8433Tray or frame type panels or blocks, with or without acoustical filling with holes in their face
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8442Tray type elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/8495Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the openings going through from one face to the other face of the element

Definitions

  • the invention relates to a false ceiling, as is known from Frick, O. et al "Baukonstru proceedingsslehre", Part 1., Teubner, Stuttgart 1992 and EP 0023618 A1.
  • a sound-absorbing building board is known with a sound-absorbing layer on perforated metal plates with a perforation area fraction ⁇ of 4 - 40%, which would allow the sound to pass through practically undamped if a sound-absorbing layer were not attached in front of the perforated plate on the room side, or how shown on page 2, paragraph 2, according to the state of the art, behind the perforated plate.
  • the sound-absorbing layer consists of a fibrous carrier in the form of a fleece or fabric.
  • Substructures "suspended" from massive, load-bearing floor ceilings are used as preferably light, largely industrially prefabricated, dry and easy to install ceiling systems on a large scale and with a wide range of variants.
  • ceiling cladding and suspended ceilings take on both decorative and constructional functions.
  • the UD installed as cladding at a certain distance from the solid ceiling, the UD often helps to meet various building physics requirements for the building with regard to thermal insulation, fire protection and sound insulation. However, it is also suitable as a facing for the lighting, room design and room acoustic adaptation of individual rooms to their individual use. Finally, larger voids between the raw ceiling and the UD also serve for the hidden laying / integration of pipelines, cable connections, outlets and inlets of the various building services systems.
  • Figure 1 shows a conventional reactive absorber according to Frick et al, with a) a plate resonator, b) a Helmholtz resonator and figure c) the degree of absorption.
  • the UD is not only used for decorative and acoustic purposes, but also as a (low-pressure) ventilation ceiling, (radiation) heating ceiling or (surface) cooling ceiling, it should also take on other technical functions at the same time, then the acoustically unavoidable fibrous / porous damping material as a serious disadvantage: It would not only hinder assembly and installation, but also maintenance and operation of the systems. Therefore, there is an urgent need for UD systems that meet the spatial and building acoustic requirements without the use of porous absorbers and at the same time meet the structural requirements better than conventional acoustic ceilings.
  • H. 1, pp. 1-11 come without porous / fibrous material. But you still need 5-10 cm deep hollow chambers. Due to their three-shell structure on a relatively narrow-meshed (10-20 cm) honeycomb structure, they are also much too complex and expensive as a UD component for normal acoustic ceilings. The latter come at most as completely closed metal cassettes in the Ceiling cavity or as an integrated UD component to supplement the absorption at low frequencies in rooms with special room acoustic requirements.
  • the object of the invention is to provide a fiber-free acoustic false ceiling that absorbs broadband.
  • the new ceiling tile absorber can be used as a UD by means of length-variable suspensions or substructures suspended from the solid ceiling in all areas of application listed under 1. and equipped with all the properties and functions specified under 1. and 2. without the disadvantages mentioned under 4. having.
  • Fiber-free UD as a sound-absorbing boundary of the ceiling cavity as a sound-transmitting channel, which, in the manner of the damping mechanisms described under (b), executes damped vibrations excited and damped by the channel-side sound field in a wide frequency range and thus helps to reduce longitudinal transmission to the neighboring room.
  • the UD component made of flat, micro-perforated ceiling panels with high density on the room side enables complete industrial prefabrication.
  • the extremely small holes allow complete privacy, the visual impression of a closed ceiling area and possibilities for decorative loosening of the ceiling.
  • the fiber-free plate components can be used to create almost any shape Train reflectors for lighting, outlets and inlets for ventilation and radiators for heating, without having to forego their acoustic effectiveness.
  • the UD components offer ideal conditions for assembly, disassembly and reassembly and are completely and inexpensively traceable due to their simple, homogeneous construction.
  • the UD components also meet a very current trend in cooling of administrative buildings and assembly facilities in summer: with so-called "Chilled ceilings" made of largely standardized metallic components can save the high fan output, which can easily account for 50 % of the operating costs in conventional air conditioning systems. This also helps to reduce CO 2 emissions and eliminates an often very annoying source of drafts, noise pollution and allergies in living and working spaces.
  • thermal insulation e.g.
  • the distance between the cooling lamella and insulation, lamella thickness, hole diameter and number of holes per m 2 can be coordinated so that an optimal adaptation to the reverberation time of the room or the emission spectrum of the sound sources installed in it.
  • the fiber-free, micro-perforated UD components also offer clear advantages over conventional systems when it comes to heating and ventilation ceilings.
  • FIGS. 8, 9, 10 is to be explained in relation to the prior art according to FIGS. 1 to 7.
  • Figure 1 shows reactive absorbers.
  • Figure 1a shows a plate resonator, in which the plate vibrates as a mass in front of the air cushion as a spring, but porous material is required, for example, as edge damping in order to achieve a somewhat broadband damping behavior as in Figure 1c.
  • Figure 2 manages to excite a large number of different plate vibrations at different frequencies in a very complex bucket structure in such a way that an overall broadband absorption spectrum at medium frequencies is achieved, even without the use of porous material.
  • 15 is the cover membrane
  • 16 is the porous material with a waterproof cover 17 or mechanical protection 18.
  • Below the cover membrane 15 is the perforated membrane 14 and the rear wall 12 is spaced therefrom.
  • Both the cover membrane, perforated membrane and rear wall are vibrating components, so no rigid plates. The membranes are excited to vibrate and thereby extract the energy from the sound.
  • the holes in the perforated membrane 14 fluctuate between 3-10 mm.
  • 13 represents the walls of the honeycomb structure, 11 is the cavity that is usually filled with air.
  • This membrane absorber can also be manufactured as a module, wherein the membranes 12, 14, 15 and 13 can consist of plastic or metal.
  • porous absorbers It is also known to cover large-volume porous absorbers with perforated plates, but the perforated plates are only intended to provide mechanical protection.
  • porous absorbers are e.g. pressed mineral fiber boards, which are placed behind suspended ceilings, often for practical reasons these fiber boards are glued with a thin aluminum foil or wrapped in plastic film. Since it is known that the penetration of the sound waves into the passive absorber is largely prevented, the film is made “sound-permeable" by "needling" with a large number of small holes.
  • Figure 6 shows the absorption spectrum from Maa, D.-Y. "Theory and design of microperforated panel sound absorbing constructions". Scientia Sinica 18 (1975), H. 1, 55-71, a micro-perforated plate being arranged in front of a rigid wall. However, this theoretical investigation has never found any technical application.
  • the false ceiling according to the invention relates to at least one micro-perforated sheet or a micro-perforated plate made of plastic in front of a non-vibrating wall 5 or rear wall 7, which does not require any sound-absorbing elements or additional porous or fibrous damping materials in the air gap.
  • the air in the holes in the false ceiling only transmits the sound vibrations of the sound waves hitting the perforated sheets into the damping material behind. Only there is the sound energy converted into heat by friction on the fibers or in the pores of the insulating material, thereby reducing the sound energy.
  • the false ceiling according to the invention is simple to manufacture, easy to install and not expensive, since it consists only of the finely perforated perforated sheets and the lateral boundary surfaces of the air space and the flat rear wall or plate.
  • the holes with a diameter of preferably 0.4-0.8 mm do not serve as "breakthroughs" for the unimpeded penetration of the sound energy into the air space between the ceiling and ceiling.
  • the extremely small perforation area fraction of a maximum of 3%, preferably ⁇ 2%, for the purpose according to the invention would be even less suitable for the (passive) transmission of sound energy from the room into the intermediate space than the perforations according to the prior art, since these perforation surface areas between 15 - have 50%.
  • the air in the holes of the microperforated perforated sheet according to the invention acts as a very special mass-spring vibration system, which (reactively) can be excited to vibrations in the frequency range of interest by the sound field impinging on the microperforated perforated sheet becomes.
  • the tuning to the respective frequency range takes place through a very targeted choice of the geometric parameters, in particular the thickness of the perforated plates, the thickness of the air gap, the diameter of the holes, the spacing of the holes, the shape of the holes, the proportion of perforation in the total area of the perforated plate and the shape of the perforated plate .
  • the choice of hole geometry not only determines the frequency range of the absorption, but also the effectiveness of the absorber in this frequency range.
  • the necessary damping is not achieved by attaching additional porous or fibrous "swallowing substances" as shown in Fig. 1a or Fig. 7, but entirely by friction of the air particles in the narrow holes on their walls.
  • the desired frequency range and the required friction can be optimally adjusted to the respective application, so that an almost complete absorption of the incident sound energy is possible.
  • the plates are so thick and stable that they cannot be excited to vibrate by the impinging sound waves.
  • the plate if it were designed to vibrate, as shown in Figure 8, would at best oscillate as a spring-mass system at very low frequencies and only in a narrow band, in accordance with the dashed curve 1, and thereby absorb.
  • the microperforation, curve 2, causes a relatively broadband absorption at medium and higher frequencies as shown in Figure 8, because only the lighter air in the holes as a mass resonates with the air in the cavity as a spring.
  • Arranged rigid micro-perforated plates can, as shown in Figure 9, achieve an even broader absorption curve without additional damping material having to be introduced, or having to vibrate solid parts in the manner of a resonator.
  • Fig. 10a-e shows the false ceiling according to the invention, wherein Fig. 10e shows the false ceiling as a module, which is then installed in a cassette shape under the ceiling as a false ceiling.
  • Fig. 10 denote the flat micro-perforated plate made of sheet metal or hard plastic with holes 4 and 7, a flat oscillatable plate as the rear wall of the module.
  • 3b is the rigid frame of the module and 11 the voids or spaces that are filled with air.
  • 3 are suspensions and 3a e.g. Beams or a substructure for supporting the false ceiling or facing shell. Since the panels or modules are supplied in units of approximately 1 square meter, different distances between the ceiling D and the rear wall can be realized via the suspensions 3 or substructure 3a, thereby broadening the absorption spectrum.
  • 2 are stiffeners of the plates 1, 6, which of course can also be arranged over the entire length and width of the plate so that it does not vibrate.
  • Figure 11 shows the spectrum of a micro-perforated plate made of aluminum with a plate thickness of 0.15 mm, hole diameter 0.16 mm, hole spacing 1.2 mm and thickness of the air layer in the space between plate and back wall or ceiling of 600 mm and one by hole diameter and distance given hole area proportion p of 1.4%.
  • ⁇ hole area / total area, D the air layer thickness in the space and K m a constant that is proportional to the hole diameter multiplied by the root of f
  • the parameters plate thickness, hole area percentage can then be used or the number of holes for a certain hole diameter and air gap D vary within certain limits.
  • a broadening of the spectrum is also obtained when the plate is slightly curved downwards, for example with a plate width of 1000 mm and a curvature of 60-80 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PCT No. PCT/EP94/01277 Sec. 371 Date Oct. 19, 1995 Sec. 102(e) Date Oct. 19, 1995 PCT Filed Apr. 20, 1994 PCT Pub. No. WO94/24382 PCT Pub. Date Oct. 27, 1994A false ceiling for buildings designed to absorb acoustic waves has perforated plates. One or several suspended plates (1, 6) are provided which are so hard that they cannot vibrate. The plates have a plurality of regularly or irregularly arranged holes (4, 7) with 0.2-3 mm diameter, the surface of the holes being less than 4% of the total surface. The air in the holes (4, 7) forms with the overlying cavities (11) a dampening active mass system of the foil absorber type.

