EP0688902A1 - Continuous measuring method of the resistance to lateral displacement of a railway track - Google Patents

Continuous measuring method of the resistance to lateral displacement of a railway track Download PDF

Info

Publication number
EP0688902A1
EP0688902A1 EP95890093A EP95890093A EP0688902A1 EP 0688902 A1 EP0688902 A1 EP 0688902A1 EP 95890093 A EP95890093 A EP 95890093A EP 95890093 A EP95890093 A EP 95890093A EP 0688902 A1 EP0688902 A1 EP 0688902A1
Authority
EP
European Patent Office
Prior art keywords
track
vibration
vibration exciter
transverse displacement
displacement resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95890093A
Other languages
German (de)
French (fr)
Other versions
EP0688902B1 (en
Inventor
Josef Theurer
Bernhard Dr. Dipl.-Ing. Lichtberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Franz Plasser Bahnbaumaschinen Industrie GmbH
Original Assignee
Franz Plasser Bahnbaumaschinen Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Franz Plasser Bahnbaumaschinen Industrie GmbH filed Critical Franz Plasser Bahnbaumaschinen Industrie GmbH
Publication of EP0688902A1 publication Critical patent/EP0688902A1/en
Application granted granted Critical
Publication of EP0688902B1 publication Critical patent/EP0688902B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a method for the continuous measurement of the transverse displacement resistance of a track, the track being set into horizontal vibrations running transverse to the longitudinal direction of the track with the aid of a vibration exciter, and to a measuring device and a track stabilizer for carrying out the method.
  • a continuously movable track construction machine in which a track tamping machine is connected to a stabilizing or vibrating unit arranged on its own machine frame.
  • the latter can also be designed to be movable independently and can be used independently of other track construction machines.
  • this - also known as a dynamic track stabilizer the track stability and thus above all the lateral resistance of a track with a loose ballast bed loosened as a result of tamping or the like can be improved considerably by the artificially self-resulting ballast bed compaction due to the traffic load in a relatively large period of time anticipating a single work passage.
  • both rails are gripped by rolling tools of the stabilization unit and the track grating is set into horizontal vibrations running transversely to the machine longitudinal direction by means of a hydraulically actuated vibration exciter.
  • the quality of the ballast bed compaction can be derived from the size of the transverse displacement resistance (QVW), which determines the lateral positional stability of the Track determined.
  • QVW transverse displacement resistance
  • This QVW is usually measured separately from the use of track construction machines. For example, an article in the magazine "Transport International", June 1981, pages 3-6, describes such a measurement, which is carried out on individual sleepers of a track. The respective rail fastening means are first removed and the end face of a sleeper is exposed, after which the measuring device consisting of a hydraulic cylinder is attached to the sleeper head and the sleeper is slightly shifted in its longitudinal direction. Based on the force acting on the threshold and the displacement, conclusions are drawn about the QVW. This type of measurement requires a lot of work and can only be used on a random basis.
  • the object of the present invention is to create a method of the type described in the introduction, in which the measurement results enable a reliable statement about the transverse displacement resistance without impairing the track position.
  • This object is achieved according to the invention with a method of the generic type in that the power required for the operation of the vibration exciter is registered as a measured value correlating to the transverse displacement resistance.
  • This process step is based on the knowledge that the power to be applied by the vibration exciter for the track oscillation or the energy transferred into the track is related to the transverse displacement resistance counteracting the track oscillation. If, for example, factors influencing the vibration power, such as vibration frequency, vibration amplitude and static load, are kept constant, the power required for the vibration exciter can be directly applied to the QVW be inferred.
  • This process has the particular economic advantage that a QVW measurement can be carried out without an additional process step, even in conjunction with track stabilization, for artificially anticipating the initial setting of a track. In connection with the track stabilization that concludes the track position correction work, there is a reliable and documentable statement regarding the transverse shifting resistance that relates to the entire track section and that is advantageous in terms of the importance of the transverse shifting resistance for safety.
  • a machine 1 shown in FIG. 1, referred to as a track stabilizer, has an elongated machine frame 2, which is supported on rails 4 of a track 5 via rail carriages 3.
  • a travel drive 6 is assigned to each rail bogie 3, while a further hydrodynamic travel drive 7 is provided for the transfer run. All the drives of the machine 1 are acted upon by a central energy supply device 8 and a hydraulic unit 9 of a hydraulic system 10.
  • Cabins arranged at the end contain operating and control devices 11 both for the forward movement of the machine 1 and for the use of two in the middle between the rail carriages 3 the oscillating or stabilizing units 12 connected to the machine frame 2 and arranged one behind the other in the longitudinal direction of the track.
  • flanged wheels 13 and pivotable roller plates 14 These have tools consisting of flanged wheels 13 and pivotable roller plates 14.
  • the flanged rollers 13 can be pressed against the inside of the rails 4 in the transverse direction of the track by means of spreading drives (not shown in more detail) and can be subjected to approximately horizontal vibrations running transversely to the machine longitudinal direction by means of their own vibration exciter 21 connected to the vibration unit 12.
  • Vertical height adjustment drives 15 articulated on the machine frame 2 and designed as hydraulic cylinders serve to transmit a static load onto the track 5.
  • the track lowering which can be achieved in connection with the track vibration is controlled by means of a leveling reference system 16 which, as a measuring basis, a wire chord 17 stretched between the rail carriages 3 has 4 per rail.
  • a height-adjustable sensing element 18 designed as a flanged roller is guided between the two vibrating units 12 on the track 5 and carries, per rail 4, a height sensor 19 which interacts with the respective wire chord 17.
  • Each vibration unit 12 is assigned a measuring device 20, for example designed as an acceleration sensor, in order to thereby detect the vibration amplitudes generated by the vibration exciter 21.
  • Another measuring device 22 is used to detect the oscillation frequency of the vibration exciter 21.
  • Each height adjustment drive 15 is assigned a pressure transmitter 23 for detecting the static load acting on the track 5.
  • a further pressure transmitter 24 is in each case between a hydraulic pump 25 (FIG. 2) and the vibration exciter 21 for detecting the operating pressure which acts on the vibration exciter 21 intended.
  • Additional measuring devices 26, 27 are used to record the speed of travel or working speed of the machine 1 or to determine the distance traveled. All measuring devices and pressure transmitters are connected to a computing unit 28 and a recording device 29.
  • the already mentioned pressure transmitter 24 is shown in the hydraulic circuit diagram according to FIG. 2 and is provided for detecting the operating pressure between the hydraulic pump 25 and the vibration exciter 21 which can be acted upon by a hydraulic motor 30.
  • Fig. 3 the structure of the measuring device for determining the transverse displacement resistance is shown schematically.
  • the lateral acceleration a [m / s2] is detected by the measuring device 20.
  • the oscillation amplitude xitude is finally fed to the computing unit 28 via the double integration.
  • F denotes the oscillation frequency, which is also fed to the computing unit 28.
  • the static load F v is determined separately for both the left and the right height adjustment drive 15.
  • the pressure transmitter 24 the operating or filling pressure p p required to act on the vibration exciter 21 is passed on to the computing unit 28.
  • the path covered by the machine 1 with respect to a fixed point is registered by the measuring device 27, so that the transverse displacement resistance determined can in each case be assigned precisely to the track sections.
  • the action on the transverse displacement resistance which is dependent on the right of way speed can be registered or taken into account.
  • the value In order that the influence on the QVW due to a fluctuating vertical load or static load (during the use of a track stabilizer to lower the track 5 into the desired position) is eliminated, the value must still be standardized, for example, to 100 kN vertical load (QVW100).
  • the adjustment angle of the hydraulic pump is not changed to maintain a constant stroke volume.
  • the absolute value of the QVW can be measured.
  • the qualitative behavior of the QVW can be measured in any case during the stabilization process (lowering the track to the desired position).
  • the QVW measurement can optionally be carried out together with a controlled lowering of the track 5 to the desired target position (track stabilization) or in a separate test run, in which the Track 5 that has already been stabilized is not lowered under a correspondingly minimal loading of the height adjustment drives 15, but is only set in horizontal transverse vibrations.
  • other energy systems for example electrical energy, can also be used to act on the vibration exciter 21.
  • the change in current is to be used as the measured value correlating to the QVW.

