EP0686675B1 - Magnetisierbare mehrfach beschichtete metallische Glanzpigmente - Google Patents

Magnetisierbare mehrfach beschichtete metallische Glanzpigmente Download PDF

Info

Publication number
EP0686675B1
EP0686675B1 EP95107903A EP95107903A EP0686675B1 EP 0686675 B1 EP0686675 B1 EP 0686675B1 EP 95107903 A EP95107903 A EP 95107903A EP 95107903 A EP95107903 A EP 95107903A EP 0686675 B1 EP0686675 B1 EP 0686675B1
Authority
EP
European Patent Office
Prior art keywords
layer
consisting essentially
oxide
iron
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95107903A
Other languages
English (en)
French (fr)
Other versions
EP0686675A1 (de
Inventor
Raimund Dr. Schmid
Norbert Dr. Mronga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6519535&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0686675(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Publication of EP0686675A1 publication Critical patent/EP0686675A1/de
Application granted granted Critical
Publication of EP0686675B1 publication Critical patent/EP0686675B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • B41M3/144Security printing using fluorescent, luminescent or iridescent effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/08Designs or pictures characterised by special or unusual light effects characterised by colour effects
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/36Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1054Interference pigments characterized by the core material the core consisting of a metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/24Interference pigments comprising a metallic reflector or absorber layer, which is not adjacent to the core
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/301Thickness of the core
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/303Thickness of a layer with low refractive material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/306Thickness of an absorbing layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/307Thickness of an outermost protective layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/40Interference pigments comprising an outermost surface coating
    • C09C2200/401Inorganic protective coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2220/00Methods of preparing the interference pigments
    • C09C2220/20PVD, CVD methods or coating in a gas-phase using a fluidized bed

Definitions

  • the invention further relates to the production of these pigments as well as their use for coloring paints, printing inks, Inks, plastics, glasses, ceramic products and Preparations of decorative cosmetics, taking the action of a magnetic field during or after application in the liquid application medium to interesting three-dimensional Effects.
  • Gloss or effect pigments are increasingly used in many Areas of technology, for example in automotive paints, in the decorative coating, the plastic coloring, in paints, printing, especially security printing inks as well as in cosmetics.
  • Alignment is a prerequisite for directed reflection of the platelet-shaped pigments in the application medium. With paints and printing inks, this alignment is usually done by Flow processes within the binder during application. Shrinkage processes, for example when drying thin Paint films appear, improve the even alignment of the Pigment platelets in addition.
  • Magnetic gloss pigments are therefore for a number of applications such as security printing, where e.g. also used as a replacement for expensive holograms can be used as magnetically readable codes or for artistic and decorative purposes of particular interest.
  • magnetizable gloss pigments based on non-ferromagnetic metallic substrates, in particular aluminum platelets, containing ferromagnetic, iron, cobalt, nickel or ⁇ -Fe 2 O 3 Layers and additional, non-ferromagnetic metal oxide layers and / or passivating layers are occupied, as well as mixtures of the pigments coated with ⁇ -Fe 2 O 3 with silicate platelets coated in a similar manner.
  • These pigments can be applied under the influence of a magnetic field excellent with the formation of three-dimensional Align structures. However, there are only light / dark effects here as well as the tipping of the respective interference color to achromatic observed.
  • the invention was therefore based on the object of being magnetizable Luster pigments with advantageous application properties, in particular also provide interesting coloristic properties.
  • the magnetizable gloss pigments defined at the outset were accordingly and their mixtures with multi-coated silicate Tile found.
  • Aluminum flakes that pass through in a simple manner are preferred Punching out of aluminum foil or according to common Spraying and grinding techniques are to be produced.
  • aluminum pigments are suitable, which after the So-called Hall process in white spirit produced by wet grinding will.
  • the starting material is an atomized, sparring Aluminum semolina, which in ball mills in white spirit and in Presence of a lubricant to platelet-shaped particles deformed or crushed and then classified.
  • the surface of the aluminum particles should be largely free of Be fat or other supporting materials. These substances can partly by solvent treatment or better, as in the DE-A-42 23 384 described, removed by oxidative treatment will.
  • the size of the substrate particles is not critical per se and can be tailored to the particular application.
  • the particles have average largest diameters of approximately 1 to 200 ⁇ m, in particular approximately 5 to 100 ⁇ m, and thicknesses of approximately 0.1 to 5 ⁇ m, in particular approximately 0.5 ⁇ m.
  • Their specific free surface area (BET) is generally 0.1 to 5 m 2 / g.
  • the luster pigments according to the invention are notable for Multiple coating of the metallic substrate.
  • the first layer (A) is ferromagnetic and contains iron, cobalt, nickel, magnetite and / or ⁇ -Fe 2 O 3 (maghemite).
  • the thickness of layer (A) is not critical and can be that the desired magnetizability of the luster pigments, can be set.
  • the ferromagnetic Layer (A) about 10 to 500 nm, preferably 20 to 200 nm be fat.
  • the second layer (B) is made of aluminum oxide, aluminum oxide hydrate, Silicon oxide hydrate and preferably silicon oxide as well also built from their mixtures.
  • the thickness of the layer (B) is generally 1 to 800 nm, preferably 50 to 600 nm. Since the layer (B) essentially the The color of the pigments according to the invention is determined by the layer (B) for those showing a particularly distinctive play of colors and therefore also preferred luster pigments according to the invention Minimum layer thickness of approximately 70 nm.
  • the third, non-selectively absorbing layer (C) consists essentially of metals, preferably those that can be applied by gas phase decomposition of volatile compounds, such as especially molybdenum, tungsten, chromium, also cobalt and nickel or mixtures of these metals, or black metal oxides as before all magnetite, including nickel oxide, cobalt oxide (CoO, Co 3 O 4 ) and vanadium oxide (VO 2 , V 2 O 3 ) and mixtures thereof, for example iron and magnetite.
  • volatile compounds such as especially molybdenum, tungsten, chromium, also cobalt and nickel or mixtures of these metals, or black metal oxides as before all magnetite, including nickel oxide, cobalt oxide (CoO, Co 3 O 4 ) and vanadium oxide (VO 2 , V 2 O 3 ) and mixtures thereof, for example iron and magnetite.
  • metals that are wet-chemical Have reduction deposited from metal salt solutions for which Layer (C) suitable include silver, copper, gold, Palladium and platinum as well as cobalt and nickel and alloys such as NiP, NiB, NiCo, NiWP, CoP and AgAu.
  • the black layer (C) must not be opaque, but must be for Light can be partially translucent. In this way it lowers it White base of the incident and reflecting light from time to time thus enhances the barely visible interference color of the substrate coated with metal oxide.
  • the layer thicknesses are generally 1 to 100 nm absorbent, high refractive index materials such as molybdenum or Chromium is usually a layer thickness of 1 to 25 nm sufficient, to set the desired effect.
  • Weaker absorbent or lower refractive materials such as magnetite require thicker layers of about 10 to 50 nm.
  • the layer (C) is made of ferromagnetic metals or metal oxides is built up, this layer also has a certain magnetizability effect of the glossy pigment. However, this is in usually not be big enough to be effective of the pigment under the influence of a magnetic field, because the layer thicknesses (C) that are required to set the desired Coloristics are required are too low.
  • the gloss pigments according to the invention have the great advantage that their magnetic and optical properties are independent from each other through layer (A) on the one hand and the layer system (B) + (C) on the other hand can be set specifically.
  • the new gloss pigments therefore show both magnetizability for the first time as well as color changes between intense interference colors, which at a given viewing angle depending on the magnetic orientation depending on the location in the application medium are watching.
  • the luster pigments according to the invention can also be used fourth layer (D), which consists of colorless or selective absorbent metal oxides is constructed.
  • Preferred are e.g. Aluminum oxide, oxide hydrate, zirconium, titanium, tin, iron and Chromium oxide and particularly preferably silicon oxide and hydrated oxide.
  • This top layer has a particular effect on metallic layers (C) a significant improvement in resistance to Environmental influences.
  • the thickness of the layer (D) is not critical per se, in general it is about 1 to 400 nm, in particular 5 to 250 nm.
  • layer (D) can also be used for interference of the pigment and thereby the interference series on the by the location determined with (B) and (C) coated substrate continue. This is the case, for example, when zirconium or Titanium oxide can be applied as layer (D).
  • the layer (D) consists essentially of silicon oxide, so will this layer in the application medium (e.g. paints, printing inks or Inks) that have a similar refractive index, coloristic barely noticeable.
  • Colored metal oxides such as iron and chromium oxide eventually become the interference color of the multilayer system by admixing modify their absorption color and with increasing layer thickness finally cover up.
  • Very particularly preferred gloss pigments have a layer (C) consisting essentially of molybdenum on.
  • gloss pigments according to the invention are distinguished all layers due to their uniform, homogeneous and film-like Structure and their ability to interfere with the thicker layers, so that strong interference colors multi-layer systems are created.
  • mixtures of the invention metallic pigments (I) with multi-coated silicate plates (II) of particular interest.
  • the silicate substrate particles have an inner metal oxide layer on, preferably made of high-index metal oxides such as titanium, zirconium, zinc, tin, chromium, iron oxide and / or Bismuth oxychloride is built up.
  • high-index metal oxides such as titanium, zirconium, zinc, tin, chromium, iron oxide and / or Bismuth oxychloride is built up.
  • Aluminum and silicon oxide can also be included.
  • Mica pigments in which these are particularly preferred inner metal oxide layer consists essentially of titanium dioxide and the other oxides mentioned at most in subordinate Quantity contains.
  • Metal oxide coated silicate pigments are common known and also under the names Iriodin® (Merck, Darmstadt), Flonac® (Kemira Oy, Pori) or Mearlin® (Mearl Corporation, New York).
  • the silicate pigments are likewise advantageously coated with a ferromagnetic layer (A ') which contains iron, cobalt, nickel, magnetite and / or ⁇ -Fe 2 O 3 .
  • Top layer (B ') which consists essentially of colorless or selective absorbent metal oxide is applied.
  • the layers (A ') and / or (B') can be like the corresponding ones Layers (A) and (B) of the metal pigments or be constructed differently from these.
  • the silicate pigments (II) can be selected appropriately Color play of the metal pigments (I) can be varied or supplemented.
  • composition of the gloss pigment mixtures according to the invention is determined by the desired coloristics.
  • the weight ratio of metallic pigment (I): silicate pigment (II) can be varied from 1:99 to 99: 1.
  • the contain Pigment mixtures according to the invention preferably at least 5% by weight of metallic gloss pigment (I).
  • the preferred way of producing the pigment mixtures according to the invention is the common coating of the metallic and of the metal oxide coated silicate plates with the Layers (A) and if desired (B).
  • CVD chemical vapor deposition
  • a heatable fluidized bed reactor is expediently used for this purpose, as for example in EP-A-33 457 or DE-A-38 13 335 is used, in which the substrate particles first fluidized with a fluidizing gas and onto the required for the decomposition of the respective metal compound Temperature of usually 70 to 350 ° C to be heated.
  • the in an upstream evaporator vessel using a suitable carrier gas evaporated metal compounds and the any gases required for decomposition are then over separate nozzles entered.
  • Metallic layers (A) (and (C)) are preferably applied by inert decomposition of metal carbonyls such as iron pentacarbonyl, chromium, molybdenum, tungsten hexacarbonyl, nickel tetracarbonyl and dicobalt octacarbonyl (for example, when Mo (CO) 6 is decomposed, temperatures of 200 to 250 ° C preferred).
  • metal carbonyls such as iron pentacarbonyl, chromium, molybdenum, tungsten hexacarbonyl, nickel tetracarbonyl and dicobalt octacarbonyl (for example, when Mo (CO) 6 is decomposed, temperatures of 200 to 250 ° C preferred).
  • the ferromagnetic layer (A) consists of magnetite (or the black layer (C) consists of lower metal oxides, such as magnetite, VO 2 or V 2 O 3 ), then the metal carbonyls such as iron pentacarbonyl or oxychlorides such as vanadium oxychloride with water vapor and / or Oxygen decomposes. If higher metal oxides, for example V 2 O 5 , are initially deposited during this gas phase decomposition, these must subsequently be reduced to the desired oxide, for example with hydrogen or ammonia.
  • the metallic and / or lower metal oxides Layers (A) (and (C)) are after coating, in particular in the case of an the outer layer of the glossy pigment forming layer (C), expediently on the surface passivated. This can be done easily by using the Eddy gases are mixed with some air during cooling.
  • Metallic layers (C) can also be wet-chemically Reduction from suitable metal salt solutions can be applied.
  • nobler metals such as copper, Silver, gold, cobalt, nickel, palladium and platinum deposited will.
  • EP-A-353 544 are suitable for this a number of reducing agents, especially mild organic ones Reducing agents such as glucose and formaldehyde.
  • the structure of the metallic layers (C) are also suitable Metal alloys such as NiP, NiB, NiCo, NiWP, CoP and AgAu, the also wet chemical (e.g. by reaction of a metal salt solution with hypophospit) are to be applied (EP-A-313 281).
  • the ferromagnetic layer (A) essentially contains ⁇ -Fe 2 O 3 , this layer can be applied in various ways, as described in the unpublished DE-A-43 40 141.
  • an essentially magnetite-containing layer (A) is first deposited (preferably by decomposing iron pentacarbonyl in the presence of water vapor), which is then heated to usually 100 to 600 ° C. in the presence of air or other oxygen / inert gas mixtures, preferably 180 to 400 ° C, particularly preferably 200 to 350 ° C in the desired ⁇ -Fe 2 O 3 -containing layer (oxidation time about 8 to 24 h, heating rates generally 10 to 100 ° C / h).
  • a layer consisting essentially of ⁇ -Fe 2 O 3 is first applied by oxidation of iron pentacarbonyl, which is then coated on by heating in a reducing atmosphere (advantageously in the presence of, for example, carbon monoxide or especially hydrogen, but also mixtures thereof) generally 200 to 600 ° C, preferably 200 to 400 ° C (reduction duration about 8 to 24 h, heating rates generally 10 to 50 ° C / h) in an iron (II) containing, essentially iron (II) oxide, magnetite and iron-containing layer is converted.
  • This layer can then, as described in the first variant, be oxidized to the desired ⁇ -Fe 2 O 3 -containing layer.
  • the colorless or selectively absorbing metal oxide layers (D) in the process according to the invention in general after the CVD process by oxidation of the metal carbonyls (e.g. iron pentacarbonyl, chrome hexacarbonyl) or by hydrolysis the metal halides or alcoholates (e.g. silicon, titanium, Zirconium tetrachloride, titanium, zirconium tretra-n and iso-propanolate) deposited.
  • the metal carbonyls e.g. iron pentacarbonyl, chrome hexacarbonyl
  • metal halides or alcoholates e.g. silicon, titanium, Zirconium tetrachloride, titanium, zirconium tretra-n and iso-propanolate
  • the layers (D) can also be applied wet-chemically will. This is particularly the case with such Layers (D) which are preferred as those according to the invention
  • organic silicon and / or aluminum compounds in which the organic residues to the metals via oxygen atoms are bound in the presence of an organic solvent and hydrolyzed the substrate particles to be coated.
  • aprotic solvents such as ketones, ⁇ -diketones, ethers all cyclic ethers and nitrogenous solvents, e.g. amidic solvents as well as protic solvents such as preferably monohydric or polyhydric alcohols 1 to 6 carbon atoms that are miscible with water.
  • Examples of preferred solvents are acetone, tetrahydrofuran, Ethanol and n- and iso-propanol as well as diethyl ketone, Acetylacetone, dioxane, trioxane, ethylene glycol, propylene glycol, Glycerin, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, Pyridine and acetonitrile.
  • Suitable metal-containing starting compounds in the organic solvents mentioned are organic compounds in which the organic radicals are bonded to the metals via oxygen atoms.
  • Preferred examples are the acetylacetonates and in particular alcoholates, especially C 1 -C 4 alkanolates, for example aluminum triisopropanolate and tetraethoxysilane.
  • the hydrolysis is preferably carried out in the presence of a base or an acid as a catalyst.
  • a base or an acid are suitable for this e.g. in addition to alkali solutions such as sodium hydroxide solution, especially aqueous ones Ammonia solutions.
  • Suitable acidic catalysts are, for example Phosphoric acid and organic acids such as acetic acid and Oxalic acid.
  • Water should be at least stoichiometric for hydrolysis required amount is present, but the 2 to is preferred 100 times, especially 5 to 20 times the amount.
  • 3 is usually given up to 40 vol .-%, preferably 5 to 30 vol .-%, a 25 wt .-% aqueous ammonia solution.
  • reaction mixture gradually within 10 to 48 h To heat the reflux temperature.
  • isopropanol the mixture is preferably stirred as a solvent, for example first 4 to 20 h at 40 ° C, then 4 to 20 h at 60 ° C and to Finally 2 to 8 h at 80 ° C.
  • the layer (B) is applied expediently as follows:
  • the substrate particles covered with the ferromagnetic layer (A) are placed, organic solvent, water and catalyst (Base or acid) and gives the metal compound to be hydrolyzed, pure or dissolved, e.g. than 30 to 70, preferred 40 to 60 vol .-% solution in organic solvent, too. If the metal compound is added in one step, then the suspension is then as described above Stir heated. You can also use the metal connection continuously meter in increased temperature, the water preferably not submitted, but also continuously is metered. When the coating is complete, the reaction mixture cooled down again to room temperature.
  • To prevent agglomeration during the coating process can prevent the suspension of heavy mechanical stress such as pumping, vigorous stirring or exposure to ultrasound be subjected.
  • the coating step can be switched on or off Repeat several times. If the mother liquor looks milky, so it is recommended to apply this before further coating exchange.
  • the insulation of the layer (B) occupied substrate particles can easily be filtered off, Wash with organic solvent, preferably the alcohols also used as solvents, and subsequent ones Drying (usually 2 to 24 h at 20 to 200 ° C).
  • thicker ones can also be used Silicon oxide layers of e.g. ⁇ 70 nm without problems in good Quality, i.e. as a coherent, capable of interference Film.
  • metal oxide (B) based on the coated substrate, are generally used to achieve the desired color effects.
  • metal oxide (B) based on the coated substrate.
  • coarser aluminum particles around 1.5 m 2 / g
  • attractive color effects are available with about 15% by weight of silicon oxide and with finer aluminum particles (around 4.5 m 2 / g) from about 30% by weight of silicon oxide observe.
  • the wet-chemical applied metal oxide layers can in Depends on the completeness of such Coating step subsequent drying is still slight Contain quantities of water, so some of the metal oxides are present as oxide hydrates.
  • the magnetizable multi-coated metallic gloss pigments (and their mixtures with silicate pigments) in easily reproducibly produced in large quantities will. There are completely coated pigment particles with high Preserve the quality of the individual coatings.
  • coated luster pigments can be used Deagglomeration and smoothing an additional finishing step by gentle grinding in a ball mill or comparable devices.
  • the magnetizable luster pigments and luster pigment mixtures according to the invention are useful for many purposes such as for coloring paints, printing inks, inks, plastics, Glasses, ceramic products and decorative preparations Cosmetics. They show high gloss and depending on the viewing and Different intense interference colors and lighting angles good hiding power and are due to their ferromagnetic Properties that are already detectable as such Represent security feature, especially for special Applications such as the generation of three-dimensional optical Effects from the effects of magnetic fields during or after suitable for application in the still liquid application medium.
  • the luster pigments according to the invention be especially the security and security printing called where they (e.g. on credit cards) costly holograms can replace.
  • the luster pigments according to the invention can also be used advantageous when mixed with transparent and opaque White, colored and black pigments as well as conventional ones Shine pigments based on mica and metal oxide coated Use metal pigments and platelet-shaped iron oxides.
  • the pigment obtained had a molybdenum content of 3.3% by weight and showed, applied in the paint, with almost unchanged strong metallic sheen a strong, bluish red interference color, the at steeper viewing angles into a strong one Green tipped over.
  • the pigment was incorporated into the lacquer by adding 0.4 g of the Pigments in 3.6 g of a polyester mixed lacquer with a solids content of 21% by weight were stirred in and dispersed in the Red Devil for 2 min. With a doctor blade (160 ⁇ m wet film thickness) were on black and white Cardboard and on a transparent film prints the pigmented Lacks made.
  • the pigment obtained had a molybdenum content of 4.4% by weight and when applied in the varnish showed a strong, green interference color, those with steeper viewing angles to purple tipped over.
  • paintwork became three-dimensional acting structures obtained in addition to the usual light / dark effects green and violet color zones showed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

