EP0679968A1 - Pièce d'horlogerie mue par une source d'énergie mécanique et régulée par un circuit électronique - Google Patents

Pièce d'horlogerie mue par une source d'énergie mécanique et régulée par un circuit électronique Download PDF

Info

Publication number
EP0679968A1
EP0679968A1 EP95105590A EP95105590A EP0679968A1 EP 0679968 A1 EP0679968 A1 EP 0679968A1 EP 95105590 A EP95105590 A EP 95105590A EP 95105590 A EP95105590 A EP 95105590A EP 0679968 A1 EP0679968 A1 EP 0679968A1
Authority
EP
European Patent Office
Prior art keywords
rotor
generator
speed
signal
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95105590A
Other languages
German (de)
English (en)
Other versions
EP0679968B1 (fr
Inventor
Wiget Fridolin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Publication of EP0679968A1 publication Critical patent/EP0679968A1/fr
Application granted granted Critical
Publication of EP0679968B1 publication Critical patent/EP0679968B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C11/00Synchronisation of independently-driven clocks
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/008Mounting, assembling of components

Definitions

  • a timepiece having these characteristics which is described for example in patent US-A-3937001, has the same precision as a conventional electronic timepiece thanks to the fact that the reference pulses, the frequency of which determines the rotational speed of the generator rotor and therefore that of the current time display hands, are produced from a signal supplied by a quartz oscillator.
  • this timepiece does not have a battery or accumulator since the power supply to its electronic circuits is ensured by the electrical energy supplied by its generator, the rotor of which is connected to its source of mechanical energy, which is constituted by a barrel spring similar to that used in classic mechanical timepieces.
  • the braking means of the generator rotor consist of a resistor connected in series with an electronic switch, the assembly formed by this resistor and this switch being connected in parallel with the generator coil.
  • this switch is controlled directly by the comparison signal so as to be permanently closed when the latter is in its first state, that is to say as long as the generator rotor is ahead of the position. that it would occupy if it had always been running at its set speed.
  • the electronic circuits of the timepiece are supplied by a direct voltage supplied by a rectifier circuit of the alternating voltage produced by the generator.
  • the electronic circuits of the timepiece could be supplied, during these braking times, by the electrical energy accumulated in the capacitor (s) that generally comprises the rectifier circuit supplying these circuits, even if the value of the braking resistor was zero.
  • the generator rotor can be braked without interruption for a fairly long time. It is therefore practically excluded to choose a zero value for the braking resistor, because the capacitor of the rectifier circuit should then have a very high capacity and should therefore be quite bulky and expensive. It would also not be possible to determine with certainty the capacity that this capacitor should have since the maximum time during which the generator rotor can be braked cannot be predicted in advance.
  • the braking resistor When the braking resistor is connected in parallel with the generator coil, the alternating voltage produced by this coil is reduced on the one hand because of the reduction in the speed of rotation which results from this connection and, on the other hand, because of the voltage drop produced in the generator coil by the current absorbed by the braking resistor.
  • the braking torque applied to the generator rotor is higher the lower the value of the braking resistor, this braking torque being maximum when this braking resistor has a zero value.
  • This braking torque must obviously impose on the generator rotor a rotational speed lower than its set speed whatever the engine torque supplied by the barrel spring.
  • this engine torque can be as high as possible, which favorably influences the autonomy of the timepiece, that is to say the time during which it can operate without its barrel spring must be reassembled, so the braking torque must also be high, which implies that the braking resistor has a low value.
  • this resistance should have a zero value.
  • the braking resistor of the rotor must therefore fulfill two contradictory conditions. On the one hand, it must be sufficiently high, and in any case not zero, for the supply voltage of the electronic circuits to be sufficient in all circumstances. On the other hand, it must be low enough, and preferably zero, for the braking torque to be high and for the rotational speed of the rotor, when it is braked, to be lower than its set speed even when the torque motor supplied by the mechanical power source is maximum.
  • a coil having a large number of turns of a small diameter wire has a high internal resistance which, on the one hand, adds to the braking resistance and reduces the braking torque of the rotor and, on the other hand, causes a decrease in the alternating voltage produced by the generator when it is traversed by the current supplied by the latter.
  • An object of the present invention is to provide a timepiece of the same kind as that described in patent US-A-3,937,001 already mentioned but which does not have the drawbacks thereof, that is to say ie a timepiece in which the value of the rotor braking resistance can be very low, or even zero, without it being necessary to give the generator coil a high number of turns and without there is a risk that, in any circumstance whatsoever, the supply voltage of the electronic circuits will become insufficient for the latter to function correctly.
  • this very low, or even zero, value of this braking resistor makes it possible to choose the barrel spring driving the generator rotor so that its maximum torque is high and the autonomy of the timepiece is therefore higher, all other things being equal, than that of the known timepiece mentioned above.
  • the timepiece according to the present invention which is designated by the general reference 1
  • This barrel spring, designated by the reference 2 has only been shown very schematically because it can be of the same kind as any of the well known barrel springs which are used in conventional mechanical timepieces.
  • This barrel spring 2 is coupled to a manual or automatic winding mechanism which has not been shown because it can be similar to any of the well-known winding mechanisms which are also used in conventional mechanical timepieces .
  • the barrel spring 2 is mechanically coupled to the rotor 3a of an electrical energy generator 3 via a gear train 4 symbolized by a dashed line.
  • This generator 3 also includes a coil 3b, and it will not be described in detail since it can be produced in various ways well known to specialists.
  • the rotor 3a comprises a bipolar magnet which has been simply symbolized by an arrow representing its axis of magnetization.
  • the coil 3b is magnetically coupled to the permanent magnet of the rotor 3a, for example by means of a stator which has not been shown, so as to produce between its terminals B1 and B2, in response at any rotation of the rotor 3a, an alternating voltage Ug whose period is equal to the period of rotation of the rotor 3a, that is to say the time taken by this rotor 3a to make a revolution.
  • the terminals B1 and B2 of the coil 3b obviously constitute the output terminals of the generator 3.
  • the timepiece 1 also includes a rectifier circuit 5 whose inputs 5a and 5b are respectively connected to the terminals B1 and B2 of the generator 3 and whose outputs 5c and 5d provide a voltage Ua at least substantially continuous in response to the alternating voltage Ug produced by the generator 3.
  • This voltage Ua is intended to supply the various electronic circuits which will be described later by means of conductors which have not been shown.
  • the rectifier 5 will not be described in detail since it may be similar to any of the rectifiers well known to specialists. It will simply be mentioned that this rectifier 5 comprises, conventionally, a filtering capacitor which is connected between its output terminals 5c and 5d and which has not been shown.
  • the terminals 5a and 5c of the rectifier 5 are connected to each other as well as to the terminal B1 of the generator 3. Furthermore, the potential of these three terminals 5a, 5c and B1 has been chosen arbitrarily as the reference potential , or mass, and all the voltages which will be mentioned in the remainder of this description will be voltages measured with respect to this reference potential.
  • the alternating voltage Ug is therefore symmetrical with respect to this reference potential when the rotor 3a rotates at constant speed.
  • the timepiece 1 also comprises means for displaying the current time which are constituted in this example by conventional hands, designated by the reference 6, but which can also be constituted by other well known elements such as records, drums or the like. It can also include one or more annex display devices such as a calendar, moon phase or other device. Such an additional device has not been shown.
  • the needles 6 and, where appropriate, the accessory device (s), are mechanically connected to the barrel spring 2 and to the rotor 3a of the generator 3 by means of a gear train, at least part of which may be common with part of the train 4.
  • this gear train connected to the needles 6 has not been referenced separately, and it is also symbolized by a dashed line.
  • the timepiece 1 also includes a mechanism for setting the time of the hands 6 and, if necessary, for correcting the accessory device (s), which has not been shown because it can be similar to any one various mechanisms of this kind which are well known to specialists.
  • control circuit 7 which determine the speed of rotation of the rotor 3a and which will be described later, as well as the gear train 4, are arranged so that the needles 6 rotate at their normal speeds when the rotor 3a rotates at the set speed Vc. It will be assumed that, in the present example, this reference speed Vc has been fixed at 4 revolutions per second.
  • the characteristics of the barrel spring 2 and of the various elements which it drives, as well as the characteristics of the generator 3, are chosen so that the average speed of rotation of the rotor 3a is greater than the set speed Vc as long as the barrel spring 2 is not almost completely disarmed, provided that the coil 3b is not short-circuited.
  • these characteristics are chosen so that this average speed of rotation is less than this reference speed Vc if the coil 3b is short-circuited, under circumstances which will be described later, even when the barrel spring is completely wound up and the engine torque it provides therefore has its maximum value.
  • the servo circuit 7 mentioned above comprises a comparator 8 whose direct input is connected to the terminal B2 of the generator 3 and whose reverse input is connected to the reference potential, so that the signal produced by its output , which will be called signal SM in the following description, is alternately in state “0" and in state “1" depending on whether the voltage Ug supplied by generator 3 is negative or positive.
  • the period of the signal SM is obviously equal to that of the voltage Ug so that, in particular, this period of the signal SM is 250 milliseconds when the rotor 3a of the generator 3 rotates at its set speed Vc which is 4 revolutions per second in this example.
  • the signal SM passes from its state "0" to its state “1" each time the rotor 3a of the generator 3 passes through a determined angular position, which is that at which the voltage Ug passes through its increasing zero value. .
  • the signal SM is therefore both a signal for measuring the speed of rotation of the rotor 3a and a signal for detecting the passage of this rotor 3a through the determined angular position defined above.
  • the servo circuit 7 also comprises a source of a reference signal SR, constituted, in this example, by an oscillator 9, which can be a quartz oscillator, and a frequency divider circuit 10 having an output Q1 which provides the signal SR in response to the signal produced by the oscillator 9.
  • a source of a reference signal SR constituted, in this example, by an oscillator 9, which can be a quartz oscillator, and a frequency divider circuit 10 having an output Q1 which provides the signal SR in response to the signal produced by the oscillator 9.
  • This oscillator 9 and this frequency divider 10 will not be described in detail since they can be produced in various ways well known to those skilled in the art. It will simply be mentioned that this oscillator 9 and this frequency divider 10 are arranged so that the period of the signal SR is equal to that of the signal SM when the rotor 3a of the generator 3 rotates at its speed of setpoint Vc, that is to say 250 milliseconds in the present example.
  • the frequency divider 10 has a second output, designated by Q2, providing a signal SC having a much shorter period, for example of the order of a hundred times shorter, than that of the signal SR, and whose l the usefulness will be made evident later.