Landscapes

  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The measuring system uses an oscillation generator (21) for causing the tested rail track to oscillate in a horizontal direction, transverse to the track longitudinal direction, with measurement of the operating power for the oscillation generator, as an indication of the transverse displacement resistance of the track. Pref. the pressure of the hydraulic operating fluid used to drive the oscillation generator is measured as an indication of the transverse displacement resistance of the track, pref. with auxiliary measurement of the oscillation frequency and/or amplitude, the vertical loading force acting on the oscillation device (12) and/or the displacement rate of the track testing machine. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Messung des Querverschiebewiderstandes eines Gleises, wobei das Gleis mit Hilfe eines Schwingungserregers in horizontale, quer zur Gleislängsrichtung verlaufende Schwingungen versetzt wird, sowie eine Meßvorrichtung und einen Gleisstabilisator zur Durchführung des Verfahrens.The invention relates to a method for the continuous measurement of the transverse displacement resistance of a track, the track being set into horizontal vibrations running transverse to the longitudinal direction of the track with the aid of a vibration exciter, and to a measuring device and a track stabilizer for carrying out the method.

Es ist gemäß AT 380 280 B bereits eine kontinuierlich verfahrbare Gleisbaumaschine bekannt, bei der eine Gleisstopfmaschine mit einem auf einem eigenen Maschinenrahmen angeordneten Stabilisations- bzw. Schwingaggregat verbunden ist. Letzteres kann auch selbständig verfahrbar ausgebildet werden und unabhängig von anderen Gleisbaumaschinen zum Einsatz kommen. Mit dieser - auch als dynamischer Gleisstabilisator bezeichneten - Gleisbaumaschine ist die Lagefestigkeit und damit vor allem der Querverschiebewiderstand eines Gleises mit einer infolge einer Unterstopfung oder dergleichen gelockerten Schotterbettung erheblich verbesserbar, indem die durch die Verkehrsbelastung in einem relativ großem Zeitraum sich von selbst ergebende Schotterbettverdichtung künstlich in einer einzigen Arbeitsdurchfahrt vorweggenommen wird. Zu diesem Zweck werden beide Schienen durch Rollwerkzeuge des Stabilisationsaggregates erfaßt und der Gleisrost mittels eines hydraulisch beaufschlagbaren Schwingungserregers in horizontale, quer zur Maschinenlängsrichtung verlaufende Schwingungen versetzt.According to AT 380 280 B, a continuously movable track construction machine is already known, in which a track tamping machine is connected to a stabilizing or vibrating unit arranged on its own machine frame. The latter can also be designed to be movable independently and can be used independently of other track construction machines. With this - also known as a dynamic track stabilizer - the track stability and thus above all the lateral resistance of a track with a loose ballast bed loosened as a result of tamping or the like can be improved considerably by the artificially self-resulting ballast bed compaction due to the traffic load in a relatively large period of time anticipating a single work passage. For this purpose, both rails are gripped by rolling tools of the stabilization unit and the track grating is set into horizontal vibrations running transversely to the machine longitudinal direction by means of a hydraulically actuated vibration exciter.

Gleichzeitig wird durch am Maschinenrahmen befestigte, vertikale Antriebe eine statische Auflast auf das Stabilisationsaggregat bzw. das Gleis aufgebracht und dieses in die Schotterbettung gleichsam eingerieben, wodurch diese verdichtet und das Gleis entsprechend in eine Soll-Lage abgesenkt wird. Daraus resultiert neben einer dauerhaften und gleichmäßig elastischen Schotterbettung auch eine Erhöhung des durch die Reibung zwischen Schwelle und Schotter bestimmten Querverschiebewiderstandes.At the same time, vertical drives attached to the machine frame apply a static load to the stabilization unit or the track and, as it were, rub it into the ballast bedding, thereby compacting it and lowering the track accordingly to a desired position. In addition to permanent and evenly elastic ballast bedding, this also results in an increase in the lateral displacement resistance determined by the friction between the sleeper and ballast.

Die Qualität der Schotterbettverdichtung läßt sich aus der Größe des Querverschiebewiderstandes (QVW) ableiten, der die seitliche Lagestabilität des Gleises bestimmt. Die Messung dieses QVW erfolgt üblicherweise getrennt vom Einsatz der Gleisbaumaschinen. Ein Artikel in der Zeitschrift "Transport International", Juni 1981, Seiten 3-6, beschreibt beispielsweise eine solche Messung, die an einzelnen Schwellen eines Gleises vorgenommen wird. Dabei werden zunächst die jeweiligen Schienenbefestigungsmittel entfernt und die Stirnseite einer Schwelle freigelegt, wonach die aus einem Hydraulikzylinder bestehende Meßeinrichtung an den Schwellenkopf angesetzt und die Schwelle in ihrer Längsrichtung geringfügig verschoben wird. Aufgrund der auf die Schwelle einwirkenden Kraft und des Verschiebeweges werden Rückschlüsse auf den QVW gezogen. Diese Art der Messung erfordert beträchtlichen Arbeitsaufwand und kann überdies nur stichprobenweise eingesetzt werden.The quality of the ballast bed compaction can be derived from the size of the transverse displacement resistance (QVW), which determines the lateral positional stability of the Track determined. This QVW is usually measured separately from the use of track construction machines. For example, an article in the magazine "Transport International", June 1981, pages 3-6, describes such a measurement, which is carried out on individual sleepers of a track. The respective rail fastening means are first removed and the end face of a sleeper is exposed, after which the measuring device consisting of a hydraulic cylinder is attached to the sleeper head and the sleeper is slightly shifted in its longitudinal direction. Based on the force acting on the threshold and the displacement, conclusions are drawn about the QVW. This type of measurement requires a lot of work and can only be used on a random basis.