Die vorliegende Erfindung betrifft neue magnetisierbare Glanzpigmente auf der Basis von mehrfach beschichteten plättchenförmigen nichtferromagnetischen metallischen Substraten mit
  • A) einer ersten, ferromagnetischen Schicht, die Eisen, Cobalt, Nickel, Magnetit und/oder γ-Fe2O3 enthält,
  • B) einer zweiten, im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat bestehenden Schicht,
  • C) einer dritten, im wesentlichen aus Metall und/oder nichtselektiv absorbierendem Metalloxid bestehenden Schicht und
  • D) gewünschtenfalls einer vierten, im wesentlichen aus farblosem oder selektiv absorbierendem Metalloxid bestehenden Schicht.
  • Außerdem betrifft die Erfindung Mischungen dieser Pigmente (I) mit mehrfach beschichteten silikatischen Plättchen (II), die mit einer inneren, farblosen oder selektiv absorbierenden Metalloxidschicht belegt sind und
  • A') eine ferromagnetische Schicht, die Eisen, Cobalt, Nickel, Magnetit und/oder γ-Fe2O3 enthält, und
  • B') gewünschtenfalls eine im wesentlichen aus farblosem oder selektiv absorbierendem Metalloxid bestehende Schicht
  • aufweisen.
    Weiterhin betrifft die Erfindung die Herstellung dieser Pigmente sowie ihre Verwendung zum Einfärben von Lacken, Druckfarben, Tinten, Kunststoffen, Gläsern, keramischen Produkten und Zubereitungen der dekorativen Kosmetik, wobei die Einwirkung eines Magnetfelds während oder nach der Applikation im noch flüssigen Anwendungsmedium zu interessanten dreidimensionalen Effekten führt.
    Glanz- oder Effektpigmente werden in zunehmendem Maße in vielen Bereichen der Technik eingesetzt, beispielsweise in Automobillacken, in der dekorativen Beschichtung, der Kunststoffeinfärbung, in Anstrich-, Druck-, insbesondere Sicherheitsdruckfarben sowie in der Kosmetik.
    Ihre optische Wirkung beruht auf der gerichteten Reflexion von Licht an überwiegend flächig ausgebildeten, zueinander parallel ausgerichteten, metallischen oder stark lichtbrechenden Pigmentteilchen. Je nach Zusammensetzung der Pigmentplättchen erzeugen Interferenz-, Reflexions- und Absorptionsphänomene winkelabhängige Farb- und Helligkeitseindrücke.
    Voraussetzung für die gerichtete Reflexion ist die Ausrichtung der plättchenförmigen Pigmente im Anwendungsmedium. Bei Lacken und Druckfarben erfolgt diese Ausrichtung in der Regel durch Fließvorgänge innerhalb des Bindemittels während der Applikation. Schrumpfungsprozesse, die beispielsweise beim Trocknen von dünnen Lackfilmen auftreten, verbessern die gleichmäßige Ausrichtung der Pigmentplättchen noch zusätzlich.
    Jedoch können durch unterschiedliche Pigmentorientierungen in verschiedenen Bereichen des Anwendungsmediums auch besondere optische Effekte erreicht werden. So sind beispielsweise bei der Einfärbung von Kunststoffen im Spritzgußverfahren Fließlinien zu beobachten, die durch unterschiedlich orientierte Pigmentplättchen sichtbar gemacht werden.
    Interessante dreidimensionale optische Effekte ergeben sich z.B. bei Verwendung magnetisierbarer Pigmentplättchen durch Einwirkung von Magnetfeldern während oder nach der Applikation im noch flüssigen Anwendungsmedium. Magnetisierbare Glanzpigmente sind daher für eine Reihe von Anwendungen wie den Sicherheitsdruck, wo sie z.B. auch als Ersatz für kostspielige Hologramme eingesetzt werden können, als magnetisch lesbare Codes oder für künstlerische und dekorative Zwecke von besonderem Interesse.
    In den nicht vorveröffentlichten DE-A-43 13 541 und DE-A-43 40 141 werden magnetisierbare Glanzpigmente auf der Basis von nichtferromagnetischen metallischen Substraten, insbesondere Aluminiumplättchen, die mit ferromagnetischen, Eisen, Cobalt, Nickel oder γ-Fe2O3 enthaltenden Schichten und zusätzlichen, nichtferromagnetischen Metalloxidschichten und/oder passivierenden Schichten belegt sind, sowie auch Mischungen der mit γ-Fe2O3 beschichteten Pigmente mit in ähnlicher Weise beschichteten silikatischen Plättchen beschrieben.
    Diese Pigmente lassen sich in applizierter Form unter dem Einfluß eines Magnetfeldes hervorragend unter Ausbildung dreidimenionaler Strukturen ausrichten. Jedoch werden hier nur Hell/Dunkel-Effekte sowie das Umkippen der jeweiligen Interferenzfarbe nach Unbunt beobachtet.
    In der älteren deutschen Patentanmeldung DE-A- 44 05 492 werden besonders farbstarke metallische Glanzpigmente beschrieben, die mit silicium- und/oder aluminiumoxidhaltigen sowie metallischen Schichten belegt sind, die jedoch in der Regel, insbesondere wenn sie intensive Interferenzfarben zeigen, keinen für eine räumliche Orientierung ausreichenden Magnetismus aufweisen. Zu geringer Magnetismus kann auch physikalisch nicht detektiert werden und somit nicht als zusätzliches Sicherheitsmerkmal dienen.
    Der Erfindung lag daher die Aufgabe zugrunde, magnetisierbare Glanzpigmente mit vorteilhaften Anwendungseigenschaften, insbesondere auch interessanten koloristischen Eigenschaften, bereitzustellen.
    Demgemäß wurden die eingangs definierten magnetisierbaren Glanzpigmente und ihre Mischungen mit mehrfach beschichteten silikatischen Plättchen gefunden.
    Als besonders bevorzugte Variante wurden Glanzpigmente auf der Basis von mehrfach beschichteten, im wesentlichen aus Aluminium bestehenden, plättchenförmigen Substraten mit
  • A) einer ersten, 10 bis 500 nm dicken, im wesentlichen aus Eisen und/oder Magnetit bestehenden, ferromagnetischen Schicht,
  • B) einer zweiten, 50 bis 600 nm dicken, im wesentlichen aus Siliciumoxid und/oder Siliciumoxidhydrat bestehenden Schicht,
  • C) einer dritten, 1 bis 25 nm dicken, im wesentlichen aus Molybdän, Chrom, Wolfram und/oder Eisen bestehenden Schicht und
  • D) gewünschtenfalls einer vierten, 5 bis 250 nm dicken, im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat bestehenden Schicht
  • gefunden.
    Weiterhin wurde ein Verfahren zur Herstellung der Glanzpigmente gefunden, welches dadurch gekennzeichnet ist, daß man die metallischen Substratteilchen nacheinander mit den einzelnen Schichten belegt,
    wobei man
  • die im wesentlichen metallischen Schichten ((A) und/oder (C)) durch Gasphasenzersetzung flüchtiger Metallverbindungen in einer inerten Atmosphäre oder durch stromlose, naßchemische Metallabscheidung und gegebenenfalls anschließende Trocknung, die im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat bestehenden Schichten (B) durch hydrolytische Zersetzung von organischen Silicium- und/oder Aluminiumverbindungen, bei denen die organischen Reste über Sauerstoffatome an die Metalle gebunden sind, in Gegenwart eines organischen Lösungsmittels, in welchem die Metallverbindungen löslich sind, und gegebenenfalls anschließende Trocknung,
  • die im wesentlichen aus nichtselektiv absorbierendem Metalloxid bestehenden Schichten ((A) und/oder (C)) durch Gasphasenzersetzung flüchtiger Metallverbindungen in Gegenwart von Sauerstoff und/oder Wasserdampf,
  • die im wesentlichen aus γ-Fe2O3 bestehenden Schichten (A) durch Gasphasenzersetzung von Eisencarbonyl in Gegenwart von Wasserdampf und/oder Sauerstoff unter Bildung einer im wesentlichen Magnetit enthaltenden Schicht und anschließendes Erhitzen in einer oxidierenden Atmosphäre oder durch Gasphasenzersetzung von Eisencarbonyl in Gegenwart von Sauerstoff und/oder Wasserdampf unter Bildung einer im wesentlichen α-Fe2O3 enthaltenden Schicht, deren Umwandlung in eine eisen(II)haltige Schicht durch Erhitzen in einer reduzierenden Atmosphäre und anschließendes Erhitzen in einer oxidierenden Atmosphäre und
  • die im wesentlichen aus farblosem oder selektiv absorbierendem Metalloxid bestehenden Schichten (D) durch Gasphasenzersetzung flüchtiger Metallverbindungen in Gegenwart von Sauerstoff und/oder Wasserdampf oder durch hydrolytische Zersetzung organischer Metallverbindungen, bei denen die organischen Reste über Sauerstoffatome an die Metalle gebunden sind, in Gegenwart eines organischen Lösungsmittels, in welchem die Metallverbindungen löslich sind, und anschließende Trocknung aufbringt.
  • Nicht zuletzt wurde ein Verfahren zur Einfärbung von Lacken, Druckfarben, Tinten, Kunststoffen, Gläsern, keramischen Produkten und Zubereitungen der dekorativen Kosmetik gefunden, welches dadurch gekennzeichnet ist, daß man hierfür die erfindungsgemäßen Glanzpigmente oder Glanzpigmentmischungen verwendet.
    Außerdem wurde eine besondere Ausführungsform dieses Verfahrens gefunden, welche dadurch gekennzeichnet ist, daß man die Glanzpigmente während oder nach der Applikation im noch flüssigen Anwendungsmedium einem Magnetfeld aussetzt.
    Für die erfindungsgemäßen Pigmente sind als Substrat alle nichtferromagnetischen, für Metalleffektpigmente bekannten Metalle und Legierungen in Plättchenform geeignet. Z.B. kommen neben Stahl, Kupfer und seinen Legierungen wie Messing und Bronzen vor allem Aluminium und seine Legierungen wie Aluminiumbronze in Betracht.
    Bevorzugt sind Aluminiumflakes, die in einfacher Weise durch Herausstanzen aus Aluminiumfolie oder nach gängigen Verdüsungs- und Mahltechniken herzustellen sind.
    So sind beispielsweise Aluminiumpigmente geeignet, die nach dem sogenannten Hall-Verfahren in Testbenzin durch Naßmahlung hergestellt werden. Ausgangsmaterial ist ein atomisierter, spratziger Aluminiumgrieß, welcher in Kugelmühlen in Testbenzin und in Gegenwart eines Schmiermittels zu plättchenförmigen Teilchen verformt bzw. zerkleinert und anschließend klassiert wird.
    Es können handelsübliche Produkte eingesetzt werden. Jedoch sollte die Oberfläche der Aluminiumteilchen weitgehend frei von Fetten oder anderen Belegmitteln sein. Diese Substanzen können zum Teil durch Lösungsmittelbehandlung oder besser, wie in der DE-A-42 23 384 beschrieben, durch oxidative Behandlung entfernt werden.
    Die Größe der Substratteilchen ist an sich nicht kritisch und kann auf den jeweiligen Anwendungszweck abgestimmt werden. In der Regel haben die Teilchen mittlere größte Durchmesser von etwa 1 bis 200 µm, insbesondere etwa 5 bis 100 µm, und Dicken von etwa 0,1 bis 5 µm, insbesondere um etwa 0,5 µm. Ihre spezifische freie Oberfläche (BET) beträgt im allgemeinen 0,1 bis 5 m2/g.
    Die erfindungsgemäßen Glanzpigmente zeichnen sich durch eine Mehrfachbeschichtung des metallischen Substrats aus.
    Die erste Schicht (A) ist ferromagnetisch und enthält Eisen, Cobalt, Nickel, Magnetit und/oder γ-Fe2O3 (Maghemit).
    Die Dicke der Schicht (A) ist nicht kritisch und kann, der gewünschten Magnetisierbarkeit der Glanzpigmente entsprechend, eingestellt werden. In der Regel wird die ferromagnetische Schicht (A) etwa 10 bis 500 nm, vorzugsweise 20 bis 200 nm dick sein.
    Die zweite Schicht (B) ist aus Aluminiumoxid, Aluminiumoxidhydrat, Siliciumoxidhydrat und bevorzugt Siliciumoxid sowie auch aus deren Mischungen aufgebaut.
    Die Dicke der Schicht (B) beträgt im allgemeinen 1 bis 800 nm, bevorzugt 50 bis 600 nm. Da die Schicht (B) im wesentlichen den Farbton der erfindungsgemäßen Pigmente bestimmt, hat die Schicht (B) für die ein besonders ausgeprägtes Farbenspiel zeigenden und daher auch bevorzugten erfindungsgemäßen Glanzpigmente eine Mindestschichtdicke von etwa 70 nm.
    Mit wachsender Schichtdicke von (B) durchläuft man bei den mit der Schicht (B) und der schwarzen Schicht (C) belegten Pigmenten bei einem Betrachtungswinkel von 25° mehrmals nacheinander die Interferenzfarben blau, grün, gold, rot. Die Winkelabhängigkeit des Farbtons nimmt von der ersten Interferenzfarbenserie nach höheren Serien (also dicker werdenden Schichten (B)) zu. So kippt beispielsweise ein rötlicher Goldton der ersten Serie winkelabhängig ab in ein grünliches Gold, während ein solcher Farbton aus der zweiten oder dritten Interferenzserie in die Komplementärfarbe, ein grünstichiges Blau, umschlägt.
    Diese Farbeffekte werden bei einer im wesentlichen nichtselektiv absorbierenden Schicht (A), die das metallisch glänzende Substrat farblich kaum verändert, praktisch nur durch die Dicke der Schicht (B) bestimmt, während im wesentlichen aus γ-Fe2O3 bestehende Schichten (A) aufgrund ihrer Transparenz und ihrer selektiven Absorption eine vorteilhafte Modifizierung insbesondere solcher Pigmente bewirken, die aufgrund entsprechender Schichtdicken von (B) ein Farbenspiel mit goldenen Farbtönen zeigen.
    Die dritte, nichtselektiv absorbierende Schicht (C) besteht im wesentlichen aus Metallen, bevorzugt solchen, die durch Gasphasenzersetzung flüchtiger Verbindungen aufgebracht werden können, wie vor allem Molybdän, Wolfram, Chrom, auch Cobalt und Nickel oder Gemische dieser Metalle, oder schwarzen Metalloxiden wie vor allem Magnetit, auch Nickeloxid, Cobaltoxid (CoO, Co3O4) und Vanadiumoxid (VO2, V2O3) sowie deren Mischungen, beispielsweise Eisen und Magnetit.
