EP0677592A1 - Method for enhancing the band strength of thermally sprayed layers of metals, metal oxides and hard materials - Google Patents

Method for enhancing the band strength of thermally sprayed layers of metals, metal oxides and hard materials Download PDF

Info

Publication number
EP0677592A1
EP0677592A1 EP95105427A EP95105427A EP0677592A1 EP 0677592 A1 EP0677592 A1 EP 0677592A1 EP 95105427 A EP95105427 A EP 95105427A EP 95105427 A EP95105427 A EP 95105427A EP 0677592 A1 EP0677592 A1 EP 0677592A1
Authority
EP
European Patent Office
Prior art keywords
metals
metal oxides
hard materials
enhancing
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95105427A
Other languages
German (de)
French (fr)
Other versions
EP0677592B1 (en
Inventor
Jochen Dr. Spriestersbach
Wolf-Dieter Dr. Schulz
Manfred Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grillo Werke AG
Original Assignee
Grillo Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grillo Werke AG filed Critical Grillo Werke AG
Publication of EP0677592A1 publication Critical patent/EP0677592A1/en
Application granted granted Critical
Publication of EP0677592B1 publication Critical patent/EP0677592B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the present invention relates to a method for improving the adhesive strength of thermal spray coatings made from metals, metal oxides and hard materials, in particular from zinc, aluminum and their alloys.
  • Thermal spray coatings play an important role in the surface finishing of metals, but also of plastics, concrete, cardboard, etc. Among other things, they improve the temperature resistance, wear behavior and electrical conductivity of the substrate materials.
  • EP-US 0 451 512 describes a method for coating blades of a rotating, thermal machine, a special protective layer being applied to the blades in the high-speed flame spraying method.
  • This layer can then be given a top layer of polyurethane reaction lacquer on a plastic basis.
  • the surface roughness should be reduced.
  • Two-component paints are therefore preferably used; see. Column 5, line 52 to column 6, line 6. It is about reducing the surface roughness and not about the adhesive strength of the layer applied in the high-speed flame spraying process.
  • DE-PS 38 25 200 describes a method for coating plastic parts, in which the metal layer sprayed onto the roughened plastic surface is impregnated with a plastic.
  • this plastic can be a low-viscosity polyurethane system. This measure guarantees perfect adhesion of the sprayed metal to the plastic, produces a high specific conductivity and guarantees reliable protection against external mechanical attacks; see. Column 1, lines 61 to 65.
  • DE-PS 38 25 200 teaches that the transfer of flame spraying from metals to metals to the coating of plastics with metals leads to considerable difficulties; see. Column 1, lines 41 to 46.
  • Thermal spraying of, for example, zinc, aluminum and their alloys, for example with magnesium is often the only way of protecting against corrosion by metal coatings under construction site conditions, since other processes such as hot-dip galvanizing and galvanizing are hardly possible on site.
  • the production of thermal spray coatings on metals usually requires the following high-quality technology steps: degreasing, blasting, spraying and generally post-treatment.
  • the purity and roughness of the surface of the substrate are of particular importance. It is usually required that a standard degree of purity Sa 3 according to DIN 55928, part 4 is achieved and that the average roughness R z is at least 25 ⁇ m. A certain sharpness of the profile is often necessary.
  • spraying methods for example flame spraying, arc spraying and plasma spraying, since these different methods generate different temperatures that are necessary for the melting of the spraying material.
  • Optimally produced layers have adhesive strengths of 20 to 50 MPa.
  • the spray layers are more or less dense depending on the thickness and type of spray. To ensure adequate protection against corrosion, they usually have densities of 100 to 300 ⁇ m in thickness.
  • one-component, moisture-curing polyurethane paints have only been used to treat heavily rusted or corroded steel substrates, whereby the residual moisture in the substrate is obviously bound and rust residues are solidified on the steel surface.
  • These one-component polyurethane coatings are generally used as low-viscosity solutions in organic solvents, which are able to detect crevices, overlaps and structured substrates with good creeping ability.
  • a one-component, moisture-curing polyurethane varnish is offered, for example, by Steelpaint GmbH, Kitzingen.
  • the adhesive strength increases by the treatment according to the invention in the case of sprayed zinc and sprayed aluminum layers by approximately a factor of 3. In the case of ceramic layers, for example made of aluminum oxide, the adhesive strength increases to approximately 20 to 25 MPa.
  • a degreased workpiece made of steel is prepared by means of compressed air jets up to the degree of cleaning Sa 3 and an average roughness depth R z of 45 ⁇ m. Subsequently, the workpiece prepared in this way is cleaned of any adhering blasting impurities as much as possible using compressed air and provided with a 150 ⁇ m thick spray coating made of zinc.
  • the adhesive strength measurements carried out by forehead deduction result in values between 5 and 7 MPa.
  • the spray metal layer is then thinly coated with a normal, commercially available, low-viscosity 1-component PU coating material by brush application so that no measurable layer build-up takes place. After the coating has hardened, the adhesive strength of the sprayed metal layer, measured by the same method, is 15 to 20 MPa.
  • a degreased steel workpiece is prepared using compressed air jets up to a cleaning level of 2.5 and an average roughness depth R z of 25 ⁇ m. Then a 100 ⁇ m thick ceramic Al2O3 layer is applied to the not cleaned surface by means of powder flame spraying. The adhesive strength measurements carried out result in 12 MPa. The ceramic spray coating is then thinly coated with a normal, commercially available 1-component PU coating material using compressed air spraying. After the coating has hardened, the adhesive strength of the spray ceramic layer is more than 25 MPa.
  • a particular advantage of the method according to the invention is that the adhesive strength of thermal spray coatings is increased reliably and significantly by a simple aftertreatment, so that the service life of the other customary coating systems applied thereon is also significantly increased.