Description

Die Erfindung betrifft eine Unterdecke, wie sie aus Frick, O. et al "Baukonstruktionslehre", Teil 1., Teubner, Stuttgart 1992 sowie EP 0023618 A1 bekannt ist.The invention relates to a false ceiling, as is known from Frick, O. et al "Baukonstruktionslehre", Part 1., Teubner, Stuttgart 1992 and EP 0023618 A1.

Aus der Patentanmeldung EP 0023618 ist eine schallschluckende Bauplatte bekannt mit einer schallschluckenden Schicht auf gelochten Metallplatten mit einem Lochflächenanteil σ von 4 - 40 %, die den Schall praktisch ungedämpft durchlassen würden, wenn nicht eine schallschluckende Schicht raumseitig vor der Lochplatte angebracht wäre, oder, wie dort auf Seite 2, Absatz 2, dargestellt, nach dem Stand der Technik, hinter der Lochplatte. Die schallschluckende Schicht besteht aus einem Faserstoffträger in Vlies- oder Gewebeform.From patent application EP 0023618, a sound-absorbing building board is known with a sound-absorbing layer on perforated metal plates with a perforation area fraction σ of 4 - 40%, which would allow the sound to pass through practically undamped if a sound-absorbing layer were not attached in front of the perforated plate on the room side, or how shown on page 2, paragraph 2, according to the state of the art, behind the perforated plate. The sound-absorbing layer consists of a fibrous carrier in the form of a fleece or fabric.

1. Gegenstand1. Subject

Von massiven, tragenden Geschoßdecken "abgehängte" Unterkonstruktionen kommen als vorzugsweise leichte, weitgehend industriell vorgefertigte, trocken und einfach montierbare Deckensysteme in großem Umfang und sehr variantenreich zum Einsatz. In Neubauten und bei der Altbausanierung von Aufenthaltsräumen, Verwaltungsräumen, Unterrichtsräumen oder Industrie- Messe- oder Sporthallen sowie Büro-, Kauf- und Krankenhäusern übernehmen sogenannte Deckenbekleidungen und Unterdecken (UD) sowohl dekorative als auch bautechnische Funktionen.Substructures "suspended" from massive, load-bearing floor ceilings are used as preferably light, largely industrially prefabricated, dry and easy to install ceiling systems on a large scale and with a wide range of variants. In new buildings and in the renovation of old buildings in recreation rooms, administration rooms, classrooms or industrial, trade fair or sports halls as well as office, department and hospital buildings, so-called ceiling cladding and suspended ceilings (UD) take on both decorative and constructional functions.

2. Zweck und Funktion2. Purpose and function

Als Verkleidung in gewissem Abstand zur Massivdecke montiert, hilft die UD häufig, verschiedene bauphysikalische Anforderungen an das Gebäude hinsichtlich Wärmeschutz, Brandschutz und Schallschutz zu erfüllen. Sie eignet sich aber als Vorsatzschale ebenso zur lichttechnischen, raumgestalterischen und raumakustischen Anpassung einzelner Räume auf ihre individuelle Nutzungsart. Schließlich dienen größere Hohlräume zwischen Rohdecke und UD auch zur verdeckten Verlegung/Integration von Rohrleitungen, Kabelverbindungen, Aus- und Einlässen der diversen haustechnischen Anlagen.Installed as cladding at a certain distance from the solid ceiling, the UD often helps to meet various building physics requirements for the building with regard to thermal insulation, fire protection and sound insulation. However, it is also suitable as a facing for the lighting, room design and room acoustic adaptation of individual rooms to their individual use. Finally, larger voids between the raw ceiling and the UD also serve for the hidden laying / integration of pipelines, cable connections, outlets and inlets of the various building services systems.

3. Anforderungen an UD3. Requirements for UD

An Unterdecken bzw. an die meist ebenen Bauteile, aus denen sie zusammengesetzt sind, werden hohe Anforderungen in dreierlei Hinsicht gestellt:There are three requirements for ceilings and the mostly flat components from which they are composed:

3.1 bautechnisch:3.1 construction:

  • (a) hohe Stabilität bei geringem Gewicht,(a) high stability with low weight,
  • (b) glatte, resistente Oberflächenbeschaffenheit,(b) smooth, resistant surface texture,
  • (c) leichte, reversible Montage(c) easy, reversible assembly
3.2bauakustisch:3.2 Acoustic:

  • (a) hohe flächenbezogene Masse (5-10 kg/m2),(a) high mass per unit area (5-10 kg / m 2 ),
  • (b) geschlossene, fugenfreie Modulbauweise (50-200 cm),(b) closed, joint-free modular construction (50-200 cm),
  • (c) faserige/poröse Hohlraumdämpfung (50-100 mm)(c) fibrous / porous cavity damping (50-100 mm)
3.3raumakustisch:3.3 room acoustic:

  • (a) hoher Perforationsgrad (20-40 %)(a) high degree of perforation (20-40%)
  • (b) faserige/poröse Absorberauflage (10-50 mm)(b) fibrous / porous absorber pad (10-50 mm)
  • (c) große Abhängehöhe (20-50 cm).(c) large suspension height (20-50 cm).

Welcher der sich teilweise widersprechenden Anforderungen der Vorrang eingeräumt wird, hängt auch von der jeweiligen Raumnutzung ab. Es sind aber einige grundsätzliche Probleme bei konventionellen UD-Systemen ungelöst, wenn diese gleichzeitig als Akustikdecke wirksam sein sollen:Which of the contradicting requirements is given priority also depends on the use of space. However, there are some fundamental problems with conventional UD systems that are unsolved if they are also to be effective as an acoustic ceiling:

4. Nachteile herkömmlicher UD4. Disadvantages of conventional UD

Selbst wenn die UD nur die im Decken-Hohlraum angeordneten Installationen kaschieren und den Raum selbst akustisch bedämpfen soll, wie in Frick et al oder in "Trockenbau" 7/92 "Heiss-umkämpfte Kühle" beschrieben, erscheinen die in großem Umfang als Schalen-Bauteil, Decken-Auflage und Hohlraum-Dämpfung eingesetzten Mineralfaser-Platten und -Matten wegen ihrer

  • mechanischen Empfindlichkeit bei Montage- und Installationsarbeiten,
  • hygienischen Bedenklichkeit bei Räumen höherer Reinheitsklasse,
  • physiologischen Auswirkungen bei Abrieb und Austragung von Fasern
als nachteilig und hinderlich.Even if the UD is only to conceal the installations arranged in the ceiling cavity and acoustically dampen the room itself, as described in Frick et al or in "Drywall" 7/92 "Hotly contested coolness", they appear to a large extent as bowls. Component, ceiling pad and cavity damping used mineral fiber panels and mats because of their
  • mechanical sensitivity during assembly and installation work,
  • hygienic concerns in rooms with a higher cleanliness class,
  • physiological effects of abrasion and removal of fibers
as disadvantageous and cumbersome.

Bild 1 zeigt einen konventionellen reaktiven Absorber nach Frick et al, wobei a) einen Platten-Resonator, b) einen Helmholtz-Resonator und die Figur c) den Absorptionsgrad darstellt.Figure 1 shows a conventional reactive absorber according to Frick et al, with a) a plate resonator, b) a Helmholtz resonator and figure c) the degree of absorption.