    Weiterhin sind auch solche Metalle, die sich naßchemisch durch Reduktion aus Metallsalzlösungen abscheiden lassen, für die Schicht (C) geeignet. Als Beispiele seien Silber, Kupfer, Gold, Palladium und Platin sowie auch Cobalt und Nickel und Legierungen wie NiP, NiB, NiCo, NiWP, CoP und AgAu genannt.
    Die schwarze Schicht (C) darf nicht deckend sein, sondern muß für Licht teilweise durchlässig sein. Auf diese Weise senkt sie den Weißsockel des auftreffenden und reflektierenden Lichtes ab und bewirkt so eine Verstärkung der kaum sichtbaren Interferenzfarbe des mit Metalloxid beschichteten Substrates.
    Je nach den optischen Eigenschaften des Schichtmaterials (C) betragen die Schichtdicken im allgemeinen 1 bis 100 nm. Bei stark absorbierenden, hochbrechenden Materialien wie Molybdän oder Chrom ist in der Regel eine Schichtdicke von 1 bis 25 nm ausreichend, um den gewünschten Effekt einzustellen. Schwächer absorbierende oder niedriger brechende Materialien wie Magnetit erfordern dickere Schichten von etwa 10 bis 50 nm.
    Wenn die Schicht (C) aus ferromagnetischen Metallen oder Metalloxiden aufgebaut ist, wird auch diese Schicht eine gewisse Magnetisierbarkeit des Glanzpigments bewirken. Diese wird jedoch in der Regel nicht groß genug sein, um zu einer wirksamen Ausrichtung des Pigments unter dem Einfluß eines Magnetfeldes zu führen, da die Schichtdicken (C), die zur Einstellung der gewünschten Koloristik erforderlich sind, zu gering sind.
    Insbesondere im Sicherheitsdruck wird die physikalische Detektierbarkeit des Magnetismus als zusätzliches Sicherheitsmerkmal gewünscht. Auch aus diesem Grund müssen die eingesetzten Pigmente ausreichende Mengen magnetisierbaren Materials enthalten, ohne dadurch Einbußen in der Koloristik aufzuweisen.
    Die erfindungsgemäßen Glanzpigmente haben den großen Vorteil, daß ihre magnetischen und ihre optischen Eigenschaften unabhängig voneinander durch die Schicht (A) einerseits und das Schichtsystem (B) + (C) andererseits gezielt eingestellt werden können.
    Die neuen Glanzpigmente zeigen also erstmals sowohl Magnetisierbarkeit als auch Farbwechsel zwischen intensiven Interferenzfarben, die bei einem gegebenen Betrachtungswinkel je nach der magnetischen Ausrichtung ortsabhängig im Anwendungsmedium zu beobachten sind.
    Weiterhin können die erfindungsgemäßen Glanzpigmente noch eine vierte Schicht (D) aufweisen, die aus farblosen oder selektiv absorbierenden Metalloxiden aufgebaut ist. Bevorzugt sind z.B. Aluminiumoxid, -oxidhydrat, Zirkon-, Titan-, Zinn-, Eisen- und Chromoxid und besonders bevorzugt Siliciumoxid und -oxidhydrat.
    Diese Deckschicht bewirkt insbesondere bei metallischen Schichten (C) eine deutliche Verbesserung der Beständigkeit gegen Umwelteinflüsse.
    Die Dicke der Schicht (D) ist an sich nicht kritisch, im allgemeinen beträgt sie etwa 1 bis 400 nm, insbesondere 5 bis 250 nm.
    Selbstverständlich kann auch die Schicht (D) zur Interferenz des Pigmentes beitragen und dabei die Interferenzenreihe an der durch das mit (B) und (C) beschichtete Substrat bestimmten Stelle fortsetzen. Dies ist beispielsweise der Fall, wenn Zirkon- oder Titanoxid als Schicht (D) aufgebracht werden. Besteht dagegen die Schicht (D) im wesentlichen aus Siliciumoxid, so wird sich diese Schicht im Anwendungsmedium (z.B. Lacken, Druckfarben oder Tinten), das einen ähnlichen Brechungsindex aufweist, koloristisch kaum bemerkbar machen.
    Farbige Metalloxide wie Eisen- und Chromoxid werden schließlich die Interferenzfarbe des Mehrschichtsystems durch Beimischen ihrer Absorptionsfarbe modifizieren und mit zunehmender Schichtdicke schließlich überdecken.
    Eine aufgrund ihrer hohen Farbstärke besonders bevorzugte Ausführungsform der erfindungsgemäßen Glanzpigmente stellen mit (A) Eisen und/oder Magnetit, (B) Siliciumdioxid, (C) Molybdän, Chrom, Wolfram und/oder Eisen und gewünschtenfalls wiederum Siliciumdioxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat (D) beschichtete Aluminiumplättchen dar, wobei die Dicken der einzelnen Schichten vorzugsweise 10 bis 100 nm (A), 50 bis 600 nm (B), 1 bis 25 nm, insbesondere 1 bis 20 nm (C) und 5 bis 250 nm (D) betragen. Ganz besonders bevorzugte Glanzpigmente weisen eine im wesentlichen aus Molybdän bestehende Schicht (C) auf.
    Insgesamt zeichnen sich bei den erfindungsgemäßen Glanzpigmenten alle Schichten durch ihren gleichmäßigen, homogenen und filmartigen Aufbau und ihre Fähigkeit zur Interferenz auch der dickeren Schichten aus, so daß kräftige Interferenzfarben zeigende Mehrschichtsysteme entstehen.
    Aus koloristischen Gründen sind Mischungen der erfindungsgemäßen metallischen Pigmente (I) mit mehrfach beschichteten silikatischen Plättchen (II) von besonderem Interesse.
    Als silikatische Substrate kommen dabei insbesondere helle bzw. weiße Glimmer in Betracht, wobei Schuppen von vorzugsweise naß vermahlenem Muskovit besonders bevorzugt sind. Selbstverständlich sind auch andere natürliche Glimmer wie Phlogopit und Biotit, künstliche Glimmer, Talk- und Glasschuppen geeignet.
    Die silikatischen Substratteilchen weisen eine innere Metalloxidschicht auf, die vorzugsweise aus hochbrechenden Metalloxiden wie Titan-, Zirkon-, Zink-, Zinn-, Chrom-, Eisenoxid und/oder Bismutoxychlorid aufgebaut ist. Aluminium- und Siliciumoxid können ebenfalls enthalten sein.
    Besonders bevorzugt sind Glimmerpigmente, bei welchen diese innere Metalloxidschicht im wesentlichen aus Titandioxid besteht und die weiteren genannten Oxide höchstens in untergeordneter Menge enthält.
    Metalloxidbeschichtete silikatische Pigmente sind allgemein bekannt und auch unter den Bezeichnungen Iriodin® (Merck, Darmstadt), Flonac® (Kemira Oy, Pori) oder Mearlin® (Mearl Corporation, New York) im Handel.
    Die silikatischen Pigmente sind, um eine ausreichende Magnetisierbarkeit der Pigmentmischung zu gewährleisten, vorteilhaft ebenfalls mit einer ferromagnetischen Schicht (A'), die Eisen, Cobalt, Nickel, Magnetit und/oder γ-Fe2O3 enthält, belegt.
    Gewünschtenfalls kann zum Schutz der Schicht (A') noch eine Deckschicht (B'), die im wesentlichen aus farblosem oder selektiv absorbierendem Metalloxid besteht, aufgebracht werden.
    Die Schichten (A') und/oder (B') können dabei wie die entsprechenden Schichten (A) und (B) der Metallpigmente oder verschieden von diesen aufgebaut sein.
    Durch geeignete Wahl der silikatischen Pigmente (II) kann das Farbenspiel der Metallpigmente (I) variiert oder ergänzt werden.
    Die Zusammensetzung der erfindungsgemäßen Glanzpigmentmischungen wird von der gewünschten Koloristik bestimmt.
    Prinzipiell kann das Gewichtsverhältnis metallisches Pigment (I): silikatisches Pigment (II) von 1:99 bis 99:1 variiert werden. Um ein ausreichendes Deckvermögen zu erreichen, enthalten die erfindungsgemäßen Pigmentmischungen vorzugsweise mindestens 5 Gew.-% metallisches Glanzpigment (I).
    Der bevorzugte Weg zur Herstellung der erfindungsgemäßen Pigmentmischungen ist die gemeinsame Beschichtung der metallischen und der metalloxidbeschichteten silikatischen Plättchen mit den Schichten (A) und gewünschtenfalls (B).
    Selbstverständlich können jedoch auch alle Schichten getrennt aufgebracht werden und die beschichteten Pigmente dann anschließend gemischt werden. Bei dieser Vorgehensweise kann die Beschichtung der metallischen und der silikatischen Teilchen variiert werden.
    Bei dem erfindungsgemäßen Herstellungsverfahren werden die Schichten (A), (C) und gegebenenfalls (D) vorzugsweise, wie in der EP-A-571 836 und der nicht vorveröffentlichten DE-A-43 40 141 beschrieben, über Gasphasenzersetzung flüchtiger Metallverbindungen (chemical vapor deposition, CVD) auf die Substratteilchen aufgebracht.
    Hierfür wird zweckmäßigerweise ein beheizbarer Wirbelschichtreaktor, wie er beispielsweise in der EP-A-33 457 oder der DE-A-38 13 335 beschrieben ist, verwendet, in dem die Substratteilchen zunächst mit einem Wirbelgas fluidisiert und auf die für die Zersetzung der jeweiligen Metallverbindung erforderliche Temperatur von in der Regel 70 bis 350°C erhitzt werden. Die in einem vorgeschalteten Verdampfergefäß unter Verwendung eines geeigneten Trägergases verdampften Metallverbindungen sowie die gegebenenfalls zur Zersetzung benötigten Gase werden dann über getrennte Düsen eingetragen.
    Metallische Schichten (A) (und (C)) werden dabei bevorzugt durch inerte Zersetzung von Metallcarbonylen, wie Eisenpentacarbonyl, Chrom-, Molybdän-, Wolframhexacarbonyl, Nickeltetracarbonyl und Dicobaltoctacarbonyl, aufgebracht (bei der Zersetzung von Mo(CO)6 sind z.B. Temperaturen von 200 bis 250°C bevorzugt).
    Gemischte Metallschichten (C), die z.B. im wesentlichen aus Molybdän und Chrom bestehen, können durch gleichzeitige oder durch aufeinanderfolgende Gasphasenbeschichtung aufgebracht werden. Die zweite Variante bietet sich insbesondere bei dünnen Schichten (C) an, da eine weitgehende Durchmischung der abgeschiedenen Schichten erfolgt.
    Soll die ferromagnetische Schicht (A) aus Magnetit (oder die schwarze Schicht (C) aus niederen Metalloxiden, wie Magnetit, VO2 oder V2O3) bestehen, dann werden zweckmäßigerweise die Metallcarbonyle wie Eisenpentacarbonyl oder Oxychloride wie Vanadinoxychlorid mit Wasserdampf und/oder Sauerstoff zersetzt. Werden bei dieser Gasphasenzersetzung zunächst höhere Metalloxide, beispielsweise V2O5, abgeschieden, so müssen diese anschließend z.B. mit Wasserstoff oder Ammoniak zum gewünschten Oxid reduziert werden.
    Die metallischen und/oder aus niederen Metalloxiden bestehenden Schichten (A) (und (C)) werden nach beendeter Beschichtung, insbesondere im Fall einer die äußere Schicht des Glanzpigmentes bildenden Schicht (C), zweckmäßigerweise an der Oberfläche passiviert. Das kann in einfacher Weise geschehen, indem den Wirbelgasen bei der Abkühlung etwas Luft zugemischt wird.
    Metallische Schichten (C) können aber auch naßchemisch durch Reduktion aus geeigneten Metallsalzlösungen aufgebracht werden. Auf diese Weise können vor allem edlere Metalle wie Kupfer, Silber, Gold, Cobalt, Nickel, Palladium und Platin abgeschieden werden. Wie in der EP-A-353 544 beschrieben, eignen sich hierfür eine Reihe von Reduktionsmitteln, insbesondere milde organische Reduktionsmittel wie Glucose und Formaldehyd.
    Zum Aufbau der metallischen Schichten (C) eignen sich auch Metallegierungen wie NiP, NiB, NiCo, NiWP, CoP und AgAu, die ebenfalls naßchemisch (z.B. durch Reaktion einer Metallsalzlösung mit Hypophospit) aufzubringen sind (EP-A-313 281).
    In der Regel werden jedoch die über die Gasphase aufgebrachten Metallschichten aufgrund ihrer höheren Qualität (feiner kristallin, filmartig) den naßchemisch aufgebrachten vorzuziehen sein, da sie meist brillantere und farbstärkere Glanzpigmente ergeben.
    Soll die ferromagnetische Schicht (A) im wesentlichen γ-Fe2O3 enthalten, so kann diese Schicht, wie in der nicht vorveröffentlichten DE-A-43 40 141 beschrieben, auf verschiedene Weise aufgebracht werden.
    Bei der einen Variante wird zunächst (vorzugsweise durch Zersetzung von Eisenpentacarbonyl in Gegenwart von Wasserdampf) eine im wesentlichen magnetithaltige Schicht (A) abgeschieden, die anschließend durch Erhitzen in Gegenwart von Luft oder anderen Sauerstoff/Inertgas-Gemischen auf üblicherweise 100 bis 600°C, bevorzugt 180 bis 400°C, besonders bevorzugt 200 bis 350°C in die gewünschte γ-Fe2O3-haltige Schicht überführt wird (Oxidationsdauer etwa 8 bis 24 h, Aufheizraten im allgemeinen 10 bis 100°C/h).
    Bei der anderen Variante wird zunächst durch Oxidation von Eisenpentacarbonyl eine im wesentlichen aus α-Fe2O3 bestehende Schicht aufgebracht, die dann durch Erhitzen in einer reduzierenden Atmosphäre (vorteilhaft in Gegenwart von z.B. Kohlenmonoxid oder besonders Wasserstoff, aber auch deren Mischungen) auf in der Regel 200 bis 600°C, vorzugsweise 200 bis 400°C (Reduktionsdauer etwa 8 bis 24 h, Aufheizraten im allgemeinen 10 bis 50°C/h) in eine eisen(II)haltige, im wesentlichen Eisen(II)oxid, Magnetit und Eisen enthaltende Schicht umgewandelt wird. Diese Schicht kann anschließend dann, wie bei der ersten Variante beschrieben, zu der gewünschten γ-Fe2O3-haltigen Schicht oxidiert werden.
