EP0676488A1 - Process for removing organic materials from machinery components - Google Patents

Process for removing organic materials from machinery components Download PDF

Info

Publication number
EP0676488A1
EP0676488A1 EP95104352A EP95104352A EP0676488A1 EP 0676488 A1 EP0676488 A1 EP 0676488A1 EP 95104352 A EP95104352 A EP 95104352A EP 95104352 A EP95104352 A EP 95104352A EP 0676488 A1 EP0676488 A1 EP 0676488A1
Authority
EP
European Patent Office
Prior art keywords
cleaner
vol
oil
organic
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95104352A
Other languages
German (de)
French (fr)
Other versions
EP0676488B1 (en
Inventor
Detlev Schünke
Monika Dr. Manier
Martin Dr. Thoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0676488A1 publication Critical patent/EP0676488A1/en
Application granted granted Critical
Publication of EP0676488B1 publication Critical patent/EP0676488B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/024Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/032Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/20Industrial or commercial equipment, e.g. reactors, tubes or engines

Definitions

  • the invention relates to a method for removing organic materials from engine components, in particular for removing fusible organic covering, filling or damping materials from cavities and from surfaces of engine components.
  • Meltable organic covering, filling or damping materials such as wax or wax mixtures are used in the coating processes, laser drilling, etching of coatings or in turning and grinding operations of engine components for the new part production and repair of engine components.
  • Such fusible organic covering, filling or damping materials have hitherto been used in plants which work with CHCs (for example trichlorethylene or tetrachlorethylene) or CFCs (for example trichlorotrifluoroethane or dichlorotetrafluoroethane) to dissolve the wax-like covering, filling or damping materials from the adhering organic materials exempted.
  • CHCs or CFCs Plants that are operated with CHCs or CFCs are complex and expensive to care for, service and maintenance. This is partly due to stricter environmental and occupational safety requirements. Furthermore, a high level of analytical effort must be exerted in order to ensure that these systems function reliably. In addition, CKWs are only of limited use for cleaning surfaces of titanium components, which are often used as engine components, because of the risk of increased stress corrosion cracking of the titanium after contact with CKWS.
  • the object of the invention is to provide a method for removing meltable organic materials from engine components, which overcomes the above disadvantages and cleans the surfaces of engine components in a cost-effective, reproducible and reliable manner and completely frees them from residual organic films without polluting the environment and the workplace.
  • the advantage of this solution is that, apart from a residual film adhering to the engine component, the meltable organic material is recovered completely and without great technical effort in process step a).
  • the thickness of the residual film can be minimized by increasing the temperature of the melt and the temperature of the engine component immersed in the melt.
  • the tempered oil used in process step b) can also be used several times until it is removed from that taken up in process step b) by means of distillation or other separation processes organic material must be separated and thus regenerated.
  • the adhering residual film is dissolved in a mineral oil or fully synthetic oil with a density of 0.6-0.8 g / cm3.
  • This specifically light oil has the advantage that the specifically heavier organic material settles as an oil bath sump and the oil bath above it remains ready for use.
  • the adhering residual film is dissolved in an oil bath at bath temperatures of 80 ° C. to 150 ° C. These relatively high bath temperatures contribute to the rapid dissolving and thinning of the residual film on the one hand, and that on the other Material film adhering to the surface of the engine component from essentially oil molecules is minimized in its thickness.
  • the treatment of the material film can be done by alcohol-based cleaners.
  • the aftertreatment of the material film is preferably carried out using a cleaner from 0.1% by volume to 1 Vol% surfactant and 99 vol% to 99.9 vol% glycol derivative or mixtures of glycol derivatives.
  • This cleaner is able to completely dissolve the material film remaining on the surface, which essentially consists of oil molecules, without the use of CHCs or CFCs.
  • the glycol derivatives are water-soluble and can be rinsed off the surfaces of the engine components with simple rinsing steps. Distilled and / or demineralized water is preferably used for this.
  • the cleaner is preferably diluted with water in a ratio of 1: 1 to 1:10 as a cleaning solution for the aftertreatment used.
  • the cleaning solutions are gradually being diluted. A particularly effective cleaning of the surfaces is shown within the preferred limits of the dilution, which can be carried out without additional control processes.
  • the cleaner and / or the cleaning solutions are preferably heated to 60 ° C to 80 ° C. This improves the effect of the surfactants in the cleaner in particular and increases the cleaning effect of the cleaning solutions.
  • the water is preferably heated to 80 ° C to 95 ° C.