Der konventionelle Riesel- und Sichtschutz durch Folien mit geringer Masse und Lochplatten mit großem Perforationsgrad (aus raumakustischer Sicht) widerspricht der bauakustischen Forderung nach einer raumseitig möglichst geschlossenen, nicht zu leichten Vorsatzschale.The conventional trickle and sight protection through foils with low mass and perforated plates with a high degree of perforation (from a room acoustic point of view) contradicts this Building acoustics demand for a facing that is as closed as possible on the room side and not too light.

Die aus raumakustischer Sicht für die Absorption tiefer Frequenzen zu fordernde große Abhängehöhe von Akustikdecken gemäß Frick et al widerspricht häufig der bauakustischen Forderung nach geringer Längsübertragung über den Decken-Hohlraum über benachbarten Räumen, selbst wenn der Hohlraum nach Art eines Schalldämpfers wiederum mit größeren Mengen faserigen oder porösen Dämpfungs-Materials angefüllt wird.The large suspension height of acoustic ceilings according to Frick et al, which is required for the absorption of low frequencies from a room acoustics point of view, often contradicts the building acoustics requirement for low longitudinal transmission via the ceiling cavity above neighboring rooms, even if the cavity is again fibrous or larger in the manner of a silencer porous damping material is filled.

Wenn aber die UD nicht nur dekorativen und akustischen Zwecken dient, sondern als (Niederdruck-) Lüftungsdecke, (Strahlungs-)Heizungsdecke oder (Flächen-)Kühldecke gleichzeitig auch andere haustechnische Funktionen übernehmen soll, dann stellt sich das aus akustischer Sicht bisher unumgängliche faserige/poröse Dämpfungs-Material als schwerer Nachteil heraus: Es würde hier nicht nur Montage und Installation, sondern auch Wartung und Betrieb der Anlagen behindern. Deshalb besteht ein dringender Bedarf für UD-Systeme, die ganz ohne den Einsatz poröser Absorber den raum- und bauakustischen Anforderungen gerecht werden und gleichzeitig den bautechnischen Erfordernissen besser als herkömmliche Akustikdecken entgegen kommen.However, if the UD is not only used for decorative and acoustic purposes, but also as a (low-pressure) ventilation ceiling, (radiation) heating ceiling or (surface) cooling ceiling, it should also take on other technical functions at the same time, then the acoustically unavoidable fibrous / porous damping material as a serious disadvantage: It would not only hinder assembly and installation, but also maintenance and operation of the systems. Therefore, there is an urgent need for UD systems that meet the spatial and building acoustic requirements without the use of porous absorbers and at the same time meet the structural requirements better than conventional acoustic ceilings.

5. Alternative Deckenplatten-Schallabsorber5. Alternative ceiling tile sound absorbers

In konventionellen Akustikdecken kommen fast ausschließlich passive (poröse/faserige) Absorber zum Einsatz (Trockenbau 7/92). Damit die Luftschallwellen aus dem Raum ungehindert in das Dämpfungsmaterial eindringen können, müssen die Deckenplatten einen hohen Perforationsgrad (15-50 %) aufweisen. Sie können deshalb nur eine entsprechend geringe Luftschall-Dämmung zum Decken-Hohlraum gewährleisten. Konventionelle reaktive (Platten-/Folien-/Helmholtz-)Absorber gem. Bild 1 benötigen abgeschlossene Hohlkammern, die zur Erzielung einer auch nur mäßig breitbandigen Absorption wiederum mit Dämpfungsmaterial angefüllt sein müssen. Sogenannte Membran-Absorber gem. Anordnungen nach Bild 2 (Becherstrukturen) und Bild 3 (Membranabsorber) und wie in Fuchs, H.V. "Zur Absorption tiefer Frequenzen in Tonstudios. Rundfunktechnische Mitteilungen rtm 36 (1992). H. 1, S. 1-11" beschrieben, kommen zwar ohne poröses/faseriges Material aus. Sie benötigen aber weiterhin 5-10 cm tiefe Hohlkammern. Durch ihren dreischaligen Aufbau auf einer relativ engmaschigen (10-20 cm) Wabenstruktur sind sie außerdem als UD-Bauteil für normale Akustikdecken viel zu aufwendig und teuer. Letzere kommen allenfalls als rundum geschlossene Metallkassetten im Decken-Hohlraum oder als integriertes UD-Bauteil zur Ergänzung der Absorption bei tiefen Frequenzen in Räumen mit besonderen raumakustischen Anforderungen infrage.In conventional acoustic ceilings, passive (porous / fibrous) absorbers are used almost exclusively (drywall 7/92). The ceiling tiles must have a high degree of perforation (15-50%) so that the airborne sound waves can penetrate the damping material from the room unhindered. You can therefore only guarantee a correspondingly low level of airborne sound insulation to the ceiling cavity. Conventional reactive (plate / foil / Helmholtz) absorbers acc. Figure 1 require closed hollow chambers, which must be filled with damping material in order to achieve even moderate broadband absorption. So-called membrane absorbers acc. Arrangements according to Fig. 2 (cup structures) and Fig. 3 (membrane absorber) and as in Fuchs, HV "For the absorption of low frequencies in recording studios. Broadcasting communications rtm 36 (1992). H. 1, pp. 1-11" come without porous / fibrous material. But you still need 5-10 cm deep hollow chambers. Due to their three-shell structure on a relatively narrow-meshed (10-20 cm) honeycomb structure, they are also much too complex and expensive as a UD component for normal acoustic ceilings. The latter come at most as completely closed metal cassettes in the Ceiling cavity or as an integrated UD component to supplement the absorption at low frequencies in rooms with special room acoustic requirements.

Aufgabe der Erfindung ist es, eine faserfreie Akustik-Unterdecke zu schaffen, die breitbandig absorbiert.The object of the invention is to provide a fiber-free acoustic false ceiling that absorbs broadband.

Diese Aufgabe wird erfindungsgemäß durch die Unterdecken nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.This object is achieved by the suspended ceilings according to claim 1. Advantageous refinements are characterized in the subclaims.

Das hier vorgestellte neue UD-Bauteil auf der Basis gestaffelter ebener Platten als Resonanz-Dämpfer kombiniert Eigenschaften der mikroperforierten und Membran-Absorber, indem es

  • zwar raumseitig eine praktisch geschlossene glatte Oberfläche aufweist,
  • aber hohlraumseitig keine eigenen Hohlkammer- oder Waben-Strukturen benötigt,
  • ganz ohne den Einsatz poröser/faseriger Materialien auskommt.
The new UD component presented here, based on staggered flat plates as a resonance damper, combines properties of the microperforated and membrane absorbers by:
  • has a practically closed smooth surface on the room side,
  • but does not need its own hollow chamber or honeycomb structures on the cavity side,
  • completely without the use of porous / fibrous materials.

Der neue Deckenplatten-Absorber kann als UD mittels längenvariierbaren Abhängungen oder Unterkonstruktionen von der Massivdecke abgehängt in allen unter 1. aufgeführten Anwendungsbereichen eingesetzt sowie mit allen unter 1. und 2. spezifizierten Eigenschaften und Funktionen ausgestattet werden, ohne daß er die unter 4. angesprochenen Nachteile aufweist.The new ceiling tile absorber can be used as a UD by means of length-variable suspensions or substructures suspended from the solid ceiling in all areas of application listed under 1. and equipped with all the properties and functions specified under 1. and 2. without the disadvantages mentioned under 4. having.

6. Besondere Merkmale6. Special features

Im Folgenden werden die akustischen Vorteile des UD-Systems dargestellt:The acoustic advantages of the UD system are shown below:

(a) Unterdecke als Vorsatzschale (a) Suspended ceiling as a facing

Faserfreie UD als Vorsatzschale (Bild 10) zur Erhöhung der Luftschall- und Trittschall-Dämmung der Massivdecke

  • aus dünnen nicht durch Schallwellen in Schwingungen anregbare Platten 1, 6 hoher Dichte mit ausreichender flächenbezogener Masse (5-10 kg/m2; z.B. Metall, Kunststoff, Holz),
  • mit gleichmäßig oder ungleichmäßig angeordneten kleinen (< 2 mm) Löchern und geringem Lochflächenanteil (< 3 %),
  • hohlraumseitig versteift durch Streben, Rippen 2 (Bild 10b).
so daß der Schalldurchgang durch die Löcher vernachlässigbar bleibt und ein Durchhängen der Deckenplatten auch bei großen Raster-Feldern (bis etwa 200 cm) bzw. zwischen den entsprechenden Abhängern vermieden wird.Fiber-free UD as facing (Fig. 10) to increase the airborne and impact sound insulation of the solid ceiling
  • from thin, high-density plates 1, 6, which cannot be excited by sound waves, with sufficient mass per unit area (5-10 kg / m 2 ; e.g. metal, plastic, wood),
  • with small or evenly arranged small (<2 mm) holes and a small proportion of perforated area (<3%),
  • stiffened on the cavity side by struts, ribs 2 (Fig. 10b).
so that the passage of sound through the holes remains negligible and sagging of the ceiling panels is avoided even with large grid fields (up to about 200 cm) or between the corresponding hangers.

