EP0694893B1 - Dispositif de détection d'alarme à boucles de courant, et balise de repérage de sous-zones pour un tel dispositif - Google Patents

Dispositif de détection d'alarme à boucles de courant, et balise de repérage de sous-zones pour un tel dispositif Download PDF

Info

Publication number
EP0694893B1
EP0694893B1 EP19950401785 EP95401785A EP0694893B1 EP 0694893 B1 EP0694893 B1 EP 0694893B1 EP 19950401785 EP19950401785 EP 19950401785 EP 95401785 A EP95401785 A EP 95401785A EP 0694893 B1 EP0694893 B1 EP 0694893B1
Authority
EP
European Patent Office
Prior art keywords
beacon
alarm
current
conductor pair
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19950401785
Other languages
German (de)
English (en)
Other versions
EP0694893A1 (fr
Inventor
Jacques Lewiner
Eugeniusz Smycz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORWIN
Original Assignee
Orwin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orwin filed Critical Orwin
Publication of EP0694893A1 publication Critical patent/EP0694893A1/fr
Application granted granted Critical
Publication of EP0694893B1 publication Critical patent/EP0694893B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/018Sensor coding by detecting magnitude of an electrical parameter, e.g. resistance

Definitions

  • the present invention relates to devices alarm detection with current loops.
  • such a device comprises a alarm center and at least one pair of conductors which extends between a first end connected to the central alarm and a second end where the two conductors are connected to each other, possibly through of a resistance
  • the alarm center comprising a voltage or current generator to generate a voltage or an electric current between the two conductors at the first end of the pair, with alarm sensors being arranged along the pair of conductors and connected each bypass between the two conductors, each sensor presenting a normal state in which it does not leave pass at most only a weak derivative current between the two conductors and an alarm state in which it leaves pass a larger derivative current between the two conductors, the voltage generator thus delivering to the pair of conductors a relatively low current when all sensors are in their normal state, and a current higher when at least one sensor is in the alarm state
  • the alarm center also comprising means for detection to detect an increase in the current delivered to the pair of conductors by the generator following a passage in the alarm state of at least one sensor.
  • Document EP 602,570 discloses an alarm detection device in which the triggering an alarm changes the characteristic impedance of a pair of conductors so that the control panel can identify the location of the activated alarm.
  • a device for alarm detection of the genre in question is basically characterized in that at least one tag is placed on the pair of conductors by separating the sensors into at least two groups of sensors, each beacon comprising detection means for detecting an increase in current in the pair of conductors at said level beacon when a sensor located between said beacon and the second end of the pair of conductors goes to the state alarm, said beacon further comprising means of signaling to then generate on the pair of conductors a characteristic signal specific to said beacon, the alarm center comprising reception means for receive the characteristic signal of each beacon and identify the beacon which emitted this characteristic signal, thereby determining which group of sensors the sensor in alarm state.
  • the central determines what is the farther from the first end of the pair of drivers who issued their characteristic code, the central also determines which group the sensor which has entered the alarm state, this group being immediately adjacent to said tag and located between said beacon and the second end of the pair of conductors.
  • the invention relates to an alarm detection device with current loops, comprising an alarm center 1 and generally several pairs 2 of conductors 3, 4 (of which only one is shown), which each extend between a first end 2a connected to the alarm center and a second end 2b where the two conductors 3, 4 are connected to each other by a resistor R, thus forming a loop generally called "current loop”.
  • the two conductors 3 and 4 are connected respectively at two terminals 1a and 1b of the control unit alarm. Between these two terminals 1a and 1b are mounted in series a voltage or current generator 5 and a resistance R0 so that a current i0 is generated in the pair 2 of conductors.
  • the two terminals of the resistor R0 are connected to the two inputs 6a and 6b of a voltage amplifier 6, whose output 6c is itself connected to an input analog 7a of a microprocessor 7.
  • microprocessor 7 could be replaced by a non-programmable electronic circuit logic gates, including in particular a comparator.
  • D1-D6 sensors which can be for example detectors fire or intrusion detectors distributed in a building.
  • Each of these sensors is connected between the two conductors 3 and 4, and in the normal state, they do not leave pass no current, or only a weak current between the two conductors 3 and 4.
  • one of the sensors When one of the sensors enters the alarm state, it establishes a circuit of relatively low resistance between the two conductors 3 and 4, so that it is traversed by a relatively large derivative current between the conductors 3 and 4 for a predetermined period worth by example one second.
  • the current i0 which flows in the loop of current at terminals 1a and 1b increases suddenly a value ⁇ a (for example from 5 to 30 mA) when one of the sensors goes into alarm state.
  • This increase in current results in a voltage increase at analog input 7a of the microprocessor 7, so that the microprocessor 7 can detect the passage to the alarm state of one of the D1-D6 sensors of the current loop considered.
  • the microprocessor 7 As soon as the microprocessor 7 has detected the alarm, it triggers a reaction, for example the operation of a siren 17, the transmission of a message to a remote monitoring, or whatever.
  • a reaction for example the operation of a siren 17, the transmission of a message to a remote monitoring, or whatever.
  • the microprocessor 7 can only identify the loop of current that contains the sensor in the alarm state, so the area of the building that corresponds to this current loop, but cannot determine more precisely what is the sensor which has entered the alarm state.
  • tags L1, L2 which, in the example shown, are two in number and separate the sensors in three groups 8, 9, 10.
  • each of the tags L1, 12 have four terminals 3a, 3b, 4a, 4b which allow each tag to be mounted in series with the two conductors 3, 4, the conductor 3 being connected on the one hand at terminal 3a and on the other hand at terminal 3b, and the conductor 4 being connected on the one hand to terminal 4a and on the other hand leaves at terminal 4b.
  • the terminals 3a, 3b are connected to each other in short circuit, while the terminals 4a and 4b are connected to each other by a resistor R1 at the terminals of which the two inputs 11a, 11b of a voltage amplifier 11, of which the output 11c is connected to an analog input 12a of a microprocessor 12.
  • terminals 3a and 4a of the beacon are also connected in series a resistor R2 and the collector and the emitter of a transistor 13 whose base is connected to a logic output 12b of the microprocessor 12 which activates this transistor or turns it off depending on the voltage it applies to the base of the transistor.
  • the analog input 12a of the microprocessor 12 receives a voltage signal proportional to the current flowing the resistor R1, and the microprocessor 12, provided with a internal clock or time counter, is programmed to activate transistor 13 for a predetermined period T, after a time delay ⁇ t1, ⁇ t2 (for example 10 microseconds to one second) specific to each tag, to from the moment it detects an increase ⁇ a in the current i1, i2 which crosses resistance R1.