    Die farblosen oder selektiv absorbierenden Metalloxidschichten (D) werden beim erfindungsgemäßen Verfahren im allgemeinen nach dem CVD-Verfahren durch Oxidation der Metallcarbonyle (z.B. Eisenpentacarbonyl, Chromhexacarbonyl) bzw. durch Hydrolyse der Metallhalogenide oder -alkoholate (z.B. Silicium-, Titan-, Zirkontetrachlorid, Titan-, Zirkon-tretra-n- und -iso-propanolat) abgeschieden.
    Die Schichten (D) können aber auch naßchemisch aufgebracht werden. Diese Vorgehensweise ist insbesondere bei solchen Schichten (D) vorzuziehen, die wie die erfindungsgemäßen Schichten (B) im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat bestehen sollen.
    Bei dieser erfindungsgemäßen naßchemischen Methode werden organische Silicium- und/oder Aluminiumverbindungen, bei denen die organischen Reste über Sauerstoffatome an die Metalle gebunden sind, in Gegenwart eines organischen Lösungsmittels und der zu belegenden Substratteilchen hydrolysiert.
    Als organische Lösungsmittel eignen sich hierfür sowohl aprotische Lösungsmittel wie Ketone, β-Diketone, Ether, vor allem cyclische Ether, und stickstoffhaltige Lösungsmittel, z.B. auch amidische Lösungsmittel, als auch protische Lösungsmittel wie ein- oder mehrwertige Alkohole mit vorzugsweise 1 bis 6 Kohlenstoffatomen, die mit Wasser mischbar sind.
    Beispiele für bevorzugte Lösungsmittel sind Aceton, Tetrahydrofuran, Ethanol und n- und iso-Propanol sowie Diethylketon, Acetylaceton, Dioxan, Trioxan, Ethylenglykol, Propylenglykol, Glycerin, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Pyridin und Acetonitril.
    Als metallhaltige Ausgangsverbindungen sind in den genannten organischen Lösungsmitteln lösliche organische Verbindungen, bei denen die organischen Reste über Sauerstoffatome an die Metalle gebunden sind, geeignet. Bevorzugte Beispiele sind die Acetylacetonate und insbesondere Alkoholate, vor allem C1-C4-Alkanolate, z.B. Aluminiumtriisopropanolat und Tetraethoxysilan.
    Die Hydrolyse wird vorzugsweise in Gegenwart einer Base oder einer Säure als Katalysator durchgeführt. Hierfür eignen sich z.B. neben Alkalilaugen wie Natronlauge insbesondere wäßrige Ammoniaklösungen. Geeignete saure Katalysatoren sind beispielsweise Phosphorsäure und organische Säuren wie Essigsäure und Oxalsäure.
    Wasser sollte mindestens in der stöchiometrisch für die Hydrolyse erforderlichen Menge vorliegen, bevorzugt ist jedoch die 2 bis 100fache, insbesondere die 5 bis 20fache Menge.
    Bezogen auf die eingesetzte Wassermenge, gibt man in der Regel 3 bis 40 Vol.-%, vorzugsweise 5 bis 30 Vol.-%, einer 25 gew.-%igen wäßrigen Ammoniaklösung zu.
    Für die Temperaturführung hat es sich als vorteilhaft erwiesen, das Reaktionsgemisch innerhalb von 10 bis 48 h schrittweise auf Rückflußtemperatur zu erhitzen. Bei Verwendung von Isopropanol als Lösungsmittel rührt man das Gemisch zum Beispiel bevorzugt zunächst 4 bis 20 h bei 40°C, dann 4 bis 20 h bei 60°C und zum Schluß 2 bis 8 h bei 80°C.
    Verfahrenstechnisch geht man zur Aufbringung der Schicht (B) zweckmäßigerweise wie folgt vor:
    Man legt die mit der ferromagnetischen Schicht (A) belegten Substratteilchen, organisches Lösungsmittel, Wasser und Katalysator (Base oder Säure) vor und gibt die zu hydrolysierende Metallverbindung, pur oder gelöst, z.B. als 30 bis 70, bevorzugt 40 bis 60 vol.-%ige Lösung im organischen Lösungsmittel, zu. Erfolgt die Zugabe der Metallverbindung in einem Schritt, dann wird die Suspension anschließend wie oben beschrieben unter Rühren erhitzt. Man kann die Metallverbindung aber auch bei erhöhter Temperatur kontinuierlich zudosieren, wobei das Wasser vorzugsweise nicht vorgelegt wird, sondern ebenfalls kontinuierlich zudosiert wird. Nach beendeter Beschichtung wird die Reaktionsmischung wieder auf Raumtemperatur abgekühlt.
    Um eine Agglomeratbildung während des Beschichtungsvorgangs zu verhindern, kann die Suspension einer starken mechanischen Beanspruchung wie Pumpen, kräftigem Rühren oder Einwirken von Ultraschall unterzogen werden.
    Gewünschtenfalls kann man den Beschichtungsschritt ein- oder mehrfach wiederholen. Sollte die Mutterlauge milchig trüb aussehen, so empfiehlt es sich, diese vor einer weiteren Beschichtung auszutauschen.
    Die Isolierung der auf diese Weise zusätzlich mit der Schicht (B) belegten Substratteilchen kann in einfacher Weise durch Abfiltrieren, Waschen mit organischem Lösungsmittel, vorzugsweise den auch als Lösungsmittel verwendeten Alkoholen, und anschließendes Trocknen (üblicherweise 2 bis 24 h bei 20 bis 200°C) erfolgen.
    Mit Hilfe des erfindungsgemäßen Verfahrens können auch dickere Siliciumoxidschichten von z.B. ≥ 70 nm problemlos in guter Qualität, d.h. als zusammenhängender, zur Interferenz befähigter Film, aufgebracht werden.
    Je nach der Teilchengröße der verwendeten Substratteilchen werden in der Regel 10 bis 80 Gew.-% Metalloxid (B), bezogen auf das beschichtete Substrat, zur Erzielung der gewünschten Farbeffekte eingesetzt. So sind beispielsweise bei gröberen Aluminiumteilchen (um 1,5 m2/g) bereits bei etwa 15 Gew.-% Siliciumoxid und bei feineren Aluminiumteilchen (um 4,5 m2/g) ab etwa 30 Gew.-% Siliciumoxid attraktive Farbeffekte zu beobachten.
    Die naßchemisch aufgebrachten Metalloxidschichten können in Abhängigkeit von der Vollständigkeit der an einen solchen Beschichtungsschritt anschließenden Trocknung noch geringe Mengen Wasser enthalten, die Metalloxide können also teilweise als Oxidhydrate vorliegen.
    Mit Hilfe des erfindungsgemäßen Herstellungsverfahrens können die magnetisierbaren mehrfach beschichteten metallischen Glanzpigmente (und deren Mischungen mit silikatischen Pigmenten) in einfacher Weise in großen Mengen reproduzierbar hergestellt werden. Es werden vollständig umhüllte Pigmentteilchen mit hoher Qualität der einzelnen Beschichtungen erhalten.
    Gewünschtenfalls können die beschichteten Glanzpigmente zur Desagglomerierung und Glättung einem zusätzlichen Veredelungsschritt durch schonendes Aufmahlen in einer Kugelmühle oder vergleichbaren Apparaten unterzogen werden.
    Die erfindungsgemäßen magnetisierbaren Glanzpigmente und Glanzpigmentmischungen eignen sich vorteilhaft für viele Zwecke wie zur Einfärbung von Lacken, Druckfarben, Tinten, Kunststoffen, Gläsern, keramischen Produkten und Zubereitungen der dekorativen Kosmetik. Sie zeigen hohen Glanz und je nach Betrachtungs- und Beleuchtungswinkel verschiedene intensive Interferenzfarben und gutes Deckvermögen und sind aufgrund ihrer ferromagnetischen Eigenschaften, die bereits als solche ein detektierbares Sicherheitsmerkmal darstellen, insbesondere auch für spezielle Anwendungen, wie die Erzeugung von dreidimensionalen optischen Effekten durch die Einwirkung von Magnetfeldern während oder nach der Applikation im noch flüssigen Anwendungsmedium geeignet.
    Insbesondere wenn für diese Ausrichtung Magnetfelder verwendet werden, deren Feldlinien in einem Bereich von etwa 1 bis 10 mm ihre Richtung nicht zu extrem ändern, sind die räumlichen optischen Effekte nicht nur von den üblichen Hell/Dunkel-Flops, sondern vorteilhaft auch von Farbwechseln zwischen den Interferenzfarben begleitet.
    Als bevorzugte Anwendungszwecke für die erfindungsgemäßen Glanzpigmente seien besonders der Sicherheits- und Wertschriftendruck genannt, wo sie (z.B. auf Scheckkarten) kostspielige Hologramme ersetzen können.
    Weiterhin lassen sich die erfindungsgemäßen Glanzpigmente auch vorteilhaft in Abmischung mit transparenten und deckenden Weiß-, Bunt- und Schwarzpigmenten sowie auch herkömmlichen Glanzpigmenten auf der Basis von metalloxidbeschichteten Glimmer- und Metallpigmenten und plättchenförmigen Eisenoxiden verwenden.
    Beispiele Herstellung und Anwendung eines erfindungsgemäßen Glanzpigments Beispiel 1
  • a) In einem Wirbelschichtreaktor (beschrieben in der EP-A-571 836) wurden 600 g entfettetes Aluminiumpulver (BET-Oberfläche 1,5 m2/g, mittlerer Teilchendurchmesser etwa 60 µm) unter Fluidisierung mit insgesamt 2300 l/h Stickstoff auf 200°C erhitzt. Ein kleiner Teil der Wirbelgase (400 l/h Stickstoff) wurde über eine auf 20°C temperierte Vorlage mit Eisenpentacarbonyl geleitet. In 10 h wurden so 145 g Fe(CO)5 in den Reaktor überführt und dort zu sich auf den Aluminiumteilchen filmartig abscheidenem Eisen sowie Kohlenmonoxid zersetzt. Nach beendeter Eisenabscheidung wurde den Wirbelgasen während des Abkühlens zur Passivierung der Eisenoberfläche etwas Luft zugesetzt. Das beschichtete Aluminiumpulver hatte einen Eisengehalt von 6,3 Gew.-%.
  • b) 150 g des eisenbeschichteten Aluminiumpulvers wurden anschließend in einem mit Rückflußkühler und Rührapparatur versehenen Rundkolben in 2 l Isopropanol aufgeschlämmt. Nach Zugabe von 136 g Tetraethoxysilan, 100 ml Wasser und 30 ml einer 25 gew.-%igen wäßrigen Ammoniaklösung wurde die Suspension unter Rühren auf 40°C erwärmt. Nach 6 h wurden weitere 408 g Tetraethoxysilan und 150 ml Wasser innerhalb von 10 h zudosiert. Anschließend wurde die Suspension noch 10 h bei 50°C gerührt. Nach Abkühlen der Suspension wurde das Produkt von der Mutterlauge abfiltriert, mit Isopropanol gewaschen und getrocknet.Das zweifach beschichtete Aluminiumpulver hatte einen SiO2-Gehalt von 20,7 Gew.-% und einen Eisengehalt von 3,0 Gew.-%.
  • c) 200 g des zweifach beschichteten Aluminiumpulvers wurden dann im Wirbelschichtreaktor unter Fluidisierung mit 1000 l/h Stickstoff auf 210°C erhitzt. Aus einer auf 70°C erwärmten Vorlage wurden mit einem Stickstoffstrom von 400 l/h 20 g Molybdänhexacarbonyl in 5 h in den Reaktor überführt, wo sie zu Molybdän und Kohlenmonoxid zersetzt wurden. Nach beendeter Molybdänabscheidung wurde den Wirbelgasen zur Passivierung der Molybdänoberfläche etwas Luft zugesetzt.
  • Das erhaltene Pigment hatte einen Molybdängehalt von 3,3 Gew.-% und zeigte, im Lack appliziert, bei nahezu unverändert starkem metallischen Glanz eine kräftige, blaustichig rote Interferenzfarbe, die bei steileren Betrachtungswinkeln in ein kräftiges Grün abkippte.
    Die Einarbeitung des Pigments in Lack erfolgte, indem 0,4 g des Pigments in 3,6 g eines Polyester-Mischlackes mit 21 Gew.-% Feststoffanteil eingerührt und 2 min im Red Devil dispergiert wurden. Mit einer Rakel (160 µm Naßfilmdicke) wurden auf schwarzweißem Karton und auf einer durchsichtigen Folie Abzüge des pigmentierten Lacks angefertigt.
    Bei der Einwirkung eines Magnetfelds auf die noch feuchten Lackierungen orientierten sich die Pigmentplättchen entlang der Feldlinien. Im getrockneten Lack ergaben sich auf diese Weise dreidimensionale Strukturen, die zusätzlich zu den üblichen Hell/Dunkel-Effekten rote und grüne Farbzonen aufwiesen.
    Das erhaltene Pigment hatte folgende Magnetwerte: Sättigungsmagnetisierung Ms = 2,6 nTm3/g, Remanenz Mr = 0,2 nTm3/g, Koerzitivfeldstärke Hc = 9,5 kA/m.
    Beispiel 2
  • a) Analog Beispiel 1a) wurden 60 g entfettetes Aluminiumpulver (BET-Oberfläche 4,5 m2/g, mittlerer Teilchendurchmesser 20 µm) in einem baugleichen, aber etwas kleiner ausgelegten Wirbelschichtreaktor (Innendurchmesser 8 cm) unter Fluidisierung mit insgesamt 600 l/h Stickstoff und Verwendung von 40 g Eisenpentacarbonyl, die mit einem Teilstrom von 100 l/h Stickstoff in 8 h in den Reaktor überführt wurden, mit Eisen beschichtet. Das beschichtete Aluminiumpulver hatte einen Eisengehalt von 15,2 Gew.-%.
  • b) Das eisenbeschichtete Aluminiumpulver wurde anschließend analog Beispiel 1b) mit SiO2 beschichtet. Dazu wurde es in 900 ml Isopropanol aufgeschlämmt und unter Rühren mit 200 ml Wasser und 20 ml der Ammoniaklösung versetzt. Dann wurde die Suspension auf 60°C erhitzt und gleichzeitig mit der Zudosierung einer Lösung von 425 g Tetraethoxysilan in 500 ml Isopropanol begonnen (Dosiergeschwindigkeit etwa 100 ml/h). Nach einer Nachrührzeit von 10 h bei 60°C wurde das Produkt wie in Beispiel 1b) isoliert. Das zweifach beschichtete Aluminiumpulver hatte einen SiO2-Gehalt von 63,1 Gew.-% und einen Eisengehalt von 5,6 Gew.-%.
  • c) Das zweifach beschichtete Aluminiumpulver wurde dann analog zu Beispiel 1c) unter Fluidisierung mit 900 l/h Stickstoff und Verwendung von 27 g Molybdänhexacarbonyl in 8 h mit Molybdän beschichtet.
  • Das erhaltene Pigment hatte einen Molybdängehalt von 4,4 Gew.-% und zeigte, im Lack appliziert, eine kräftige, grüne Interferenzfarbe, die bei steileren Betrachtungswinkeln nach violett abkippte.
    Durch Einwirken eines Magnetfeldes wurden Lackierungen mit dreidimensional wirkenden Strukturen erhalten, die zusätzlich zu den üblichen Hell/Dunkel-Effekten grüne und violette Farbzonen zeigten.
    Die Magnetwerte des erhaltenen Pigments betrugen: Ms = 3,5 nTm3/g Mr = 0,3 nTm3/g, Hc = 8,5 kA/m.