  • this signal SC can be supplied by the output of the sixth flip-flop of the frequency divider 10 and thus have a period equal to approximately 1.95 milliseconds.
  • the servo circuit 7 also includes a reversible counter, or up-down counter, which is designated by the reference 11.
  • the counting input C of this counter 11 is connected to the output Q of the frequency divider 10 and therefore receives the signal SR, and its down counting input D is connected to the output of comparator 8 and therefore receives the signal SM.
  • This reversible counter 11 will not be described in detail since it can be produced in various well known ways. It will simply be specified that it is sensitive to the rising edges of the pulses it receives, that is to say to the passages from logic state "0" to logic state "1" of signals SR and SM. In other words, the content of this counter 11, that is to say the binary number formed by the logical states “0” or “1” of the direct outputs of the various flip-flops which form it, is increased by one unit on each rising edge of the SR signal pulses and decreased by one unit on each rising edge of the SM signal pulses.
  • This counter 11 comprises in in addition to well-known means which make it possible to remove any ambiguity due to any superposition in time of the pulses which it receives on its inputs C and D.
  • the counter 11 has an input R for resetting to zero and it is arranged so that its content is maintained at the value zero as long as this input R is in the logic state "1".
  • the counter 11 is made up of n flip-flops, its content can take any value greater than or equal to zero and less than or equal to 2 n -1.
  • the operation of the counter 11 is cyclic, that is to say in particular that, when its content is equal to zero, this content takes the value 2 n -1 in response to a pulse applied to its down counting input D .
  • positive values of the content of counter 11 will be called those which are greater than or equal to zero and less than or equal to 2 (n-1) , and negative values of this content those which are greater than 2 (n-1) and less than or equal to 2 n -1.
  • the output Q of the counter 11 which is conventionally constituted by the direct output of the last of its flip-flops, is in the logical state "0" when the content of counter 11 is positive and in logic state "1" when this content is negative.
  • the output Q of the reversible counter 11 is connected to a first input of an AND gate 12, the second input of which is connected to the output of the comparator 8.
  • This gate 12 is connected to the input S of a flip-flop 13 of type R-S whose input R is connected to the output of an OR gate 14.
  • the flip-flop 13 is sensitive to the rising edges of the pulses it receives on its inputs S and R.
  • the direct output Q and the inverse output Q ⁇ of this flip-flop 13 respectively take the logic state “1” and the logic state “0” in response to each rising edge of the signal applied to its input S, and respectively take the logic state "0” and the logic state "1” in response to each rising edge of the signal applied to its R input.
  • a first input of the OR gate 14 is connected to the output Q of a simple, non-reversible counter 15.
  • This counter 15 consists in this example of five flip-flops connected in series in a conventional manner so that its output Q, which is the direct output of its fifth flip-flop, goes from state "0" to state "1" when its content changes from the value fifteen to the value sixteen.
  • the counting input C of the counter 15 is connected to the output Q2 of the frequency divider 10 and therefore receives the signal SC, and its reset input R is connected to the inverse output Q ⁇ of the flip-flop 13.
  • the counter 15 is sensitive to the rising edges of the signal applied to its counting input C, and its content is maintained at the value zero as long as its input R is in logic state "1".
  • the servo circuit 7 further comprises means for electrically braking the rotor 3a of the generator 3, which are constituted in the present example by an n-type MOS transistor, designated by the reference 16, whose source and drain are respectively connected at the terminals B1 and B2 of the generator 3, and the grid of which is connected to the direct output Q of the flip-flop 13.
  • transistor 16 is blocked or conductive depending on whether its gate is in the "0" or "1" logic state since it is of type n and its source is at the reference potential.
  • the servo circuit 7 also includes an initialization circuit 17 having two connected inputs respectively at the terminals 5c and 5d of the rectifier 5 and an output connected on the one hand to the reset inputs R of the frequency divider 10 and the reversible counter 11 and, on the other hand, to the second input of the OR gate 14 .
  • This initialization circuit 17 will not be described in detail since it can be produced in various well known ways. It will simply be mentioned that it is arranged so that its output produces a short initialization pulse at the moment when the voltage Ua reaches by increasing a determined threshold value, which is equal to or slightly greater than the value for which the various other components of the servo circuit 7 begin to function properly. This instant will be called initialization instant t0 in the rest of this description.
  • the pulse produced by the initialization circuit 17 causes the frequency divider 10 and the reversible counter 11 to be reset to zero, so that the outputs Q1 and Q2 of the frequency divider 10 and the output Q of the reversible counter 11 are put in the logic state "0".
  • the logic state "0" of the output Q of the flip-flop 13 puts the transistor 16 in its blocking state, so that the coil 3b of the generator 3 is not short-circuited and that the speed of rotation of the rotor 3a can reach and exceed the set speed Vc.
  • the logic state "1" of the output Q ⁇ of flip-flop 13 maintains the content of counter 15 at zero.
  • reference instant tr will be called each of the instants when the reference signal SR goes from its state “0" to its state “1” and where the content of the counter 11 is therefore increased by one.
  • the instant of measurement tm will be called each of the instants where the measurement signal SM also passes from its state “0" to its state “1” and where the content of the counter 11 is therefore reduced by one unit.
  • the angular position of the rotor 3a will be called the angular position that it should occupy, at each reference instant tr, if its average speed of rotation since the instant t0 had been equal to its reference speed Vc.
  • the content of the reversible counter 11 is permanently representative of the difference between the number of pulses of the signal SR produced by the frequency divider 10 since the time t0 defined above and the number of pulses of the signal SM produced by the comparator 8, which is the number of complete turns made by the rotor 3a of the generator 3, from the same instant t0.
  • This content of the counter 11 is therefore also permanently representative of the delay or of the advance of the rotor 3a with respect to its theoretical angular position, this delay or this advance possibly being, if necessary, several turns.
  • the output Q of the reversible counter 11 is in the logic state "0", so that the output of the AND gate 12 remains in the state "0" and that the flip-flop 13 remains in the state where its output Q is in logic state "0".
  • the transistor 16 remains blocked, and the coil 3b of the generator 3 not being short-circuited, the speed of rotation of the rotor 3a can remain or, if necessary, tend to become greater than the reference speed Vc, provided that understood that the barrel spring 2 is still sufficiently armed.
  • the output Q of the counter 11 is in the logic state "1".
  • the signal SM then also being in state "1", the flip-flop 13 takes the state where its outputs Q and Q ⁇ are in logical state "1" and in logical state "0" respectively.
  • the transistor 16 becomes conductive and short-circuits the coil 3b of the generator 3.
  • the rotor 3a is therefore braked, and its speed of rotation becomes lower than the reference speed Vc.
  • the flip-flop 13 then resumes the state where its outputs Q and Q ⁇ are in logical state "0" and in logical state "1" respectively.
  • the transistor 16 is therefore again blocked, so that the rotor 3a is no longer braked and its speed of rotation can again increase.
  • the circuit formed by the doors 12 and 14, the rocker 13 and the counter 15 constitutes a circuit for limiting the duration of braking of the rotor 3a to a determined fraction, 1/8 in the present example, of the period of the voltage Ug supplied by the generator 3.
  • the average speed of the rotor 3a is equal to the set speed Vc, and, if the hands 6 have been set to the time at time t0, they permanently display the exact time, with an accuracy equal to that of the frequency of the reference signal SR.
  • this result is obtained by braking the rotor 3a, when it is ahead of its theoretical angular position, only for periods of limited duration, significantly less than the time taken on average by the rotor 3a to do a full turn.
  • this duration of the braking periods which is determined by the frequency of the signal SC and by the number of flip-flops forming the counter 15, is approximately eight times shorter than the average rotation period of the rotor 3a.
  • the voltage Ug produced by the generator 3 is obviously zero since the transistor 16 is conductive and short-circuits the coil 3b.
  • each of these braking periods begins at an instant when the Ug tension is in any case zero, and their duration is only a fairly small fraction of the period of this Ug tension as we have just seen.
  • the voltage Ug would therefore have only a relatively low value if the coil 3b were not short-circuited, and the generator 3 would in any case only provide very low energy, or even zero energy. , to the rectifier 5.
  • the voltage Ug has its normal value, so that the quantity of electrical energy supplied by the generator 3 is almost not reduced, or even not at all , by braking the rotor 3a.
  • the generator 3 continues to supply the electrical energy necessary for the operation of the servo circuit 7 even when the rotor 3a is ahead of its theoretical angular position and it is braked as described above. above, regardless of the importance of this advance.
  • the filter capacitor (s) of the rectifier 5 can therefore have relatively low capacities, since it is not necessary for them to supply the servo circuit 7 for long periods as is the case in the room. of known watchmaking described in the patent US-A-3937001 mentioned above.
  • the elimination of this resistance has the advantage that the braking of the rotor 3a is more effective, which makes it possible to increase the maximum admissible engine torque for the barrel spring 2 and therefore to increase the autonomy of the timepiece 1.
  • the rotor of the generator of a timepiece may comprise, instead of the bipolar magnet of the rotor 3a of the generator 3 described above, either a permanent multipolar magnet, or a plurality of bipolar permanent magnets arranged at the periphery of a disc.
  • the alternating voltage produced by the coil of this generator has a period which is equal to the ratio between the period of rotation of the rotor and the number of pairs of poles of the multipolar magnet or, respectively, the number of bipolar magnets.
  • the measurement signal that is to say the signal SM in the example of FIG. 1, so that it changes to state "1", for a limited time, not only each time the alternating voltage produced by the generator of the timepiece passes through its increasing zero value, but also each time this alternating voltage passes through this decreasing zero value.
  • the period of this measurement signal is equal to half that of the alternating voltage produced by the generator, and the rotor of this generator is braked twice per period of this alternating voltage when it is in advance relative to its theoretical angular position. It may then be necessary to reduce the duration of the braking periods of this rotor to prevent the electrical energy supplied by the generator does not become insufficient to adequately power the electronic circuits of the timepiece.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromechanical Clocks (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Les aiguilles (6) de la pièce d'horlogerie (1) sont reliées à un ressort de barillet (2) qui entraîne également le rotor (3a) d'un générateur (3) à une vitesse supérieure à une vitesse de consigne Vc. L'énergie électrique fournie par le générateur (3) alimente un circuit d'asservissement (7) comportant un transistor (16) qui court-circuite la bobine (3b) du générateur (3) et freine ainsi le rotor (3a) jusqu'à une vitesse inférieure à la vitesse de consigne Vc lorsqu'un comparateur (11) indique que ce rotor (3a) est en avance par rapport à sa position angulaire théorique. Un circuit de limitation (12 à 15) limite la durée du freinage du rotor (3a) à une fraction de la période de la tension alternative (Ug) fournie par le générateur (3). Cette disposition garantit que le circuit d'asservissement (7) est alimenté convenablement même si l'avance du rotor (3a) est importante. <IMAGE>