  • the alcohol can be heated to just below its boiling point in order to ensure that adhering residual materials are cleaned or remaining substances are rinsed off the surface.
  • drying steps with hot air at a temperature between 110 and 150 ° C. can preferably be carried out.
  • aqueous liquids are advantageously evaporated.
  • vacuum drying can preferably be carried out as the last drying step.
  • the cooling channels of a turbine blade are poured for laser drilling with wax that softens at 75 ° C and has a dropping point between 80 ° and 85 ° C.
  • This wax is preferably a mineral-saturated hydrocarbon wax that solidifies between 73 ° C, 73 ° C and 78 ° C.
  • the turbine blade is heated to 80 ° C and immersed in a wax melt of the same type, which was heated to 110 ° C.
  • the wax flows out of the cooling channels of the turbine blade.
  • the remaining wax film, which adheres to the inner walls of the cooling channels, is then diluted and dissolved in a 120 ° C oil bath for 15 to 30 minutes.
  • the turbine blade is then immersed in a neutral cleaner that can be used for all metals at a temperature of 60 to 80 ° C for 15 to 30 minutes and finally in hot demineralized water at a temperature of 95 ° C for 5 minutes.
  • a neutral cleaner that can be used for all metals at a temperature of 60 to 80 ° C for 15 to 30 minutes and finally in hot demineralized water at a temperature of 95 ° C for 5 minutes.
  • the turbine blade is dried at 130 ° C for 15 to 45 minutes.
  • protective layers and preservation layers can also be removed in the same way, provided that they consist of a meltable, organic material.
  • the BLISK rotor After reaching the final dimension of the blade tips, the BLISK rotor is heated and immersed in a wax melt, so that only a residual film of organic material adheres to the rotor surface after the main portion of the wax has melted.
  • This residual film is dissolved in a temperature-controlled oil bath at 130 ° C. and further diluted, so that only a thin film of material remains, which essentially consists of oil molecules.
  • This material film is then dissolved and further diluted in a cleaner consisting of 0.1% by volume of surfactants and 99.9% by volume of a mixture of glycol derivatives, so that it is subjected to several subsequent rinsing and cleaning steps in which the dilution a cleaning solution is gradually enlarged, disappears completely from the surface.
  • the BLISK rotor is subjected to vacuum drying so that it is completely freed of contamination.
  • the areas that are not to be coated are first protected with a protective layer made of a meltable organic material. After the platinum has been deposited, the meltable organic material is removed. After a thorough rinsing and drying step, the engine component is converted into an identical type Melt made of organic material dipped until only a residual film of minimal thickness adheres to the turbine component. This residual film is treated in a temperature-controlled oil bath as in Example 2, so that only a material film of essentially oil molecules remains on the surface.
  • this material film is dissolved and further thinned, so that rinsing with a cleaning solution and rinsing with distilled and demineralized water are the surface that are not coated with platinum should be fully exposed.
  • a metal spray layer made of Ni / Al is to be selectively etched away from a turbine component.
  • a nickel layer which is located on the component in places, must be partially protected.
  • the component itself consists of a nickel-based material.
  • a main component of the etching solution is a nitroaromatic. In this solution, the base material, the metal spray coating and the nickel coating are not chemically stable.
  • the component is cleaned in a neutral cleaner and covered with wax from the example.
  • the places where the metal spray layer made of Ni / Al is to be etched off are mechanically exposed.
  • the component After the selective etching of the metal spray layer made of Ni / Al, the component is first sprayed with cold water and then blown dry.
  • the wax cover over the nickel layer and the nickel-based material of the component after the etching has ended is melted in a wax melt, treated in an oil bath and immersed in a cleaner according to Example 2 for 15 to 30 minutes at 78 ° C.
  • the component is immersed in a cleaning solution with a first dilution stage and rinsed again with hot water.
  • the component is then immersed in a cleaning solution with greater dilution and rinsed repeatedly with hot water.
  • the dilution of the cleaning solution is gradually increased until only water adheres to the surfaces of the component, so that contamination can be completely removed from the component with a subsequent vacuum drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Detergent Compositions (AREA)

Abstract

Removing fusible organic coating, plugging or cushioning materials (I) from the cavities and surface of engine components comprises: (a) melting off (I) in a melt of the same type of material, (b) dissolving the residual adherent film with oil at the temp. of the preheated component, (c) diluting and dissolving any still-remaining film with organic cleaners contg. no fluorochlorohydrocarbons (CFC) or chlorohydrocarbons (CHC), and (d) further treatment(s) of the surface with increasingly diluted cleaning solns., with intermediate washing and/or drying stages.