    Claims (10)

    1. Magnetisierbare Glanzpigmente auf der Basis von mehrfach beschichteten plättchenförmigen nichtferromagnetischen metallischen Substraten mit
      A) einer ersten, ferromagnetischen Schicht, die Eisen, Cobalt, Nickel, Magnetit und/oder γ-Fe2O3 enthält,
      B) einer zweiten, im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat bestehenden Schicht,
      C) einer dritten, im wesentlichen aus Metall und/oder nichtselektiv absorbierendem Metalloxid bestehenden Schicht und
      D) gewünschtenfalls einer vierten, im wesentlichen aus farblosem oder selektiv absorbierendem Metalloxid bestehenden Schicht.
    2. Glanzpigmente nach Anspruch 1, bei denen die Schicht (C) im wesentlichen aus Chrom, Molybdän, Wolfram, Eisen, Cobalt, Nickel, Silber, Kupfer, Gold, Palladium, Platin, Nickel-, Cobalt-, Silber/Gold-Legierungen, Magnetit, Nickeloxid, Cobaltoxid und/oder Vanadiumoxid besteht.
    3. Glanzpigmente nach Anspruch 1 oder 2, bei denen die Schicht (D) im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid, Aluminiumoxidhydrat, Titanoxid, Zirkonoxid, Chromoxid und/oder Eisenoxid besteht.
    4. Glanzpigmente nach den Ansprüchen 1 bis 3, bei denen das metallische Substrat im wesentlichen aus Aluminiumplättchen besteht.
    5. Glanzpigmente nach Anspruch 1 im wesentlichen aus Aluminium bestehenden, plättchenförmigen Substraten mit
      A) einer ersten, 10 bis 500 nm dicken, im wesentlichen aus Eisen und/oder Magnetit bestehenden Schicht,
      B) einer zweiten, 50 bis 600 nm dicken, im wesentlichen aus Siliciumoxid und/oder Siliciumoxidhydrat bestehenden Schicht,
      C) einer dritten, 1 bis 25 nm dicken, im wesentlichen aus Molybdän, Chrom, Wolfram und/oder Eisen bestehenden Schicht und
      D) gewünschtenfalls einer vierten, 5 bis 250 nm dicken, im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat bestehenden Schicht.
    6. Glanzpigmentmischungen aus
      I) den Glanzpigmenten gemäß den Ansprüchen 1 bis 5 und
      II) mehrfach beschichteten silikatischen Plättchen, die mit einer inneren, farblosen oder selektiv absorbierenden Metalloxidschicht belegt sind und
      A') eine ferromagnetische Schicht, die Eisen, Cobalt, Nickel, Magnetit und/oder γ-Fe2O3 enthält, und
      B') gewünschtenfalls eine im wesentlichen aus farblosem oder selektiv absorbierendem Metalloxid bestehende Schicht
      aufweisen, als wesentlichen Komponenten.
    7. Verfahren zur Herstellung von Glanzpigmenten gemäß den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man die metallischen Substratteilchen nacheinander mit den einzelnen Schichten belegt,
      wobei man
      die im wesentlichen metallischen Schichten ((A) und/oder (C)) durch Gasphasenzersetzung flüchtiger Metallverbindungen in einer inerten Atmosphäre oder durch stromlose, naßchemische Metallabscheidung und gegebenenfalls anschließende Trocknung,
      die im wesentlichen aus Siliciumoxid, Siliciumoxidhydrat, Aluminiumoxid und/oder Aluminiumoxidhydrat bestehenden Schichten (B) durch hydrolytische Zersetzung von organischen Silicium- und/oder Aluminiumverbindungen, bei denen die organischen Reste über Sauerstoffatome an die Metalle gebunden sind, in Gegenwart eines organischen Lösungsmittels, in welchem die Metallverbindungen löslich sind, und gegebenenfalls anschließende Trocknung,
      die im wesentlichen aus nichtselektiv absorbierendem Metalloxid bestehenden Schichten ((A) und/oder (C)) durch Gasphasenzersetzung flüchtiger Metallverbindungen in Gegenwart von Sauerstoff und/oder Wasserdampf,
      die im wesentlichen aus γ-Fe2O3 bestehenden Schichten (A) durch Gasphasenzersetzung von Eisencarbonyl in Gegenwart von Wasserdampf und/oder Sauerstoff unter Bildung einer im wesentlichen Magnetit enthaltenden Schicht und anschließendes Erhitzen in einer oxidierenden Atmosphäre oder durch Gasphasenzersetzung von Eisencarbonyl in Gegenwart von Sauerstoff und/oder Wasserdampf unter Bildung einer im wesentlichen α-Fe2O3 enthaltenden Schicht, deren Umwandlung in eine eisen(II)haltige Schicht durch Erhitzen in einer reduzierenden Atmosphäre und anschließendes Erhitzen in einer oxidierenden Atmosphäre und
      die im wesentlichen aus farblosem oder selektiv absorbierendem Metalloxid bestehenden Schichten (D) durch Gasphasenzersetzung flüchtiger Metallverbindungen in Gegenwart von Sauerstoff und/oder Wasserdampf oder durch hydrolytische Zersetzung organischer Metallverbindungen, bei denen die organischen Reste über Sauerstoffatome an die Metalle gebunden sind, in Gegenwart eines organischen Lösungsmittels, in welchem die Metallverbindungen löslich sind, und anschließende Trocknung aufbringt.
    8. Verfahren zur Einfärbung von Lacken, Druckfarben, Tinten, Kunststoffen, Gläsern, keramischen Produkten und Zubereitungen der dekorativen Kosmetik, dadurch gekennzeichnet, daß man hierfür die Glanzpigmente gemäß den Ansprüchen 1 bis 6 verwendet.
    9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man die Glanzpigmente während oder nach der Applikation im noch flüssigen Anwendungsmedium einem Magnetfeld aussetzt.
    10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß man es im Sicherheitsdruck zur Erzeugung von 3D-Effekten anwendet.
    EP95107903A 1994-06-01 1995-05-24 Magnetisierbare mehrfach beschichtete metallische Glanzpigmente Revoked EP0686675B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4419173 1994-06-01
    DE4419173A DE4419173A1 (de) 1994-06-01 1994-06-01 Magnetisierbare mehrfach beschichtete metallische Glanzpigmente