Description

  • La présente invention a pour objet une pièce d'horlogerie comportant :
    • un générateur d'énergie électrique comprenant un rotor et des moyens pour fournir ladite énergie électrique en réponse à une rotation dudit rotor;
    • une source d'énergie mécanique couplée mécaniquement audit rotor pour provoquer ladite rotation dudit rotor à une vitesse supérieure à une vitesse de consigne déterminée; et
    • des moyens d'asservissement de la vitesse de rotation dudit rotor à ladite vitesse de consigne alimentés par ladite énergie électrique et comportant :
    • des moyens de mesure couplés audit générateur pour produire une pluralité d'impulsions de mesure, chacune desdites impulsions de mesure étant produite en réponse au passage dudit rotor par une position angulaire déterminée;
    • des moyens de référence pour produire une pluralité d'impulsions de référence périodiques ayant une période égale à celle desdites impulsions de mesure lorsque ledit rotor tourne à ladite vitesse de consigne;
    • des moyens de comparaison pour fournir un signal de comparaison représentatif de la différence entre, d'une part, un premier nombre qui est le nombre desdites impulsions de référence produites depuis un instant initial déterminé et, d'autre part, un deuxième nombre qui est le nombre desdites impulsions de mesure produites depuis ledit instant initial, ledit signal de comparaison ayant un premier et un deuxième état selon que ledit premier nombre est inférieur ou, respectivement, supérieur audit deuxième nombre; et
    • des moyens de freinage répondant à un signal de commande pour appliquer audit rotor un couple de freinage imposant audit rotor une vitesse de rotation inférieure à ladite vitesse de consigne.
  • Une pièce d'horlogerie ayant ces caractéristiques, qui est décrite par exemple dans le brevet US-A-3937001, a la même précision qu'une pièce d'horlogerie électronique classique grâce au fait que les impulsions de référence, dont la fréquence détermine la vitesse de rotation du rotor du générateur et donc celle des aiguilles d'affichage de l'heure courante, sont produites à partir d'un signal fourni par un oscillateur à quartz.
  • En outre, cette pièce d'horlogerie ne comporte ni pile ni accumulateur puisque l'alimentation de ses circuits électroniques est assurée par l'énergie électrique fournie par son générateur dont le rotor est relié à sa source d'énergie mécanique, qui est constituée par un ressort de barillet semblable à celui qui est utilisé dans les pièces d'horlogerie mécaniques classiques.
  • Ceci représente un net avantage par rapport à une pièce d'horlogerie électronique classique dont les circuits sont alimentés par une pile ou un accumulateur dont la durée de vie est limitée.
  • Dans la pièce d'horlogerie décrite dans le brevet US-A-3 937 001 mentionné ci-dessus, les moyens de freinage du rotor du générateur sont constitués par une résistance branchée en série avec un interrupteur électronique, l'ensemble formé par cette résistance et cet interrupteur étant branché en parallèle avec la bobine du générateur.
  • En outre, cet interrupteur est commandé directement par le signal de comparaison de manière à être fermé en permanence lorsque ce dernier est dans son premier état, c'est-à-dire tant que le rotor du générateur est en avance par rapport à la position qu'il occuperait s'il avait toujours tourné à sa vitesse de consigne.
  • Il peut donc arriver que ce rotor soit freiné sans interruption pendant un temps assez long, notamment s'il a été auparavant fortement accéléré par un choc angulaire.
  • Les circuits électroniques de la pièce d'horlogerie sont alimentés par une tension continue fournie par un circuit redresseur de la tension alternative produite par le générateur.
  • La valeur de cette tension continue, qui dépend de la valeur de cette tension alternative, doit évidemment être en permanence suffisante pour que ces circuits électroniques fonctionnent correctement.
  • Or, lorsque le rotor du générateur est freiné, la tension alternative qu'il produit est d'autant plus basse que la valeur de la résistance de freinage est faible, cette tension alternative étant évidemment nulle si la valeur de la résistance de freinage est elle-même nulle.
  • Si le rotor du générateur n'était freiné que pendant des temps relativement courts, les circuits électroniques de la pièce d'horlogerie pourraient être alimentés, pendant ces temps de freinage, par l'énergie électrique accumulée dans le ou les condensateurs que comporte généralement le circuit redresseur alimentant ces circuits, et ceci même si la valeur de la résistance de freinage était nulle.
  • Mais, comme on l'a vu ci-dessus, le rotor du générateur peut être freiné sans interruption pendant un temps assez long. Il est donc pratiquement exclu de choisir pour la résistance de freinage une valeur nulle, car le condensateur du circuit redresseur devrait alors avoir une capacité très élevée et devrait donc être assez encombrant et cher. Il ne serait d'ailleurs pas possible de déterminer avec certitude la capacité que ce condensateur devrait avoir puisque le temps maximal pendant lequel le rotor du générateur peut être freiné ne peut pas être prévu à l'avance.
  • Lorsque la résistance de freinage est branchée en parallèle avec la bobine du générateur, la tension alternative produite par cette bobine est diminuée d'une part à cause de la diminution de la vitesse de rotation qui résulte de ce branchement et, d'autre part, à cause de la chute de tension produite dans la bobine du générateur par le courant absorbé par la résistance de freinage.
  • Il en résulte que, pour que la tension d'alimentation des circuits électroniques de la pièce d'horlogerie soit toujours suffisante, il ne suffit pas que la valeur de la résistance de freinage ne soit pas nulle, comme on l'a vu ci-dessus, mais il faut en outre que cette valeur soit relativement élevée.
  • Cependant, le couple de freinage appliqué au rotor du générateur est d'autant plus élevé que la valeur de la résistance de freinage est faible, ce couple de freinage étant maximal lorsque cette résistance de freinage a une valeur nulle.
  • Ce couple de freinage doit évidemment imposer au rotor du générateur une vitesse de rotation inférieure à sa vitesse de consigne quel que soit le couple moteur fourni par le ressort de barillet.
  • Pour que la valeur maximale de ce couple moteur puisse être aussi élevée que possible, ce qui influence favorablement l'autonomie de la pièce d'horlogerie, c'est-à-dire le temps pendant lequel elle peut fonctionner sans que son ressort de barillet doive être remonté, il faut donc que le couple de freinage soit également élevé, ce qui implique que la résistance de freinage ait une valeur faible. De préférence, cette résistance devrait avoir une valeur nulle.
  • La résistance de freinage du rotor doit donc remplir deux conditions contradictoires. D'une part, elle doit être suffisamment élevée, et en tout cas pas nulle, pour que la tension d'alimentation des circuits électroniques soit suffisante en toutes circonstances. D'autre part, elle doit être assez faible, et de préférence nulle, pour que le couple de freinage soit élevé et que la vitesse de rotation du rotor, lorsqu'il est freiné, soit inférieure à sa vitesse de consigne même lorsque le couple moteur fourni par la source d'énergie mécanique est maximal.
  • Pour que la première condition ci-dessus puisse être remplie plus facilement, on peut théoriquement augmenter le nombre de spires de la bobine du générateur. Mais une bobine ayant un grand nombre de spires est volumineuse et peut être difficile à loger dans l'espace restreint disponible dans une pièce d'horlogerie de petit volume telle qu'une montre bracelet. Ou alors, si on choisit de réaliser cette bobine avec un fil de diamètre suffisamment faible pour qu'elle ne soit pas trop encombrante, sa fabrication devient difficile et son prix de revient augmente.
  • Il faut aussi tenir compte du fait qu'une bobine ayant un grand nombre de spires d'un fil de petit diamètre a une résistance interne élevée qui, d'une part, s'ajoute à la résistance de freinage et diminue le couple de freinage du rotor et, d'autre part, provoque une diminution de la tension alternative produite par le générateur lorsqu'elle est parcourue par le courant fourni par ce dernier.
  • On peut aussi, théoriquement, utiliser un circuit redresseur multiplicateur de tension pour redresser la tension alternative produite par la bobine du générateur. Mais un tel circuit comporte un nombre assez élevé de condensateurs, qui sont des éléments encombrants, et de diodes dont la tension de seuil n'est pas sensiblement inférieure à la tension nécessaire à l'alimentation des circuits électroniques de la pièce d'horlogerie. Il en découle que, en pratique, il n'est possible d'utiliser qu'un redresseur simple ou, tout au plus, un redresseur doubleur de tension pour redresser la tension alternative produite par le générateur.
  • Pour que la deuxième condition mentionnée ci-dessus soit plus facilement remplie, on peut évidemment diminuer la valeur maximale du couple moteur fourni par le ressort de barillet entraînant le rotor du générateur. Mais alors l'autonomie de la pièce d'horlogerie est diminuée, ce qui n'est évidemment pas souhaitable.