Description

Die Erfindung betrifft ein Verfahren zum Entfernen organischer Materialien von Triebwerkskomponenten, insbesondere zum Entfernen von schmelzbaren organischen Abdeck-, Füll- oder Dämpfungsmaterialien aus Hohlräumen und von Oberflächen von Triebwerkskomponenten.The invention relates to a method for removing organic materials from engine components, in particular for removing fusible organic covering, filling or damping materials from cavities and from surfaces of engine components.

Für die Neuteilfertigung und Instandsetzung von Triebwerkskomponenten werden schmelzbare organische Abdeck-, Füll- oder Dämpfungsmaterialien wie beispielsweise Wachs oder Wachsgemische bei Beschichtungsprozessen, beim Laserbohren, beim Abätzen von Beschichtungen oder bei Dreh- und Schleifoperationen von Triebwerkskomponenten eingesetzt. Darüber hinaus werden die Oberflächen von nicht korrosionsbeständigen Werkstoffen während der Lagerung mit öl- oder wachshaltigen Schutzschichten zur Konservierung versehen. Derartige schmelzbare organische Abdeck-, Füll- oder Dämpfungsmaterialien werden bisher in Anlagen, die mit CKWs (beispielwweise Trichlorethen oder Tetrachlorethen) oder FCKWs (beispielsweise Trichlortrifluorethan oder Dichlortetrafluorethan) zur Auflösung der wachsartigen Abdeck-, Füll- oder Dämpfungsmaterialien arbeiten, von den anhaftenden organischen Materialien befreit.Meltable organic covering, filling or damping materials such as wax or wax mixtures are used in the coating processes, laser drilling, etching of coatings or in turning and grinding operations of engine components for the new part production and repair of engine components. In addition, the surfaces of non-corrosion-resistant materials during the Provide storage with protective layers containing oil or wax for preservation. Such fusible organic covering, filling or damping materials have hitherto been used in plants which work with CHCs (for example trichlorethylene or tetrachlorethylene) or CFCs (for example trichlorotrifluoroethane or dichlorotetrafluoroethane) to dissolve the wax-like covering, filling or damping materials from the adhering organic materials exempted.

Anlagen die mit CKWs oder FCKWs betrieben werden sind aufwendig und teuer in ihrer Pflege, Wartung und Instandhaltung. Dies beruht teilweise auf verschärften Auflagen in Bezug auf Umwelt- und Arbeitsschutz. Weiterhin muß ein hoher analytischer Aufwand betrieben werden, um eine sichere Funktionsweise dieser Anlagen zu gewährleisten. Darüberhinaus sind CKWs nur begrenzt für die Reinigung von Oberflächen von Titanbauteilen, die häufig als Triebwerkskomponenten eingesetzt werden, wegen der Gefahr einer erhöhten Spannungsrißkorrosion des Titans nach Kontakt mit CKWS verwendbar.Plants that are operated with CHCs or CFCs are complex and expensive to care for, service and maintenance. This is partly due to stricter environmental and occupational safety requirements. Furthermore, a high level of analytical effort must be exerted in order to ensure that these systems function reliably. In addition, CKWs are only of limited use for cleaning surfaces of titanium components, which are often used as engine components, because of the risk of increased stress corrosion cracking of the titanium after contact with CKWS.

Aufgabe der Erfindung ist es, ein Verfahren zum Entfernen von abschmelzbaren organischen Materialien von Triebwerkskomponenten anzugeben, das die obigen Nachteile überwindet und kostengünstig, reproduzierbar und zuverlässig die Oberflächen von Triebwerkskomponenten reinigt und von organischen Restfilmen vollständig befreit, ohne Umwelt und Arbeitsplatz zu belasten.The object of the invention is to provide a method for removing meltable organic materials from engine components, which overcomes the above disadvantages and cleans the surfaces of engine components in a cost-effective, reproducible and reliable manner and completely frees them from residual organic films without polluting the environment and the workplace.