Abstract

A process for improving the adhesion of thermally sprayed coatings of metals, metal oxides and hard materials, esp. Zn, Al and alloys thereof, comprises coating the sprayed-on layers with an atmos. moisture-hardening, one-component polyurethane (PU) resin.

Description

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen, insbesondere aus Zink, Aluminium und deren Legierungen.The present invention relates to a method for improving the adhesive strength of thermal spray coatings made from metals, metal oxides and hard materials, in particular from zinc, aluminum and their alloys.

Thermische Spritzschichten spielen in der Oberflächenveredlung von Metallen, aber auch von Kunststoffen, Beton, Pappe etc. eine wichtige Rolle. So verbessern sie unter anderem die Temperaturbeständigkeit, das Verschleißverhalten und die elektrische Leitfähigkeit der Substratmaterialien.Thermal spray coatings play an important role in the surface finishing of metals, but also of plastics, concrete, cardboard, etc. Among other things, they improve the temperature resistance, wear behavior and electrical conductivity of the substrate materials.

Die EP-US 0 451 512 beschreibt ein Verfahren zum Beschichten von Schaufeln einer rotierenden, thermischen Maschine, wobei im Hochgeschwindigkeits-Flammspritzverfahren eine spezielle Schutzschicht auf die Schaufeln aufgetragen wird. Diese Schicht kann anschließend eine Deckschicht aus Polyurethan-Reaktionslack auf Kunststoffbasis erhalten. Hier soll die Oberflächenrauhigkeit herabgesetzt werden. Bedingung ist, daß dieser Lack keine hohe und lange Einbrenntemperatur benötigt. Es werden daher vorzugsweise Zweikomponentenlacke verwendet; vgl. Spalte 5, Zeile 52 bis Spalte 6, Zeile 6. Es geht um das Reduzieren der Oberflächenrauhigkeit und nicht um die Haftfestigkeit der im HochgeschwindigkeitsFlammspritzverfahren aufgetragenen Schicht.EP-US 0 451 512 describes a method for coating blades of a rotating, thermal machine, a special protective layer being applied to the blades in the high-speed flame spraying method. This layer can then be given a top layer of polyurethane reaction lacquer on a plastic basis. Here, the surface roughness should be reduced. The condition is that this varnish does not need a high and long baking temperature. Two-component paints are therefore preferably used; see. Column 5, line 52 to column 6, line 6. It is about reducing the surface roughness and not about the adhesive strength of the layer applied in the high-speed flame spraying process.