  • ⁇ t1, ⁇ t2 for example 10 microseconds to one second
  • transistor 13 causes the passage of a derivative current in resistance R2 between the conductors 3 and 4, so that the current i0 which flows in the pair 2 of conductors at the first end 2a of this pair of conductors then increases by a value ⁇ b (for example from 5 to 20 mA).
  • the time delay ⁇ t1, ⁇ t2 of each tag L1, L2 is increasing from one tag to another, since the second end 2b towards the first end 2a of the pair of conductors.
  • the time delay ⁇ t1 corresponding to the L1 beacon furthest from the alarm center can be of 100 milliseconds
  • the time delay ⁇ t2 of the beacon L2 closest to the alarm center can be 200 milliseconds.
  • the microprocessor 12 of each tag can be designed to activate transistor 13 during duration T if it detects an increase in current ⁇ a in the associated resistance R1, but in order not to activate the transistor 13, if between the moment it detects the increase in current ⁇ a and the end of its time delay, it detects also an increase in current ⁇ b in the resistance R1 associated.
  • the evolution over time of the current i0 which flows through resistor R0 and which is measured by microprocessor 7 of the alarm center corresponds to one of the three timing diagrams in Figures 3 to 5, according to the group to which the sensor which has passed in alarm state.
  • the timing diagram is that of Figure 3: the current i0 increases by one ⁇ a value when the sensor goes into the alarm state, the currents i1 and i2 which pass through the tags respectively L1 and L2 themselves also increasing by ⁇ a, then, after the flow of the time delay ⁇ t1, the microprocessor 12 of the tag L1 activates its transistor 13, so that the corresponding resistance R1 is crossed by a current derivative, which causes an increase in the currents i0 and i2 with a value ⁇ b.
  • This increase in the current of ⁇ b for the duration T after the expiration of the timer ⁇ t1 constitutes a signal s characteristic of the beacon L1.
  • the microprocessor 12 of the L2 beacon does not activate its transistor 13, to the extent that it perceived the increase of the current i2 of the value ⁇ b before the end of the time delay ⁇ t2.
  • the microprocessor 7, provided with a internal clock or time sensor, can therefore determine that the alarm has occurred in group 8 of sensor, which corresponds for example to a sub-area of the building to inside the area represented by pair 2 of conductors.
  • the current i0 always increases by the value ⁇ a, as well as the current i2, but not the current i1.
  • the microprocessor 12 of the tag L1 does not detect the increase in current ⁇ a, while this increase in current is detected by the microprocessor 12 of the L2 tag.
  • the microprocessor 12 of tag L2 activates its transistor 13, so that the corresponding resistance R2 is traversed by a derivative current, which increases the value of ⁇ b by current i0, during duration T.
  • the microprocessor 7 can determine that the sensor which has entered the alarm state belongs to the group 9.
  • microprocessor 7 of the alarm center does not detect a new increase in current i0 during a period ⁇ t3, which can be for example one second at 5 seconds, it deduces that the sensor which has passed to the alarm state belongs to group 10.
  • beacons that detect the first current increase ⁇ a due to the passage to the alarm state of a sensor send their characteristic signal after their own time delay, that is to say in the present case activate their transistors 13 during duration T, the determination of the area which contains the sensor which has entered the alarm state only by measuring the time elapsed between first and second increases in current i0.
  • each tag L1, L2 could include, instead of the switch 13 and resistor R2, an oscillating circuit 14 controlled by microprocessor 12, this oscillating circuit 14 being coupled to one of the two conductors, for example the conductor 4, via a transformer 15.
  • the characteristic signal s which is emitted by each beacon is a sinusoidal signal having a determined frequency f, emitted for a period T after a time delay ⁇ t from the moment the beacon detected an increase in current ⁇ a in the pair of conductors.
  • the frequency f can for example be chosen in the range from 1 to 10 kilohertz.
  • This sinusoidal signal of frequency f is transmitted to the microprocessor 7 of the alarm center through its input analog 7a and microprocessor 7 is programmed to determine the frequency f of this signal, which makes it possible to determine which group 8, 9, 10 the sensor belongs to went to the alarm state.
  • the time delay ⁇ t is the same for all the L1 beacons, L2, the determination of the beacon which emitted the signal s can only be done by spectral analysis of the signal received by the analog input 7a of the microprocessor 7.
  • the alarm center 1 could include a transformer 20 coupled to one of the conductors of pair 2 and connected to a frequency detector 21.
  • the detector 21 may include for example one or more filters to determine a frequency range in which the frequency is included f, and it is connected to one or more inputs 7d of the microprocessor 7 to indicate to the microprocessor the range of frequency which includes frequency f.
  • the frequency detector 21 can also be a frequency measurement circuit which sends to input 7d of the microprocessor a signal representative of the frequency measured, input 7d then being an analog input.
  • the signal characteristic s emitted by each tag can also be consisting of a coded binary signal, transmitted for a period T after a time delay ⁇ t from the increase in current ⁇ a detected by said tag.
  • the tags L1, L2 can be as shown in Figure 2, and the timers ⁇ t are different from one tag to another, and from increasing preference from second end 2b to the first end 2a of the pair of conductors.
  • the current i0 which crosses the resistance R0 and the currents i1, i2 which cross the different tags depend on the number of sensors connected the along pair 2 of conductors, as long as these sensors are crossed by a weak current even when are not in the alarm state.
  • the microprocessors 7 and 12 can be designed to measure respectively the currents i0, i1, i2 each time the power is turned on alarm center after a stop, these measured values being memorized.
  • the central unit microprocessor 7 alarm detects an alarm when it measures an increase of the current i0 at least equal to a predetermined value ⁇ a (for example 5 mA) relative to the stored value of the current i0.
  • each beacon L1, L2 detects an alarm state of a sensor located between said tag and the second end 2b of the pair of conductors, when the current i1, i2 measured by this microprocessor 12 increases from the predetermined value ⁇ a to from the stored value of the current i1, i2.
  • the alarm center may also include a device for reset 16, for example a contact controlled by a key which is connected to an input 7b of the microprocessor 7 so initiate a measurement and storage of the current i0 which crosses resistance R0.
  • a device for reset 16 for example a contact controlled by a key which is connected to an input 7b of the microprocessor 7 so initiate a measurement and storage of the current i0 which crosses resistance R0.
  • the microprocessor 7 can also include a logic output 7c connected to the generator voltage 5, to generate this voltage generator 5 a predetermined signal when the reset device 16 is activated.
  • this signal is received at analog input 12a of microprocessor 12 of each tag L1, L2, which triggers a reading and a memorization of the current i1, i2, crossing the resistor R1 associated with each of these microprocessors.
  • the alarm states are then detected when the measured currents i0, i1, i2 are by a predetermined value ⁇ a greater than the values memorized.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