Gelöst wird diese Aufgabe durch folgende Verfahrensschritte

  • a) Abschmelzen des organischen Materials in einer artgleichen Schmelze,
  • b) Verdünnen und Anlösen eines anhaftenden Restfilms mittels temperiertem Öl an der vorgewärmten Triebwerkskomponente,
  • c) Verdünnen und Anlösen eines noch an den Oberflächen anhaftenden Materialfilms mittels organischen Reinigern, die FCKW und CKW frei sind,
  • d) ein- oder mehrfaches Nachbehandeln der Oberflächen der Triebwerkskomponenten mittels verdünnten Reinigungslösungen mit zwischengeschalteten Spül- und/oder Trocknungsschritten, wobei die Reinigungslösungen schrittweise zunehmend verdünnt werden.
This task is solved by the following procedural steps
  • a) melting the organic material in a melt of the same type,
  • b) diluting and dissolving an adhering residual film by means of tempered oil on the preheated engine component,
  • c) diluting and dissolving a material film still adhering to the surfaces by means of organic cleaners which are CFC and CHC free,
  • d) single or multiple aftertreatment of the surfaces of the engine components by means of diluted cleaning solutions with intermediate rinsing and / or drying steps, the cleaning solutions being gradually diluted step by step.

Der Vorteil dieser Lösung liegt darin, daß das aufschmelzbare organische Material bis auf einen an der Triebwerkskomponente anhaftenden Restfilm vollständig und ohne großen technischen Aufwand im Verfahrensschritt a) zurückgewonnen wird. Die Dicke des Restfilms kann durch Erhöhung der Temperatur der Schmelze und der Temperatur der in die Schmelze eintauchenden Triebwerkskomponente minimiert werden.The advantage of this solution is that, apart from a residual film adhering to the engine component, the meltable organic material is recovered completely and without great technical effort in process step a). The thickness of the residual film can be minimized by increasing the temperature of the melt and the temperature of the engine component immersed in the melt.

Auch das im Verfahrensschritt b) verwendete temperierte Öl kann mehrfach eingesetzt werden bis es mittels Destillation oder anderen Trennverfahren von dem im Verfahrensschritt b) aufgenommenem organischen Material getrennt und damit regeneriert werden muß.The tempered oil used in process step b) can also be used several times until it is removed from that taken up in process step b) by means of distillation or other separation processes organic material must be separated and thus regenerated.

Schließlich können alle Reinigungs- und Spülprozesse dieses Verfahrens vorteilhaft in Kreisprozessen geführt werden, wobei die Reiniger und Reinigungslösungen über Umkehrosmose, Ultrafiltration und/oder Destillation zurückgewonnen werden können, ohne die Umwelt zu belasten.Finally, all cleaning and rinsing processes of this method can advantageously be carried out in circular processes, the cleaners and cleaning solutions being able to be recovered via reverse osmosis, ultrafiltration and / or distillation without polluting the environment.

In einer bevorzugten Durchführung des Verfahrens erfolgt die Auflösung des anhaftenden Restfilms in einem Mineralöl oder voll synthetischen Öl mit einer Dichte von 0,6-0,8 g/cm³ . Dieses spezifisch leichte Öl hat den Vorteil, daß sich das spezifisch schwerere organische Material als Ölbadsumpf absetz und das Ölbad darüber im oberen Bereich einsatzbereit bleibt.In a preferred embodiment of the method, the adhering residual film is dissolved in a mineral oil or fully synthetic oil with a density of 0.6-0.8 g / cm³. This specifically light oil has the advantage that the specifically heavier organic material settles as an oil bath sump and the oil bath above it remains ready for use.