  • Un but de la présente invention est de proposer une pièce d'horlogerie du même genre que celle qui est décrite dans le brevet US-A-3 937 001 déjà mentionné mais qui ne présente pas les inconvénients de celle-ci, c'est-à-dire une pièce d'horlogerie dans laquelle la valeur de la résistance de freinage du rotor peut être très faible, voire même nulle, sans qu'il soit nécessaire de donner à la bobine du générateur un nombre de spires élevé et sans qu'il y ait un risque de voir, en quelque circonstance que ce soit, la tension d'alimentation des circuits électroniques devenir insuffisante pour que ces derniers fonctionnent correctement. En outre, cette valeur très faible, ou même nulle, de cette résistance de freinage permet de choisir le ressort de barillet entraînant le rotor du générateur de manière que son couple maximal soit élevé et que l'autonomie de la pièce d'horlogerie soit donc plus élevée, toutes autres choses étant égales, que celle de la pièce d'horlogerie connue mentionnée ci-dessus.
  • Ce but est atteint par la pièce d'horlogerie dont les caractéristiques sont énumérées dans la revendication 1.
  • D'autres buts et avantages de la présente invention seront rendus évidents par la description qui va suivre et qui sera faite à l'aide du dessin annexé dans lequel :
    • la figure 1, unique, représente schématiquement une forme d'exécution de la pièce d'horlogerie selon la présente invention.
  • Dans sa forme d'exécution représentée schématiquement et à titre d'exemple non limitatif à la figure 1, la pièce d'horlogerie selon la présente invention, qui est désignée par la référence générale 1, comporte une source d'énergie mécanique constituée par un ressort de barillet. Ce ressort de barillet, désigné par la référence 2, n'a été représenté que très schématiquement car il peut être du même genre que n'importe lequel des ressorts de barillet bien connus qui sont utilisés dans les pièces d'horlogerie mécanique classiques.
  • Ce ressort de barillet 2 est couplé à un mécanisme de remontage manuel ou automatique qui n'a pas été représenté car il peut être semblable à n'importe lequel des mécanismes de remontage bien connus qui sont également utilisés dans les pièces d'horlogerie mécaniques classiques.
  • Le ressort de barillet 2 est couplé mécaniquement au rotor 3a d'un générateur d'énergie électrique 3 par l'intermédiaire d'un train d'engrenages 4 symbolisé par un trait mixte. Ce générateur 3 comporte encore une bobine 3b, et il ne sera pas décrit en détail car il peut être réalisé de diverses manières bien connues des spécialistes.
  • On mentionnera simplement que, dans le présent exemple, le rotor 3a comporte un aimant bipolaire qui a été simplement symbolisé par une flèche représentant son axe d'aimantation.
  • On mentionnera également que la bobine 3b est couplée magnétiquement à l'aimant permanent du rotor 3a, par exemple par l'intermédiaire d'un stator qui n'a pas été représenté, de manière à produire entre ses bornes B1 et B2, en réponse à toute rotation du rotor 3a, une tension alternative Ug dont la période est égale à la période de rotation du rotor 3a, c'est-à-dire au temps mis par ce rotor 3a pour faire un tour. Les bornes B1 et B2 de la bobine 3b constituent évidemment les bornes de sortie du générateur 3.
  • La pièce d'horlogerie 1 comporte encore un circuit redresseur 5 dont les entrées 5a et 5b sont respectivement reliées aux bornes B1 et B2 du générateur 3 et dont les sorties 5c et 5d fournissent une tension Ua au moins sensiblement continue en réponse à la tension alternative Ug produit par le générateur 3. Cette tension Ua est destinée à alimenter les divers circuits électroniques qui seront décrits plus loin par l'intermédiaires de conducteurs qui n'ont pas été représentés.
  • Le redresseur 5 ne sera pas décrit en détail car il peut être semblable à n'importe lequel des redresseurs bien connus des spécialistes. On mentionnera simplement que ce redresseur 5 comporte, de manière classique, un condensateur de filtrage qui est branché entre ses bornes de sortie 5c et 5d et qui n'a pas été représenté.
  • Dans le présent exemple, les bornes 5a et 5c du redresseur 5 sont reliées entre elles ainsi qu'à la borne B1 du générateur 3. En outre, le potentiel de ces trois bornes 5a, 5c et B1 a été choisi arbitrairement comme potentiel de référence, ou masse, et toutes les tensions qui seront mentionnées dans la suite de cette description seront des tensions mesurées par rapport à ce potentiel de référence.
  • Avec cette convention, la tension alternative Ug est donc symétrique par rapport à ce potentiel de référence lorsque le rotor 3a tourne à vitesse constante.
  • En outre, dans la suite de cette description, les divers signaux seront décrits comme étant à l'état logique "0" ou à l'état logique "1" selon que le potentiel des points où ils sont mesurés est sensiblement égal au potentiel de référence ou, respectivement, au potentiel de la borne 5d du redresseur 5.
  • La pièce d'horlogerie 1 comporte encore des moyens d'affichage de l'heure courante qui sont constitués dans cet exemple par des aiguilles classiques, désignées par la référence 6, mais qui peuvent aussi être constitués par d'autres éléments bien connus tels que des disques, des tambours ou autres. Elle peut également comporter un ou plusieurs dispositifs d'affichage annexes tels qu'un dispositif de calendrier, de phase de lune ou autre. Un tel dispositif annexe n'a pas été représenté.
  • Les aiguilles 6 et, le cas échéant, le ou les dispositifs annexes, sont reliés mécaniquement au ressort de barillet 2 et au rotor 3a du générateur 3 par l'intermédiaire d'un train d'engrenages dont une partie au moins peut être commune avec une partie du train d'engrenages 4. Dans la figure 1, ce train d'engrenages relié aux aiguilles 6 n'a pas été référencé séparément, et il est également symbolisé par un trait mixte.
  • La pièce d'horlogerie 1 comporte aussi un mécanisme de mise à l'heure des aiguilles 6 et, le cas échéant, de correction du ou des dispositifs annexes, qui n'a pas été représenté car il peut être semblable à n'importe lequel des divers mécanismes de ce genre qui sont bien connus des spécialistes.
  • La vitesse de rotation des aiguilles 6, qui doit bien entendu avoir une valeur moyenne constante et bien déterminée, est contrôlée par un circuit 7 d'asservissement de la vitesse de rotation du rotor 3a à une vitesse de consigne qui sera appelée Vc dans la suite de cette description.
  • Les éléments du circuit d'asservissement 7 qui déterminent la vitesse de rotation du rotor 3a et qui seront décrits plus loin, ainsi que le train d'engrenages 4, sont agencés de manière que les aiguilles 6 tournent à leurs vitesses normales lorsque le rotor 3a tourne à la vitesse de consigne Vc. On admettra que, dans le présent exemple, cette vitesse de consigne Vc a été fixée à 4 tours par seconde.
  • En outre, et pour une raison qui sera rendue évidente par la suite de cette description, les caractéristiques du ressort de barillet 2 et des divers éléments qu'il entraîne, ainsi que les caractéristiques du générateur 3, sont choisies de manière que la vitesse moyenne de rotation du rotor 3a soit supérieure à la vitesse de consigne Vc tant que le ressort de barillet 2 n'est pas presque complètement désarmé, à condition que la bobine 3b ne soit pas court-circuitée. De même, ces caractéristiques sont choisies de manière que cette vitesse moyenne de rotation soit inférieure à cette vitesse de consigne Vc si la bobine 3b est court-circuitée, dans des circonstances qui seront décrites plus loin, et ceci même lorsque le ressort de barillet est complètement remonté et que le couple moteur qu'il fournit a donc sa valeur maximale.
  • Le circuit d'asservissement 7 mentionné ci-dessus comporte un comparateur 8 dont l'entrée directe est reliée à la borne B2 du générateur 3 et dont l'entrée inverse est reliée au potentiel de référence, de sorte que le signal produit par sa sortie, qui sera appelé signal SM dans la suite de cette description, est alternativement à l'état "0" et à l'état "1" selon que la tension Ug fournie par le générateur 3 est négative ou positive.
  • La période du signal SM est évidemment égale à celle de la tension Ug de sorte que, notamment, cette période du signal SM est de 250 millisecondes lorsque le rotor 3a du générateur 3 tourne à sa vitesse de consigne Vc qui est de 4 tours par seconde dans le présent exemple.
  • En outre, le signal SM passe de son état "0" à son état "1" chaque fois que le rotor 3a du générateur 3 passe par une position angulaire déterminée, qui est celle à laquelle la tension Ug passe par sa valeur nulle en croissant.
  • Le signal SM est donc à la fois un signal de mesure de la vitesse de rotation du rotor 3a et un signal de détection du passage de ce rotor 3a par la position angulaire déterminée définie ci-dessus.
  • Le circuit d'asservissement 7 comporte également une source d'un signal de référence SR, constituée, dans cet exemple, par un oscillateur 9, qui peut être un oscillateur à quartz, et un circuit diviseur de fréquence 10 ayant une sortie Q1 qui fournit le signal SR en réponse au signal produit par l'oscillateur 9.