La présente invention est relative aux dispositifs de détection d'alarme à boucles de courant.
Ces dispositifs sont très largement répandus, notamment dans le domaine de la détection des incendies, et plus généralement dans le domaine de la surveillance des bâtiments ou de la gestion technique des bâtiments.
Plus précisément, un tel dispositif comporte une centrale d'alarme et au moins une paire de conducteurs qui s'étend entre une première extrémité reliée à la centrale d'alarme et une deuxième extrémité où les deux conducteurs sont reliés l'un à l'autre, éventuellement par l'intermédiaire d'une résistance, la centrale d'alarme comportant un générateur de tension ou de courant pour générer une tension ou un courant électrique entre les deux conducteurs à la première extrémité de la paire, des capteurs d'alarme étant disposés le long de la paire de conducteurs et connectés chacun en dérivation entre les deux conducteurs, chaque capteur présentant un état normal dans lequel il ne laisse passer tout au plus qu'un faible courant dérivé entre les deux conducteurs et un état d'alarme dans lequel il laisse passer un courant dérivé plus important entre les deux conducteurs, le générateur de tension délivrant ainsi à la paire de conducteurs un courant relativement faible lorsque tous les capteurs sont dans leur état normal, et un courant plus élevé lorsqu'au moins un capteur est à l'état d'alarme, la centrale d'alarme comportant également des moyens de détection pour détecter une élévation du courant délivré à la paire de conducteurs par le générateur suite à un passage à l'état d'alarme d'au moins un capteur.
Ces dispositifs présentent l'inconvénient que, lorsqu'un des capteurs reliés à une même paire de conducteurs ou boucle de courant passe à l'état d'alarme, la centrale d'alarme ne peut pas identifier précisément le capteur qui est passé à l'état d'alarme, parmi les différents capteurs appartenant à la même boucle de courant. Une boucle de courant correspondant généralement à une zone d'un bâtiment, la centrale d'alarme est donc seulement informée qu'une alarme s'est déclenchée dans une zone donnée du bâtiment.
Avec un tel dispositif de détection d'alarme, il n'est donc pas possible de connecter un grand nombre de capteurs sur une même paire de conducteurs si l'on veut pouvoir localiser l'alarme relativement facilement : lorsque de nombreux capteurs doivent être reliés à une même centrale d'alarme, ceci conduit à connecter un grand nombre de paires de conducteurs sur la centrale d'alarme. Il en résulte une grande consommation de câbles et surtout des frais importants de mise en place de ces câbles.
De plus, lorsqu'on souhaite modifier une installation existante pour avoir plus de précision dans la localisation des alarmes, il est nécessaire de mettre en place de nouvelles paires de conducteurs correspondant chacune par exemple à une zone d'un bâtiment. Là encore, ceci entraíne des frais élevés tant en fourniture qu'en main-d'oeuvre. Le document EP 602,570 divulgue un dispositif de détection d'alarme dans lequel le déclenchement d'une alarme change l'impédance caractéristique d'une paire de conducteurs afin que la centrale puisse identifier l'emplacement de l'alarme activée.
La présente invention a notamment pour but de pallier ces inconvénients. L'invention est définie par les revendications ci-jointes.
A cet effet, selon l'invention, un dispositif de détection d'alarme du genre en question est essentiellement caractérisé en ce qu'au moins une balise est disposée sur la paire de conducteurs en séparant les capteurs en au moins deux groupes de capteurs, chaque balise comportant des moyens de détection pour détecter une augmentation de courant dans la paire de conducteur au niveau de ladite balise lorsqu'un capteur situé entre ladite balise et la deuxième extrémité de la paire de conducteurs passe à l'état d'alarme, ladite balise comportant en outre des moyens de signalisation pour générer alors sur la paire de conducteurs un signal caractéristique propre à ladite balise, la centrale d'alarme comportant des moyens de réception pour recevoir le signal caractéristique de chaque balise et identifier la balise qui a émis ce signal caractéristique, en déterminant ainsi à quel groupe de capteurs appartient le capteur en état d'alarme.
Ainsi, lorsqu'un capteur passe à l'état d'alarme, seules les balises situées entre la première extrémité de la paire de conducteurs et ce capteur détectent une augmentation du courant dans la paire de conducteurs, de sorte que seules ces balises peuvent émettre leurs codes caractéristiques. Par conséquent, en déterminant quelle est la balise la plus éloignée de la première extrémité de la paire de conducteurs qui a émis son code caractéristique, la centrale d'alarme détermine également à quel groupe appartient le capteur qui est passé à l'état d'alarme, ce groupe étant immédiatement adjacent à ladite balise et situé entre ladite balise et la deuxième extrémité de la paire de conducteurs.
Ainsi, il est possible d'obtenir une relativement grande précision dans le repérage des capteurs en état d'alarme, sans pour autant multiplier les paires de conducteurs qui sont reliées à la centrale d'alarme.
Dans des modes de réalisation préférés de l'invention, on a recours en outre à l'une et/ou à l'autre des dispositions suivantes :
  • plusieurs balises sont disposées le long de la paire de conducteurs entre ses première et deuxième extrémités, et les moyens de signalisation des différentes balises sont prévus pour émettre leur signal caractéristique après une temporisation propre à ladite balise après que les moyens de détection de ladite balise ont détecté la présence d'un capteur en état d'alarme entre ladite balise et la deuxième extrémité de la paire de conducteurs ;
  • la temporisation caractéristique de chaque balise est croissante d'une balise à l'autre, depuis la deuxième extrémité vers la première extrémité de la paire de conducteurs ;
  • chaque balise comporte des moyens de réception pour recevoir les signaux caractéristiques émis par les éventuelles autres balises situées entre ladite balise et la deuxième extrémité de la paire de conducteurs, les moyens de signalisation de ladite balise étant conçus pour ne pas émettre le signal caractéristique de ladite balise lorsque les moyens de réception de ladite balise ont reçu un signal caractéristique d'une desdites autres balises situées entre ladite balise et la deuxième extrémité de la paire de conducteur ;