Bei einer anderen bevorzugten Durchführung des Verfahrens erfolgt die Auflösung des anhaftenden Restfilms in einem Ölbad bei Badtemperaturen von 80 °C bis 150° C. Diese relativ hohen Badtemperaturen tragen dazu bei, daß einerseits ein schnelles Anlösen und Verdünnen des Restfilms erfolgt und andererseits der auf der Oberfläche der Triebwerkskomponente anhaftende Materialfilm aus im wesentlichen Ölmolekülen in seiner Dicke minimiert wird.In another preferred implementation of the method, the adhering residual film is dissolved in an oil bath at bath temperatures of 80 ° C. to 150 ° C. These relatively high bath temperatures contribute to the rapid dissolving and thinning of the residual film on the one hand, and that on the other Material film adhering to the surface of the engine component from essentially oil molecules is minimized in its thickness.

Das Nachbehandeln des Materialfilms kann durch Reiniger auf Alkoholbasis erfolgen. Vorzugsweise erfolgt die Nachbehandlung des Materialfilms mittels eines Reinigers aus 0,1 Vol% bis 1 Vol% Tensid und 99 Vol% bis 99,9 Vol% Glycolderivat oder Mischungen von Glycolderivaten. Dieser Reiniger ist in der Lage den auf der Oberfläche verbliebenen Materialfilm, der im wesentlichen aus Ölmolekühlen besteht, vollständig aufzulösen, ohne daß der Einsatz von CKWs oder FCKWs erforderlich wird. Die Glycolderivate ihrerseits sind wasserlöslich und können mit einfachen Spülschritten von den Oberflächen der Triebwerkskomponenten abgespült werden. Dazu wird vorzugsweise destilliertes und/oder demineralisiertes Wasser verwendet.The treatment of the material film can be done by alcohol-based cleaners. The aftertreatment of the material film is preferably carried out using a cleaner from 0.1% by volume to 1 Vol% surfactant and 99 vol% to 99.9 vol% glycol derivative or mixtures of glycol derivatives. This cleaner is able to completely dissolve the material film remaining on the surface, which essentially consists of oil molecules, without the use of CHCs or CFCs. The glycol derivatives are water-soluble and can be rinsed off the surfaces of the engine components with simple rinsing steps. Distilled and / or demineralized water is preferably used for this.

Der Reiniger auf Glycolbasis enthält vorzugsweise mindesten eines der folgenden Glycolderivate :

  • a) R1-(CH₄O)OH, mit R1 = CH₃, R1 = C₂H₅ oder R1 = C₄H₉,
  • b) R1-(C₄H₇O₃), mit R1 = CH₃, R1 = C₂H oder R1 = C₄H₉
    und
  • c) R2-(C₂H₄O)nH, mit R2 = CH₃O, R2 = C₂H₅O oder R2 = C₄H₉
    und mit n = 2 bis 5.
The glycol-based cleaner preferably contains at least one of the following glycol derivatives:
  • a) R1- (CH₄O) OH, with R1 = CH₃, R1 = C₂H₅ or R1 = C₄H₉,
  • b) R1- (C₄H₇O₃), with R1 = CH₃, R1 = C₂H or R1 = C₄H₉
    and
  • c) R2- (C₂H₄O) nH, with R2 = CH₃O, R2 = C₂H₅O or R2 = C₄H₉
    and with n = 2 to 5.

Diese Reiniger haben den Vorteil,, daß durch einen einfachen Destillationsvorgang die Glycolderivate zurückgewonnen werden können und damit wiederverwendbar sind, so daß ein Kreisprozess ermöglicht wird..These cleaners have the advantage that the glycol derivatives can be recovered by a simple distillation process and are therefore reusable, so that a cycle process is made possible.

Vorzugsweise wird der Reiniger in Verdünnungsgraden mit Wasser im Verhältnis 1:1 bis 1:10 als Reinigungslösung für die Nachbehandlung eingesetzt. Dabei werden die Reinigungslösungen schrittweise zunehmend verdünnt. Innerhalb der bevorzugten Grenzen der Verdünnung zeigt sich eine besonders effektive Reinigung der Oberflächen, die ohne zusätzliche Kontrollverfahren durchgeführt werden kann.The cleaner is preferably diluted with water in a ratio of 1: 1 to 1:10 as a cleaning solution for the aftertreatment used. The cleaning solutions are gradually being diluted. A particularly effective cleaning of the surfaces is shown within the preferred limits of the dilution, which can be carried out without additional control processes.