  • Cet oscillateur 9 et ce diviseur de fréquence 10 ne seront pas décrits en détail car ils peuvent être réalisés de diverses manières bien connues de l'homme du métier. On mentionnera simplement que cet oscillateur 9 et ce diviseur de fréquence 10 sont agencés de manière que la période du signal SR soit égale à celle du signal SM lorsque le rotor 3a du générateur 3 tourne à sa vitesse de consigne Vc, c'est-à-dire 250 millisecondes dans le présent exemple.
  • Ce résultat peut être obtenu, toujours par exemple, en utilisant pour l'oscillateur 9 un oscillateur semblable à celui qui est utilisé dans la grande majorité des pièces d'horlogerie électroniques et qui fournit un signal ayant une fréquence de 32.768 Hz, et en réalisant le diviseur de fréquence 10 sous la forme bien connue d'une série de 13 bascules bistables souvent appelées flip-flops.
  • On mentionnera aussi que le diviseur de fréquence 10 comporte une deuxième sortie, désignée par Q2, fournissant un signal SC ayant une période beaucoup plus courte, par exemple de l'ordre de cent fois plus courte, que celle du signal SR, et dont l'utilité sera rendue évidente plus loin. Dans le présent exemple, ce signal SC peut être fourni par la sortie de la sixième bascule bistable du diviseur de fréquence 10 et avoir ainsi une période égale à 1,95 milliseconde environ.
  • Le circuit d'asservissement 7 comporte encore un compteur réversible, ou compteur-décompteur, qui est désigné par la référence 11. L'entrée de comptage C de ce compteur 11 est reliée à la sortie Q du diviseur de fréquence 10 et reçoit donc le signal SR, et son entrée de décomptage D est reliée à la sortie du comparateur 8 et reçoit donc le signal SM.
  • Ce compteur réversible 11 ne sera pas décrit en détail car il peut être réalisé de diverses manières bien connues. On précisera simplement qu'il est sensible aux flancs montants des impulsions qu'il reçoit, c'est-à-dire aux passages de l'état logique "0" à l'état logique "1" des signaux SR et SM. En d'autres termes, le contenu de ce compteur 11, c'est-à-dire le nombre binaire formé par les états logiques "0" ou "1" des sorties directes des diverses bascules bistables qui le forment, est augmenté d'une unité à chaque flanc montant des impulsions du signal SR et diminué d'une unité à chaque flanc montant des impulsions du signal SM. Ce compteur 11 comporte en outre des moyens bien connus qui permettent de lever toute ambiguïté due à une quelconque superposition dans le temps des impulsions qu'il reçoit sur ses entrées C et D.
  • De plus, le compteur 11 comporte une entrée R de remise à zéro et il est agencé de manière que son contenu est maintenu à la valeur zéro tant que cette entrée R est à l'état logique "1".
  • On rappellera encore que, si le compteur 11 est constitué de n bascules bistables, son contenu peut prendre n'importe quelle valeur supérieure ou égale à zéro et inférieure ou égale à 2n-1.
  • En outre, le fonctionnement du compteur 11 est cyclique, c'est-à-dire notamment que, lorsque son contenu est égal à zéro, ce contenu prend la valeur 2n-1 en réponse à une impulsion appliquée sur son entrée de décomptage D.
  • Par convention, et pour une raison qui sera rendue évidente plus loin, on appellera valeurs positives du contenu du compteur 11 celles qui sont supérieures ou égales à zéro et inférieures ou égales à 2(n-1), et valeurs négatives de ce contenu celles qui sont supérieures à 2(n-1) et inférieures ou égales à 2n-1. L'homme du métier verra sans difficulté que, avec cette convention, la sortie Q du compteur 11, qui est constituée de manière classique par la sortie directe de la dernière de ses bascules bistables, est à l'état logique "0" lorsque le contenu du compteur 11 est positif et à l'état logique "1" lorsque ce contenu est négatif.
  • La sortie Q du compteur réversible 11 est reliée à une première entrée d'une porte ET 12 dont la deuxième entrée est reliée à la sortie du comparateur 8.
  • La sortie de cette porte 12 est reliée à l'entrée S d'une bascule bistable 13 de type R-S dont l'entrée R est reliée à la sortie d'une porte OU 14.
  • Comme le compteur réversible 11 décrit ci-dessus, la bascule bistable 13 est sensible aux flancs montants des impulsions qu'elle reçoit sur ses entrées S et R. En d'autres termes, la sortie directe Q et la sortie inverse Q ¯
    Figure imgb0001
    de cette bascule 13 prennent respectivement l'état logique "1" et l'état logique "0" en réponse à chaque flanc montant du signal appliqué à son entrée S, et prennent respectivement l'état logique "0" et l'état logique "1" en réponse à chaque flanc montant du signal appliqué à son entrée R.
  • Une première entrée de la porte OU 14 est reliée à la sortie Q d'un compteur simple, non réversible 15.
  • Ce compteur 15 est constitué dans cet exemple de cinq bascules bistables branchées en série de manière classique de sorte que sa sortie Q, qui est la sortie directe de sa cinquième bascule, passe de l'état "0" à l'état "1" lorsque son contenu passe de la valeur quinze à la valeur seize.
  • L'entrée de comptage C du compteur 15 est reliée à la sortie Q2 du diviseur de fréquence 10 et reçoit donc le signal SC, et son entrée R de remise à zéro est reliée à la sortie inverse Q ¯
    Figure imgb0002
    de la bascule bistable 13.
  • A nouveau comme le compteur réversible 11, le compteur 15 est sensible aux flancs montants du signal appliqué à son entrée de comptage C, et son contenu est maintenu à la valeur zéro tant que son entrée R est à l'état logique "1".
  • Le circuit d'asservissement 7 comporte encore des moyens de freinage électrique du rotor 3a du générateur 3, qui sont constitués dans le présent exemple par un transistor MOS de type n, désigné par la référence 16, dont la source et le drain sont respectivement reliés aux bornes B1 et B2 du générateur 3, et dont la grille est reliée à la sortie directe Q de la bascule bistable 13.
  • L'homme du métier verra facilement que le transistor 16 est bloqué ou conducteur selon que sa grille est à l'état logique "0" ou "1" puisqu'il est de type n et que sa source est au potentiel de référence.
  • Le circuit d'asservissement 7 comporte encore un circuit d'initialisation 17 ayant deux entrées reliées respectivement aux bornes 5c et 5d du redresseur 5 et une sortie reliée d'une part aux entrées de remise à zéro R du diviseur de fréquence 10 et du compteur réversible 11 et, d'autre part, à la deuxième entrée de la porte OU 14.
  • Ce circuit d'initialisation 17 ne sera pas décrit en détail car il peut être réalisé de diverses manières bien connues. On mentionnera simplement qu'il est agencé de manière que sa sortie produise une courte impulsion d'initlalisation à l'instant où la tension Ua atteint en croissant une valeur de seuil déterminée, qui est égale ou légèrement supérieure à la valeur pour laquelle les divers autres composants du circuit d'asservissement 7 commencent à fonctionner correctement. Cet instant sera appelé instant d'initialisation t0 dans la suite de cette description.
  • Lorsque le ressort de barillet 2 est complètement désarmé et que le rotor 3a du générateur 3 ne tourne pas, les tensions Ug et Ua sont évidemment nulles, et la pièce d'horlogerie 1 ne fonctionne pas.
  • Si le ressort de barillet 2 est alors remonté, il arrive un moment où le rotor 3a commence à tourner, et où les tensions Ug et Ua commencent à augmenter.
  • A l'instant t0 défini ci-dessus, l'impulsion produite par le circuit d'initialisation 17 provoque la remise à zéro du diviseur de fréquence 10 et du compteur réversible 11, de sorte que les sorties Q1 et Q2 du diviseur de fréquence 10 et la sortie Q du compteur réversible 11 sont mises dans l'état logique "0".
  • La même impulsion d'initialisation est appliquée à l'entrée R de la bascule bistable 13 par l'intermédiaire de la porte 14, de sorte que les sorties Q et Q ¯
    Figure imgb0003
    de cette bascule 13 prennent respectivement l'état logique "0" et l'état logique "1".
  • L'état logique "0" de la sortie Q de la bascule 13 met le transistor 16 dans son état de blocage, de sorte que la bobine 3b du générateur 3 n'est pas court-circuitée et que la vitesse de rotation du rotor 3a peut atteindre et dépasser la vitesse de consigne Vc. En outre, l'état logique "1" de la sortie Q ¯
    Figure imgb0004
    de la bascule 13 maintient le contenu du compteur 15 à zéro.
  • Le fonctionnement de la pièce d'horlogerie 1 après l'instant t0 ne sera décrit ci-après que dans ses grandes lignes car l'homme du métier n'aura aucune peine à reconstituer tous ses détails à l'aide des explications déjà données.
  • Dans cette description du fonctionnement de la pièce d'horlogerie 1, on appellera instant de référence tr chacun des instants où le signal de référence SR passe de son état "0" à son état "1" et où le contenu du compteur 11 est donc augmenté d'une unité. De même, on appellera instant de mesure tm chacun des instants où le signal de mesure SM passe également de son état "0" à son état "1" et où le contenu du compteur 11 est donc diminué d'une unité.
  • En outre, on appellera position angulaire théorique du rotor 3a la position angulaire qu'il devrait occuper, à chaque instant de référence tr, si sa vitesse moyenne de rotation depuis l'instant t0 avait été égale à sa vitesse de consigne Vc.
  • On voit bien que le contenu du compteur réversible 11 est en permanence représentatif de la différence entre le nombre des impulsions du signal SR produites par le diviseur de fréquence 10 depuis l'instant t0 défini ci-dessus et le nombre des impulsions du signal SM produites par le comparateur 8, qui est le nombre des tours complets effectués par le rotor 3a du générateur 3, depuis le même instant t0.