  • ledit signal caractéristique émis par chaque balise consiste en une augmentation du courant parcourant la paire de conducteurs entre ladite balise et la première extrémité de la paire de conducteurs, cette augmentation de courant étant produite pendant une durée prédéterminée après l'écoulement de la temporisation caractéristique de ladite balise à partir de l'instant où ladite balise a détecté un capteur en état d'alarme entre elle-même et la deuxième extrémité de la paire de conducteurs, l'augmentation de courant susmentionnée étant produite en établissant un circuit de dérivation entre les deux conducteurs de la paire de conducteurs au niveau de ladite balise ;
  • le signal caractéristique émis par chaque balise est un signal binaire codé ;
  • le signal caractéristique émis par chaque balise est un signal sinusoïdal ayant une fréquence propre à ladite balise, émis pendant une durée prédéterminée ;
  • les moyens de détection de la centrale d'alarme et de chaque balise sont conçus pour, au moins à chaque fois que la centrale d'alarme est mise en service après avoir été arrêtée, mesurer et mémoriser les valeurs des courants qui parcourent la paire de conducteurs respectivement à sa première extrémité et au niveau de chacune des balises, les moyens de détection de la centrale d'alarme étant conçus pour détecter une alarme lorsque le courant qui parcourt la paire de conducteurs à sa première extrémité augmente d'une valeur prédéterminée à partir de la valeur mémorisée dudit courant qui parcourt la paire de conducteurs au niveau de sa première extrémité, et les moyens de détection de chaque balise étant conçus pour détecter un état d'alarme d'un capteur situé entre ladite balise et la deuxième extrémité de la paire de conducteurs lorsque le courant qui parcourt la paire de conducteurs au niveau de ladite balise augmente d'une valeur prédéterminée à partir de la valeur mémorisée par lesdits moyens de détection de la balise ;
  • le dispositif comporte des moyens de commande de réinitialisation, et les moyens de détection de la centrale d'alarme et de chaque balise sont conçus pour, à chaque fois que les moyens de commande de réinitialisation sont actionnés, mesurer et mémoriser les valeurs des courants qui parcourent la paire de conducteurs respectivement à sa première extrémité et au niveau de chacune des balises, les moyens de détection de la centrale d'alarme étant conçus pour détecter une alarme lorsque le courant qui parcourt la paire de conducteurs à sa première extrémité augmente d'une valeur prédéterminée à partir de la valeur mémorisée dudit courant qui parcourt la paire de conducteurs au niveau de sa première extrémité, et les moyens de détection de chaque balise étant conçus pour détecter un état d'alarme d'un capteur situé entre ladite balise et la deuxième extrémité de la paire de conducteurs lorsque le courant qui parcourt la paire de conducteurs au niveau de ladite balise augmente d'une valeur prédéterminée à partir de la valeur mémorisée par lesdits moyens de détection de la balise ;
  • la centrale d'alarme et chaque balise comportent chacune un microprocesseur associé à des moyens de mesure pour mesurer les courants qui parcourent la paire de conducteurs respectivement à sa première extrémité et au niveau de chaque balise, le microprocesseur de chaque balise faisant partie des moyens de signalisation de cette balise.
L'invention a également pour objet une balise pour un dispositif de détection d'alarme à boucle de courant tel que défini ci-dessus, cette balise comportant :
  • des moyens de connexion permettant de connecter ladite balise sur la paire de conducteurs reliée à la centrale d'alarme,
  • des moyens de détection pour détecter une augmentation de courant dans la paire de conducteurs au niveau de ladite balise lorsqu'un capteur situé entre ladite balise et la deuxième extrémité de la paire de conducteurs passe à l'état d'alarme,
  • et des moyens de signalisation pour générer alors sur la paire de conducteurs un signal caractéristique propre à ladite balise.
D'autres caractéristiques et avantages de l'invention apparaítront au cours de la description détaillée suivante de plusieurs de ses formes de réalisation, données à titre d'exemples non limitatifs, en regard des dessins joints.
Sur les dessins :
  • la figure 1 est un schéma représentant un mode de réalisation du dispositif selon l'invention, comprenant une centrale d'alarme et une boucle de courant sur laquelle sont connectés plusieurs capteurs et plusieurs balises délimitant des groupes de capteurs,
  • la figure 2 est une vue schématique de détail illustrant une des balises du dispositif de la figure 1,
  • les figures 3 à 5 représentent l'évolution du courant électrique parcourant la boucle de courant au voisinage de la centrale d'alarme, suivant le capteur qui passe à l'état d'alarme,
  • la figure 6 est une vue similaire à la figure 2, pour une variante de balise selon l'invention,
  • la figure 7 représente l'évolution du courant électrique parcourant la boucle de courant au voisinage de la centrale d'alarme lorsqu'un capteur passe à l'état d'alarme, et lorsque les balises sont telles que celles représentées sur la figure 6, et
  • la figure 8 représente l'évolution du courant électrique parcourant la boucle de courant au voisinage de la centrale d'alarme, lorsqu'un capteur passe à l'état d'alarme, dans un autre mode de réalisation de l'invention.
Comme représenté schématiquement sur la figure 1, l'invention concerne un dispositif de détection d'alarme à boucles de courant, comportant une centrale d'alarme 1 et généralement plusieurs paires 2 de conducteurs 3, 4 (dont une seule est représentée), qui s'étendent chacune entre une première extrémité 2a reliée à la centrale d'alarme et une deuxième extrémité 2b où les deux conducteurs 3, 4 sont reliés l'un à l'autre par une résistance R, en formant ainsi une boucle dite généralement "boucle de courant".
A la première extrémité 2a de chaque paire 2 de conducteurs, les deux conducteurs 3 et 4 sont reliés respectivement à deux bornes 1a et 1b de la centrale d'alarme. Entre ces deux bornes 1a et 1b sont montés en série un générateur de tension ou de courant 5 et une résistance R0 de sorte qu'un courant i0 est généré dans la paire 2 de conducteurs.
Les deux bornes de la résistance R0 sont connectées aux deux entrées 6a et 6b d'un amplificateur de tension 6, dont la sortie 6c est elle-même connectée à une entrée analogique 7a d'un microprocesseur 7.
Eventuellement, le microprocesseur 7 pourrait être remplacé par un circuit électronique non programmable à portes logiques, incluant notamment un comparateur.
Le long de la paire de conducteurs 2 sont connectés des capteurs D1-D6 qui peuvent être par exemple des détecteurs d'incendie ou encore des détecteurs d'intrusion répartis dans un bâtiment.
Chacun de ces capteurs est connecté entre les deux conducteurs 3 et 4, et à l'état normal, ils ne laissent passer aucun courant, ou uniquement un faible courant entre les deux conducteurs 3 et 4.