Zum Reinigen werden vorzugsweise der Reiniger und/oder die Reinigungslösungen auf 60 °C bis 80 °C aufgeheizt. Das verbessert die Wirkung insbesondere der Tenside im Reiniger und erhöht die Reinigungswirkung der Reinigungslösungen. Beim Spülen wird vorzugsweise das Wasser auf 80 °C bis 95 °C aufgeheizt. Wenn mit Alkohol gespült oder gereingt wird, kann der Alkohol bis kurz unter seinen Siedepunkt erhizt werden, um eine Rei-nigung von anhaftenden Restmaterialien oder ein Abspülen verbliebener Restsubstanzen von der Oberfläche zu gewährleisten..For cleaning, the cleaner and / or the cleaning solutions are preferably heated to 60 ° C to 80 ° C. This improves the effect of the surfactants in the cleaner in particular and increases the cleaning effect of the cleaning solutions. When rinsing, the water is preferably heated to 80 ° C to 95 ° C. When rinsing or cleaning with alcohol, the alcohol can be heated to just below its boiling point in order to ensure that adhering residual materials are cleaned or remaining substances are rinsed off the surface.

Zwischen den Spül- und Reinigungsschritten können vorzugsweise Trocknungsschritte mit Heißluft einer Temperatur zwischen 110 und 150 °C erfolgen. Mit diesem bevorzugten Temperaturbereich werden vorteilhaft wässerige Flüssigkeiten abgedampft. Um vorteilhaft die Oberflächen von jeglicher Kontamination zu befreien, kann vorzugsweise als letzter Trocknungsschritt ein Vakuumtrocknen durchgeführt werden.Between the rinsing and cleaning steps, drying steps with hot air at a temperature between 110 and 150 ° C. can preferably be carried out. With this preferred temperature range, aqueous liquids are advantageously evaporated. In order to advantageously free the surfaces of any contamination, vacuum drying can preferably be carried out as the last drying step.

Im folgenden wird das erfindungsgemäße Verfahren an Durchführungsbeispielen erläutert.The method according to the invention is explained below using exemplary embodiments.

Beispiel 1example 1

Die Kühlkanäle einer Turbinenschaufel werden für das Laserbohren mit Wachs, das bei 75 °C erweicht und einen Tropfpunkt zwichen 80° und 85°C aufweist ausgegossen. Dieses Wachs ist vorzugsweise ein mineralisch gesättigtes Kohlenwasserstoffwachs, das zwischen 73°C 73°C und 78°C fest wird. Nach dem Laserbohren wird die Turbinenschaufel auf 80 °C erwärmt und in eine artgleiche Wachsschmelze, die auf 110 °Cerhitzt wurde, getaucht. Beim Herausziehen der Turbinenschaufel aus der Wachsschmelze fließt das Wachs aus den Kühlkanälen der Turbinenschaufel. Der Restfilm aus Wachs, der an den Innenwänden der Kühlkanäle anhaftet, wird anschließend in einem 120 °Cheißen Ölbad für 15 bis 30 Minuten verdünnt und angelöst. Beim Herausnehmen der Turbinenschaufel aus dem Ölbad verbleibt ein dünner Materialfilm auf den Oberflächen und Innenflächen der Turbinenschaufel, der im wesentlichen aus Ölmolekülen besteht. Dieser Materialfilm wird mit einem Reiniger auf der Basis von DI-Alkoholderivaten mit einem Flammpunkt von 80 bis 130 °C bei einer Temperatur zwischen 60 und 80 °C für 15 bis 30 Minuten verdünnt und angelöst und anschließend in demineralisiertem Wasser abgespült.The cooling channels of a turbine blade are poured for laser drilling with wax that softens at 75 ° C and has a dropping point between 80 ° and 85 ° C. This wax is preferably a mineral-saturated hydrocarbon wax that solidifies between 73 ° C, 73 ° C and 78 ° C. After laser drilling, the turbine blade is heated to 80 ° C and immersed in a wax melt of the same type, which was heated to 110 ° C. When the turbine blade is pulled out of the wax melt, the wax flows out of the cooling channels of the turbine blade. The remaining wax film, which adheres to the inner walls of the cooling channels, is then diluted and dissolved in a 120 ° C oil bath for 15 to 30 minutes. When the turbine blade is removed from the oil bath, a thin film of material remains on the surfaces and inner surfaces of the turbine blade, which essentially consists of oil molecules. This material film is diluted with a cleaner based on DI alcohol derivatives with a flash point of 80 to 130 ° C at a temperature between 60 and 80 ° C for 15 to 30 minutes and then rinsed in demineralized water.