  • Ce contenu du compteur 11 est donc également représentatif en permanence du retard ou de l'avance du rotor 3a par rapport à sa position angulaire théorique, ce retard ou cette avance pouvant être, le cas échéant, de plusieurs tours.
  • Lorsque ce contenu du compteur 11 est positif juste après un des instants tm définis ci-dessus, cela signifie que le rotor 3a est en retard par rapport à sa position angulaire théorique.
  • Dans un tel cas, la sortie Q du compteur réversible 11 est à l'état logique "0", de sorte que la sortie de la porte ET 12 reste à l'état "0" et que la bascule bistable 13 reste dans l'état où sa sortie Q est à l'état logique "0". Le transistor 16 reste bloqué, et la bobine 3b du générateur 3 n'étant pas court-circuitée, la vitesse de rotation du rotor 3a peut rester ou, le cas échéant, tendre à devenir supérieure à la vitesse de consigne Vc, à condition bien entendu que le ressort de barillet 2 soit encore suffisamment arme.
  • Le retard du rotor 3a par rapport à sa position angulaire théorique tend donc à s'annuler, de même que le contenu du compteur réversible 11.
  • Lorsque le contenu du compteur réversible 11 est négatif juste après l'un des instants tm définis ci-dessus, cela signifie que le rotor 3a est en avance par rapport à sa position angulaire théorique.
  • Dans un tel cas, la sortie Q du compteur 11 est à l'état logique "1". Le signal SM étant alors également à l'état "1", la bascule bistable 13 prend l'état où ses sorties Q et Q ¯
    Figure imgb0005
    sont respectivement à l'état logique "1" et à l'état logique "0".
  • Il en résulte que le transistor 16 devient conducteur et court-circuite la bobine 3b du générateur 3. Le rotor 3a est donc freiné, et sa vitesse de rotation devient inférieure à la vitesse de consigne Vc.
  • Il en résulte également que, l'entrée R de remise à zéro du compteur 15 étant maintenant à l'état "0", le contenu de ce compteur 15 augmente d'une unité à chacune des impulsions du signal SC. Lorsque, dans le présent exemple, ce contenu passe de la valeur quinze à la valeur seize, soit environ 31,25 millisecondes après que la bascule 13 a changé d'état, la sortie Q de ce compteur 15 passe à l'état logique "1".
  • La bascule 13 reprend alors l'état où ses sorties Q et Q ¯
    Figure imgb0006
    sont respectivement à l'état logique "0" et à l'état logique "1".
  • Le transistor 16 est donc à nouveau bloqué, de sorte que le rotor 3a n'est plus freiné et que sa vitesse de rotation peut à nouveau augmenter.
  • On voit que le circuit formé par les portes 12 et 14, la bascule 13 et le compteur 15 constitue un circuit de limitation de la durée du freinage du rotor 3a à une fraction déterminée, 1/8 dans le présent exemple, de la période de la tension Ug fournie par le générateur 3.
  • Si, juste après l'instant tm suivant, la sortie Q du compteur réversible 11 est encore à l'état logique "1", le processus qui vient d'être décrit se déroule à nouveau, et ceci jusqu'à ce que la vitesse moyenne du rotor 3a depuis l'instant t0, qui diminue évidemment chaque fois que ce rotor 3a est freiné, devienne inférieure ou égale à la vitesse de consigne Vc.
  • Lorsque cette situation est atteinte, la sortie Q du compteur réversible 11 prend l'état logique "0", et le rotor 3a n'est plus freiné.
  • On voit que, lorsqu'elle est mesurée sur un temps assez long, la vitesse moyenne du rotor 3a est égale à la vitesse de consigne Vc, et, si les aiguilles 6 ont été mises à l'heure à l'instant t0, elles affichent en permanence l'heure exacte, avec une précision égale à celle de la fréquence du signal de référence SR.
  • On voit en outre que ce résultat est obtenu en ne freinant le rotor 3a, lorsqu'il est en avance par rapport à sa position angulaire théorique, que pendant des périodes de durée limitée, nettement inférieure au temps mis en moyenne par le rotor 3a pour faire un tour complet. Dans le présent exemple, cette durée des périodes de freinage, qui est déterminée par la fréquence du signal SC et par le nombre des bascules formant le compteur 15, est environ huit fois plus courte que la période de rotation moyenne du rotor 3a.
  • Pendant chacune des périodes de freinage du rotor 3a, la tension Ug produite par le générateur 3 est évidemment nulle puisque le transistor 16 est conducteur et court-circuite la bobine 3b.
  • Mais chacune de ces périodes de freinage commence à un instant où la tension Ug est de toutes façons nulle, et leur durée n'est qu'un fraction assez faible de la période de cette tension Ug comme on vient de le voir. Pendant ces périodes de freinage, la tension Ug n'aurait donc qu'une valeur relativement faible si la bobine 3b n'était pas court-circuitée, et le générateur 3 ne fournirait de toutes façons qu'une énergie très faible, voire même nulle, au redresseur 5. Par contre, en dehors de ces périodes de freinage, la tension Ug a sa valeur normale, de sorte que la quantité d'énergie électrique fournie par le générateur 3 n'est presque pas diminuée, voire même pas du tout, par le freinage du rotor 3a.
  • Il en résulte que le générateur 3 continue à fournir l'énergie électrique nécessaire au fonctionnement du circuit d'asservissement 7 même lorsque le rotor 3a est en avance par rapport à sa position angulaire théorique et qu'il est freiné comme cela a été décrit ci-dessus, indépendamment de l'importance de cette avance.
  • Le ou les condensateurs de filtrage du redresseur 5 peuvent donc avoir des capacités relativement faibles, puisqu'il n'est pas nécessaire qu'ils assurent l'alimentation du circuit d'asservissement 7 pendant de longues périodes comme cela est le cas dans la pièce d'horlogerie connue décrite dans le brevet US-A-3937001 mentionné ci-dessus.
  • En outre, et pour les mêmes raisons, il est tout à fait possible, et même préférable, de réaliser les moyens de freinage du rotor 3a comme cela a été décrit ci-dessus, c'est-à-dire sans que ces moyens de freinage ne comportent une quelconque résistance semblable à celle qu'ils doivent obligatoirement comporter dans la pièce d'horlogerie décrite dans le brevet US-A-3937001.
  • Par rapport à cette dernière pièce d'horlogerie, la suppression de cette résistance a comme avantage que le freinage du rotor 3a est plus efficace, ce qui permet d'augmenter le couple moteur maximal admissible pour le ressort de barillet 2 et donc d'augmenter l'autonomie de la pièce d'horlogerie 1.
  • L'homme du métier verra aisément que de nombreuses modifications peuvent être apportées à la pièce d'horlogerie qui vient d'être décrite sans que celle-ci ne sorte pour autant du cadre de la présente invention.
  • Ainsi, par exemple, le rotor du générateur d'une pièce d'horlogerie selon la présente invention peut comporter, à la place de l'aimant bipolaire du rotor 3a du générateur 3 décrit ci-dessus, soit un aimant permanent multipolaire, soit une pluralité d'aimants permanents bipolaires disposés à la périphérie d'un disque. Dans de tels cas, la tension alternative produite par la bobine de ce générateur a une période qui est égale au rapport entre la période de rotation du rotor et le nombre de paires de pôles de l'aimant multipolaire ou, respectivement, le nombre d'aimants bipolaires.
  • Il est également possible de produire le signal de mesure, c'est-à-dire le signal SM dans l'exemple de la figure 1, de manière qu'il passe à l'état "1", pour une durée limitée, non seulement chaque fois que la tension alternative produite par le générateur de la pièce d'horlogerie passe par sa valeur nulle en croissant, mais également chaque fois que cette tension alternative passe par cette valeur nulle en décroissant.
  • Dans un tel cas, la période de ce signal de mesure est égale à la moitié de celle de la tension alternative produite par le générateur, et le rotor de ce générateur est freiné deux fois par période de cette tension alternative lorsqu'il est en avance par rapport à sa position angulaire théorique. Il peut alors être nécessaire de diminuer la durée des périodes de freinage de ce rotor pour éviter que l'énergie électrique fournie par le générateur ne devienne insuffisante pour alimenter convenablement les circuits électroniques de la pièce d'horlogerie.
  • Dans tous les cas qui viennent d'être mentionnés, il faut évidemment concevoir la source du signal de référence, constituée dans l'exemple de la figure 1 par l'oscillateur 9 et le diviseur de fréquence 10, de manière que la période de ce signal de référence soit égale à celle du signal de mesure lorsque le rotor du générateur tourne à sa vitesse de consigne.
  • Il est encore possible de modifier les moyens qui déterminent la durée des périodes de freinage du rotor du générateur, qui sont constitués dans l'exemple de la figure 1 par le compteur 15, de manière que cette période dépende directement de l'importance de l'avance de ce rotor par rapport à sa position angulaire théorique. Une telle modification permet de diminuer le temps qui est nécessaire pour que ce rotor retrouve sa position angulaire théorique après qu'il a été soumis à une grande accélération angulaire, due par exemple à un choc violent, qui lui a fait prendre une avance de plusieurs tours par rapport à cette position angulaire théorique.