Die DE-PS 38 25 200 beschreibt ein Verfahren zur Beschichtung von Kunststoffteilen, bei welchem die auf die aufgerauhte Kunststoffoberfläche aufgespritzte Metallschicht mit einem Kunststoff imprägniert wird. Gemäß Anspruch 8 kann dieser Kunststoff ein dünnflüssiges Polyurethansystem sein. Durch diese Maßnahme wird eine einwandfreie Haftung des aufgespritzten Metalls auf dem Kunststoff gewährleistet, eine hohe spezifische Leitfähigkeit hergestellt und ein sicherer Schutz gegen äußere mechanische Angriffe garantiert; vgl. Spalte 1, Zeilen 61 bis 65. Gleichzeitig vermittelt jedoch die DE-PS 38 25 200 die Lehre, daß die Übertragung des Flammspritzens von Metallen auf Metalle auf die Beschichtung von Kunststoffen mit Metallen zu erheblichen Schwierigkeiten führt; vgl. Spalte 1, Zeilen 41 bis 46.DE-PS 38 25 200 describes a method for coating plastic parts, in which the metal layer sprayed onto the roughened plastic surface is impregnated with a plastic. According to claim 8, this plastic can be a low-viscosity polyurethane system. This measure guarantees perfect adhesion of the sprayed metal to the plastic, produces a high specific conductivity and guarantees reliable protection against external mechanical attacks; see. Column 1, lines 61 to 65. At the same time, however, DE-PS 38 25 200 teaches that the transfer of flame spraying from metals to metals to the coating of plastics with metals leads to considerable difficulties; see. Column 1, lines 41 to 46.

Das thermische Spritzen von beispielsweise Zink, Aluminium und deren Legierungen, beispielsweise mit Magnesium, stellt unter Baustellenbedingungen oft die einzige Möglichkeit des Korrosionsschutzes durch Metallüberzüge dar, da andere Verfahren wie Feuerverzinken und Galvanisieren vor Ort kaum möglich sind. Die Herstellung thermischer Spritzüberzüge auf Metallen erfordert die qualitätsgerechte Ausführung meist folgender Technologieschritte: Entfetten, Strahlen, Aufspritzen und im allgemeinen eine Nachbehandlung. Dabei sind die Reinheit und die Rauheit der Oberfläche des Substrates von besonderer Bedeutung. Meist wird gefordert, daß ein Normreinheitsgrad Sa 3 nach DIN 55928, Teil 4 erreicht wird und daß die mittlere Rauheit Rz mindestens 25 µm beträgt. Eine gewisse Scharfkantigkeit des Profils ist oftmals notwendig.Thermal spraying of, for example, zinc, aluminum and their alloys, for example with magnesium, is often the only way of protecting against corrosion by metal coatings under construction site conditions, since other processes such as hot-dip galvanizing and galvanizing are hardly possible on site. The production of thermal spray coatings on metals usually requires the following high-quality technology steps: degreasing, blasting, spraying and generally post-treatment. The purity and roughness of the surface of the substrate are of particular importance. It is usually required that a standard degree of purity Sa 3 according to DIN 55928, part 4 is achieved and that the average roughness R z is at least 25 µm. A certain sharpness of the profile is often necessary.

Je nach Spritzwerkstoff und Substrat werden verschiedene Spritzverfahren angewendet, zum Beispiel das Flammspritzen, das Lichtbogenspritzen und das Plasmaspritzen, da diese verschiedenen Verfahren unterschiedliche Temperaturen erzeugen, die für das Aufschmelzen des Spritzwerkstoffes notwendig sind.Depending on the spraying material and substrate, different spraying methods are used, for example flame spraying, arc spraying and plasma spraying, since these different methods generate different temperatures that are necessary for the melting of the spraying material.