(b) Unterdecke als Schallabsorber für das raumseitige Schallfeld(b) Suspended ceiling as sound absorber for the room-side sound field

Faserfreie UD als Akustikdecke (Bild 10) zur Lärmminderung und Regulierung der Raumakustik

  • aus dünnen Platten 1, wobei die in den Löchern befindliche Luft in den Platten zusammen mit der Luft im Deckenhohlraum 11 durch das raumseitige Schallfeld angeregte, bedämpfte Eigenschwingungen, vorzugsweise bei mittleren und höheren Frequenzen ausführt,
  • mit Platten 1, mit gleichmäßig oder ungleichmäßig angeordneten Löchern (< 2 mm; und Lochflächenanteil < 3 %), in denen die Luft zusammen mit der Luft im Decken-Hohlraum bzw. im durch die Versteifung 2 gebildeten Hohlraum durch das raumseitige Schallfeld in den Löchern angeregte, bedämpfte Schwingungen, vorzugsweise bei mittleren und hohen Frequenzen ausführt,
Fiber-free UD as an acoustic ceiling (Figure 10) to reduce noise and regulate room acoustics
  • from thin plates 1, the air in the holes in the plates together with the air in the ceiling cavity 11 being subjected to damped natural vibrations excited by the sound field on the room side, preferably at medium and higher frequencies,
  • with plates 1, with evenly or unevenly arranged holes (<2 mm; and perforation area share <3%), in which the air together with the air in the ceiling cavity or in the cavity formed by the stiffening 2 through the room-side sound field in the holes excites, dampens vibrations, preferably at medium and high frequencies,

(c) Unterdecke als Schalldämpfer für die Luftschall-Längsleitung im Decken-Hohlraum(c) Suspended ceiling as a silencer for the airborne longitudinal duct in the ceiling cavity

Faserfreie UD als schallabsorbierende Berandung des Decken-Hohlraums als Schall übertragenden Kanal, die nach Art der unter (b) beschriebenen Dämpfungs-Mechanismen durch das kanalseitige Schallfeld angeregte, bedämpfte Schwingungen in einem breiten Frequenzbereich ausführt und damit zur Reduktion der Längsübertragung zum Nachbarraum beiträgt.Fiber-free UD as a sound-absorbing boundary of the ceiling cavity as a sound-transmitting channel, which, in the manner of the damping mechanisms described under (b), executes damped vibrations excited and damped by the channel-side sound field in a wide frequency range and thus helps to reduce longitudinal transmission to the neighboring room.

7. Weitere technologische Vorteile7. Other technological advantages

Das UD-Bauteil aus ebenen, raumseitig mikroperforierten Decken-Platten hoher Dichte ermöglicht eine komplette industrielle Vorfertigung. Die extrem kleinen Löcher ermöglichen vollständigen Sichtschutz, den optischen Eindruck einer geschlossenen Deckenfläche und Möglichkeiten zur dekorativen Auflockerung der Decke.The UD component made of flat, micro-perforated ceiling panels with high density on the room side enables complete industrial prefabrication. The extremely small holes allow complete privacy, the visual impression of a closed ceiling area and possibilities for decorative loosening of the ceiling.

Aus den faserfreien Platten-Bauteilen lassen sich nahezu beliebig gestaltete Formteile als Reflektoren für die Beleuchtung, Aus- und Einlässe für die Lüftung und Radiatoren für die Heizung ausbilden, ohne daß deshalb auf ihre akustische Wirksamkeit verzichtet werden müßte.The fiber-free plate components can be used to create almost any shape Train reflectors for lighting, outlets and inlets for ventilation and radiators for heating, without having to forego their acoustic effectiveness.

Mikroperforierte UD-Systeme können höchste Reinheitsanforderungen erfüllen, weil sie

  • keinerlei poröses/faseriges Dämpfungsmaterial involvieren,
  • wenig Möglichkeiten für Ablagerungen bieten,
  • außen wie innen einfach wisch-desinfizierbar sind.
Micro-perforated UD systems can meet the highest purity requirements because they
  • do not involve any porous / fibrous damping material,
  • offer few possibilities for deposits,
  • easy to disinfect both inside and out.

Sie bringen geradezu ideale Voraussetzungen mit für die Montage, Demontage und Remontage und sind wegen ihres einfachen, homogenen Aufbaus vollständig und kostengünstig rückführbar.ln Metallausführung kommen die UD-Bauteile auch einem sehr aktuellen Trend beim Kühlen von Verwaltungsgebäuden und Versammlungsstätten im Sommer entgegen: Mit sogenannten "Kühldecken" aus weitgehend standardisierten metallischen Bauteilen läßt sich die hohe Ventilatorleistung, die bei herkömmlichen Klimaanlagen ohne weiteres 50 % der Betriebskosten ausmachen kann, einsparen. So läßt sich auch ein Beitrag zur Senkung des CO2-Ausstoßes leisten und eine oft sehr lästige Quelle von Zugerscheinungen, Lärmbelastungen und Allergien in Wohn- und Arbeitsräumen eliminieren. Bei über dem Rohrregister für das Kühlmittel (i.a. Wasser) angeordneter Wärmedämmung (z.B. Alu-kaschierter Hartschaum) lassen sich der Abstand zwischen Kühl-Lamelle und Dämmung, Lamellendicke, Lochdurchmesser und Lochanzahl pro m2 so aufeinander abstimmen, daß eine optimale Anpassung an die Nachhallzeit des Raumes oder an das EmissionsSpektrum der darin aufgestellten Schallquellen erreicht werden kann. Auch hinsichtlich der Heizungs- und Lüftungsdecken bieten die faserfreien, mikroperforierten UD-Bauteile klare Vorteile gegenüber den herkömmlichen Systemen.They offer ideal conditions for assembly, disassembly and reassembly and are completely and inexpensively traceable due to their simple, homogeneous construction. In metal construction, the UD components also meet a very current trend in cooling of administrative buildings and assembly facilities in summer: with so-called "Chilled ceilings" made of largely standardized metallic components can save the high fan output, which can easily account for 50 % of the operating costs in conventional air conditioning systems. This also helps to reduce CO 2 emissions and eliminates an often very annoying source of drafts, noise pollution and allergies in living and working spaces. In the case of thermal insulation (e.g. aluminum-laminated hard foam) arranged above the pipe register for the coolant (generally water), the distance between the cooling lamella and insulation, lamella thickness, hole diameter and number of holes per m 2 can be coordinated so that an optimal adaptation to the reverberation time of the room or the emission spectrum of the sound sources installed in it. The fiber-free, micro-perforated UD components also offer clear advantages over conventional systems when it comes to heating and ventilation ceilings.

UD-Bauteile können einschalig, zwei- oder mehrschalig aufgebaut werden. Als einfache Vorsatzschale können sie sowohl völlig eben und glatt als auch mit dekorativen Mustern und aussteifenden Sicken, Abkantungen und Falzen versehen werden. Als abgehängte Kassetten-Decke lassen sich die Hohlräume der Kassetten selbst als Lüftungs-Kanäle ausbilden. Ihre dem eigentlichen Decken-Hohlraum zugewandte Rückwand kann aus akustischer wie aus funktionstechnischer Sicht vorteilhaft so gestaltet werden, daß

  • unterschiedliche Hohlraum-Tiefen nebeneinander zur Verbreiterung der Absorptionswirkung entstehen,
  • im eigentlichen Decken-Hohlraum unterseitig Vertiefungen und Ausformungen zur Aufnahme von Komponenten der Haus-Installation entstehen,
  • im Kassetten-Hohlraum oberseitig durch Ausformungen und durch Zwischenwände Zuluft-, Abluft- und Verteiler-Kanäle geschaffen werden.
UD components can be constructed with one, two or more layers. As a simple facing shell, they can be completely flat and smooth, as well as with decorative patterns and stiffening beads, bends and folds. As a suspended cassette ceiling, the cavities of the cassettes themselves can be designed as ventilation ducts. Your rear wall facing the actual ceiling cavity can advantageously be designed from an acoustic as well as a functional point of view in such a way that
  • different cavity depths occur side by side to broaden the absorption effect,
  • In the actual ceiling cavity, indentations and recesses for accommodating components of the house installation are created on the underside.
  • in the cassette cavity on the top side by means of formations and by partition walls supply air, exhaust air and distributor ducts.

Im folgenden soll die Erfindung, wie sie in Abb. 8, 9, 10, dargestellt ist, gegenüber dem Stand der Technik nach den Abb. 1 bis 7 erläutert werden.In the following, the invention, as shown in FIGS. 8, 9, 10, is to be explained in relation to the prior art according to FIGS. 1 to 7.

Bild 1 zeigt wie oben bereits kurz erläutert, reaktive Absorber.
Bild 1a stellt einen Platten-Resonator dar, bei dem die Platte als Masse vor dem Luftkissen als Feder schwingt, wobei jedoch poröses Material z.B. als Randdämpfung benötigt wird, um ein etwas breitbandigeres Dämpfungsverhalten wie in Bild 1c zu erreichen.
As already briefly explained above, Figure 1 shows reactive absorbers.
Figure 1a shows a plate resonator, in which the plate vibrates as a mass in front of the air cushion as a spring, but porous material is required, for example, as edge damping in order to achieve a somewhat broadband damping behavior as in Figure 1c.

In sogenannten Folienabsorbern nach DE 27 58 041 gem. Bild 2 gelingt es, in einer sehr komplexen Becherstruktur eine große Zahl unterschiedlicher Platten-Schwingungen bei verschiedenen Frequenzen so anzuregen, daß ein insgesamt breitbandiges Absorptions-Spektrum bei mittleren Frequenzen, auch ohne den Einsatz porösen Materials, erreicht wird.In so-called film absorbers according to DE 27 58 041. Figure 2 manages to excite a large number of different plate vibrations at different frequencies in a very complex bucket structure in such a way that an overall broadband absorption spectrum at medium frequencies is achieved, even without the use of porous material.