Schließlich ist es noch durch die US 5 127 333 bekannt, eine Meßvorrichtung zur Messung der Schwingungsamplitude des Stabilisationsaggregates vorzusehen, um damit auf den Querverschiebewiderstand rückschließen zu können.Finally, it is also known from US Pat. No. 5,127,333 to provide a measuring device for measuring the oscillation amplitude of the stabilization unit in order to be able to draw conclusions about the transverse displacement resistance.

Die Aufgabe der vorliegenden Erfindung liegt nun in der Schaffung eines Verfahrens der eingangs beschriebenen Art, bei dem die Meßergebnisse ohne Beeinträchtigung der Gleislage eine zuverlässige Aussage über den Querverschiebewiderstand ermöglichen.The object of the present invention is to create a method of the type described in the introduction, in which the measurement results enable a reliable statement about the transverse displacement resistance without impairing the track position.

Diese Aufgabe wird erfindungsgemäß mit einem Verfahren der gattungsgemäßen Art dadurch gelöst, daß die für den Betrieb des Schwingungserregers erforderliche Leistung als zum Querverschiebewiderstand korrelierender Meßwert registriert wird.This object is achieved according to the invention with a method of the generic type in that the power required for the operation of the vibration exciter is registered as a measured value correlating to the transverse displacement resistance.

Diesem Verfahrensschritt liegt die Erkenntnis zugrunde, daß die durch den Schwingungserreger für die Gleisschwingung aufzubringende Leistung bzw. in das Gleis übertragene Energie in Zusammenhang mit dem der Gleisschwingung entgegenwirkenden Querverschiebewiderstand steht. Werden beispielsweise die Schwingleistung beeinflussende Faktoren, wie Schwingfrequenz, Schwingamplitude und statische Auflast, konstant gehalten, kann aus der für den Schwingungserreger erforderlichen Leistung direkt auf den QVW rückgeschlossen werden. Dieses Verfahren hat den wirtschaftlich besonderen Vorteil, daß eine QVW-Messung ohne einen zusätzlichen Verfahrensschritt auch in Verbindung mit einer Gleisstabilisation zur künstlichen Vorwegnahme der Anfangssetzungen eines Gleises durchführbar ist. Damit liegt in Verbindung mit der die Gleislagekorrekturarbeiten abschließenden Gleisstabilisation eine den gesamten Gleisabschnitt betreffende zuverlässige und - in Hinsicht auf die Bedeutung des Querverschiebewiderstandes für die Sicherheit in vorteilhafter Weise - dokumentierbare Aussage über den Querverschiebewiderstand vor.This process step is based on the knowledge that the power to be applied by the vibration exciter for the track oscillation or the energy transferred into the track is related to the transverse displacement resistance counteracting the track oscillation. If, for example, factors influencing the vibration power, such as vibration frequency, vibration amplitude and static load, are kept constant, the power required for the vibration exciter can be directly applied to the QVW be inferred. This process has the particular economic advantage that a QVW measurement can be carried out without an additional process step, even in conjunction with track stabilization, for artificially anticipating the initial setting of a track. In connection with the track stabilization that concludes the track position correction work, there is a reliable and documentable statement regarding the transverse shifting resistance that relates to the entire track section and that is advantageous in terms of the importance of the transverse shifting resistance for safety.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.Advantageous developments of the invention result from the subclaims.

Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispieles näher beschrieben.The invention is described in more detail below with reference to an embodiment shown in the drawing.

Es zeigen:

  • Fig. 1 eine Seitenansicht einer als Gleisstabilisator bekannten Gleisbaumaschine zur Ermittlung des Querverschiebewiderstandes in Verbindung mit einer kontrollierten Gleisabsenkung,
  • Fig. 2 einen Teil eines Schaltplanes für das Hydrauliksystem zur Beaufschlagung des Schwingungserregers, und
  • Fig. 3 eine vereinfachte Schemazeichnung bezüglich verschiedener Meßvorrichtungen zur Ermittlung des Querverschiebewiderstandes.
Show it:
  • 1 is a side view of a track construction machine known as a track stabilizer for determining the transverse displacement resistance in connection with a controlled track lowering,
  • Fig. 2 shows a part of a circuit diagram for the hydraulic system for acting on the vibration exciter, and
  • Fig. 3 is a simplified schematic drawing with respect to various measuring devices for determining the transverse displacement resistance.