Optimal hergestellte Schichten weisen dabei Haftfestigkeiten von 20 bis 50 MPa auf. Die Spritzschichten sind je nach Dicke und Spritzart mehr oder minder dicht. Um einen ausreichenden Korrosionsschutz zu gewährleisten, weisen sie meist Dichten von 100 bis 300 µm Dicke auf.Optimally produced layers have adhesive strengths of 20 to 50 MPa. The spray layers are more or less dense depending on the thickness and type of spray. To ensure adequate protection against corrosion, they usually have densities of 100 to 300 µm in thickness.

Während die an thermische Spritzschichten gestellten Beständigkeits-Anforderungen durch das jeweilige Spritzmaterial im allgemeinen erfüllt werden, läßt in der Praxis sehr oft die Haftfestigkeit der thermischen Spritzschichten auf Metallen zu wünschen übrig. Die Ursache hierfür sind oft Fehler in der Oberflächenvorbereitung oder auch beim Spritzen selbst. Insbesondere für den Korrosionsschutz, der möglichst 30 und mehr Jahre beständig sein soll, sind derartige Fehler von großer Bedeutung. Das gleiche gilt für Beschichtungen mit Metalloxiden und Hartstoffen, an die hohe Anforderungen betreffs mechanischer Beständigkeit gestellt werden.While the resistance requirements placed on thermal spray coatings are generally met by the respective spray material, in practice the adhesive strength of the thermal spray coatings on metals very often leaves something to be desired. The reason for this is often errors in the surface preparation or also in the spraying itself. In particular for the corrosion protection, which should be stable for 30 or more years, such errors are of great importance. The same applies to coatings with metal oxides and hard materials, which place high demands on mechanical resistance.

Es bestand somit die Aufgabe, die Haftfestigkeit von thermischen Spritzschichten nachhaltig zu verbessern und damit die Qualität der erzielten Überzüge zu erhöhen.It was therefore the task of sustainably improving the adhesive strength of thermal spray coatings and thus increasing the quality of the coatings obtained.

Diese Aufgabe konnte jetzt überraschenderweise dadurch gelöst werden, daß die Spritzschichten nach dem Aufspritzen mit einem einkomponentigen, luftfeuchtigkeitshärtenden Polyurethanharz beschichtet werden.This task has now surprisingly been achieved in that the sprayed layers are coated with a one-component, moisture-curing polyurethane resin after spraying.

Einkomponentige, luftfeuchtigkeitshärtende Polyurethanlacke wurden bisher ausschließlich verwendet, um stark verrostete bzw. korrodierte Stahluntergründe zu behandeln, wobei offensichtlich die Restfeuchte im Untergrund gebunden und Rostreste auf der Stahloberfläche verfestigt werden. Diese einkomponentigen Polyurethanlacke kommen im allgemeinen als niedrigviskose Lösungen in organischen Lösungsmitteln zur Anwendung, die in der Lage sind, Spalten, Überlappungen und strukturierte Untergründe durch gute Kriechfähigkeit zu erfassen.So far, one-component, moisture-curing polyurethane paints have only been used to treat heavily rusted or corroded steel substrates, whereby the residual moisture in the substrate is obviously bound and rust residues are solidified on the steel surface. These one-component polyurethane coatings are generally used as low-viscosity solutions in organic solvents, which are able to detect crevices, overlaps and structured substrates with good creeping ability.

Ein einkomponentiger, luftfeuchtigkeitshärtender Polyurethanlack wird beispielsweise von der Firma Steelpaint GmbH, Kitzingen angeboten.A one-component, moisture-curing polyurethane varnish is offered, for example, by Steelpaint GmbH, Kitzingen.

Versuche der Anmelderin, andere typische Grundierungen für den Korrosionsschutz einzusetzen, haben zu keinen entsprechenden Ergebnissen geführt. Als Beispiele hierfür seien genannt Alkydharze, Epoxyharze oder PVC-Harze.Attempts by the applicant to use other typical primers for corrosion protection have not led to any corresponding results. Examples include alkyd resins, epoxy resins or PVC resins.