Lorsqu'un des capteurs passe à l'état d'alarme, il établit un circuit de relativement faible résistance entre les deux conducteurs 3 et 4, de sorte qu'il est parcouru par un courant dérivé relativement important entre les conducteurs 3 et 4 pendant une durée prédéterminée valant par exemple une seconde.
Ainsi, le courant i0 qui circule dans la boucle de courant au niveau des bornes 1a et 1b augmente brutalement d'une valeur Δa (par exemple de 5 à 30 mA) lorsqu'un des capteurs passe à l'état d'alarme.
Cette augmentation de courant se traduit par une augmentation de tension à l'entrée analogique 7a du microprocesseur 7, de sorte que le microprocesseur 7 peut détecter le passage à l'état d'alarme d'un des capteurs D1-D6 de la boucle de courant considérée.
Dès que le microprocesseur 7 a détecté l'alarme, il déclenche une réaction, par exemple le fonctionnement d'une sirène 17, la transmission d'un message à un poste de télésurveillance, ou autre.
Dans ce mode de fonctionnement classique, le microprocesseur 7 peut uniquement identifier la boucle de courant qui contient le capteur à l'état d'alarme, donc la zone du bâtiment qui correspond à cette boucle de courant, mais ne peut pas déterminer avec plus de précision quel est le capteur qui est passé à l'état d'alarme.
Afin d'améliorer la précision du repérage des capteurs en état d'alarme, on dispose le long de la paire 2 de conducteurs des balises L1, L2 qui, dans l'exemple représenté, sont au nombre de deux et séparent les capteurs en trois groupes 8, 9, 10.
Comme on peut le voir sur la figure 2, chacune des balises L1, 12 comportent quatre bornes 3a, 3b, 4a, 4b qui permettent de monter chaque balise en série avec les deux conducteurs 3, 4, le conducteur 3 étant connecté d'une part à la borne 3a et d'autre part à la borne 3b, et le conducteur 4 étant connecté d'une part à la borne 4a et d'autre part à la borne 4b.
Dans l'exemple représenté, les bornes 3a, 3b sont reliées l'une à l'autre en court-circuit, tandis que les bornes 4a et 4b sont reliées l'une à l'autre par une résistance R1 aux bornes de laquelle sont connectées les deux entrées 11a, 11b d'un amplificateur de tension 11, dont la sortie 11c est reliée à une entrée analogique 12a d'un microprocesseur 12.
Entre les bornes 3a et 4a de la balise sont en outre connectés en série une résistance R2 et le collecteur et l'émetteur d'un transistor 13 dont la base est connectée à une sortie logique 12b du microprocesseur 12 qui active ce transistor ou le désactive en fonction de la tension qu'elle applique à la base du transistor.
L'entrée analogique 12a du microprocesseur 12 reçoit un signal de tension proportionnel au courant qui traverse la résistance R1, et le microprocesseur 12, pourvu d'une horloge interne ou d'un compteur de durée, est programmé pour activer le transistor 13 pendant une durée prédéterminée T, après une temporisation Δt1, Δt2 (par exemple de 10 microsecondes à une seconde) propre à chaque balise, à partir du moment où il a détecté une augmentation Δa du courant i1, i2 qui traverse la résistance R1.
L'activation du transistor 13 provoque le passage d'un courant dérivé dans la résistance R2 entre les conducteurs 3 et 4, de sorte que le courant i0 qui circule dans la paire 2 de conducteurs au niveau de la première extrémité 2a de cette paire de conducteurs augmente alors d'une valeur Δb (par exemple de 5 à 20 mA).
De préférence, la temporisation Δt1, Δt2 de chaque balise L1, L2 est croissante d'une balise à l'autre, depuis la deuxième extrémité 2b vers la première extrémité 2a de la paire de conducteurs.
Par exemple, la temporisation Δt1 correspondant à la balise L1 la plus éloignée de la centrale d'alarme peut être de 100 millisecondes, et la temporisation Δt2 de la balise L2 la plus proche de la centrale d'alarme peut être de 200 millisecondes.
En outre, le microprocesseur 12 de chaque balise peut être conçu pour activer le transistor 13 pendant la durée T s'il détecte une augmentation de courant Δa dans la résistance R1 associée, mais pour ne pas activer le transistor 13, si entre l'instant où il détecte l'augmentation de courant Δa et la fin de sa temporisation, il détecte également une augmentation de courant Δb dans la résistance R1 associée.
Dans ce cas, l'évolution au cours du temps du courant i0 qui circule dans la résistance R0 et qui est mesuré par le microprocesseur 7 de la centrale d'alarme correspond à l'un des trois chronogrammes des figures 3 à 5, suivant le groupe auquel appartient le capteur qui est passé à l'état d'alarme.
Si un des capteurs du groupe 8 le plus éloigné de la centrale d'alarme passe à l'état d'alarme, le chronogramme est celui de la figure 3 : le courant i0 augmente d'une valeur Δa lorsque le capteur passe à l'état d'alarme, les courants i1 et i2 qui traversent respectivement les balises L1 et L2 augmentant eux-mêmes également de Δa, puis, après l'écoulement de la temporisation Δt1, le microprocesseur 12 de la balise L1 active son transistor 13, de sorte que la résistance R1 correspondante est parcourue par un courant dérivé, ce qui provoque une augmentation des courants i0 et i2 d'une valeur Δb. Cette augmentation du courant de Δb pendant la durée T après l'écoulement de la temporisation Δt1 constitue un signal s caractéristique da la balise L1. Le microprocesseur 12 de la balise L2 n'active pas son transistor 13, dans la mesure où il a perçu l'augmentation du courant i2 de la valeur Δb avant la fin de la temporisation Δt2.
En mesurant la durée Δt1 entre les augmentations Δa et Δb du courant i0, le microprocesseur 7, pourvu d'une horloge interne ou d'un capteur de durée, peut donc déterminer que l'alarme s'est produite dans le groupe 8 de capteur, qui correspond par exemple à une sous-zone du bâtiment à l'intérieur de la zone représentée par la paire 2 de conducteurs.
Si le capteur qui passe à l'état d'alarme n'appartient plus au groupe 8, mais au groupe 9, comme représenté sur la figure 4, le courant i0 augmente toujours de la valeur Δa, ainsi que le courant i2, mais pas le courant i1.
Dans ce cas, le microprocesseur 12 de la balise L1 ne détecte pas l'augmentation de courant Δa, tandis que cette augmentation de courant est détectée par le microprocesseur 12 de la balise L2.
Par conséquent, au bout de la temporisation Δt2, le microprocesseur 12 de la balise L2 active son transistor 13, de sorte que la résistance R2 correspondante est parcourue par un courant dérivé, qui augmente de Δb la valeur du courant i0, pendant la durée T.
Par conséquent, en mesurant la durée Δt2 qui s'est écoulée entre les première et deuxième augmentations du courant i0, le microprocesseur 7 peut déterminer que le capteur qui est passé à l'état d'alarme appartient au groupe 9.