    Publications (2)

    Publication Number Publication Date
    EP0686675A1 EP0686675A1 (de) 1995-12-13
    EP0686675B1 true EP0686675B1 (de) 1998-02-04

    Family

    ID=6519535

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95107903A Revoked EP0686675B1 (de) 1994-06-01 1995-05-24 Magnetisierbare mehrfach beschichtete metallische Glanzpigmente

    Country Status (5)

    Country Link
    EP (1) EP0686675B1 (de)
    JP (1) JPH07331109A (de)
    AT (1) ATE163027T1 (de)
    DE (2) DE4419173A1 (de)
    FI (1) FI952683A (de)

    Cited By (51)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2003000801A2 (en) 2001-04-27 2003-01-03 Flex Products, Inc. Multi-layered magnetic pigments and foils
    US6749676B2 (en) 2000-07-03 2004-06-15 Berol Corporation Erasable inks, writing instruments, and methods
    WO2004072186A1 (en) 2003-02-13 2004-08-26 Jds Uniphase Corporation Multilayer magnetic reflecting pigment flakes and foils
    US7729026B2 (en) 2002-09-13 2010-06-01 Jds Uniphase Corporation Security device with metameric features using diffractive pigment flakes
    WO2012084097A1 (en) 2010-12-09 2012-06-28 Merck Patent Gmbh Magnetic pigments
    US8499687B2 (en) 2007-02-20 2013-08-06 Kba-Notasys Sa Cylinder body for orienting magnetic flakes contained in an ink or varnish vehicle applied on a sheet-like or web-like substrate
    US8893614B2 (en) 2007-05-10 2014-11-25 Kba-Notasys Sa Device and method for magnetically transferring indicia to a coating composition applied to a substrate
    WO2015086257A1 (en) 2013-12-13 2015-06-18 Sicpa Holding Sa Processes for producing effects layers
    US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    EP2965920A1 (de) 2014-07-09 2016-01-13 Sicpa Holding Sa Optisch variable magnetische Sicherheitsfäden und -streifen
    WO2016016028A1 (en) 2014-07-30 2016-02-04 Sicpa Holding Sa Belt-driven processes for producing optical effect layers
    US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    WO2016120382A1 (en) 2015-01-30 2016-08-04 Sicpa Holding Sa Simultaneous authentication of a security article and identification of the security article user
    WO2016120383A1 (en) 2015-01-30 2016-08-04 Sicpa Holding Sa Simultaneous authentication of a security article and identification of the security article user
    WO2016162479A1 (en) 2015-04-10 2016-10-13 Sicpa Holding Sa Mobile, portable apparatus for authenticating a security article and method of operating the portable authentication apparatus
    WO2016193252A1 (en) 2015-06-02 2016-12-08 Sicpa Holding Sa Processes for producing optical effects layers
    WO2017001188A1 (en) 2015-07-01 2017-01-05 Sicpa Holding Sa Postage stamps
    WO2017064052A1 (en) 2015-10-15 2017-04-20 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    EP3178569A1 (de) 2016-06-29 2017-06-14 Sicpa Holding Sa Verfahren und vorrichtungen zur erzeugung optischer effektschichten mit einer photomaske
    WO2017148789A1 (en) 2016-02-29 2017-09-08 Sicpa Holding Sa Appartuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2018019594A1 (en) 2016-07-29 2018-02-01 Sicpa Holding Sa Processes for producing effect layers
    WO2018033512A1 (en) 2016-08-16 2018-02-22 Sicpa Holding Sa Processes for producing effects layers
    WO2018054819A1 (en) 2016-09-22 2018-03-29 Sicpa Holding Sa Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    US10023000B2 (en) 2014-02-13 2018-07-17 Sicpa Holding Sa Security threads and stripes
    US10166808B2 (en) 2013-12-11 2019-01-01 Sicpa Holding Sa Optically variable security threads and stripes
    WO2019002046A1 (en) 2017-06-26 2019-01-03 Sicpa Holding Sa PRINTING SECURITY ELEMENTS
    WO2019038369A1 (en) 2017-08-25 2019-02-28 Sicpa Holding Sa ASSEMBLIES AND METHODS FOR PRODUCING OPTICAL LAYERS COMPRISING MAGNETIC OR MAGNETIZABLE PIGMENTS THAT ARE ORIENTED NON-SPHERICAL ADJUSTED
    WO2019038371A1 (en) 2017-08-25 2019-02-28 Sicpa Holding Sa ASSEMBLIES AND METHODS FOR PRODUCING OPTICAL LAYERS COMPRISING MAGNETIC OR MAGNETIZABLE PIGMENTS THAT ARE ORIENTED NON-SPHERICAL ADJUSTED
    WO2019038370A1 (en) 2017-08-25 2019-02-28 Sicpa Holding Sa ASSEMBLIES AND METHODS FOR PRODUCING OPTICAL LAYERS COMPRISING MAGNETIC OR MAGNETIZABLE PIGMENT PARTICLES WITH BOTH NON-SPHERICAL ORIENTED
    WO2019141452A1 (en) 2018-01-17 2019-07-25 Sicpa Holding Sa Processes for producing optical effects layers
    WO2020148076A1 (en) 2019-01-15 2020-07-23 Sicpa Holding Sa Process for producing optical effect layers
    WO2020160993A1 (en) 2019-02-08 2020-08-13 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles
    WO2020173693A1 (en) 2019-02-28 2020-09-03 Sicpa Holding Sa Method for authenticating a magnetically induced mark with a portable device
    WO2020173696A1 (en) 2019-02-28 2020-09-03 Sicpa Holding Sa Verifiable access credential
    WO2020193009A1 (en) 2019-03-28 2020-10-01 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2021018771A1 (en) 2019-07-30 2021-02-04 Sicpa Holding Sa Radiation curable intaglio inks
    WO2021083809A1 (en) 2019-10-28 2021-05-06 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2021083808A1 (en) 2019-10-28 2021-05-06 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2021239607A1 (en) 2020-05-26 2021-12-02 Sicpa Holding Sa Magnetic assemblies and methods for producing optical effect layers comprising oriented platelet-shaped magnetic or magnetizable pigment particles
    WO2021259527A1 (en) 2020-06-23 2021-12-30 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles
    WO2022049025A1 (en) 2020-09-02 2022-03-10 Sicpa Holding Sa Security marking, method and device for reading the security marking, security document marked with the security marking, and method and system for verifying said security document
    WO2022049024A1 (en) 2020-09-02 2022-03-10 Sicpa Holding Sa Security documents or articles comprising optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers
    EP3978573A1 (de) 2020-09-30 2022-04-06 Andres Ruiz Quevedo V-förmige (nicht planare), magnetische effekt-pigmente
    WO2022207692A1 (en) 2021-03-31 2022-10-06 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia
    WO2022258521A1 (en) 2021-06-11 2022-12-15 Sicpa Holding Sa Optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers
    US11577273B2 (en) 2018-07-30 2023-02-14 Sicpa Holding Sa Processes for producing optical effects layers
    WO2023161464A1 (en) 2022-02-28 2023-08-31 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia
    WO2024028408A1 (en) 2022-08-05 2024-02-08 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia
    EP4338854A2 (de) 2023-12-20 2024-03-20 Sicpa Holding SA Verfahren zur herstellung von schichten mit optischen effekten