Es gibt bisher keine eindeutige Erklärung für diese Ergebnisse, jedoch spricht einiges dafür, daß die Urethangruppen des eingesetzten Lackes in der Lage sind, mit Hydroxylgruppen zu reagieren, wobei nicht nur Reste von Feuchtigkeit gebunden werden, sondern auch feste Bindungen zwischen dem aufgespritzten Metall und dem Polyurethanharz entstehen. Es sind auch keine großen Mengen notwendig. Es genügt vielmehr, eine sehr dünne Schicht aufzutragen, die in die Poren des Spritzmetalls eindringt, ohne einen geschlossenen Film zu bilden. Diese dünnen Schichten können beispielsweise aufgetragen werden durch Streichen, Rollen oder Sprühen, wobei jedoch zu vermeiden ist, daß ein meßbarer Schichtaufbau stattfindet. Nach der Aushärtung dieses Urethanlackes können dann alle üblichen Beschichtungssysteme aufgetragen werden, die sich mit Polyurethanharzen vertragen.So far there is no clear explanation for these results, but there is some evidence that the urethane groups of the paint used are able to react with hydroxyl groups, whereby not only residues of moisture are bound, but also firm bonds between the sprayed metal and the Polyurethane resin are created. No large quantities are necessary either. Rather, it is sufficient to apply a very thin layer that penetrates into the pores of the spray metal without forming a closed film. These thin layers can be applied, for example, by brushing, rolling or spraying, but it should be avoided that a measurable layer build-up takes place. After this urethane varnish has hardened, all the usual coating systems that are compatible with polyurethane resins can then be applied.

Die Haftfestigkeit erhöht sich durch die erfindungsgemäße Behandlung bei Spritzzink und Spritzaluminiumschichten etwa um den Faktor 3. Bei keramischen Schichten, beispielsweise aus Aluminiumoxid, erhöht sich die Haftfestigkeit bis auf etwa 20 bis 25 MPa.The adhesive strength increases by the treatment according to the invention in the case of sprayed zinc and sprayed aluminum layers by approximately a factor of 3. In the case of ceramic layers, for example made of aluminum oxide, the adhesive strength increases to approximately 20 to 25 MPa.

In den nachfolgenden Beispielen ist das erfindungsgemäße Verfahren näher erläutert.The process according to the invention is explained in more detail in the examples below.

Beispiel 1example 1

Ein entfettetes Werkstück aus Stahl wird mittels Druckluftstrahlen bis zum Säuberungsgrad Sa 3 und einer mittleren Rauhtiefe Rz von 45 µm vorbereitet. Anschließend wird das so vorbereitete Werkstück von anhaftenden Strahlverunreinigungen so gut wie möglich mittels Druckluft gesäubert und mit einer 150 µm dicken Spritzschicht aus Zink versehen. Die vorgenommenen Haftfestigkeitsmessungen mittels Stirnabzug ergeben Werte zwischen 5 und 7 MPa. Anschließend wird die Spritzmetallschicht mit einem normalen, handelsüblichen niedrigviskosen 1K-PUR-Beschichtungsstoff dünn mittels Pinselauftrag so beschichtet, daß kein meßbarer Schichtaufbau stattfindet. Nach Aushärtung der Beschichtung beträgt die Haftfestigkeit der Spritzmetallschicht, gemessen nach dem gleichen Verfahren, 15 bis 20 MPa.A degreased workpiece made of steel is prepared by means of compressed air jets up to the degree of cleaning Sa 3 and an average roughness depth R z of 45 µm. Subsequently, the workpiece prepared in this way is cleaned of any adhering blasting impurities as much as possible using compressed air and provided with a 150 µm thick spray coating made of zinc. The adhesive strength measurements carried out by forehead deduction result in values between 5 and 7 MPa. The spray metal layer is then thinly coated with a normal, commercially available, low-viscosity 1-component PU coating material by brush application so that no measurable layer build-up takes place. After the coating has hardened, the adhesive strength of the sprayed metal layer, measured by the same method, is 15 to 20 MPa.