Enfin, lorsque le capteur qui passe à l'état d'alarme appartient au groupe 10 le plus proche de la centrale d'alarme, comme représenté sur la figure 5, seul le courant iO augmente de la valeur Δa, mais les courants i1 et i2 n'augmentent pas, de sorte que les microprocesseurs 12 des balises L1 et L2 n'activent pas leurs transistors respectifs 13 : le courant i0 reste donc constant après son augmentation de Δa.
Si le microprocesseur 7 de la centrale d'alarme ne détecte pas une nouvelle augmentation du courant i0 pendant une période Δt3, qui peut valoir par exemple une seconde à 5 secondes, il en déduit que le capteur qui est passé à l'état d'alarme appartient au groupe 10.
Eventuellement, on pourrait prévoir que toutes les balises qui détectent la première augmentation de courant Δa due au passage à l'état d'alarme d'un capteur envoient leur signal caractéristique après leur temporisation propre, c'est-à-dire dans le cas présent activent leurs transistors 13 pendant la durée T, la détermination de la zone qui contient le capteur passé à l'état d'alarme se faisant uniquement par la mesure de la durée écoulée entre les première et deuxième augmentations du courant i0.
En variante, comme représenté sur la figure 6, chaque balise L1, L2 pourrait comporter, à la place du commutateur 13 et de la résistance R2, un circuit oscillant 14 commandé par le microprocesseur 12, ce circuit oscillant 14 étant couplé à l'un des deux conducteurs, par exemple le conducteur 4, par l'intermédiaire d'un transformateur 15.
Dans ce cas, le signal caractéristique s qui est émis par chaque balise est un signal sinusoïdal ayant une fréquence déterminée f, émis pendant une durée T après une temporisation Δt à partir du moment où la balise a détecté une augmentation de courant Δa dans la paire de conducteurs.
La fréquence f peut être par exemple choisie dans la plage de 1 à 10 kilohertz.
Ce signal sinusoïdal de fréquence f est transmis au microprocesseur 7 de la centrale d'alarme par son entrée analogique 7a et le microprocesseur 7 est programmé pour déterminer la fréquence f de ce signal, ce qui permet de déterminer à quel groupe 8, 9, 10 appartient le capteur qui est passé à l'état d'alarme.
Dans ce cas, éventuellement, on peut prévoir que la temporisation Δt soit la même pour toutes les balises L1, L2, la détermination de la balise qui a émis le signal s pouvant se faire uniquement par analyse spectrale du signal reçu par l'entrée analogique 7a du microprocesseur 7.
Il serait également possible d'utiliser une balise telle que celle de la figure 2 dans ce mode de fonctionnement, à condition que la sortie 12b du microprocesseur 12 soit non plus une sortie logique mais une sortie analogique pouvant générer une tension sinusoïdale de fréquence f.
Eventuellement, comme représenté sur la figure 1, pour déterminer la fréquence f du signal sinusoïdal, la centrale d'alarme 1 pourrait comporter un transformateur 20 couplé à l'un des conducteurs de la paire 2 et relié à un détecteur de fréquence 21. Le détecteur 21 peut comporter par exemple un ou plusieurs filtres permettant de déterminer une plage de fréquence dans laquelle est inclus la fréquence f, et il est relié à une ou plusieurs entrées 7d du microprocesseur 7 pour indiquer au microprocesseur la plage de fréquence qui inclut la fréquence f.
Le détecteur de fréquence 21 peut également être un circuit de mesure de fréquence qui envoie à l'entrée 7d du microprocesseur un signal représentatif de la fréquence mesurée, l'entrée 7d étant alors une entrée analogique.
Enfin, comme représenté sur la figure 8, le signal caractéristique s émis par chaque balise peut également être constitué par un signal binaire codé, émis pendant une durée T après une temporisation Δt à partir de l'augmentation de courant Δa détectée par ladite balise.
Dans ce dernier cas, les balises L1, L2 peuvent être telles que représentées sur la figure 2, et les temporisations Δt sont différentes d'une balise à l'autre, et de préférence croissantes depuis la deuxième extrémité 2b vers la première extrémité 2a de la paire de conducteur.
Par ailleurs, le courant i0 qui traverse la résistance R0 et les courants i1, i2 qui traversent les différentes balises dépendent du nombre de capteurs connectés le long de la paire 2 de conducteurs, dans la mesure où ces capteurs sont traversés par un faible courant même lors-qu'ils ne sont pas à l'état d'alarme.
Il est donc utile de permettre aux différents microprocesseurs 7 et 12 de s'adapter aux valeurs normales des courants i0, i1, i2, afin de permettre une installation et/ou une modification aisée du système d'alarme.
A cet effet, selon l'invention, les microprocesseurs 7 et 12 peuvent être conçus pour mesurer respectivement les courants i0, i1, i2 à chaque mise sous tension de la centrale d'alarme après un arrêt, ces valeurs mesurées étant mémorisées.
Par la suite, le microprocesseur 7 de la centrale d'alarme détecte une alarme lorsqu'il mesure une augmentation du courant i0 au moins égale à une valeur prédéterminée Δa (par exemple 5 mA) par rapport à la valeur mémorisée du courant i0.
De la même façon, le microprocesseur 12 de chaque balise L1, L2 détecte un état d'alarme d'un capteur situé entre ladite balise et la deuxième extrémité 2b de la paire de conducteurs, lorsque le courant i1, i2 mesuré par ce microprocesseur 12 augmente de la valeur prédéterminée Δa à partir de la valeur mémorisée du courant i1, i2.
Eventuellement, comme représenté sur la figure 1, la centrale d'alarme peut en outre comporter un dispositif de réinitialisation 16, par exemple un contact commandé par une clé qui est relié à une entrée 7b du microprocesseur 7 afin de déclencher une mesure et une mémorisation du courant i0 qui traverse la résistance R0.
Dans ce cas, le microprocesseur 7 peut en outre comporter une sortie logique 7c reliée au générateur de tension 5, pour faire générer par ce générateur de tension 5 un signal prédéterminé lorsque le dispositif de réinitialisation 16 est actionné.
Lorsque le générateur de tension 5 émet ce signal prédéterminé sur la paire 2 de conducteurs, ce signal est reçu à l'entrée analogique 12a du microprocesseur 12 de chaque balise L1, L2, ce qui déclenche une lecture et une mémorisation du courant i1, i2, traversant la résistance R1 associée à chacun de ces microprocesseurs.
Comme précédemment, les états d'alarme sont ensuite détectés lorsque les courants mesurés i0, i1, i2 sont supérieurs d'une valeur prédéterminée Δa aux valeurs mémorisées.
Comme il va de soi, et comme il résulte d'ailleurs déjà de ce qui précède, l'invention ne se limite nullement à ceux de ses modes d'application et de réalisation qui ont été plus spécialement envisagés ; elle en embrasse, au contraire, toutes les variantes.