    Families Citing this family (66)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4439455A1 (de) 1994-11-04 1996-05-09 Basf Ag Verfahren zur Herstellung von dreidimensionale optische Effekte aufweisenden Beschichtungen
    DE19516181A1 (de) * 1995-05-03 1996-11-07 Basf Ag Goniochromatische Glanzpigmente mit Aluminiumbeschichtung
    DE19538295A1 (de) * 1995-10-14 1997-04-17 Basf Ag Goniochromatische Glanzpigmente mit siliciumhaltiger Beschichtung
    EA003415B1 (ru) * 1996-08-22 2003-04-24 Ниттецу Майнинг Ко., Лтд. Красящий состав
    DE19806167A1 (de) * 1998-02-14 1999-08-19 Studiengesellschaft Kohle Mbh Edelmetall-geschützte, antikorrosive magnetische Nanokolloide
    DE19928060A1 (de) * 1999-06-15 2000-12-21 Whd Elektron Prueftech Gmbh Optisch variables Sicherheitsmerkmal und Verfahren zu seiner Herstellung
    CN1243806C (zh) 2000-04-20 2006-03-01 伯罗尔公司 剪切稀化的书写组合物,书写工具和方法
    WO2002002701A2 (en) 2000-07-03 2002-01-10 Berol Corporation Pearlescent inks, writing instruments, and methods
    US6686042B1 (en) 2000-09-22 2004-02-03 Flex Products, Inc. Optically variable pigments and foils with enhanced color shifting properties
    US6569529B1 (en) 2000-10-10 2003-05-27 Flex Product, Inc. Titanium-containing interference pigments and foils with color shifting properties
    DE10114445A1 (de) 2001-03-23 2002-09-26 Eckart Standard Bronzepulver Weicheisenpigmente
    DE10114446A1 (de) * 2001-03-23 2002-09-26 Eckart Standard Bronzepulver Eiseneffektpigmente
    US6808806B2 (en) 2001-05-07 2004-10-26 Flex Products, Inc. Methods for producing imaged coated articles by using magnetic pigments
    US6902807B1 (en) * 2002-09-13 2005-06-07 Flex Products, Inc. Alignable diffractive pigment flakes
    US7258900B2 (en) * 2002-07-15 2007-08-21 Jds Uniphase Corporation Magnetic planarization of pigment flakes
    US9458324B2 (en) 2002-09-13 2016-10-04 Viava Solutions Inc. Flakes with undulate borders and method of forming thereof
    EP1493590A1 (de) 2003-07-03 2005-01-05 Sicpa Holding S.A. Verfahren und Mittel für die Herstellung eines magnetisch-induziertes Bildes in einer Beschichtung die magnetische Teilchen enthält
    DE10346167A1 (de) * 2003-10-01 2005-05-25 Merck Patent Gmbh Glänzende schwarze Interferenzpigmente
    FR2876011B1 (fr) 2004-10-05 2006-12-29 Oreal Procede de maquillage d'un support et kit pour la mise en oeuvre de ce procede
    US9649261B2 (en) 2004-10-05 2017-05-16 L'oreal Method of applying makeup to a surface and a kit for implementing such a method
    JP2006281011A (ja) * 2005-03-31 2006-10-19 Yoshino Kogyosho Co Ltd 磁性塗料を用いた装飾方法および装飾品
    FR2888115B1 (fr) * 2005-07-08 2013-02-15 Oreal Fond de teint liquide, procede de maquillage et kit pour la mise en oeuvre d'un tel procede.
    FR2889921B1 (fr) 2005-08-30 2007-12-28 Oreal Ensemble de conditionnement et d'application comportant un dispositif magnetique.
    KR101457501B1 (ko) 2006-03-21 2014-11-04 아크조노벨코팅스인터내셔널비.브이. 기재에 패턴을 적용하는 방법
    EP1854852A1 (de) 2006-05-12 2007-11-14 Sicpa Holding S.A. Beschichtungszusammensetzung zur Erzeugung magnetisch induziertern Bilder
    EP1908598A1 (de) * 2006-10-04 2008-04-09 Sang Broli Company Limited Verfahren und Material zur Herstellung gedruckten Kennzeichen mit dreidimensionalem optischen Effekt
    NZ575677A (en) 2006-10-17 2011-01-28 Sicpa Holding Sa Method and means for producing a magnetically induced indicia in a coating containing magnetic particles
    TW200911525A (en) * 2007-09-05 2009-03-16 San Fang Chemical Industry Co Resin surface layer and method of fabricating the same, composite having the resin surface layer and method of fabricating the same
    US8211225B2 (en) 2008-04-09 2012-07-03 Sun Chemical Corp. Magnetic pigments and process of enhancing magnetic properties
    DE102008050605A1 (de) * 2008-10-09 2010-04-15 Merck Patent Gmbh Beschichtungsverfahren
    DE102009010248A1 (de) 2009-02-24 2010-09-02 Dürr Systems GmbH Beschichtungsvorrichtung und Beschichtungsverfahren zur Beschichtung eines Werkstücks
    TWI443612B (zh) 2009-04-07 2014-07-01 Sicpa Holding Sa 受壓變色保密元件
    WO2010149266A1 (en) 2009-06-26 2010-12-29 Merck Patent Gmbh Magnetic pigments comprising a flaky substrate and a layer of maghemite
    UA103693C2 (ru) 2009-07-28 2013-11-11 Сикпа Холдинг Са Переводная фольга, которая содержит цветопеременный магнитный пигмент, способ изготовления, использования переводной фольги и предмет или документ, который её содержит
    GB201001603D0 (en) 2010-02-01 2010-03-17 Rue De Int Ltd Security elements, and methods and apparatus for their manufacture
    AR080431A1 (es) 2010-03-03 2012-04-11 Sicpa Holding Sa Hilo o tira de seguridad que comprende particulas magneticas orientadas en tinta y procedimiento y medio para producir el mismo
    ES2540864T3 (es) 2010-09-24 2015-07-14 Kba-Notasys Sa Sistema y método para orientar escamas o laminillas magnéticas contenidas en un vehículo de tinta o barniz aplicado sobre un sustrato en forma de lámina o en forma de banda
    CN103119521B (zh) 2010-09-24 2015-09-23 锡克拜控股有限公司 用于产生磁感应视觉效果的设备、***和方法
    ES2673555T3 (es) 2012-05-07 2018-06-22 Sicpa Holding Sa Capa de efecto óptico
    BE1020786A3 (fr) 2012-07-10 2014-05-06 Agc Glass Europe Methode pour produire des motifs induits magnetiquement dans une couche deposee sur une feuille de verre.
    WO2014019163A1 (en) 2012-08-01 2014-02-06 Sicpa Holding Sa Optically variable security threads and stripes
    RU2601471C2 (ru) 2012-08-29 2016-11-10 Сикпа Холдинг Са Оптикопеременные защитные нити и полосы
    IN2015DN02025A (de) 2012-11-09 2015-08-14 Sicpa Holding Sa
    MX2015006904A (es) 2012-12-07 2015-09-16 Sicpa Holding Sa Composiciones de tinta de secado oxidativo.
    ES2831605T3 (es) 2013-01-09 2021-06-09 Sicpa Holding Sa Capas de efecto óptico que muestran un efecto óptico dependiente del ángulo de visión, procesos y dispositivos para su producción, artículos provistos de una capa de efecto óptico y usos de las mismas
    TW201431616A (zh) 2013-01-09 2014-08-16 Sicpa Holding Sa 顯示取決於視角的光學效應之光學效應層;用於其生產之工藝和裝置;攜帶光學效應層之物品;及其用途
    CA2910020C (en) 2013-05-02 2020-04-28 Sicpa Holding Sa Processes for producing security threads or stripes
    US9482800B2 (en) 2013-06-10 2016-11-01 Viavi Solutions Inc. Durable optical interference pigment with a bimetal core
    RU2640531C2 (ru) 2013-06-12 2018-01-09 Сикпа Холдинг Са Термочувствительные метки для выявления фальсификации
    US9659696B2 (en) 2013-06-14 2017-05-23 Sicpa Holding Sa Permanent magnet assemblies for generating concave field lines and process for creating optical effect coating therewith (inverse rolling bar)
    TWI641660B (zh) 2013-08-05 2018-11-21 瑞士商西克帕控股有限公司 磁性或可磁化色料顆粒及光學效應層
    EP2871065A1 (de) 2013-11-12 2015-05-13 AGC Glass Europe Methode zur Herstellung von magnetisch induzierten Motiven in einer auf eine Glasscheibe aufgebrachte Schicht
    TW201605655A (zh) 2014-07-29 2016-02-16 西克帕控股有限公司 用於由磁場產生裝置產生凹形磁力線所製成之光學效果層之場內硬化之方法
    PT3374093T (pt) 2015-11-10 2020-01-20 Sicpa Holding Sa Aparelhos e processos para produção de camadas de efeito ótico compreendendo partículas de pigmentos magnéticas ou magnetizáveis não esféricas orientadas
    FR3049200B1 (fr) 2016-03-24 2018-04-13 Saint-Gobain Glass France Procede de fabrication de verre peint ou laque
    FR3056443B1 (fr) 2016-09-29 2018-11-02 Saint-Gobain Glass France Procede de fabrication de verre peint ou laque
    EP3421551A1 (de) * 2017-06-28 2019-01-02 Andres Ruiz Quevedo Effektpigment
    CN111148574B (zh) 2017-07-25 2023-04-21 麦格诺莫有限责任公司 用于可磁化塑料的方法和组合物
    JP7362982B2 (ja) 2018-05-08 2023-10-18 シクパ ホルディング ソシエテ アノニム 非球状配向磁性又は磁化可能顔料粒子を含む光学効果層を生成するための磁気アセンブリ、装置、及びプロセス
    JP7063108B2 (ja) * 2018-05-21 2022-05-09 凸版印刷株式会社 識別情報付き印刷媒体及びその製造方法
    EP3829891A1 (de) 2018-07-30 2021-06-09 Sicpa Holding SA Anordnungen und verfahren zur herstellung von schichten mit optischem effekt mit ausgerichteten magnetischen oder magnetisierbaren pigmentpartikeln
    TWI829734B (zh) 2018-09-10 2024-01-21 瑞士商西克帕控股有限公司 光學效應層、生產其之製程、及包含其之安全文件、裝飾元件及物件
    CN110204925A (zh) * 2019-05-30 2019-09-06 惠州市华阳光学技术有限公司 一种高色度磁性颜料片及其制备方法
    CN112708288A (zh) * 2020-05-21 2021-04-27 厦门大学 一种磁性结构色薄膜
    CN114958032A (zh) * 2021-02-26 2022-08-30 惠州市华阳光学技术有限公司 一种高色饱和度的光致变色颜料
    WO2023072740A1 (en) 2021-10-26 2023-05-04 Basf Se A method for producing interference elements