Beispiel 2Example 2

Ein entfettetes Werkstück aus Stahl wird mittels Druckluftstrahlen bis zum Säuberungsgrad 2,5 und einer mittleren Rauhtiefe Rz von 25 µm vorbereitet. Anschließend wird auf die nicht weiter gesäuberte Oberfläche eine 100 µm dicke keramische Al₂O₃-Schicht mittels Pulverflammspritzen aufgebracht. Die vorgenommenen Haftfestigkeitsmessungen ergeben 12 MPa. Anschließend wird die keramische Spritzschicht mit einem normalen, handelsüblichen 1K-PUR-Beschichtungsstoff dünn mittels Druckluftspritzen beschichtet. Nach Aushärtung der Beschichtung beträgt die Haftfestigkeit der Spritzkeramikschicht mehr als 25 MPa.A degreased steel workpiece is prepared using compressed air jets up to a cleaning level of 2.5 and an average roughness depth R z of 25 µm. Then a 100 µm thick ceramic Al₂O₃ layer is applied to the not cleaned surface by means of powder flame spraying. The adhesive strength measurements carried out result in 12 MPa. The ceramic spray coating is then thinly coated with a normal, commercially available 1-component PU coating material using compressed air spraying. After the coating has hardened, the adhesive strength of the spray ceramic layer is more than 25 MPa.

Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß durch eine einfache Nachbehandlung die Haftfestigkeit von thermischen Spritzschichten zuverlässig und bedeutend erhöht wird, so daß die Lebensdauer der darauf aufgebrachten weiteren üblichen Beschichtungssysteme ebenfalls deutlich erhöht wird.A particular advantage of the method according to the invention is that the adhesive strength of thermal spray coatings is increased reliably and significantly by a simple aftertreatment, so that the service life of the other customary coating systems applied thereon is also significantly increased.

Claims (3)

Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen, insbesondere aus Zink, Aluminium und deren Legierungen, dadurch gekennzeichnet, daß die Spritzschichten nach dem Aufspritzen mit einem einkomponentigen, luftfeuchtigkeitshärtenden Polyurethanharz beschichtet werden.Process for improving the adhesive strength of thermal spray coatings made of metals, metal oxides and hard materials, in particular zinc, aluminum and their alloys, characterized in that the spray coatings are coated with a one-component, moisture-curing polyurethane resin after spraying. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Polyurethanharz als niedrigviskose Lösung in organischen Lösungsmitteln aufgetragen wird.A method according to claim 1, characterized in that the polyurethane resin is applied as a low-viscosity solution in organic solvents. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf die Spritzschichten nach dem Aushärten des Polyurethanharzes übliche Beschichtungssysteme aufgetragen werden.A method according to claim 1 or 2, characterized in that customary coating systems are applied to the sprayed layers after the polyurethane resin has hardened.
EP95105427A 1994-04-14 1995-04-11 Method for enhancing the band strength of thermally sprayed layers of metals, metal oxides and hard materials Expired - Lifetime EP0677592B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4412795 1994-04-14
DE4412795 1994-04-14

Publications (2)

Publication Number Publication Date
EP0677592A1 true EP0677592A1 (en) 1995-10-18
EP0677592B1 EP0677592B1 (en) 1998-12-30

Family

ID=6515339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95105427A Expired - Lifetime EP0677592B1 (en) 1994-04-14 1995-04-11 Method for enhancing the band strength of thermally sprayed layers of metals, metal oxides and hard materials

Country Status (3)