Claims (11)

  1. Dispositif de détection d'alarme à boucles de courant, comportant une centrale d'alarme (1) et au moins une paire (2) de conducteurs (3, 4) qui s'étend entre une première extrémité (2a) reliée à la centrale d'alarme et une deuxième extrémité (2b) où les deux conducteurs (3, 4) sont reliés l'un à l'autre, la centrale d'alarme comportant un générateur de tension ou de courant (5) pour générer une tension ou un courant électrique entre les deux conducteurs (3, 4) à la première extrémité (2a) de la paire, des capteurs d'alarme (D1-D6) étant disposés le long de la paire (2) de conducteurs et connectés chacun en dérivation entre les deux conducteurs (3, 4), chaque capteur (D1-D6) présentant un état normal dans lequel il ne laisse passer tout au plus qu'un faible courant dérivé entre les deux conducteurs (3, 4) et un état d'alarme dans lequel il laisse passer un courant dérivé plus important entre les deux conducteurs (3, 4), le générateur de tension (5) délivrant ainsi à la paire (2) de conducteurs un courant (i0) relativement faible lorsque tous les capteurs (D1-D6) sont dans leur état normal, et un courant plus élevé lorsqu'au moins un capteur est à l'état d'alarme, la centrale d'alarme (1) comportant également des moyens de détection (R0, 6, 7) pour détecter une élévation du courant (i0) délivré à la paire de conducteurs par le générateur (5) suite à un passage à l'état d'alarme d'au moins un capteur (D1-D6),
    caractérisé en ce qu'au moins une balise (L1, L2) est disposée sur la paire (2) de conducteurs en séparant les capteurs (D1-D6) en au moins deux groupes (8, 9, 10) de capteurs, chaque balise (L1, L2) comportant des moyens de détection (R1, 11, 12) pour détecter une augmentation de courant dans la paire (2) de conducteur au niveau de ladite balise lorsqu'un capteur situé entre ladite balise et la deuxième extrémité (2b) de la paire de conducteurs passe à l'état d'alarme, ladite balise comportant en outre des moyens de signalisation (12, 13 ; 12, 14, 15) pour générer alors sur la paire (2) de conducteurs un signal caractéristique (s) propre à ladite balise, la centrale d'alarme (1) comportant des moyens de réception (R0, 6, 7) pour recevoir le signal caractéristique de chaque balise et identifier la balise qui a émis ce signal caractéristique, en déterminant ainsi à quel groupe (8, 9, 10) de capteurs appartient le capteur en état d'alarme.
  2. Dispositif selon la revendication 1, comportant plusieurs balises (L1, L2) disposées le long de la paire (2) de conducteurs entre ses première et deuxième extrémités (2a, 2b), et dans lequel les moyens de signalisation (12, 13 ; 12, 14, 15) des différentes balises (L1, L2) sont prévus pour émettre leur signal caractéristique après une temporisation (Δt1, Δt2) propre à ladite balise après que les moyens de détection de ladite balise ont détecté la présence d'un capteur en état d'alarme entre ladite balise et la deuxième extrémité (2b) de la paire de conducteurs.
  3. Dispositif selon la revendication 2, dans lequel la temporisation caractéristique (Δt1, Δt2) de chaque balise (L1, L2) est croissante d'une balise à l'autre, depuis la deuxième extrémité (2b) vers la première extrémité (2a) de la paire de conducteurs.
  4. Dispositif selon la revendication 3, dans lequel chaque balise comporte des moyens de réception (R1, 11, 12) pour recevoir les signaux caractéristiques émis par les éventuelles autres balises situées entre ladite balise et la deuxième extrémité (2b) de la paire de conducteurs, les moyens de signalisation de ladite balise étant conçus pour ne pas émettre le signal caractéristique (s) de ladite balise lorsque les moyens de réception de ladite balise ont reçu un signal caractéristique d'une desdites autres balises situées entre ladite balise et la deuxième extrémité (2b) de la paire de conducteur.
  5. Dispositif selon l'une quelconque des revendications 3 et 4, dans lequel ledit signal caractéristique (s) émis par chaque balise consiste en une augmentation du courant parcourant la paire (2) de conducteurs entre ladite balise et la première extrémité (2a) de la paire de conducteurs, cette augmentation de courant étant produite pendant une durée prédéterminée (T) après l'écoulement de la temporisation (Δt1, Δt2) caractéristique de ladite balise à partir de l'instant où ladite balise a détecté un capteur en état d'alarme entre elle-même et la deuxième extrémité (2b) de la paire de conducteurs, l'augmentation de courant susmentionnée étant produite en établissant un circuit de dérivation entre les deux conducteurs (3, 4) de la paire de conducteurs au niveau de ladite balise.
  6. Dispositif selon l'une quelconque des revendications 3 et 4, dans lequel le signal caractéristique émis par chaque balise est un signal binaire codé.
  7. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le signal caractéristique émis par chaque balise est un signal sinusoïdal ayant une fréquence propre à ladite balise, émis pendant une durée prédéterminée (T).
  8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de détection (R0, 6, 7 ; R1, 11, 12) de la centrale d'alarme (1) et de chaque balise (L1, L2) sont conçus pour, au moins à chaque fois que la centrale d'alarme (1) est mise en service après avoir été arrêtée, mesurer et mémoriser les valeurs des courants (i0, i1, i2) qui parcourent la paire (2) de conducteurs respectivement à sa première extrémité (2a) et au niveau de chacune des balises (L1, L2), les moyens de détection (R0, 6, 7) de la centrale d'alarme (1) étant conçus pour détecter une alarme lorsque le courant (i0) qui parcourt la paire de conducteurs (2) à sa première extrémité (2a) augmente d'une valeur prédéterminée à partir de la valeur mémorisée dudit courant qui parcourt la paire de conducteurs au niveau de sa première extrémité (2a), et les moyens de détection (R1, 11, 12) de chaque balise (L1, L2) étant conçus pour détecter un état d'alarme d'un capteur situé entre ladite balise et la deuxième extrémité (2b) de la paire de conducteurs lorsque le courant (i1, i2) qui parcourt la paire de conducteurs au niveau de ladite balise augmente d'une valeur prédéterminée à partir de la valeur mémorisée par lesdits moyens de détection de la balise.
  9. Dispositif selon l'une quelconque des revendications 1 à 7, comportant en outre des moyens de commande de réinitialisation (16), et dans lequel les moyens de détection (R0, 6, 7 ; R1, 11, 12) de la centrale d'alarme (1) et de chaque balise (L1, L2) sont conçus pour, à chaque fois que les moyens de commande de réinitialisation (16) sont actionnés, mesurer et mémoriser les valeurs des courants (i0, i1, i2) qui parcourent la paire (2) de conducteurs respectivement à sa première extrémité (2a) et au niveau de chacune des balises (L1, L2), les moyens de détection (R0, 6, 7) de la centrale d'alarme (1) étant conçus pour détecter une alarme lorsque le courant (i0) qui parcourt la paire de conducteurs (2) à sa première extrémité (2a) augmente d'une valeur prédéterminée à partir de la valeur mémorisée dudit courant qui parcourt la paire de conducteurs au niveau de sa première extrémité (2a), et les moyens de détection (R1, 11, 12) de chaque balise (L1, L2) étant conçus pour détecter un état d'alarme d'un capteur situé entre ladite balise et la deuxième extrémité (2b) de la paire de conducteurs lorsque le courant (i1, i2) qui parcourt la paire de conducteurs au niveau de ladite balise augmente d'une valeur prédéterminée à partir de la valeur mémorisée par lesdits moyens de détection de la balise.
  10. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la centrale d'alarme (1) et chaque balise (L1, L2) comportent chacune un microprocesseur (7, 12) associé à des moyens de mesure (R0, 6 ; R1, 11) pour mesurer les courants qui parcourent la paire (2) de conducteurs respectivement à sa première extrémité (2a) et au niveau de chaque balise, le microprocesseur (12) de chaque balise faisant partie des moyens de signalisation (12, 13, 12, 14, 15) de cette balise.
  11. Balise (L1, L2) pour un dispositif de détection d'alarme à boucle de courant selon l'une quelconque des revendications précédentes, comportant :
    des moyens de connexion (3a, 3b, 4a, 4b) permettant de connecter ladite balise sur la paire (2) de conducteurs reliée à la centrale d'alarme (1),
    des moyens de détection (R1, 11, 12) pour détecter une augmentation de courant dans la paire (2) de conducteurs au niveau de ladite balise lorsqu'un capteur situé entre ladite balise et la deuxième extrémité (2b) de la paire de conducteurs passe à l'état d'alarme,
    et des moyens de signalisation (12, 13 ; 12, 14, 15) pour générer alors sur la paire (2) de conducteurs un signal caractéristique propre à ladite balise.
EP19950401785 1994-07-29 1995-07-27 Dispositif de détection d'alarme à boucles de courant, et balise de repérage de sous-zones pour un tel dispositif Expired - Lifetime EP0694893B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9409475 1994-07-29
FR9409475A FR2723234B1 (fr) 1994-07-29 1994-07-29 Dispositif de detection d'alarme a boucles de courant, et balise de reperage de sous-zone pour un tel dispositif