Danach wird die Turbinenschaufel in einem für alle Metalle verwendbaren Neutralreiniger bei einer Temperatur von 60 bis 80 °Cfür 15 bis 30 Minuten getaucht und schließlich in heißem demineralisiertem Wasser bei einer Temperatur von 95 °Cfür 5 Minuten gespült.The turbine blade is then immersed in a neutral cleaner that can be used for all metals at a temperature of 60 to 80 ° C for 15 to 30 minutes and finally in hot demineralized water at a temperature of 95 ° C for 5 minutes.

Abschließend wird die Turbinenschaufel bei 130 °Cfür eine Zeit von 15 bis 45 Minuten getrocknet.Finally, the turbine blade is dried at 130 ° C for 15 to 45 minutes.

Die zeitliche Länge der einzelnen Verfahrensschritte hängt von der Größe der Triebwerkskomponente und von der Komplexität der Gestalt der Triebwerkskomponente ab. Neben dem hier beschriebenen Entfernen einer Wachsfüllung können auf gleiche Weise auch Schutzschichten und Konservierungsschichten entfernt werden, sofern diese aus einem aufschmelzbaren, organischen Material bestehen .The length of time for the individual process steps depends on the size of the engine component and on the complexity of the shape of the engine component. In addition to the removal of a wax filling described here, protective layers and preservation layers can also be removed in the same way, provided that they consist of a meltable, organic material.

Beispiel 2Example 2

Vor dem Abdrehen der Schaufel spitzen eines BLISK-Rotors, der einstückig aus Rotor-scheibe und Schaufeln besteht, auf einen Endradius werden zunächst die Zwischenräume zwischen den Schaufeln des BLISK-Rotors mit Wachs ausgegossen, um die Schwingungen der Schaufeln beim Abdrehen der Schaufelspitzen zu dämpfen.Before turning off the blade tips of a BLISK rotor, which consists in one piece of rotor disc and blades, the spaces between the blades of the BLISK rotor are first poured out with wax to dampen the vibrations of the blades when the blade tips are turned off .

Nach dem Erreichen des Endmaßes der Schaufelspitzen wird der BLISK-Rotor erwärmt und in eine Wachsschmelze getaucht, so daß nach dem Abschmelzen des Hauptanteils des Wachses nur ein Restfilm an organischem Material auf der Rotoroberfläche anhaftet.After reaching the final dimension of the blade tips, the BLISK rotor is heated and immersed in a wax melt, so that only a residual film of organic material adheres to the rotor surface after the main portion of the wax has melted.

Dieser Restfilm wird in einem temperierten Ölbad bei 130 C angelöst und weiter verdünnt, so daß nur ein dünner Materialfilm zurückbleibt, der im wesentlichen aus Ölmolekülen besteht. Dieser Materialfilm wird anschließend in einem Reiniger der zu 0, 1 Vol% aus Tensiden und zu 99,9 Vol% aus einer Mischung von Glycolderivaten besteht, angelöst und weiter verdünnt, so daß er mit mehreren nachfolgenden Spül- und Reinigungsschritten, bei denen die Verdünnung einer Reinigungslösung schrittweise vergrößert wird , vollständig von der Oberfläche verschwindet.This residual film is dissolved in a temperature-controlled oil bath at 130 ° C. and further diluted, so that only a thin film of material remains, which essentially consists of oil molecules. This material film is then dissolved and further diluted in a cleaner consisting of 0.1% by volume of surfactants and 99.9% by volume of a mixture of glycol derivatives, so that it is subjected to several subsequent rinsing and cleaning steps in which the dilution a cleaning solution is gradually enlarged, disappears completely from the surface.

Zum Abschluß wird der BLISK-Rotor einer Vakuumtrocknung ausgesetzt, so daß er vollständig von Kontaminationen befreit wird.Finally, the BLISK rotor is subjected to vacuum drying so that it is completely freed of contamination.