Beim sogenannten Membran-Absorber, z.B. nach DE 35 04 208 und DE 34 12 432, gelingt es erstmalig, Platten- und Helmholtz-Resonatoren so hintereinander aufzubauen, daß vielfältig über mehrere Luftschichten und Löcher gekoppelte Schwingungen in einem völlig ebenen Bauteil bereits relativ breitbandig anregbar werden. Wenn man vor der Deckmembran dieses reaktiven Absorbers eine auch nur relativ dünne Schicht (1 - 5 mm) aus porösem Material, wie in Bild 3 dargestellt, anbringt, so läßt sich gem. Bild 4 und 5 ein Gewinn an Absorption bei hohen Frequenzen erzielen.In the so-called membrane absorber, e.g. according to DE 35 04 208 and DE 34 12 432, for the first time it is possible to build plate and Helmholtz resonators one after the other in such a way that vibrations coupled in multiple layers of air and holes can be excited in a completely flat component in a relatively flat manner. If one attaches even a relatively thin layer (1 - 5 mm) made of porous material, as shown in Figure 3, in front of the cover membrane of this reactive absorber, then according to. Figures 4 and 5 achieve a gain in absorption at high frequencies.

In Bild 3 ist mit 15 die Deckmembran bezeichnet, mit 16 das poröse Material mit einer wasserdichten Abdeckung 17 bzw. mechanischem Schutz 18. Unterhalb der Deckmembran 15 befindet sich die Lochmembran 14 und davon beabstandet die Rückwand 12. Sowohl die Deckmembran, Lochmembran und Rückwand sind dabei schwingfähige Komponenten, also keine starre Platten. Die Membranen werden zu Schwingungen angeregt und sie entziehen dadurch dem Schall die Energie. Die Löcher in der Lochmembran 14 schwanken dabei zwischen 3 - 10 mm. 13 stellt dabei die Wände der Waben struktur dar, 11 ist der Hohlraum, der üblicherweise mit Luft gefüllt ist. Dieser Membranabsorber kann auch als Modul gefertigt werden, wobei die Membrane 12, 14, 15 und 13 aus Kunststoff oder Metall bestehen können.In Fig. 3, 15 is the cover membrane, 16 is the porous material with a waterproof cover 17 or mechanical protection 18. Below the cover membrane 15 is the perforated membrane 14 and the rear wall 12 is spaced therefrom. Both the cover membrane, perforated membrane and rear wall are vibrating components, so no rigid plates. The membranes are excited to vibrate and thereby extract the energy from the sound. The holes in the perforated membrane 14 fluctuate between 3-10 mm. 13 represents the walls of the honeycomb structure, 11 is the cavity that is usually filled with air. This membrane absorber can also be manufactured as a module, wherein the membranes 12, 14, 15 and 13 can consist of plastic or metal.

Weiterhin ist bekannt, großvolumige poröse Absorber mit Lochplatten abzudecken, wobei jedoch die Lochplatten nur einen mechanischen Schutz bewirken sollen. Diese porösen Absorber sind z.B. gepreßte Mineralfaserplatten, die hinter abgehängten Unterdecken aufgelegt sind, wobei oft aus Praktikabilität diese Faserplatten mit einer dünnen Alu-Folie verklebt oder in Kunststoff-Folie eingepackt werden. Da man weiß, daß dadurch das Eindringen der Schallwellen in den passiven Absorber weitgehend unterbunden wird, wird die Folie durch "Nadelung" mit einer Vielzahl kleiner Löcher "schalldurchlässig" gemacht.It is also known to cover large-volume porous absorbers with perforated plates, but the perforated plates are only intended to provide mechanical protection. These porous absorbers are e.g. pressed mineral fiber boards, which are placed behind suspended ceilings, often for practical reasons these fiber boards are glued with a thin aluminum foil or wrapped in plastic film. Since it is known that the penetration of the sound waves into the passive absorber is largely prevented, the film is made "sound-permeable" by "needling" with a large number of small holes.

Bild 6 zeigt das Absorptionsspektrum aus Maa, D.-Y. "Theory and design of microperforated panel sound absorbing constructions". Scientia Sinica 18 (1975), H. 1, 55-71, wobei eine mikroperforierte Platte vor einer starren Wand angeordnet ist. Diese theoretische Untersuchung hat jedoch nirgends eine technische Anwendung gefunden.Figure 6 shows the absorption spectrum from Maa, D.-Y. "Theory and design of microperforated panel sound absorbing constructions". Scientia Sinica 18 (1975), H. 1, 55-71, a micro-perforated plate being arranged in front of a rigid wall. However, this theoretical investigation has never found any technical application.

Bisher ist es nur bei den o.g. Membran-Absorbern nach Bild 3 gelungen, ganz bestimmte Eigenschwingungen der ebenen Membranen, die sich der dahinter angeordneten Wabenstruktur gut anpassen, anzuregen und dadurch für die gewünschte Absorption nutzbar zu machen. Bei den in der Raumakustik bisher eingesetzten Platten-Resonatoren mit ihren relativ dicken und damit steifen Platten, liegen die Frequenzen der "höheren Moden" der Platten vor dem jeweiligen Luftkissen soweit oberhalb der Frequenz der "Grund-Mode", daß sie bisher überhaupt nicht zur Absorption von Schallenergie aus dem Raum herangezogen werden. Werden diese Membranabsorber für Strömungskanäle, z.B. in Klimaanlagen, hergestellt, so werden die Platten üblicherweise dünner hergestellt. Die Schallwellen im Kanal werden dabei weit oberhalb der Masse/Feder-Resonanzfrequenz durch die wechselseitig (rund um den Kanal) angeordneten rein passiven Absorber von vorneherein viel stärker "geschluckt" als durch irgendwelche höheren Moden der Platten selbst. Selbst wenn letztere entsprechend den Plattenabmessungen in einem interessanten Frequenzbereich nahe der Grundfrequenz anregbar wären, könnten diese Schwingungen wegen der einseitig ganzflächig pressenden Mineralwolle-Füllung sich gar nicht richtig ausbilden. Dies war vermutlich auch der Grund, woraum nicht versucht worden ist, höhere Moden in dem mikroperforierten Absorber nach Bild 6 mit dem Ziel einer Verbreiterung des wirksamen Frequenzbereiches anregbar zu machen.So far, only the above-mentioned membrane absorbers according to Fig. 3 have been able to excite certain natural vibrations of the flat membranes, which adapt well to the honeycomb structure arranged behind them, and thus make them usable for the desired absorption. In the case of the plate resonators previously used in room acoustics with their relatively thick and therefore stiff plates, the frequencies of the "higher modes" of the plates in front of the respective air cushion are so far above the frequency of the "basic mode" that they have not been used at all Absorption of sound energy from the room can be used. If these membrane absorbers are manufactured for flow channels, for example in air conditioning systems, the plates are usually made thinner. The sound waves in the channel are "swallowed" much more strongly from the start by the purely passive absorbers arranged mutually (around the channel) than by any higher modes of the plates themselves. Even if the latter in accordance with the plate dimensions could be excited in an interesting frequency range close to the fundamental frequency, these vibrations could not develop properly due to the mineral wool filling pressing on one side over the entire surface. This was probably the reason why no attempt was made to make higher modes in the microperforated absorber according to Figure 6 excitable with the aim of broadening the effective frequency range.

Diesem Stand der Technik gegenüber betrifft die erfindungsgemäße Unterdecke mit mindestens einem mikroperforierten Blech oder einer mikroperforierten Platte aus Kunststoff vor einer nicht schwingenden Wand 5 oder Rückwand 7, welche ohne die Anordnung irgendwelcher Schallschluckelemente oder von zusätzlichen porösen oder faserigen Dämpfungsmaterialien im Luftzwischenraum auskommt.Compared to this prior art, the false ceiling according to the invention relates to at least one micro-perforated sheet or a micro-perforated plate made of plastic in front of a non-vibrating wall 5 or rear wall 7, which does not require any sound-absorbing elements or additional porous or fibrous damping materials in the air gap.