Country Link
EP (1) EP0677592B1 (en)
AT (1) ATE175246T1 (en)
DE (1) DE59504660D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853135A1 (en) * 1996-05-24 1998-07-15 Nippon Steel Hardfacing Co., Ltd. Method of strengthening sprayed coating
DE19748105C1 (en) * 1997-10-31 1998-10-29 Grillo Werke Ag Increasing corrosion-resistance of thermally sprayed metal coating on steel-reinforced cement concrete
CN113005796A (en) * 2021-03-01 2021-06-22 江苏卓尔诺光电科技有限公司 Corrosion-resistant galvanized steel strand for maritime optical cable and preparation process thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1115121A (en) * 1954-11-26 1956-04-19 Schneider Werke G M B H Process for coating objects made of ferrous metals and objects obtained by this process
FR1355378A (en) * 1962-05-07 1964-03-13 Metallurg Ges Fuer Metallurg P Method for covering objects with a layer of plastic
DE2121167A1 (en) * 1970-04-29 1971-11-11 Ici Ltd Metallized films and methods of making them
JPS5440885A (en) * 1977-09-07 1979-03-31 Iwasaki Electric Co Ltd Laminate with metal base and its making method
JPS57171472A (en) * 1981-04-16 1982-10-22 Sumitomo Metal Ind Ltd Corrosion-inhibition of steel material to be used under atmosphere in contact with strong alkali of concrete
EP0125582A2 (en) * 1983-05-11 1984-11-21 Henkel Kommanditgesellschaft auf Aktien Use of an expanding polyurethane adhesive for connecting insulating materials to parts of buildings
EP0143360A2 (en) * 1983-11-02 1985-06-05 Kleinert, Viktor Coating mass for steel and iron, its use and process for obtaining a protective coating
DE3531892A1 (en) * 1984-09-07 1986-03-20 Nippon Steel Corp., Tokio/Tokyo STEEL ITEM WITH A HIGH-PERFORMANCE ANTICORROSIVE COATING
JPS62136276A (en) * 1985-12-09 1987-06-19 Toho Kasei Kk Method for processing fixing heat roll
EP0351728A2 (en) * 1988-07-21 1990-01-24 Teroson GmbH Process for the manufacture of a strand of sealing or adhesive material.
DE3825200C1 (en) * 1988-07-25 1990-02-01 Aeg Isolier- Und Kunststoff Gmbh, 3500 Kassel, De Process for coating plastic components with metals
JPH03249187A (en) * 1990-02-27 1991-11-07 Hino Motors Ltd Bright treatment of external parts for automobile

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1115121A (en) * 1954-11-26 1956-04-19 Schneider Werke G M B H Process for coating objects made of ferrous metals and objects obtained by this process
FR1355378A (en) * 1962-05-07 1964-03-13 Metallurg Ges Fuer Metallurg P Method for covering objects with a layer of plastic
DE2121167A1 (en) * 1970-04-29 1971-11-11 Ici Ltd Metallized films and methods of making them
JPS5440885A (en) * 1977-09-07 1979-03-31 Iwasaki Electric Co Ltd Laminate with metal base and its making method
JPS57171472A (en) * 1981-04-16 1982-10-22 Sumitomo Metal Ind Ltd Corrosion-inhibition of steel material to be used under atmosphere in contact with strong alkali of concrete
EP0125582A2 (en) * 1983-05-11 1984-11-21 Henkel Kommanditgesellschaft auf Aktien Use of an expanding polyurethane adhesive for connecting insulating materials to parts of buildings
EP0143360A2 (en) * 1983-11-02 1985-06-05 Kleinert, Viktor Coating mass for steel and iron, its use and process for obtaining a protective coating
DE3531892A1 (en) * 1984-09-07 1986-03-20 Nippon Steel Corp., Tokio/Tokyo STEEL ITEM WITH A HIGH-PERFORMANCE ANTICORROSIVE COATING
JPS62136276A (en) * 1985-12-09 1987-06-19 Toho Kasei Kk Method for processing fixing heat roll
EP0351728A2 (en) * 1988-07-21 1990-01-24 Teroson GmbH Process for the manufacture of a strand of sealing or adhesive material.
DE3825200C1 (en) * 1988-07-25 1990-02-01 Aeg Isolier- Und Kunststoff Gmbh, 3500 Kassel, De Process for coating plastic components with metals
JPH03249187A (en) * 1990-02-27 1991-11-07 Hino Motors Ltd Bright treatment of external parts for automobile