Eine in Fig. 1 dargestellte, als Gleisstabilisator bezeichnete Maschine 1 weist einen langgestreckten Maschinenrahmen 2 auf, der sich über Schienenfahrwerke 3 auf Schienen 4 eines Gleises 5 abstützt. Für die kontinuierliche Arbeitsvorfahrt der als Regelfahrzeug ausgebildeten Maschine 1 ist jedem Schienenfahrwerk 3 ein Fahrantrieb 6 zugeordnet, während ein weiterer hydrodynamischer Fahrantrieb 7 für die Überstellfahrt vorgesehen ist. Die Beaufschlagung sämtlicher Antriebe der Maschine 1 erfolgt durch eine zentrale Energieversorgungseinrichtung 8 und ein Hydraulikaggregat 9 eines Hydrauliksystems 10. Endseitig angeordnete Fahrkabinen beinhalten Bedienungs- und Steuereinrichtungen 11 sowohl für die Vorfahrt der Maschine 1 als auch für den Arbeitseinsatz von zwei mittig zwischen den Schienenfahrwerken 3 mit dem Maschinenrahmen 2 verbundenen und in Gleislängsrichtung hintereinander angeordneten Schwing- bzw. Stabilisationsaggregaten 12. Diese weisen aus Spurkranzrollen 13 und verschwenkbaren Rollentellern 14 bestehende Werkzeuge auf. Die Spurkranzrollen 13 sind über nicht näher dargestellte Spreizantriebe in Gleisquerrichtung an die Innenseiten der Schienen 4 anpreßbar und mittels eines eigenen, mit dem Schwingaggregat 12 verbundenen Schwingungserregers 21 mit etwa horizontalen, quer zur Maschinenlängsrichtung verlaufenden Schwingungen beaufschlagbar. Vertikale, am Maschinenrahmen 2 angelenkte und als Hydraulikzylinder ausgebildete Höhenverstellantriebe 15 dienen zur Übertragung einer statischen Auflast auf das Gleis 5. Die damit in Verbindung mit der Gleisschwingung erzielbare Gleisabsenkung wird anhand eines Nivellierbezugsystems 16 gesteuert, welche als Meßbasis eine zwischen den Schienenfahrwerken 3 gespannte Drahtsehne 17 pro Schiene 4 aufweist. Ein höhenverstellbares, als Spurkranzrolle ausgebildetes Tastorgan 18 wird zwischen den beiden Schwingaggregaten 12 auf dem Gleis 5 geführt und trägt je Schiene 4 einen mit der jeweiligen Drahtsehne 17 zusammenwirkenden Höhenmeßfühler 19.A machine 1 shown in FIG. 1, referred to as a track stabilizer, has an elongated machine frame 2, which is supported on rails 4 of a track 5 via rail carriages 3. For the continuous work priority of the machine 1 designed as a control vehicle a travel drive 6 is assigned to each rail bogie 3, while a further hydrodynamic travel drive 7 is provided for the transfer run. All the drives of the machine 1 are acted upon by a central energy supply device 8 and a hydraulic unit 9 of a hydraulic system 10. Cabins arranged at the end contain operating and control devices 11 both for the forward movement of the machine 1 and for the use of two in the middle between the rail carriages 3 the oscillating or stabilizing units 12 connected to the machine frame 2 and arranged one behind the other in the longitudinal direction of the track. These have tools consisting of flanged wheels 13 and pivotable roller plates 14. The flanged rollers 13 can be pressed against the inside of the rails 4 in the transverse direction of the track by means of spreading drives (not shown in more detail) and can be subjected to approximately horizontal vibrations running transversely to the machine longitudinal direction by means of their own vibration exciter 21 connected to the vibration unit 12. Vertical height adjustment drives 15 articulated on the machine frame 2 and designed as hydraulic cylinders serve to transmit a static load onto the track 5. The track lowering which can be achieved in connection with the track vibration is controlled by means of a leveling reference system 16 which, as a measuring basis, a wire chord 17 stretched between the rail carriages 3 has 4 per rail. A height-adjustable sensing element 18 designed as a flanged roller is guided between the two vibrating units 12 on the track 5 and carries, per rail 4, a height sensor 19 which interacts with the respective wire chord 17.

Jedem Schwingaggregat 12 ist eine beispielsweise als Beschleunigungsaufnehmer ausgebildete Meßvorrichtung 20 zugeordnet, um damit die vom Schwingungserreger 21 erzeugten Schwingamplituden zu erfassen. Eine weitere Meßvorrichtung 22 dient zum Erfassen der Schwingfrequenz des Schwingungserregers 21. Jedem Höhenverstellantrieb 15 ist ein Druckgeber 23 zum Erfassen der auf das Gleis 5 einwirkenden statischen Auflast zugeordnet. Ein weiterer Druckgeber 24 ist jeweils zwischen einer Hydraulikpumpe 25 (Fig. 2) und dem Schwingungserreger 21 zur Erfassung des zur Beaufschlagung des Schwingungserregers 21 dienenden Betriebsdruckes vorgesehen. Weitere Meßvorrichtungen 26,27 dienen zum Erfassen der Vorfahrt- bzw. Arbeitsgeschwindigkeit der Maschine 1 bzw. zur Ermittlung der zurückgelegten Wegstrecke. Sämtliche Meßvorrichtungen und Druckgeber sind mit einer Recheneinheit 28 und einer Aufzeichnungseinrichtung 29 verbunden.Each vibration unit 12 is assigned a measuring device 20, for example designed as an acceleration sensor, in order to thereby detect the vibration amplitudes generated by the vibration exciter 21. Another measuring device 22 is used to detect the oscillation frequency of the vibration exciter 21. Each height adjustment drive 15 is assigned a pressure transmitter 23 for detecting the static load acting on the track 5. A further pressure transmitter 24 is in each case between a hydraulic pump 25 (FIG. 2) and the vibration exciter 21 for detecting the operating pressure which acts on the vibration exciter 21 intended. Additional measuring devices 26, 27 are used to record the speed of travel or working speed of the machine 1 or to determine the distance traveled. All measuring devices and pressure transmitters are connected to a computing unit 28 and a recording device 29.

Im Hydraulik-Schaltplan gemäß Fig. 2 ist der bereits erwähnte Druckgeber 24 dargestellt, der zur Erfassung des Betriebsdruckes zwischen der Hydraulikpumpe 25 und dem durch einen Hydromotor 30 beaufschlagbaren Schwingungserreger 21 vorgesehen ist.The already mentioned pressure transmitter 24 is shown in the hydraulic circuit diagram according to FIG. 2 and is provided for detecting the operating pressure between the hydraulic pump 25 and the vibration exciter 21 which can be acted upon by a hydraulic motor 30.

In Fig. 3 ist der Aufbau der Meßeinrichtung zur Ermittlung des Querverschiebewiderstandes schematisch dargestellt. Durch die Meßvorrichtung 20 wird die Querbeschleunigung a [m/s²] erfaßt. Über die doppelte Integration wird schließlich die Schwingamplitude x₀ der Recheneinheit 28 zugeführt. Mit f ist die Schwingfrequenz bezeichnet, die ebenfalls der Recheneinheit 28 zugeführt wird. Die statische Auflast Fv wird sowohl für den linken als auch den rechten Höhenverstellantrieb 15 gesondert ermittelt. Mit dem Druckgeber 24 wird der zur Beaufschlagung des Schwingungserregers 21 erforderliche Betriebs- oder Fülldruck pp an die Recheneinheit 28 weitergegeben. Durch die Meßvorrichtung 27 wird der von der Maschine 1 in bezug auf einen Festpunkt zurückgelegte Weg registriert, so daß der ermittelte Querverschiebewiderstand jeweils den Gleisabschnitten örtlich genau zugeordnet werden kann. Mit der von der Meßvorrichtung 26 erfaßten Geschwindigkeit der Maschine 1 kann die von der Vorfahrtgeschwindigkeit abhängige Einwirkung auf den Querverschiebewiderstand registriert bzw. berücksichtigt werden.In Fig. 3, the structure of the measuring device for determining the transverse displacement resistance is shown schematically. The lateral acceleration a [m / s²] is detected by the measuring device 20. The oscillation amplitude xitude is finally fed to the computing unit 28 via the double integration. F denotes the oscillation frequency, which is also fed to the computing unit 28. The static load F v is determined separately for both the left and the right height adjustment drive 15. With the pressure transmitter 24, the operating or filling pressure p p required to act on the vibration exciter 21 is passed on to the computing unit 28. The path covered by the machine 1 with respect to a fixed point is registered by the measuring device 27, so that the transverse displacement resistance determined can in each case be assigned precisely to the track sections. With the speed of the machine 1 detected by the measuring device 26, the action on the transverse displacement resistance which is dependent on the right of way speed can be registered or taken into account.