Claims (1)

  1. Pièce d'horlogerie comportant :
    - un générateur d'énergie électrique (3) comprenant un rotor (3a) et des moyens (3b) pour fournir ladite énergie électrique en réponse à une rotation dudit rotor (3a);
    - une source d'énergie mécanique (2) couplée mécaniquement audit rotor (3a) pour provoquer ladite rotation dudit rotor (3a) à une vitesse supérieure à une vitesse de consigne déterminée; et
    - des moyens d'asservissement (7) de la vitesse de rotation dudit rotor (3a) à ladite vitesse de consigne alimentés par ladite énergie électrique et comportant :
    - des moyens de mesure (8) couplés audit générateur (3) pour produire une pluralité d'impulsions de mesure, chacune desdites impulsions de mesure étant produite en réponse au passage dudit rotor (3a) par une position angulaire déterminée;
    - des moyens de référence (9,10) pour produire une pluralité d'impulsions de référence périodiques ayant une période égale à celle desdites impulsions de mesure lorsque ledit rotor (3a) tourne à ladite vitesse de consigne;
    - des moyens de comparaison (11) pour fournir un signal de comparaison représentatif de la différence entre, d'une part, un premier nombre qui est le nombre desdites impulsions de référence produites depuis un instant initial déterminé et, d'autre part, un deuxième nombre qui est le nombre desdites impulsions de mesure produites depuis ledit instant initial, ledit signal de comparaison ayant un premier et un deuxième état selon que ledit premier nombre est inférieur ou, respectivement, supérieur audit deuxième nombre; et
    - des moyens de freinage (16) répondant à un signal de commande pour appliquer audit rotor (3a) un couple de freinage imposant audit rotor (3a) une vitesse de rotation inférieure à ladite vitesse de consigne;
    caractérisée par le fait que lesdits moyens d'asservissement (7) comportent en outre des moyens de commande (12,13,15) répondant à chacune desdites impulsions de mesure lorsque ledit signal de comparaison est dans ledit premier état pour produire ledit signal de commande sous la forme d'une impulsion de commande ayant une durée déterminée.
EP95105590A 1994-04-25 1995-04-13 Pièce d'horlogerie mue par une source d'énergie mécanique et régulée par un circuit électronique Expired - Lifetime EP0679968B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01266/94A CH686332B5 (fr) 1994-04-25 1994-04-25 Pièce d'horlogerie mué par une source d'énergie mécanique et régulée par un circuit électronique.
CH1266/94 1994-04-25

Publications (2)

Publication Number Publication Date
EP0679968A1 true EP0679968A1 (fr) 1995-11-02
EP0679968B1 EP0679968B1 (fr) 1998-07-08

Family

ID=4206379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95105590A Expired - Lifetime EP0679968B1 (fr) 1994-04-25 1995-04-13 Pièce d'horlogerie mue par une source d'énergie mécanique et régulée par un circuit électronique

Country Status (8)

Country Link
US (2) US5517469A (fr)
EP (1) EP0679968B1 (fr)
JP (1) JP3103293B2 (fr)
CN (1) CN1086813C (fr)
CH (1) CH686332B5 (fr)
DE (1) DE69503306T2 (fr)
HK (1) HK1013689A1 (fr)
TW (1) TW262543B (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875807A1 (fr) * 1997-04-28 1998-11-04 Asulab S.A. Pièce d'horlogerie électronique alimentée par un générateur entraíné par une source d'énergie mécanique
US6744699B2 (en) 2001-07-02 2004-06-01 Richemont International Sa Electronic regulation module for the movement of a mechanically wound watch
EP1843227A1 (fr) 2006-04-07 2007-10-10 The Swatch Group Research and Development Ltd. Résonateur couplé système réglant
EP2264555A1 (fr) 2009-06-16 2010-12-22 ETA SA Manufacture Horlogère Suisse Transducteur électromécanique de petites dimensions, notamment génératrice horlogère
US9348316B2 (en) 2012-09-25 2016-05-24 Richemont International Sa Movement for mechanical chronograph with quartz regulator
US9746831B2 (en) 2012-12-11 2017-08-29 Richemont International Sa Regulating body for a wristwatch
CN112051723A (zh) * 2019-06-06 2020-12-08 斯沃奇集团研究及开发有限公司 在其模拟时间显示装置中包括连续旋转机电换能器的时计的精度的测量

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668414A (en) * 1994-07-04 1997-09-16 Seiko Epson Corporation Spring driven electricity generator with a control circuit to regulate the release of energy in the spring
CH688879B5 (fr) * 1995-08-10 1998-11-13 Asulab Sa Pièce d'horlogerie avec indication de la réserve de marche.
ES2132931T5 (es) * 1995-09-07 2006-11-16 Richemont International S.A. Mecanismo de relojeria.
US6169709B1 (en) 1995-09-07 2001-01-02 Konrad Schafroth Watch movement
FR2748583B1 (fr) 1996-05-07 1998-06-26 Asulab Sa Stabilisation d'un circuit electronique de regulation du mouvement mecanique d'une piece d'horlogerie
FR2752070B1 (fr) * 1996-08-01 1998-09-18 Asulab Sa Piece d'horlogerie electronique comportant une generatrice entrainee par un barillet a ressort
CH690523A5 (fr) * 1996-12-09 2000-09-29 Asulab Sa Pièce d'horlogerie comportant une génératrice d'énergie électrique.
TW351782B (en) * 1997-04-28 1999-02-01 Asulab Sa Electronic timepiece supplied by a generator driven by a mechanical power source
US6863435B2 (en) 1997-08-11 2005-03-08 Seiko Epson Corporation Spring, mainspring, hairspring, and driving mechanism and timepiece based thereon
WO1999012080A1 (fr) * 1997-08-28 1999-03-11 Seiko Epson Corporation Ressort, ressort moteur, ressort spiral, mecanisme d'entrainement employant ceux-ci, et compteur de temps
US6795378B2 (en) 1997-09-30 2004-09-21 Seiko Epson Corporation Electronic device, electronically controlled mechanical timepiece, and control method therefor
JP3006593B2 (ja) * 1997-09-30 2000-02-07 セイコーエプソン株式会社 電子制御式機械時計およびその制御方法
US6314059B1 (en) 1997-09-30 2001-11-06 Seiko Epson Corporation Electronically controlled, mechanical timepiece and control method for the same
WO1999017172A1 (fr) 1997-09-30 1999-04-08 Seiko Epson Corporation Horloge mecanique a commande electronique et son procede de commande
DE69835939T2 (de) 1997-09-30 2007-01-11 Seiko Epson Corp. Drehkontrollvorrichtung und drehkontrollverfahren
JP3908387B2 (ja) * 1997-09-30 2007-04-25 セイコーエプソン株式会社 電子制御式機械時計およびその制御方法
DE69939617D1 (de) 1998-01-22 2008-11-06 Seiko Epson Corp Elektronisches Uhrwerk mit einem Generator
EP1048989B1 (fr) 1998-11-17 2010-01-27 Seiko Epson Corporation Pièce d'horlogerie mécanique contrôlée électroniquement et procédé de manufacture d'une telle pièce d'horlogerie
WO2000031595A1 (fr) * 1998-11-19 2000-06-02 Seiko Epson Corporation Compteur de temps mecanique commande electriquement et procede de blocage
DE10253722A1 (de) * 2002-11-19 2004-06-03 Trinkel, Gabriele Lisa System zur Energieerzeugung für mobile Kommunikationsgeräte
US6826124B2 (en) * 2002-12-04 2004-11-30 Asulab S.A. Timepiece with power reserve indication
ATE363676T1 (de) * 2003-10-01 2007-06-15 Asulab Sa Uhr mit einem mechanischen uhrwerk, das mit einem elektronischen regulator gekoppelt ist
ATE363675T1 (de) * 2003-10-01 2007-06-15 Asulab Sa Uhr mit einem mechanischen uhrwerk, das mit einem elektronischen regulator gekoppelt ist
DE60312536T2 (de) * 2003-12-16 2007-11-22 Asulab S.A. Elektromechanische Uhr, die mit einer Gangreserveanzeige ausgerüstet ist
CH697273B1 (fr) * 2006-07-26 2008-07-31 Detra Sa Dispositif d'échappement électromécanique et pièce d'horlogerie munie d'un tel dispositif
ES2353483B1 (es) * 2009-10-09 2012-01-24 Acumener Investigacion Y Desarrollo, S.L. Sistema de almacenamiento de energía de utilidad en arranques y regulación de sistemas eléctricos.
US8497590B2 (en) * 2009-11-03 2013-07-30 James Williams Spring generator
CN102929121A (zh) * 2012-10-30 2013-02-13 林祥平 一种钟表
EP4009119B1 (fr) 2020-12-07 2023-07-05 The Swatch Group Research and Development Ltd Mouvement horloger muni d'une generatrice et d'un circuit de regulation de la frequence de rotation de cette generatrice