In "Trockenbau" 7/92 sind zahllose Unterdecken mit perforierten Metallplatten beschrieben, in denen "Zur Anpassung an die akustischen Anforderungen eine schallschluckende Hinterfüllung aus Mineralwolle" (S. 2, Zeilen 24-26) beschrieben wird, die (Mineralwolle) unmittelbar auf den Lochplatten ganzflächig aufliegt. Die Anmelderin hat auch derartige Anordnungen meßtechnisch im Schallraum immer wieder untersucht, da sie in vielen Industriebetrieben als Unterdecken verwendet werden. In Bild 7 ist eine derartige Anordnung mit einem 0,5 mm dicken Stahlblech, 2,5 mm Lochdurchmesser und 16 % Lochflächenanteil, wobei das Blech etwa 200 mm unterhalb der Decke angeordnet ist, mit ihrem Absorptionsspektrum dargestellt. Man erkennt, daß die Vliese einen erheblichen Anteil an Absorption in höheren Frequenzbereichen aufweisen. Die Absorptionsfrequenz fχ/4 = Co / 4D (mit Co = Schallgeschwindigkeit und D Abstand der Platte zur Rückwand) zeigt dabei erwartungsgemäß gegenüber der Frequenz χ/2 eine erhöhte Absorption. Dies zeigt, daß die erzielte Absorption auf das auf der Unterdecke aufliegende Dämpfungsmaterial zurückzuführen ist. Die Luft in den Löchern der Unterdecke überträgt lediglich die Schallschwingungen der auf die Lochbleche auftreffenden Schallwellen in das dahinterliegende Dämpfungsmaterial. Erst dort wird die Schallenergie durch Reibung an den Fasern oder in den Poren des Dämmaterials in Wärme umgewandelt und dadurch die Schallenergie vermindert.In "drywall" 7/92 countless suspended ceilings with perforated metal plates are described, in which "To adapt to the acoustic requirements a sound absorbing backfill made of mineral wool" (p. 2, lines 24-26) is described, which (mineral wool) directly on the Perforated plates lie all over. The applicant has also repeatedly examined such arrangements using measurement technology in the sound space, since they are used as suspended ceilings in many industrial companies. Figure 7 shows such an arrangement with a 0.5 mm thick steel sheet, 2.5 mm hole diameter and 16% perforation area, the sheet being arranged about 200 mm below the ceiling, with its absorption spectrum. It can be seen that the nonwovens have a considerable amount of absorption in higher frequency ranges. The absorption frequency f χ / 4 = Co / 4D (with Co = speed of sound and D distance of the plate from the rear wall) shows, as expected, an increased absorption compared to the frequency χ / 2. This shows that the absorption achieved is due to the damping material lying on the false ceiling. The air in the holes in the false ceiling only transmits the sound vibrations of the sound waves hitting the perforated sheets into the damping material behind. Only there is the sound energy converted into heat by friction on the fibers or in the pores of the insulating material, thereby reducing the sound energy.

Die Probleme der konventionellen Schallabsorber, insbesondere da neuere Untersuchungen ergeben haben, daß das schalldämmende Material, z.B. Steinwolle oder Glaswolle, kanzerogen sei, sowie mögliche Feuchtigkeitsaufnahme, Staubentwicklung und Abrieb, bewirkten, daß nach neuen Möglichkeiten der Schalldämpfung gesucht wird. Andererseits sind die Membranabsorber schon seit längerer Zeit bekannt, da sie jedoch teurer gegenüber den relativ preiswerten Materialien aus Steinwolle oder Glaswolle sind, haben sie sich nicht durchsetzen können. Auch sind die Membranabsorber, sei es in ihrer becherförmigen Ausgestaltung oder in der früheren Bauweise mit zerklüfteten Oberflächen - zur Verbreiterung des Absorptionsspektrums - demgegenüber relativ kompliziert und daher teuer.The problems of conventional sound absorbers, especially since recent studies have shown that the sound-absorbing material, e.g. rockwool or glass wool, is carcinogenic, as well as possible moisture absorption, dust generation and abrasion, led to the search for new possibilities for sound absorption. On the other hand, the membrane absorbers have been known for a long time, but since they are more expensive than the relatively inexpensive materials made of rock wool or glass wool, they have not been able to establish themselves. In contrast, the membrane absorbers, be it in their cup-shaped configuration or in the earlier construction with jagged surfaces - to broaden the absorption spectrum - are relatively complicated and therefore expensive.

Die erfindungsgemäße Unterdecke dagegen ist einfach herzustellen, einfach anzubringen und nicht teuer, da sie nur aus den fein perforierten Lochblechen und den seitlichen Begrenzungsflächen des Luftzwischenraums und der ebenen Rückwand bzw. Platte besteht. Die Löcher mit einem Durchmesser von vorzugsweise von 0,4 - 0,8 mm dienen nicht als "Durchbrechungen" zum möglichst ungehinderten Eindringen der Schallenergie in den Luftzwischenraum zwischen Unterdecke und Decke. Der für den erfindungsgemäßen Zweck äußerst geringe Lochflächenanteil von maximal 3%, vorzugsweise < 2 %, wäre für die (passive) Übertragung von Schallenergie aus dem Raum in den Zwischenraum noch weniger geeignet als die Durchbrechungen nach dem Stand der Technik, da diese Lochflächenanteile zwischen 15 - 50 % aufweisen. Stattdessen wirkt die Luft in den Löchern der mikroperforierten Lochbleche gemäß der Erfindung zusammen mit den Luftkissen in dem Zwischenraum als ein ganz spezielles Masse-Feder-Schwingsystem, das durch das auf das mikroperforierte Lochblech auftreffende Schallfeld (reaktiv) zu Schwingungen im jeweils interessierenden Frequenzbereich anregbar gemacht wird. Dabei erfolgt die Abstimmung auf den jeweiligen Frequenzbereich durch ganz gezielte Wahl der geometrischen Parameter, insbesondere der Dicke der Lochbleche, Dicke des Luftzwischenraums, Durchmesser der Löcher, Abstände der Löcher, Form der Löcher, Anteil der Perforation in der Gesamtfläche des Lochbleches und Formgebung der Lochbleche.The false ceiling according to the invention, on the other hand, is simple to manufacture, easy to install and not expensive, since it consists only of the finely perforated perforated sheets and the lateral boundary surfaces of the air space and the flat rear wall or plate. The holes with a diameter of preferably 0.4-0.8 mm do not serve as "breakthroughs" for the unimpeded penetration of the sound energy into the air space between the ceiling and ceiling. The extremely small perforation area fraction of a maximum of 3%, preferably <2%, for the purpose according to the invention would be even less suitable for the (passive) transmission of sound energy from the room into the intermediate space than the perforations according to the prior art, since these perforation surface areas between 15 - have 50%. Instead, the air in the holes of the microperforated perforated sheet according to the invention, together with the air cushions in the intermediate space, acts as a very special mass-spring vibration system, which (reactively) can be excited to vibrations in the frequency range of interest by the sound field impinging on the microperforated perforated sheet becomes. The tuning to the respective frequency range takes place through a very targeted choice of the geometric parameters, in particular the thickness of the perforated plates, the thickness of the air gap, the diameter of the holes, the spacing of the holes, the shape of the holes, the proportion of perforation in the total area of the perforated plate and the shape of the perforated plate .

Insbesondere wird mit der Wahl der Lochgeometrie nicht nur der Frequenzbereich der Absorption, sondern auch die Wirksamkeit des Absorbers in diesem Frequenzbereich festgelegt. Die notwendige Dämpfung wird nicht wie nach Abb. 1a oder Abb. 7, durch Anbringung von zusätzlichen porösen oder faserigen "Schluckstoffen" bewerkstelligt, sondern ganz ausschließlich durch Reibung der Luftteilchen in den engen Löchern an deren Wänden. Der gewünschte Frequenzbereich und die erforderliche Reibung können so optimal auf den jeweiligen Einsatzfall eingestellt werden, so daß eine fast vollständige Absorption der auftreffenden Schallenergie möglich wird. Die Platten sind dabei so dick und stabil aufgebaut, daß sie nicht von den auftreffenden Schallwellen zu Schwingungen angeregt werden können. Ohne die Mikroperforation der erfindungsgemäßen Art würde die Platte, sofern sie schwingungsfähig ausgebildet wäre, wie in Bild 8 dargestellt, als Feder-Masse-System allenfalls bei sehr tiefen Frequenzen und nur schmalbandig mitschwingen, gemäß der gestrichelten Kurve 1, und dadurch absorbieren. Die Mikroperforation, Kurve 2, bewirkt dagegen eine relativ breitbandige Absorption bei mittleren und höheren Frequenzen gemäß Bild 8, weil nur die leichtere Luft in den Löchern als Masse mit der Luft in dem Hohlraum als Feder mitschwingt. Mit zwei hintereinander angeordneten starren mikroperforierten Platten läßt sich, wie Bild 9 zeigt, eine noch breitere Absorptionskurve erreichen, ohne daß Dämpfungsmaterial zusätzlich einge bracht werden müßte, oder feste Teile nach Art eines Resonators mitschwingen müßten.In particular, the choice of hole geometry not only determines the frequency range of the absorption, but also the effectiveness of the absorber in this frequency range. The necessary damping is not achieved by attaching additional porous or fibrous "swallowing substances" as shown in Fig. 1a or Fig. 7, but entirely by friction of the air particles in the narrow holes on their walls. The desired frequency range and the required friction can be optimally adjusted to the respective application, so that an almost complete absorption of the incident sound energy is possible. The plates are so thick and stable that they cannot be excited to vibrate by the impinging sound waves. Without the microperforation of the type according to the invention, the plate, if it were designed to vibrate, as shown in Figure 8, would at best oscillate as a spring-mass system at very low frequencies and only in a narrow band, in accordance with the dashed curve 1, and thereby absorb. The microperforation, curve 2, on the other hand, causes a relatively broadband absorption at medium and higher frequencies as shown in Figure 8, because only the lighter air in the holes as a mass resonates with the air in the cavity as a spring. With two in a row Arranged rigid micro-perforated plates can, as shown in Figure 9, achieve an even broader absorption curve without additional damping material having to be introduced, or having to vibrate solid parts in the manner of a resonator.

Abb. 10a - e zeigt die erfindungsgemäße Unterdecke, wobei Bild 10e die Unterdecke als Modul zeigt, das dann kassettenförmig unter die Decke als Unterdecke angebracht wird.Fig. 10a-e shows the false ceiling according to the invention, wherein Fig. 10e shows the false ceiling as a module, which is then installed in a cassette shape under the ceiling as a false ceiling.