Für den im folgenden angeführten theoretischen Hintergrund zur Ermittlung des Querverschiebewiderstandes QVW werden folgende Symbole verwendet:

µ
Reibwert Schotterbett, Schwelle
dt
Zeitdifferential
dW
Energiedifferential
f
Schwingfrequenz
Fv
statische Auflast bzw. Vertikalkraft
k₀
Koeffizient
kv
Koeffizient
k'₀
Koeffizient
k'v
Koeffizient
np
Drehzahl Schwingaggregat 12
Pab
abgeführte Leistung
PDGS
Schwingleistung des Schwingaggregates 12
Pg
Schwingleistung Gleisrost und Schotter
pp
Betriebsdruck zur Beaufschlagung des Schwingungserregers 21
Pr
Reibleistung
Prot
Rotationsleistungsanteil
Pzu
zugeführte Leistung
Qp
Förderleistung Hydraulikpumpe 25
QVW
Querverschiebewiderstand
QVW₁₀₀
normierter Querverschiebewiderstand (Auflast 100kN)
t
Zeit
Vp
Füllvolumen der Hydraulikpumpe 25
x₀
Schwingamplitude des Schwingaggregates 12
kN
Kilonewton
The following symbols are used for the theoretical background given below for determining the transverse displacement resistance QVW:
µ
Coefficient of friction ballast bed, threshold
German
Time differential
dW
Energy differential
f
Vibration frequency
F v
static load or vertical force
k₀
coefficient
k v
coefficient
k'₀
coefficient
k ' v
coefficient
n p
Vibration unit speed 12
P down
dissipated performance
P DGS
Vibration performance of the vibration unit 12
P g
Vibration performance track grate and ballast
p p
Operating pressure to apply vibration exciter 21
P r
Friction power
P red
Rotational power share
P to
supplied power
Q p
Delivery rate hydraulic pump 25
QVW
Lateral displacement resistance
QVW₁₀₀
standardized transverse displacement resistance (load 100kN)
t
time
V p
Filling volume of the hydraulic pump 25
x₀
Vibration amplitude of the vibration unit 12
kN
Kilonewtons

Zur Erläuterung des theoretischen Hintergrundes für die Ermittlung des Querverschiebewiderstandes werden folgende Gleichungen angeführt:The following equations are given to explain the theoretical background for the determination of the transverse displacement resistance:

In das Gleis 5 übertragene Reibleistung (Pr): P r = dW dt = F · ν = F ν · µ · x ₀ · 2π f · cos(2π ft ) = = F ν · µ · x ₀ · 2π f · 2 π = F ν · µ · x ₀ · 4 f = QVW · x ₀ · 4 f

Figure imgb0001
Friction power (P r ) transferred to track 5: P r = dW German = F · Ν = F ν · Μ · x ₀2π f · Cos (2π ft ) = = F ν · Μ · x ₀2π f · 2nd π = F ν · Μ · x ₀4 f = QVW · x ₀4 f
Figure imgb0001

Zugeführte Leistung (Pzu): P zu = Q p · p p = V p · n p · p p = V p · f · p p

Figure imgb0002
Input power (P to ): P to = Q p · p p = V p · n p · p p = V p · f · p p
Figure imgb0002

Konstante abgeführte Leistung (Pab): P ab = P DGS + P g + P rot

Figure imgb0003
Constant dissipated power (P ab ): P from = P DGS + P G + P red
Figure imgb0003

Die QVW-Beziehung ergibt sich aus folgendem Leistungsgleichgewicht: P zu = V p · f · p p = P r + P ab = QVW · x ₀ · 4 f · P ab

Figure imgb0004
The QVW relationship results from the following performance balance: P to = V p · f · p p = P r + P from = QVW · x ₀4 f · P from
Figure imgb0004

Damit der Einfluß auf den QVW durch eine (während des Arbeitseinsatzes eines Gleisstabilisators zur Absenkung des Gleises 5 in die Soll-Lage) schwankende Vertikalbelastung bzw. statische Auflast wegfällt, muß der Wert noch z.B. auf 100kN vertikale Auflast (QVW₁₀₀) normiert werden. Der Verstellwinkel der Hydraulikpumpe wird zur Aufrechterhaltung eines konstanten Hubvolumens nicht verändert. (Alternativ wäre auch eine Änderung des Hubvolumens möglich; in diesem Fall müßte allerdings die Änderung erfaßt und in die Leistungsmessung miteinbezogen werden.) QVW ₁₀₀ = V p · p p x · F ν 100 - P ab x ₀· f · F ν 100 = k ν · F ν · p p x - k ₀ · F ν x ₀· f

Figure imgb0005
In order that the influence on the QVW due to a fluctuating vertical load or static load (during the use of a track stabilizer to lower the track 5 into the desired position) is eliminated, the value must still be standardized, for example, to 100 kN vertical load (QVW₁₀₀). The adjustment angle of the hydraulic pump is not changed to maintain a constant stroke volume. (Alternatively, a change in the stroke volume would also be possible; in this case, however, the change would have to be recorded and included in the power measurement.) QVW ₁₀₀ = V p · p p 4 x · F ν 100 - P from 4 x ₀ · f · F ν 100 = k ν · F ν · p p x - k ₀ · F ν x ₀ · f
Figure imgb0005

Bei konstanten Werten für die Schwingamplitude x₀, die Schwingfrequenz f und die statische Auflast Fv ergibt sich folgende Beziehung: QVW ₁₀₀ = k ν ' · p p - k 0 '

Figure imgb0006
With constant values for the vibration amplitude x₀, the vibration frequency f and the static load F v , the following relationship results: QVW ₁₀₀ = k ν ' · p p - k 0 '
Figure imgb0006

Wie den Gleichungen zu entnehmen ist, läßt sich prinzipiell sogar der Absolutwert des QVW messen. Darüber hinaus läßt sich in jedem Fall das qualitative Verhalten des QVW während des Stabilisiervorganges (Gleisabsenkung in die Soll-Lage) messen.As can be seen from the equations, in principle the absolute value of the QVW can be measured. In addition, the qualitative behavior of the QVW can be measured in any case during the stabilization process (lowering the track to the desired position).