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 79-35904b c19 *
JURGEN FOCK: "feuchtigkeitshartende polyurethanklebstoffe", ADHASION, vol. 32, no. 10, MUNCHEN,DE, pages 13 - 19, XP000023533 *
PATENT ABSTRACTS OF JAPAN vol. 11, no. 365 (C - 460) 27 November 1987 (1987-11-27) *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 43 (C - 0907) 4 February 1992 (1992-02-04) *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 14 (C - 146) 20 January 1983 (1983-01-20) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853135A1 (en) * 1996-05-24 1998-07-15 Nippon Steel Hardfacing Co., Ltd. Method of strengthening sprayed coating
EP0853135A4 (en) * 1996-05-24 2000-10-25 Nippon Steel Hardfacing Method of strengthening sprayed coating
DE19748105C1 (en) * 1997-10-31 1998-10-29 Grillo Werke Ag Increasing corrosion-resistance of thermally sprayed metal coating on steel-reinforced cement concrete
WO1999023282A1 (en) * 1997-10-31 1999-05-14 Grillo-Werke Ag Method for improving corrosion resistance of reinforced concrete
US6224943B1 (en) 1997-10-31 2001-05-01 Grillo-Werke Ag Method for improving the corrosion resistance of reinforced concrete
CN113005796A (en) * 2021-03-01 2021-06-22 江苏卓尔诺光电科技有限公司 Corrosion-resistant galvanized steel strand for maritime optical cable and preparation process thereof

Also Published As

Publication number Publication date
EP0677592B1 (en) 1998-12-30
DE59504660D1 (en) 1999-02-11
ATE175246T1 (en) 1999-01-15

Similar Documents

Publication Publication Date Title
EP0582950B1 (en) Fibre reinforced plastic roll with a wear-resistant outer plastic layer containing filler agents
EP2016138A1 (en) Anti-corrosion system for metals and pigment therefor
EP3554721B1 (en) Method for coating motor vehicle wheel rims
DE2446250A1 (en) PROCESS FOR THE PRODUCTION OF A FASTENING ORGANIC COATING ON A METALLIC SUBSTRATE
DE19748105C1 (en) Increasing corrosion-resistance of thermally sprayed metal coating on steel-reinforced cement concrete
EP0677592B1 (en) Method for enhancing the band strength of thermally sprayed layers of metals, metal oxides and hard materials
DE4439924A1 (en) Carbon@ cladding layer for electrostatic spraying
EP1444381A1 (en) Method for the production of dark protective layers on flat objects made from titanium zinc
EP1090165A2 (en) Layer system for protecting light metals and light metal alloys against corrosion
EP0508306A1 (en) Process for corrosion preventing coating of steel work pieces
DE3326701A1 (en) Process for the application of a rough surface coating to a workpiece
DE102004007361B4 (en) Method for modifying galvanized steel surfaces and black steel surfaces
WO1999004064A2 (en) Electrophoretic coating
EP0154384B1 (en) Process for pretreating zinc surfaces before lacquering
DE300836C (en)
DE4333894C1 (en) Process for resin coating a metal surface
DE4435050A1 (en) Surface finishing process for vehicle coachwork parts
DE1261787B (en) Process for applying a strong plastic coating to rotating bodies
CH687330A5 (en) Treatment of metal surfaces by means of silicates to improve the adhesion of coatings.
DE2236191B2 (en) Process for the decorative coating of a metal object
DE341856C (en) Process for producing a glaze-like, mineral coating on iron by cold means
DE2528943A1 (en) Multilayered polyurethane coating for metal surfaces esp. aluminium - with strippable outer layer
DE1923030A1 (en) Composite material for bearings and processes for their manufacture
DE1810563A1 (en) Corrosion-protected steel chain, especially for underground mining
DE19847531C1 (en) Application of protective layer onto a vacuum metallized metal substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT PT

17P Request for examination filed

Effective date: 19951216

17Q First examination report despatched

Effective date: 19970418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981230

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981230

REF Corresponds to:

Ref document number: 175246

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59504660

Country of ref document: DE

Date of ref document: 19990211

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19990401

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990411

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19981230

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19981230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000417

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040621

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101