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3003352A1 (de) 1980-01-31 1981-08-06 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von eisenoxidbelegten metallpigmenten
    JPH01108267A (ja) 1987-10-21 1989-04-25 Toyota Motor Corp 顔料
    DE3813335A1 (de) 1988-04-21 1989-11-02 Basf Ag Metalloxidbeschichtete aluminiumpigmente
    JP2632007B2 (ja) * 1988-07-04 1997-07-16 日本化学工業株式会社 磁性無電解めっき粉体の製造方法
    DE3825702A1 (de) 1988-07-28 1990-02-01 Michael Huber Muenchen Gmbh Fa Goniochromatische pigmente, verfahren zu deren herstellung und deren verwendung zur herstellung von sicherheits- und effektfarben
    DE4217511A1 (de) 1992-05-27 1993-12-02 Basf Ag Glanzpigmente auf der Basis von mehrfach beschichteten plättchenförmigen metallischen Substraten
    DE4223384A1 (de) 1992-07-16 1994-01-20 Basf Ag Glanzpigmente auf Basis metalloxidbeschichteter Aluminiumplättchen mit einem Gesamtkohlenstoffgehalt unter 0,1 Gew.-%
    DE4313541A1 (de) 1993-04-24 1994-10-27 Basf Ag Magnetisierbare Glanzpigmente
    DE4340141A1 (de) * 1993-11-25 1995-06-01 Basf Ag Magnetisierbare Glanzpigmente

    Cited By (60)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6749676B2 (en) 2000-07-03 2004-06-15 Berol Corporation Erasable inks, writing instruments, and methods
    US6986809B2 (en) 2000-07-03 2006-01-17 Berol Corporation Erasable inks, writing instruments, and methods
    WO2003000801A2 (en) 2001-04-27 2003-01-03 Flex Products, Inc. Multi-layered magnetic pigments and foils
    US7729026B2 (en) 2002-09-13 2010-06-01 Jds Uniphase Corporation Security device with metameric features using diffractive pigment flakes
    WO2004072186A1 (en) 2003-02-13 2004-08-26 Jds Uniphase Corporation Multilayer magnetic reflecting pigment flakes and foils
    US8813644B2 (en) 2007-02-20 2014-08-26 Kba-Notasys Sa Cylinder body for orienting magnetic flakes contained in an ink or varnish vehicle applied on a sheet-like or web-like substrate
    US8499687B2 (en) 2007-02-20 2013-08-06 Kba-Notasys Sa Cylinder body for orienting magnetic flakes contained in an ink or varnish vehicle applied on a sheet-like or web-like substrate
    US8893614B2 (en) 2007-05-10 2014-11-25 Kba-Notasys Sa Device and method for magnetically transferring indicia to a coating composition applied to a substrate
    WO2012084097A1 (en) 2010-12-09 2012-06-28 Merck Patent Gmbh Magnetic pigments
    US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
    US10166808B2 (en) 2013-12-11 2019-01-01 Sicpa Holding Sa Optically variable security threads and stripes
    WO2015086257A1 (en) 2013-12-13 2015-06-18 Sicpa Holding Sa Processes for producing effects layers
    US10023000B2 (en) 2014-02-13 2018-07-17 Sicpa Holding Sa Security threads and stripes
    EP2965920A1 (de) 2014-07-09 2016-01-13 Sicpa Holding Sa Optisch variable magnetische Sicherheitsfäden und -streifen
    US10166810B2 (en) 2014-07-09 2019-01-01 Sicpa Holding Sa Optically variable magnetic security threads and stripes
    WO2016016028A1 (en) 2014-07-30 2016-02-04 Sicpa Holding Sa Belt-driven processes for producing optical effect layers
    WO2016120383A1 (en) 2015-01-30 2016-08-04 Sicpa Holding Sa Simultaneous authentication of a security article and identification of the security article user
    WO2016120382A1 (en) 2015-01-30 2016-08-04 Sicpa Holding Sa Simultaneous authentication of a security article and identification of the security article user
    WO2016162479A1 (en) 2015-04-10 2016-10-13 Sicpa Holding Sa Mobile, portable apparatus for authenticating a security article and method of operating the portable authentication apparatus
    WO2016193252A1 (en) 2015-06-02 2016-12-08 Sicpa Holding Sa Processes for producing optical effects layers
    US10328739B2 (en) 2015-06-02 2019-06-25 Sicpa Holding Sa Processes for producing optical effects layers
    WO2017001188A1 (en) 2015-07-01 2017-01-05 Sicpa Holding Sa Postage stamps
    WO2017064052A1 (en) 2015-10-15 2017-04-20 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2017148789A1 (en) 2016-02-29 2017-09-08 Sicpa Holding Sa Appartuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    EP3178569A1 (de) 2016-06-29 2017-06-14 Sicpa Holding Sa Verfahren und vorrichtungen zur erzeugung optischer effektschichten mit einer photomaske
    WO2018019594A1 (en) 2016-07-29 2018-02-01 Sicpa Holding Sa Processes for producing effect layers
    WO2018033512A1 (en) 2016-08-16 2018-02-22 Sicpa Holding Sa Processes for producing effects layers
    WO2018054819A1 (en) 2016-09-22 2018-03-29 Sicpa Holding Sa Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2019002046A1 (en) 2017-06-26 2019-01-03 Sicpa Holding Sa PRINTING SECURITY ELEMENTS
    WO2019038370A1 (en) 2017-08-25 2019-02-28 Sicpa Holding Sa ASSEMBLIES AND METHODS FOR PRODUCING OPTICAL LAYERS COMPRISING MAGNETIC OR MAGNETIZABLE PIGMENT PARTICLES WITH BOTH NON-SPHERICAL ORIENTED
    WO2019038369A1 (en) 2017-08-25 2019-02-28 Sicpa Holding Sa ASSEMBLIES AND METHODS FOR PRODUCING OPTICAL LAYERS COMPRISING MAGNETIC OR MAGNETIZABLE PIGMENTS THAT ARE ORIENTED NON-SPHERICAL ADJUSTED
    WO2019038371A1 (en) 2017-08-25 2019-02-28 Sicpa Holding Sa ASSEMBLIES AND METHODS FOR PRODUCING OPTICAL LAYERS COMPRISING MAGNETIC OR MAGNETIZABLE PIGMENTS THAT ARE ORIENTED NON-SPHERICAL ADJUSTED
    WO2019141452A1 (en) 2018-01-17 2019-07-25 Sicpa Holding Sa Processes for producing optical effects layers
    WO2019141453A1 (en) 2018-01-17 2019-07-25 Sicpa Holding Sa Processes for producing optical effects layers
    US11577273B2 (en) 2018-07-30 2023-02-14 Sicpa Holding Sa Processes for producing optical effects layers
    EP4230311A1 (de) 2018-07-30 2023-08-23 Sicpa Holding SA Verfahren zur herstellung von schichten mit optischen effekten
    WO2020148076A1 (en) 2019-01-15 2020-07-23 Sicpa Holding Sa Process for producing optical effect layers
    US11618053B2 (en) 2019-01-15 2023-04-04 Sicpa Holding Sa Process for producing optical effect layers
    WO2020160993A1 (en) 2019-02-08 2020-08-13 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles
    WO2020173693A1 (en) 2019-02-28 2020-09-03 Sicpa Holding Sa Method for authenticating a magnetically induced mark with a portable device
    US11847527B2 (en) 2019-02-28 2023-12-19 Sicpa Holding Sa Verifiable access credential
    WO2020173696A1 (en) 2019-02-28 2020-09-03 Sicpa Holding Sa Verifiable access credential
    WO2020193009A1 (en) 2019-03-28 2020-10-01 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2021018771A1 (en) 2019-07-30 2021-02-04 Sicpa Holding Sa Radiation curable intaglio inks
    WO2021083808A1 (en) 2019-10-28 2021-05-06 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2021083809A1 (en) 2019-10-28 2021-05-06 Sicpa Holding Sa Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
    WO2021239607A1 (en) 2020-05-26 2021-12-02 Sicpa Holding Sa Magnetic assemblies and methods for producing optical effect layers comprising oriented platelet-shaped magnetic or magnetizable pigment particles
    WO2021259527A1 (en) 2020-06-23 2021-12-30 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles
    WO2022049025A1 (en) 2020-09-02 2022-03-10 Sicpa Holding Sa Security marking, method and device for reading the security marking, security document marked with the security marking, and method and system for verifying said security document
    WO2022049024A1 (en) 2020-09-02 2022-03-10 Sicpa Holding Sa Security documents or articles comprising optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers
    WO2022069778A1 (es) 2020-09-30 2022-04-07 Ruiz Quevedo Andres Pigmentos de efecto magnético en forma de v (no planos)
    EP3978573A1 (de) 2020-09-30 2022-04-06 Andres Ruiz Quevedo V-förmige (nicht planare), magnetische effekt-pigmente
    WO2022207692A1 (en) 2021-03-31 2022-10-06 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia
    WO2022258521A1 (en) 2021-06-11 2022-12-15 Sicpa Holding Sa Optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers
    WO2023161464A1 (en) 2022-02-28 2023-08-31 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia
    WO2024028408A1 (en) 2022-08-05 2024-02-08 Sicpa Holding Sa Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia
    EP4338854A2 (de) 2023-12-20 2024-03-20 Sicpa Holding SA Verfahren zur herstellung von schichten mit optischen effekten

    Also Published As

    Publication number Publication date
    JPH07331109A (ja) 1995-12-19
    FI952683A0 (fi) 1995-06-01
    DE59501399D1 (de) 1998-03-12
    EP0686675A1 (de) 1995-12-13
    FI952683A (fi) 1995-12-02
    ATE163027T1 (de) 1998-02-15
    DE4419173A1 (de) 1995-12-07

    Similar Documents

    Publication Publication Date Title
    EP0686675B1 (de) Magnetisierbare mehrfach beschichtete metallische Glanzpigmente
    EP0668329B1 (de) Mehrfach beschichtete metallische Glanzpigmente
    EP0708154B1 (de) Mehrfach beschichtete metallische Glanzpigmente
    DE4405492A1 (de) Mehrfach beschichtete metallische Glanzpigmente
    EP0753545B2 (de) Goniochromatische Glanzpigmente auf der Basis transparenter, nichtmetallischer, plättchenförmiger Substrate
    EP0571836B1 (de) Glanzpigmente auf der Basis von mehrfach beschichteten plättchenförmigen metallischen Substraten
    EP0768343B1 (de) Goniochromatische Glanzpigmente mit siliciumhaltiger Beschichtung
    EP0655486B1 (de) Magnetisierbare Glanzpigmente
    EP0741170B1 (de) Goniochromatische Glanzpigmente mit Aluminiumbeschichtung
    EP0045851B1 (de) Verfahren zur Herstellung von mit Metalloxiden beschichteten schuppenförmigen Glimmerpigmenten und deren Verwendung
    EP0622425B1 (de) Magnetisierbare Glanzpigmente
    DE60017592T2 (de) Edelmetall farbeffekt materialien und deren herstellung
    EP0823928B1 (de) Goniochromatische glanzpigmente mit metallsulfidhaltiger beschichtung
    EP0632110B1 (de) Bismutvanadathaltige Glanzpigmente
    EP1506262B1 (de) Goniochromatische glanzpigmente
    WO1993012182A1 (de) Glanzpigmente auf der basis von mehrfach beschichteten plättchenförmigen silikatischen substraten
    EP0690105B1 (de) Glanzpigmente mit stickstoffhaltigen Metallschichten
    EP0659843A2 (de) Nicht glänzendes Pigment
    EP0750021A2 (de) Goldfarbiges Pigment auf Basis von mit Metalloxiden überzogenen Substraten
    DE4319669A1 (de) Glanzpigmente auf der Basis von mehrfach beschichteten, plättchenförmigen Substraten
    DE3718446A1 (de) Plaettchenfoermiges zweiphasenpigment
    EP0718378A2 (de) Nicht glänzende Farbpigmente
    DE19802234A1 (de) Goniochromatische Glanzpigmente mit carboxylathaltiger Zirkoniumoxidbeschichtung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI

    17P Request for examination filed

    Effective date: 19951025

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19970701

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19980204

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980204

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980204

    REF Corresponds to:

    Ref document number: 163027

    Country of ref document: AT

    Date of ref document: 19980215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59501399

    Country of ref document: DE

    Date of ref document: 19980312

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19980531

    EN Fr: translation not filed
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 19980204

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    BERE Be: lapsed

    Owner name: BASF A.G.

    Effective date: 19980531

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: FLEX PRODUCTS, INC.

    Effective date: 19981103

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    RDAH Patent revoked

    Free format text: ORIGINAL CODE: EPIDOS REVO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 19990504

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 19990505

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 19990528

    Year of fee payment: 5

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    27W Patent revoked

    Effective date: 19990503