Die QVW-Messung kann wahlweise gemeinsam mit einer kontrollierten Absenkung des Gleises 5 in die gewünschte Soll-Lage (Gleisstabilisation) oder aber auch in einer eigenen Meßfahrt durchgeführt werden, bei der das bereits stabilisierte Gleis 5 unter entsprechend minimaler Beaufschlagung der Höhenverstellantriebe 15 nicht abgesenkt, sondern lediglich in horizontale Querschwingungen versetzt wird. Selbstverständlich sind anstelle des beschriebenen Hydrauliksystems auch andere Energiesysteme, beispielsweise elektrische Energie, zur Beaufschlagung des Schwingungserregers 21 einsetzbar. In diesem Fall ist dann die Stromänderung als zum QVW korrelierender Meßwert heranzuziehen.The QVW measurement can optionally be carried out together with a controlled lowering of the track 5 to the desired target position (track stabilization) or in a separate test run, in which the Track 5 that has already been stabilized is not lowered under a correspondingly minimal loading of the height adjustment drives 15, but is only set in horizontal transverse vibrations. Of course, instead of the hydraulic system described, other energy systems, for example electrical energy, can also be used to act on the vibration exciter 21. In this case, the change in current is to be used as the measured value correlating to the QVW.

Claims (9)

Verfahren zur kontinuierlichen Messung des Querverschiebewiderstandes eines Gleises, wobei das Gleis mit Hilfe eines Schwingungserregers (21) in horizontale, quer zur Gleislängsrichtung verlaufende Schwingungen versetzt wird, dadurch gekennzeichnet, daß die für den Betrieb des Schwingungserregers (21) erforderliche Leistung als zum Querverschiebewiderstand korrelierender Meßwert registriert wird.A method for the continuous measurement of the transverse displacement resistance of a track, the track being set in a horizontal vibration transverse to the longitudinal direction of the track with the aid of a vibration exciter (21), characterized in that the power required for the operation of the vibration exciter (21) is a measured value correlating to the transverse displacement resistance is registered. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein zur hydraulischen Beaufschlagung des Schwingungserregers (21) erforderlicher Betriebsdruck (pp) als zum Querverschiebewiderstand korrelierender Meßwert registriert wird.Method according to Claim 1, characterized in that an operating pressure (p p ) required for the hydraulic application of the vibration exciter (21) is registered as a measured value which correlates with the transverse displacement resistance. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zusätzlich zum Betriebsdruck (pp) wenigstens ein weiterer Meßwert aus der Gruppe: a) Schwingfrequenz (f) des Schwingungserregers (21), b) Schwingamplitude (x₀), c) in vertikaler Richtung auf das Schwingaggregat (12) einwirkende Auflast (Fv), und d) Vorfahrtgeschwindigkeit der Maschine registriert wird. Method according to Claim 1 or 2, characterized in that, in addition to the operating pressure (p p ), at least one further measured value from the group: a) vibration frequency (f) of the vibration exciter (21), b) vibration amplitude (x₀), c) in the vertical direction on the vibrating unit (12) acting load (F v ), and d) the machine's forward speed is registered. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß zur Ermittlung des Querverschiebewiderstandes die Meßwerte: Betriebsdruck (pp), Schwingfrequenz (f), Schwingamplitude (x₀) und vertikale Auflast (Fv) einer Recheneinheit (28) zugeführt und unter der mathematischen Beziehung k ν · F ν · p p x - k ₀ · F ν x ₀· f
Figure imgb0007
miteinander verknüpft werden.
Method according to Claim 3, characterized in that, in order to determine the transverse displacement resistance, the measured values: operating pressure (p p ), vibration frequency (f), vibration amplitude (x₀) and vertical load (F v ) are fed to a computing unit (28) and under the mathematical relationship k ν · F ν · p p x - k ₀ · F ν x ₀ · f
Figure imgb0007
be linked together.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Querverschiebewiderstand unter Annahme konstanter Meßwerte bezüglich Schwingamplitude (x₀) und Schwingfrequenz (f) für eine konstante vertikale Auflast ( F ν 100
Figure imgb0008
) normiert wird.
Method according to one of claims 1 to 4, characterized in that the transverse displacement resistance assuming constant measured values with regard to the vibration amplitude (x₀) and vibration frequency (f) for a constant vertical load ( F ν 100
Figure imgb0008
) is standardized.
Meßvorrichtung zum kontinuierlichen Ermitteln des Querverschiebewiderstandes eines Gleises mit einem am Gleis abrollbaren, einen Schwingungserreger (21) aufweisenden Schwingaggregat (12), das wahlweise durch verstellbare Werkzeuge in eine formschlüssige Verbindung mit Schienen des Gleises bringbar ist, wobei der mit einem Maschinenrahmen (2) verbundene Schwingungserreger (21) durch eine Hydraulikpumpe (25) eines Hydrauliksystems (10) beaufschlagbar ist, zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß dem Hydrauliksystem (10) ein Druckgeber (24) zur Erfassung des zur Beaufschlagung des Schwingungserregers (21) erforderlichen Betriebsdruckes (pp) zugeordnet ist.Measuring device for the continuous determination of the transverse displacement resistance of a track with a vibrating unit (12) that can be rolled off the track and has a vibration exciter (21), which can optionally be brought into a form-fitting connection with rails of the track by means of adjustable tools, the one being connected to a machine frame (2) Vibration exciter (21) can be acted upon by a hydraulic pump (25) of a hydraulic system (10) for carrying out the method according to claim 1, characterized in that the hydraulic system (10) has a pressure transmitter (24) for detecting the pressure applied to the vibration exciter (21). required operating pressure (p p ) is assigned. Meßvorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß zwischen Maschinenrahmen (2) und Schwingaggregat (12) vorgesehenen hydraulischen Höhenverstellantrieben (15) jeweils ein Druckgeber (23) zur Registrierung der vertikalen Auflast (Fv) zugeordnet ist.Measuring device according to claim 6, characterized in that between the hydraulic frame adjustment drives (15) provided between the machine frame (2) and the vibrating unit (12), a pressure transmitter (23) is assigned to register the vertical load (F v ). Meßvorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß dem Schwingaggregat (12) eine vorzugsweise aus einem Beschleunigungsaufnehmer gebildete Meßvorrichtung (20) zur Erfassung der Schwingamplitude (x₀) zugeordnet ist.Measuring device according to claim 6 or 7, characterized in that the vibration unit (12) is assigned a measuring device (20), preferably formed from an acceleration sensor, for detecting the vibration amplitude (x₀). Gleisstabilisator (1) zum Absenken eines Gleises in eine Soll-Lage, mit einem auf Schienenfahrwerken (3) abgestützten Maschinenrahmen (2), dem ein durch Höhenverstellantriebe (15) mit dem Maschinenrahmen (2) verbundenes Schwing- bzw. Stabilisationsaggregat (12) mit einem durch eine Hydraulikpumpe (25) beaufschlagbaren Schwingungserreger (21) sowie ein Nivellierbezugsystem (16) zugeordnet ist, zur Durchführung des Verfahrens nach Anspruch 1, gekennzeichnet durch einen dem Schwingungserreger (21) vorgeordneten Druckgeber (24) zur Erfassung des zur Beaufschlagung des Schwingungserregers (21) dienenden Betriebsdruckes (pp) und eine Aufzeichnungseinrichtung (29) zum Aufzeichnen des Betriebsdruckes (pp) bzw. des zu diesem korrelierenden Querverschiebewiderstandes.Track stabilizer (1) for lowering a track to a desired position, with a machine frame (2) supported on rail bogies (3), which is supported by an oscillating or stabilizing unit (12) connected to the machine frame (2) by height adjustment drives (15) is assigned a vibration exciter (21) which can be acted upon by a hydraulic pump (25) and a leveling reference system (16) for carrying out the method according to claim 1, characterized by a pressure transmitter (24) arranged upstream of the vibration exciter (21) for detecting the pressure applied to the vibration exciter ( 21) serving operating pressure (p p ) and a recording device (29) for recording the operating pressure (p p ) or the transverse displacement resistance correlating therewith.
EP95890093A 1994-06-17 1995-05-12 Continuous measuring method of the resistance to lateral displacement of a railway track Expired - Lifetime EP0688902B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT120394 1994-06-17
AT1203/94 1994-06-17
AT120394 1994-06-17