In Abb. 10 sind mit 1 und 6 die ebene mikroperforierte Platte aus Blech oder hartem Kunststoff mit Löchern 4 und 7 eine ebene schwingfähige Platte als Rückwand des Moduls bezeichnet. 3b ist der starre Rahmen des Moduls und 11 die Hohlräume oder Zwischenräume, die mit Luft gefüllt sind. 3 sind Abhängungen und 3a z.B. Balken oder eine Unterkonstruktion zum Tragen der Unterdecke bzw. Vorsatzschale. Da die Platten oder Module in etwa 1 Quadratmeter großen Einheiten geliefert werden, können über die Abhängungen 3 oder Unterkonstruktion 3a verschiedene Abstände der Unterdecke D zur Rückwand realisiert werden, wodurch das Absorptionsspektrum verbreitert wird. 2 sind Versteifungen der Platten 1, 6, die natürlich auch über die gesamte Länge und Breite der Platte angeordnet sein können, so daß diese nicht schwingt.In Fig. 10, 1 and 6 denote the flat micro-perforated plate made of sheet metal or hard plastic with holes 4 and 7, a flat oscillatable plate as the rear wall of the module. 3b is the rigid frame of the module and 11 the voids or spaces that are filled with air. 3 are suspensions and 3a e.g. Beams or a substructure for supporting the false ceiling or facing shell. Since the panels or modules are supplied in units of approximately 1 square meter, different distances between the ceiling D and the rear wall can be realized via the suspensions 3 or substructure 3a, thereby broadening the absorption spectrum. 2 are stiffeners of the plates 1, 6, which of course can also be arranged over the entire length and width of the plate so that it does not vibrate.

Bild 11 zeigt das Spektrum einer mikroperforierten Platte aus Aluminium bei einer Dicke der Platte t von 0,15 mm, Lochdurchmesser 0,16 mm, Lochabstand 1,2 mm und Dicke der Luftschicht im Zwischenraum zwischen Platte und Rückwand oder Decke von 600 mm und einem durch Lochdurchmesser und Abstand gegebenem Lochflächenanteil p von 1,4 %.Figure 11 shows the spectrum of a micro-perforated plate made of aluminum with a plate thickness of 0.15 mm, hole diameter 0.16 mm, hole spacing 1.2 mm and thickness of the air layer in the space between plate and back wall or ceiling of 600 mm and one by hole diameter and distance given hole area proportion p of 1.4%.

Bei einer gewünschten Resonanzfrequenz fR = 54 x 103 σ ¯

Figure imgb0001
/D · f · Km nach der Theorie von Maa, wobei σ Lochfläche / Gesamtfläche, D die Luftschichtdicke im Zwischenraum und Km eine Konstante, die proportional ist zum Lochdurchmesser multipliziert mit der Wurzel aus f, kann man dann die Parameter Plattendicke, Lochflächenanteil bzw. Anzahl der Löcher bei einem bestimmten Lochdurchmesser und Luftzwischenraum D in gewissen Grenzen variieren. So ergibt bei einer 3 mm dicken Aluminiumplatte, einem Lochflächenanteil p = 1,4 und Luftzwischenraum D = 50 mm sich ein Lochdurchmesser d von 0,45 mm. Bei gleich großen Löchern, aber erhöhter Anzahl, verschiebt sich nach der Theorie die Resonanzfrequenz zu höheren Frequenzen. Dies kann man auch erreichen mit kleineren Löchern. Eine Verbreiterung des Spektrums erhält man weiterhin, wenn die Platte gering nach unten gewölbt ist, z.B. bei einer Plattenbreite von 1000 mm und einer Wölbung von 60 - 80 mm.At a desired resonance frequency f R = 54 x 10 3 σ ¯
Figure imgb0001
/ D · f · K m according to the theory of Maa, where σ hole area / total area, D the air layer thickness in the space and K m a constant that is proportional to the hole diameter multiplied by the root of f, the parameters plate thickness, hole area percentage can then be used or the number of holes for a certain hole diameter and air gap D vary within certain limits. With a 3 mm thick aluminum plate, a perforation area p = 1.4 and air gap D = 50 mm, this results in a hole diameter d of 0.45 mm. If the holes are the same size but the number is increased, the resonance frequency shifts to higher frequencies according to the theory. This can also be achieved with smaller holes. A broadening of the spectrum is also obtained when the plate is slightly curved downwards, for example with a plate width of 1000 mm and a curvature of 60-80 mm.

Legende zu den BildernLegend for the pictures

Bild 1 zeigtPicture 1 shows
Beispiele für konventionelle reaktive Absorber nach (1)
  • a) Platten-Resonator
  • b) Helmholtz-Resonator
  • c) Schluckgrad für (1) Z ≅ ρc, (2) Z < ρc, (3) Z > ρc
Examples of conventional reactive absorbers according to (1)
  • a) plate resonator
  • b) Helmholtz resonator
  • c) Degree of swallowing for (1) Z ≅ ρc, (2) Z <ρc, (3) Z> ρc
Bild 4 zeigtFigure 4 shows
Absorptionsgrad von Membran-Absorbern entsprechend Abb. 3 (aber ohne Deckmembran) mit einer 50 mm dicken MineralwolleschichtDegree of absorption of membrane absorbers according to Fig. 3 (but without cover membrane) with a 50 mm thick mineral wool layer
Bild 5 zeigtFigure 5 shows
Absorptionsgrad von Membran-Absorbern entsprechend Abb. 3 mit einer 50 mm dicken MineralwolleschichtDegree of absorption of membrane absorbers according to Fig. 3 with a 50 mm thick mineral wool layer
Bild 7 zeigtFigure 7 shows
Absorptionsgrad von Lochflächen mit hinterlegtem porösem MaterialDegree of absorption of perforated surfaces with deposited porous material
Bild 8 zeigtFigure 8 shows
Absorptionsgrad eines 0,5 mm dicken Stahlblechs
  • a) als Masse mit dem dahinterliegenden Luftkassen als Feder mitschwingend (Kurve 2)
  • b) als starre Platte mit Mikro-Löchern als Masse mit dem dahinter liegenden Luftkissen als Feder mitschwingend (Kurve 1)
Degree of absorption of a 0.5 mm thick steel sheet
  • a) swinging as a mass with the air box behind it as a spring (curve 2)
  • b) as a rigid plate with micro-holes as a mass with the air cushion behind it as a spring (curve 1)
Bild 11 zeigtFigure 11 shows
Microperforierte Absorber (Alu-Einfachplatte)Microperforated absorber (aluminum single plate)

Claims (7)

  1. A false ceiling for rooms in buildings, which is designed to absorb soundwaves, consisting of
    - panels (1) suspended a distance (D) from the raw ceiling (5) by means of suspensions (3) or sub-constructions (3a) which can be varied in length,
    - which plates are made hard enough not to vibrate and which
    - have a multiplicity of evenly or unevenly disposed holes (4) with a diameter d < 2 mm and a hole-surface proportion of less than 3%,
    - wherein the air in the holes (4) forms with the air in the hollow spaces (11) situated thereabove a spring-mass system, without porous or fibrous damping material being fitted in the hollow space (11) or on the panels (1).
  2. A false ceiling according to claim 1, characterized in that the holes (4) have a diameter d of 0.1 - 1 mm, preferably 0.2 - 0.8 mm, and a hole-surface proportion of less than 2%.
  3. A false ceiling according to claim 1, characterized in that multiple panels (1, 6) are provided and are disposed at an increasing distance D from the ceiling.
  4. A false ceiling according to claims 1 - 3, characterized in that the panels (1, 6) are composed of metal, plastics material, composite material or wood.
  5. A false ceiling according to claims 1 - 4, characterized in that the false ceiling is provided with reinforcements (2) in order to prevent sagging.
  6. A false ceiling according to claims 1 - 5, characterized in that the panels (1,6) are curved with the curvature downwards.
  7. A false ceiling according to claims 1 - 6, characterized in that the panels (1,6) together with a lateral frame (3b) and a plane rear wall (7) form a module.
EP94915072A 1993-04-20 1994-04-20 False ceiling Expired - Lifetime EP0697051B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9430031T SI0697051T1 (en) 1993-04-20 1994-04-20 False ceiling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4312885A DE4312885A1 (en) 1993-04-20 1993-04-20 Counter-ceiling
DE4312885 1993-04-20
PCT/EP1994/001227 WO1994024382A1 (en) 1993-04-20 1994-04-20 False ceiling

Publications (2)

Publication Number Publication Date
EP0697051A1 EP0697051A1 (en) 1996-02-21
EP0697051B1 true EP0697051B1 (en) 1997-01-02

Family

ID=6485917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94915072A Expired - Lifetime EP0697051B1 (en) 1993-04-20 1994-04-20 False ceiling

Country Status (9)

Country Link
US (1) US5740649A (en)
EP (1) EP0697051B1 (en)
JP (1) JPH09502490A (en)
CN (1) CN1074492C (en)
AT (1) ATE147118T1 (en)
DE (2) DE4312885A1 (en)
DK (1) DK0697051T3 (en)
ES (1) ES2098938T3 (en)
GR (1) GR3022213T3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19730355C1 (en) * 1997-07-15 1999-03-18 Fraunhofer Ges Forschung Noise absorber for air duct in building glazing
EP1146178A2 (en) 2000-04-14 2001-10-17 FAIST Automotive GmbH &amp; Co. KG Wide spectrum sound absorbtion building element for walls, floors and ceilings
DE10019543A1 (en) * 2000-04-20 2001-10-31 Fraunhofer Ges Forschung Air supply element has fan forcing air through housing with sound absorber formed by flow-conducting structure between intermediate wall and floor containing outflow openings
WO2012149659A2 (en) 2011-05-04 2012-11-08 H.D.S Technology Ag Space demarcation assembly, method for producing same and element therefor