Publications (2)

Publication Number Publication Date
EP0694893A1 EP0694893A1 (fr) 1996-01-31
EP0694893B1 true EP0694893B1 (fr) 1999-06-09

Family

ID=9465923

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950401785 Expired - Lifetime EP0694893B1 (fr) 1994-07-29 1995-07-27 Dispositif de détection d'alarme à boucles de courant, et balise de repérage de sous-zones pour un tel dispositif

Country Status (4)

Country Link
EP (1) EP0694893B1 (fr)
DE (1) DE69510135T2 (fr)
ES (1) ES2133688T3 (fr)
FR (1) FR2723234B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321747B (en) * 1997-01-30 2000-10-18 Rafiki Protection Limited Alarm system
NO346958B1 (en) * 2020-10-16 2023-03-20 Dimeq As An Alarm Detection System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676877A (en) * 1970-04-18 1972-07-11 Mittan Co Ltd Fire alarm system with fire zone locator using zener diode voltage monitoring
DE59309562D1 (de) * 1992-12-18 1999-06-10 Siemens Ag Gefahrenmeldeanlage

Also Published As

Publication number Publication date
DE69510135T2 (de) 2000-04-20
EP0694893A1 (fr) 1996-01-31
ES2133688T3 (es) 1999-09-16
DE69510135D1 (de) 1999-07-15
FR2723234A1 (fr) 1996-02-02
FR2723234B1 (fr) 1996-10-18

Similar Documents

Publication Publication Date Title
EP0232654B1 (fr) Lecteur pour déclencheur numérique associé à un appareil de coupure de courant
FR2664973A1 (fr) Dispositif de detection de rotation d'un element tournant tel que la turbine d'un compteur d'eau.
FR2541007A1 (fr) Systeme pour controler le fonctionnement de circuits d'entree a une unite centrale de commande et de controle pour des machines et/ou des dispositifs utilisables dans des lignes de production et/ou des lignes d'emballage de produits
WO2003042944A1 (fr) Dispositif de securite filaire pour la detection du vol d'un objet a proteger et procede de fonctionnement.
FR2525006A1 (fr) Detecteur d'intrusion
FR2563352A1 (fr) Appareil d'alarme avec commande a distance du mode de fonctionnement
FR2684785A1 (fr) Dispositif de generation de signalisation sonore pour pietons.
EP0694893B1 (fr) Dispositif de détection d'alarme à boucles de courant, et balise de repérage de sous-zones pour un tel dispositif
EP0335799A1 (fr) Procédés et circuits électroniques pour interroger à distance par fil des récepteurs électriques
EP0705447A1 (fr) Procede et dispositif pour detecter et identifier des cables electriques
EP2678844B1 (fr) Dispositif de déclenchement d' alarme pour un systeme de sécurité et procède d'installation d'un dispositif de déclenchement d' alarme
EP0772851B1 (fr) Dispositif de detection d'incendie comportant un capteur analogique
EP0253709A1 (fr) Installation de surveillance comportant des détecteurs alimentés par une boucle
WO2002048724A1 (fr) Systeme de detection de defaillance d'un câble dans un reseau arborescent
FR2748340A1 (fr) Systeme de surveillance utilisant une centrale d'alarme et au moins un boitier de detection a liaison radio mono-frequence et mono-directionnelle
FR2973546A1 (fr) Dispositif de declenchement d'alarme pour un systeme de securite
EP0098760A2 (fr) Procédé de mise en surveillance d'un site à protéger et installation de surveillance mettant en oeuvre ce procédé
EP0772853B1 (fr) Perfectionnements aux detecteurs d'alarme pour la surveillance de batiments
EP0411234A1 (fr) Système électronique d'autosurveillance
FR2705003A1 (fr) Dispositif de surveillance permanente de l'intégrité d'une ligne téléphonique.
EP0088067A1 (fr) Procédé de télémesure, télésignalisation et télécommande applicable en particulier à la détection d'incendie et d'intrusion et à l'éclairage
FR2651938A1 (fr) Procede de surveillance de l'etat d'au moins un moyen de detection, moyens en vue de la mise en óoeuvre de ce procede et installation de surveillance pourvue de ces moyens.
FR2966963A1 (fr) Installation perfectionnee de securite dotee de blocs autonomes d'alarme sonore
FR3119680A1 (fr) Système de localisation de défaut
BE892272A (fr) Procede de telemesure, telesignalisation et telecommande applicable en particulier a la detection d'incendie et d'intrusion et a l'eclairage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT LU NL

17P Request for examination filed

Effective date: 19960119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORWIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SMYCZ, EUGENIUSZ

Inventor name: LEWINER, JACQUES

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19981016

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT LU NL

REF Corresponds to:

Ref document number: 69510135

Country of ref document: DE

Date of ref document: 19990715

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990723

ITF It: translation for a ep patent filed

Owner name: UFFICIO TECNICO ING. A. MANNUCCI

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2133688

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000706

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000711

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000721

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000801

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010727

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

BERE Be: lapsed

Owner name: ORWIN

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010727

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050727