Publications (2)

Publication Number Publication Date
EP0688902A1 true EP0688902A1 (en) 1995-12-27
EP0688902B1 EP0688902B1 (en) 1999-09-22

Family

ID=3508851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95890093A Expired - Lifetime EP0688902B1 (en) 1994-06-17 1995-05-12 Continuous measuring method of the resistance to lateral displacement of a railway track

Country Status (13)

Country Link
US (1) US5591915A (en)
EP (1) EP0688902B1 (en)
JP (1) JP3660716B2 (en)
CN (1) CN1088133C (en)
AT (1) ATE184935T1 (en)
AU (1) AU687185B2 (en)
CA (1) CA2151993C (en)
CZ (1) CZ283590B6 (en)
DE (1) DE59506872D1 (en)
ES (1) ES2139175T3 (en)
PL (1) PL176678B1 (en)
RU (1) RU2105836C1 (en)
SK (1) SK282733B6 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241946A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Track characteristics inspection car
CN101281190B (en) * 2008-04-25 2011-11-23 长安大学 Multifunctional wheel rutting test
EP2770108A1 (en) * 2013-02-22 2014-08-27 System7-Railsupport GmbH Tamping unit for a rail tamping machine
AT517771A1 (en) * 2015-09-23 2017-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Track construction machine and method for operating a power supply system of a track construction machine
AT518195A1 (en) * 2016-01-26 2017-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method for compacting the ballast bed of a track and tamping unit
EP2902546B1 (en) 2014-01-30 2017-10-25 HP3 Real GmbH Device for the compaction of railway ballast
CN107938586A (en) * 2017-12-04 2018-04-20 常州工学院 The automatic formula track that switches tracks is removed obstacles and diagnostic device
WO2022008151A1 (en) * 2020-07-09 2022-01-13 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Machine and method for compacting a ballast bed of a track

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59907764D1 (en) * 1998-03-27 2003-12-24 Plasser Bahnbaumasch Franz Method for track position correction
ES2160030B1 (en) * 1999-01-27 2003-05-01 Maimo Martin Mas PROCEDURE TO CALCULATE THE FORGED RESISTANCE.
CN102173297B (en) * 2011-02-15 2013-07-17 山东申普交通科技有限公司 Railway track displacement error correction detection method
CN102797202B (en) * 2012-08-29 2014-12-10 北京交通大学 Transverse track irregularity detecting method based on observer
CN103866658B (en) * 2012-12-14 2015-11-25 昆明中铁大型养路机械集团有限公司 A kind of positive line switch stablizes car and operational method thereof
CN103063451B (en) * 2012-12-26 2014-07-23 浙江大学 Rail transit train wholly moving load analog loading method and device
CN103452019B (en) * 2013-09-24 2015-10-28 西南交通大学 The testing arrangement of steel rail fastener longitudinal resistance and method
CN104032630A (en) * 2014-06-16 2014-09-10 中南大学 Method for continuously measuring track settlement based on angle transmission
CN104594146B (en) * 2015-01-05 2016-04-20 中国神华能源股份有限公司 Amount of the dialling maintenance process of curve track
CN104652202B (en) * 2015-02-13 2016-08-24 中铁第一勘察设计院集团有限公司 For examining and determine the measurement apparatus of high speed railway track measuring instrument
RU2614744C1 (en) * 2015-09-28 2017-03-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" (ФГБОУ ВО ИрГУПС) Method for stability control of continuous welded rail
CN106289689A (en) * 2016-07-27 2017-01-04 安徽凯达能源科技有限公司 The vibration-testing apparatus of new forms of energy wind power generation assembly
AT520791B1 (en) * 2017-12-21 2020-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method for operating a tamping unit of a track construction machine as well as tamping device for track bed compaction and track construction machine
CN108458863B (en) * 2018-03-22 2023-12-22 中南大学 Rail longitudinal reciprocating loading simulation experiment device
AT521481B1 (en) * 2018-10-24 2020-02-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and device for stabilizing a track
AT521798B1 (en) * 2018-10-24 2021-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and device for compacting a ballast bed
CN110296804B (en) * 2019-07-28 2020-06-09 南京视莱尔汽车电子有限公司 Detection device and detection method for electronic product
JP7360408B2 (en) 2021-02-26 2023-10-12 公益財団法人鉄道総合技術研究所 Track bed lateral resistance test device and track bed lateral resistance test method
CN113212492B (en) * 2021-05-06 2022-07-01 杭州申昊科技股份有限公司 Intelligent rail detection robot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127333A (en) * 1990-02-06 1992-07-07 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Track maintenance machine for compacting ballast

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643583A (en) * 1969-01-21 1972-02-22 Int Harvester Co Blast valve actuator
DE2347951C3 (en) * 1973-09-24 1980-09-11 Franz Plasser Bahnbaumaschinen- Industriegesellschaft Mbh, Wien Mobile track melee vehicle for continuous measurement and recording of the gauge of railway tracks
US4643101A (en) * 1982-11-23 1987-02-17 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile track leveling, lining and tamping machine
AT401398B (en) * 1990-02-06 1996-08-26 Plasser Bahnbaumasch Franz CONTINUOUSLY TRAVELABLE TRACKING MACHINE FOR COMPRESSING THE GRAVEL BED
DE59403690D1 (en) * 1993-03-17 1997-09-18 Plasser Bahnbaumasch Franz Machine for compacting the ballast bedding of a track