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315759C1 (en) * 1993-05-11 1994-05-05 Fraunhofer Ges Forschung Sound-absorbent glazing for building - comprises perforated plate with small-diameter holes close together
JP2815542B2 (en) * 1994-08-31 1998-10-27 三菱電機ホーム機器株式会社 Sound absorption mechanism using porous structure
DE19626676A1 (en) * 1996-07-03 1998-01-08 Kaefer Isoliertechnik Device for reducing sound levels in buildings
DE19750102A1 (en) 1997-11-12 1999-06-02 Stankiewicz Gmbh Gas-flowed line with sound absorption effect
DE19754107C1 (en) 1997-12-05 1999-02-25 Fraunhofer Ges Forschung Sound absorber, for suspension from ceiling
DE19839973A1 (en) 1998-09-02 2000-03-23 Fraunhofer Ges Forschung Plate-shaped component
JP2000273980A (en) * 1999-03-23 2000-10-03 Takenaka Komuten Co Ltd Roof for large space building
JP2000330571A (en) * 1999-05-21 2000-11-30 Nok Vibracoustic Kk Sound absorbing structure
DE60017725T3 (en) * 2000-03-20 2009-08-13 Newmat S.A. Flexible polymer film for stretched structures, process for their production and false ceiling with this film
DE50207500D1 (en) * 2001-04-27 2006-08-24 Fraunhofer Ges Forschung MUFFLER
US7140426B2 (en) * 2003-08-29 2006-11-28 Plascore, Inc. Radiant panel
US8617715B2 (en) * 2003-12-06 2013-12-31 Cpfilms Inc. Fire retardant shades
NO322685B1 (en) * 2005-03-23 2006-11-27 Deamp As Plate Element
US20090151729A1 (en) 2005-11-08 2009-06-18 Resmed Limited Nasal Assembly
JP2007256750A (en) * 2006-03-24 2007-10-04 Yamaha Corp Sound absorption material, method of manufacturing the same, and sound absorption panel
US9254370B2 (en) 2006-11-14 2016-02-09 Resmed Limited Frame and vent assembly for mask assembly
DE502007004772D1 (en) * 2007-01-29 2010-09-30 Albers & Co acoustic elements
JP5326472B2 (en) * 2007-10-11 2013-10-30 ヤマハ株式会社 Sound absorption structure
DE202007017699U1 (en) * 2007-12-19 2009-02-26 VS Vereinigte Spezialmöbelfabriken GmbH & Co. KG partition element
US20090181242A1 (en) * 2008-01-11 2009-07-16 Enniss James P Exterior window film
JP5402025B2 (en) * 2008-02-01 2014-01-29 ヤマハ株式会社 Sound absorption structure and acoustic room
EP2085962A2 (en) * 2008-02-01 2009-08-05 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorbing properties
CN101787750B (en) * 2009-12-18 2011-04-20 杭州电子科技大学 Sound-absorbing and noise-decreasing device based on ferroelectric material
US8999509B2 (en) 2011-04-27 2015-04-07 Cpfilms Inc. Weather resistant exterior film composite
CN104299608A (en) * 2013-07-17 2015-01-21 青钢金属建材(上海)有限公司 Sound absorbing noise reduction assembly and method thereof
CN105161089B (en) * 2015-06-17 2019-10-15 成都斯铂润音响设备有限公司 A kind of sound absorber
EP3535221A1 (en) 2016-11-04 2019-09-11 Corning Incorporated Micro-perforated panel systems, applications, and methods of making micro-perforated panel systems
CN110024023B (en) * 2016-11-29 2020-08-07 富士胶片株式会社 Sound-proof structure
DE202023001783U1 (en) 2023-08-18 2023-09-20 Ifl Ingenieurbüro Für Leichtbau Gmbh & Co Kg Device for impact sound insulation of a container in a container building

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752017A (en) * 1956-06-26 Light diffusing ceiling construction
DD83442A (en) *
US2729431A (en) * 1951-11-17 1956-01-03 George P Little Company Inc Air conditioning and sound deadening ceiling installation
NL285145A (en) * 1961-11-08
US3253082A (en) * 1964-08-28 1966-05-24 Nova Ind Inc Electrical shielding structure
JPS5247809U (en) * 1975-10-02 1977-04-05
DE3032269A1 (en) * 1980-08-27 1982-04-08 Hoechst Ag, 6000 Frankfurt RESONATOR SOUND ABSORPTION ELEMENT
US4529637A (en) * 1983-08-24 1985-07-16 Hankel Keith M Acoustical material
SU1308728A1 (en) * 1985-08-30 1987-05-07 Центральный Научно-Исследовательский И Проектный Институт Типового И Экспериментального Проектирования Комплексов И Зданий Культуры,Спорта И Управления Им.Б.С.Мезенцева Transluscent suspension ceiling
DE3705916C2 (en) * 1987-02-25 1996-06-13 Profil Vertrieb Gmbh Substructures for vaulted false ceilings
JP2805630B2 (en) * 1989-03-20 1998-09-30 三晃金属工業株式会社 Sound absorbing insulation roof and ceiling structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19730355C1 (en) * 1997-07-15 1999-03-18 Fraunhofer Ges Forschung Noise absorber for air duct in building glazing
EP1146178A2 (en) 2000-04-14 2001-10-17 FAIST Automotive GmbH &amp; Co. KG Wide spectrum sound absorbtion building element for walls, floors and ceilings
DE10019543A1 (en) * 2000-04-20 2001-10-31 Fraunhofer Ges Forschung Air supply element has fan forcing air through housing with sound absorber formed by flow-conducting structure between intermediate wall and floor containing outflow openings
DE10019543C2 (en) * 2000-04-20 2002-03-07 Fraunhofer Ges Forschung Supply air
WO2012149659A2 (en) 2011-05-04 2012-11-08 H.D.S Technology Ag Space demarcation assembly, method for producing same and element therefor
US9273870B2 (en) 2011-05-04 2016-03-01 H.D.S. Technology Ag Room enclosure assembly, method for producing same and element therefor

Also Published As

Publication number Publication date
CN1121364A (en) 1996-04-24
JPH09502490A (en) 1997-03-11
US5740649A (en) 1998-04-21
DK0697051T3 (en) 1997-01-20
GR3022213T3 (en) 1997-04-30
DE4312885A1 (en) 1994-10-27
EP0697051A1 (en) 1996-02-21
ES2098938T3 (en) 1997-05-01
DE59401480D1 (en) 1997-02-13
ATE147118T1 (en) 1997-01-15
CN1074492C (en) 2001-11-07

Similar Documents

Publication Publication Date Title
EP0697051B1 (en) False ceiling
US6675551B1 (en) Plate-shaped constructional element and method
EP0811097B1 (en) Plate resonator
EP0750777B1 (en) Foil sound absorber
DE19861016C2 (en) Structured molded bodies for sound absorption
US4842097A (en) Sound absorbing structure
RU2721615C1 (en) Sound-absorbing structure and soundproof room
JP2018537604A (en) Soundproof drywall panel
DE668539C (en) Sound absorbing and sound absorbing component
DE29815712U1 (en) Sound absorber
WO1994024382A1 (en) False ceiling
RU2362855C1 (en) Noise-attenuating panel
RU2639213C2 (en) Multilayer acoustic panel
JP3932156B2 (en) Sound absorbing structure and sound absorbing plate
DE10151474A1 (en) Sound absorber incorporates porous absorber layer on front side of which are formed strip-shaped, soundtight covers (3) of specific width, separated by narrow gaps
AT515271A1 (en) Sound damping element
JPH10331286A (en) Composite acoustical panel
JP3045294B1 (en) Sound absorbing wall
CN210531248U (en) Fan silencer
KR102025689B1 (en) Sound absorbing material having hole for destructive interference and soundproof panel comprising the sound absorbing material
DE102016007248A1 (en) Device for reducing sound pressure levels
DE19822840C2 (en) Multi-layer component with increased air and impact sound insulation
DE202013104545U1 (en) Device for active and / or passive influencing of room acoustics
CN217079210U (en) Broadband sound-absorbing noise-reducing composite board
DE9320543U1 (en) Sound absorbing component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950823

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 950823

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960325

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950823

REF Corresponds to:

Ref document number: 147118

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE GEORG ROEMPLER UND ALDO ROEMPLER

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 71394

REF Corresponds to:

Ref document number: 59401480

Country of ref document: DE

Date of ref document: 19970213

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3022213

ITF It: translation for a ep patent filed

Owner name: 0414;80MIFUFFICIO BREVETTI RICCARDI & C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098938

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Effective date: 19971031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040406

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040413

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040422

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040423

Year of fee payment: 11

Ref country code: AT

Payment date: 20040423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040426

Year of fee payment: 11

Ref country code: CH

Payment date: 20040426

Year of fee payment: 11

Ref country code: BE

Payment date: 20040426

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040427

Year of fee payment: 11

Ref country code: DK

Payment date: 20040427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20040428

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20040429

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20040430

Year of fee payment: 11

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050420

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050421

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051020

BERE Be: lapsed

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051230

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050421

BERE Be: lapsed

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20050430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130423

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59401480

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59401480

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140423