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807164A (en) * 1972-10-16 1974-04-30 Timex Corp Synchronized quartz crystal watch
US3952497A (en) * 1973-10-24 1976-04-27 Heinz Jauch Method and apparatus for synchronizing andoscillating system which is driven by an energy storage device
US4361409A (en) * 1977-12-16 1982-11-30 Bulova Watch Company, Inc. Electronic watch having braked stepping motor
US4799003A (en) * 1987-05-28 1989-01-17 Tu Xuan M Mechanical-to-electrical energy converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH1691872A4 (fr) * 1972-11-21 1977-05-31
US4169992A (en) * 1977-11-23 1979-10-02 Bible Translations on Tape, Inc. Feedback speed control of spring powered generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807164A (en) * 1972-10-16 1974-04-30 Timex Corp Synchronized quartz crystal watch
US3952497A (en) * 1973-10-24 1976-04-27 Heinz Jauch Method and apparatus for synchronizing andoscillating system which is driven by an energy storage device
US4361409A (en) * 1977-12-16 1982-11-30 Bulova Watch Company, Inc. Electronic watch having braked stepping motor
US4799003A (en) * 1987-05-28 1989-01-17 Tu Xuan M Mechanical-to-electrical energy converter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875807A1 (fr) * 1997-04-28 1998-11-04 Asulab S.A. Pièce d'horlogerie électronique alimentée par un générateur entraíné par une source d'énergie mécanique
US6744699B2 (en) 2001-07-02 2004-06-01 Richemont International Sa Electronic regulation module for the movement of a mechanically wound watch
EP1843227A1 (fr) 2006-04-07 2007-10-10 The Swatch Group Research and Development Ltd. Résonateur couplé système réglant
WO2007115985A1 (fr) 2006-04-07 2007-10-18 The Swatch Group Research And Development Ltd Resonateur couple pour systeme reglant
US7889028B2 (en) 2006-04-07 2011-02-15 The Swatch Group Research And Development Ltd Coupled resonator for regulating system
EP2264555A1 (fr) 2009-06-16 2010-12-22 ETA SA Manufacture Horlogère Suisse Transducteur électromécanique de petites dimensions, notamment génératrice horlogère
US8179012B2 (en) 2009-06-16 2012-05-15 ETA SA Manufacture Horlogére Suisse Electro-mechanical transducer of small dimensions, in particular a timepiece generator
US9348316B2 (en) 2012-09-25 2016-05-24 Richemont International Sa Movement for mechanical chronograph with quartz regulator
US9746831B2 (en) 2012-12-11 2017-08-29 Richemont International Sa Regulating body for a wristwatch
CN112051723A (zh) * 2019-06-06 2020-12-08 斯沃奇集团研究及开发有限公司 在其模拟时间显示装置中包括连续旋转机电换能器的时计的精度的测量
EP3748438A1 (fr) 2019-06-06 2020-12-09 The Swatch Group Research and Development Ltd Mesure de la precision d'une piece d'horlogerie comprenant un transducteur electromecanique a rotation continue dans son dispositif d'affichage analogique de l'heure
US11892807B2 (en) 2019-06-06 2024-02-06 The Swatch Group Research And Development Ltd Measurement of the precision of a timepiece comprising a continuous rotation electromechanical transducer in the analogue time display device thereof

Also Published As

Publication number Publication date
CH686332B5 (fr) 1996-09-13
HK1013689A1 (en) 1999-09-03
DE69503306D1 (de) 1998-08-13
TW262543B (fr) 1995-11-11
CN1086813C (zh) 2002-06-26
DE69503306T2 (de) 1999-03-04
US5517469A (en) 1996-05-14
CN1122920A (zh) 1996-05-22
CH686332GA3 (fr) 1996-03-15
JPH0850186A (ja) 1996-02-20
USRE36733E (en) 2000-06-13
EP0679968B1 (fr) 1998-07-08
JP3103293B2 (ja) 2000-10-30

Similar Documents

Publication Publication Date Title
EP0679968B1 (fr) Pièce d&#39;horlogerie mue par une source d&#39;énergie mécanique et régulée par un circuit électronique
EP0239820B1 (fr) Convertisseur d&#39;énergie mécanique en énergie électrique
EP0822470B1 (fr) Pièce d&#39;horlogerie électronique comportant une génératrice entrainée par un barillet à ressort
EP0161582B1 (fr) Ensemble moteur fonctionnant pas à pas
EP0060806B1 (fr) Procédé pour réduire la consommation d&#39;un moteur pas-à-pas et dispositif pour la mise en oeuvre de ce procédé
FR2489055A1 (fr) Procede pour reduire la consommation en energie du moteur pas a pas d&#39;une piece d&#39;horlogerie electronique et piece d&#39;horlogerie electronique mettant en oeuvre ce procede
CH690523A5 (fr) Pièce d&#39;horlogerie comportant une génératrice d&#39;énergie électrique.
FR2483097A1 (fr) Montre electronique
EP0253153B1 (fr) Procédé et dispositif de commande d&#39;un moteur pas à pas
EP0077293B1 (fr) Procédé et dispositif de commande d&#39;un moteur pas à pas d&#39;une pièce d&#39;horlogerie
FR2461400A1 (fr) Circuit d&#39;alimentation d&#39;un moteur pas a pas pour montre electronique
EP0135104B1 (fr) Procédé et dispositif de commande d&#39;un moteur pas-à-pas
EP0131760B1 (fr) Dispositif de commande de deux moteurs pas-à-pas bidirectionnels
EP0875807B1 (fr) Pièce d&#39;horlogerie électronique alimentée par un générateur entraíné par une source d&#39;énergie mécanique
EP0443294A1 (fr) Procédé d&#39;alimentation d&#39;un moteur pas à pas monophasé
EP0982846B1 (fr) Procédé et dispositif de commande d&#39;un moteur pas à pas
WO2002050617A1 (fr) Montre electronique analogique ayant un dispositif de remise a l&#39;heure suite a une insuffisance d&#39;alimentation
EP0250862B1 (fr) Procédé et dispositif de commande d&#39;un moteur pas à pas
EP0217164B1 (fr) Pièce d&#39;horlogerie électronique à affichage analogique comportant un organe indicateur de secondes
EP1544692A1 (fr) Pièce d&#39;horlogerie électroméchanique comprenant un indicateur de réserve de marche
CH672572B5 (fr)
EP0155661B1 (fr) Circuit de commande d&#39;un moteur pas à pas
CH691634A5 (fr) Piéce d&#39;horlogerie électronique alimentée par un générateur entraîné par une source d&#39;énergie mécanique.
EP0848306B1 (fr) Pièce d&#39;horlogerie comportant une génératrice d&#39;énergie électrique
EP0484770B1 (fr) Procédé de commande d&#39;un moteur pas à pas et dispositif pour la mise en oeuvre de ce procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19951116

17Q First examination report despatched

Effective date: 19960827

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69503306

Country of ref document: DE

Date of ref document: 19980813

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040329

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050413

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140422

Year of fee payment: 20

Ref country code: DE

Payment date: 20140321

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69503306

Country of ref document: DE