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127333A (en) * 1990-02-06 1992-07-07 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Track maintenance machine for compacting ballast

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ESVELD: "Track stiffness measurements using an adapted tamping machine", RAIL INTERNATIONAL, vol. 11, no. 2, BRUXELLES BE, pages 103 - 113 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241946A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Track characteristics inspection car
CN101281190B (en) * 2008-04-25 2011-11-23 长安大学 Multifunctional wheel rutting test
US9957668B2 (en) 2013-02-22 2018-05-01 System 7-Railsupport Gmbh Tamping unit for a track tamping machine
EP2770108A1 (en) * 2013-02-22 2014-08-27 System7-Railsupport GmbH Tamping unit for a rail tamping machine
WO2014127393A1 (en) * 2013-02-22 2014-08-28 System7-Railsupport Gmbh Tamping unit for a track tamping machine
EP2770108B1 (en) 2013-02-22 2021-05-05 HP3 Real GmbH Tamping unit for a rail tamping machine
EP2902546B1 (en) 2014-01-30 2017-10-25 HP3 Real GmbH Device for the compaction of railway ballast
EP2902546B2 (en) 2014-01-30 2020-09-02 HP3 Real GmbH Device for the compaction of railway ballast
AT517771A1 (en) * 2015-09-23 2017-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Track construction machine and method for operating a power supply system of a track construction machine
AT517771B1 (en) * 2015-09-23 2018-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Track construction machine and method for operating a power supply system of a track construction machine
AT518195B1 (en) * 2016-01-26 2017-11-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method for compacting the ballast bed of a track and tamping unit
US10914040B2 (en) 2016-01-26 2021-02-09 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Method for compacting the ballast bed of a track, and tamping unit
AT518195A1 (en) * 2016-01-26 2017-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method for compacting the ballast bed of a track and tamping unit
CN107938586A (en) * 2017-12-04 2018-04-20 常州工学院 The automatic formula track that switches tracks is removed obstacles and diagnostic device
CN107938586B (en) * 2017-12-04 2019-09-10 常州工学院 Automatically the formula track that switches tracks is removed obstacles and diagnostic device
WO2022008151A1 (en) * 2020-07-09 2022-01-13 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Machine and method for compacting a ballast bed of a track
AT523949A1 (en) * 2020-07-09 2022-01-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine and method for compacting a track ballast bed
AT523949B1 (en) * 2020-07-09 2022-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine and method for compacting a track ballast bed

Also Published As

Publication number Publication date
SK79195A3 (en) 1996-01-10
AU2174795A (en) 1996-01-04
JPH082413A (en) 1996-01-09
ES2139175T3 (en) 2000-02-01
CA2151993A1 (en) 1995-12-18
CN1114994A (en) 1996-01-17
CN1088133C (en) 2002-07-24
ATE184935T1 (en) 1999-10-15
SK282733B6 (en) 2002-11-06
JP3660716B2 (en) 2005-06-15
RU2105836C1 (en) 1998-02-27
CZ283590B6 (en) 1998-05-13
PL309068A1 (en) 1995-12-27
US5591915A (en) 1997-01-07
AU687185B2 (en) 1998-02-19
CZ151095A3 (en) 1996-01-17
DE59506872D1 (en) 1999-10-28
EP0688902B1 (en) 1999-09-22
CA2151993C (en) 2004-12-14
PL176678B1 (en) 1999-07-30
RU95110059A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
EP0688902B1 (en) Continuous measuring method of the resistance to lateral displacement of a railway track
EP3631087B1 (en) Method and device for compressing a track ballast bed
DE4102869A1 (en) TRACK CONSTRUCTION MACHINE FOR COMPRESSING THE GRAVEL BED
AT402519B (en) CONTINUOUSLY RIDABLE RAILWAY MACHINE FOR COMPRESSING THE GRAVEL BED OF A TRACK
AT504517B1 (en) Method for controlled lowering of track, involves capturing and recording longitudinal slope of track in rear scanning location of measuring system according to displacement measurement
EP3870760B1 (en) Method and machine for stabilizing a track
EP3535456B1 (en) Track-laying machine with track-layout-measuring system
DE4102872C2 (en) Continuously movable track construction machine for compacting the ballast bed and method for continuously lowering the track
AT519575B1 (en) Track measuring vehicle and method for detecting a vertical track position
EP1521072A1 (en) Method of detecting the forces of elastic deformations of at least a rail and a superstructure
EP0652325A2 (en) Railbroad maintenance machine for correcting the position of the track
EP1165355B1 (en) Method and device for monitoring a vehicle
CH623624A5 (en)
EP4073318B1 (en) Machine and method for stabilising a ballast track
AT523949B1 (en) Machine and method for compacting a track ballast bed
AT524860B1 (en) Device and method for compacting a track bed
AT520771B1 (en) Method for operating a tamping unit of a track construction machine as well as tamping device for track bed compaction and track construction machine
DE4102871A1 (en) TRACKING MACHINE
EP4134485B1 (en) Method for stabilizing railway ballast
AT525289B1 (en) Method and device for determining the longitudinal forces in track rails
AT18149U1 (en) Method and device for determining the condition, in particular the degree of compaction, of a track bed
EP4290195A1 (en) Method and system for calibrating a railway scale
DE102021210463A1 (en) Method and device for measuring a parameter relevant to the movement of a rail vehicle
DE2333605A1 (en) METHOD AND DEVICE FOR MOVING AND BRAKING RAIL VEHICLES IN TRIAL OPERATION
DE2833557A1 (en) Crossbar measuring dynamic characteristics of road or railway - uses static and dynamic stress of variable amplitude and frequency with force applied by vibrator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19960104

17Q First examination report despatched

Effective date: 19971208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 184935

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990923

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 59506872

Country of ref document: DE

Date of ref document: 19991028

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2139175

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120529

Year of fee payment: 18

Ref country code: CH

Payment date: 20120521

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120521

Year of fee payment: 18

Ref country code: GB

Payment date: 20120501

Year of fee payment: 18

Ref country code: BE

Payment date: 20120521

Year of fee payment: 18

Ref country code: FR

Payment date: 20120619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120522

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120724

Year of fee payment: 18

Ref country code: ES

Payment date: 20120516

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120418

Year of fee payment: 18

BERE Be: lapsed

Owner name: FRANZ *PLASSER BAHNBAUMASCHINEN- INDUSTRIEGESELLSC

Effective date: 20130531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 184935

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59506872

Country of ref document: DE

Effective date: 20131203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130512

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513