Beispiel 3Example 3

Zum Schutz vor Beschichtung beim galvanischen Abscheiden von Platinschichten auf einer Triebwerkskomponente werden die nicht zu beschichtenden Bereiche zunächst mit einer Schutzschicht aus einem aufschmelzbaren organischen Material geschütz. Nach der Abscheidung des Platins wird das aufschmelzbare organische Material entfernt. Dazu wird die Triebwerkskomponente nach einem gründlichen Spül- und Trocknungsschritt in eine artgleiche Schmelze aus organischem Material getaucht, bis nur noch ein Restfilm von minimaler Dicke auf der Turbinenkomponente haftet. Dieser Restfilm wird wie in Beispiel 2 in einem temperierten Ölbad behandelt, so daß nur noch ein Materialfilm aus im wesentlichen Ölmolekülen auf der Oberfläche verbleibt. Mit Hilfe eines Reinigungsbades aus 0,8 Vol% Tensiden und 99,2 Vol% Glycolderivaten wird dieser Materialfilm angelöst und weiter verdünnt, so daß ein Abspülen durch eine Reinigungslösung und ein Spülen mit destilliertem und demineralisiertem Wasser die Oberfläche, die nicht mit Platin beschichtet werden sollte, vollständig freilegt.To protect against coating during the galvanic deposition of platinum layers on an engine component, the areas that are not to be coated are first protected with a protective layer made of a meltable organic material. After the platinum has been deposited, the meltable organic material is removed. After a thorough rinsing and drying step, the engine component is converted into an identical type Melt made of organic material dipped until only a residual film of minimal thickness adheres to the turbine component. This residual film is treated in a temperature-controlled oil bath as in Example 2, so that only a material film of essentially oil molecules remains on the surface. With the help of a cleaning bath of 0.8 vol% surfactants and 99.2 vol% glycol derivatives, this material film is dissolved and further thinned, so that rinsing with a cleaning solution and rinsing with distilled and demineralized water are the surface that are not coated with platinum should be fully exposed.

Beispiel 4Example 4

Von einem Turbinenbauteil soll zur Vorbereitung einer Reparatur selektiv eine Metallspritzzschicht aus Ni/Al abgeätzt werden. Während des Abätzens ist eine Nickelschicht, die sich stellenweise auf dem Bauteil befindet, partiell zu schützen. Das Bauteil selber besteht aus einem Nickelbasiswerkstoff. Ein Hauptbestandteil der Ätzlösung ist ein Nitroaromat. In dieser Lösung sind der Grundwerkstoff, die Metallspritzschicht und die Nickelschicht chemisch nicht beständig.To prepare for a repair, a metal spray layer made of Ni / Al is to be selectively etched away from a turbine component. During the etching, a nickel layer, which is located on the component in places, must be partially protected. The component itself consists of a nickel-based material. A main component of the etching solution is a nitroaromatic. In this solution, the base material, the metal spray coating and the nickel coating are not chemically stable.

Zur Vorbereitung der selektiven Ätzung wird das Bauteil in einem Neutralreiniger gereinigt und mit Wachs des Beispiels abgedeckt. Die Stellen, an denen die Metallspritzzschicht aus Ni/Al abgeätzt werden soll, werden mechanisch freigelegt.To prepare for the selective etching, the component is cleaned in a neutral cleaner and covered with wax from the example. The places where the metal spray layer made of Ni / Al is to be etched off are mechanically exposed.

Nach dem selektiven Ätzen der Metalspritzschicht aus Ni/Al wird zunächst das Bauteil mit kaltem Wasser abgesprüht und anschließend trockengeblasen.After the selective etching of the metal spray layer made of Ni / Al, the component is first sprayed with cold water and then blown dry.

Zum Entfernen der Wachsabdeckung über der Nickelschicht und dem Nickelbasiswerkstoff des Bauteils nach Beendigung der Ätzung wird dieses in einer Wachsschmelze abgeschmolzen, in einem Ölbad behandelt und in einen Reiniger entsprechend Beispiel 2 für 15 bis 30 Minuten bei 78 °Cgetaucht. Nach einer Zwischenspülung in demineralisiertem Wasser wird das Bauteil in eine Reinigungslösung mit einer ersten Verdünnungsstufe getaucht und wieder mit heißem Wasser abgespült. Danach wird das Bauteil in eine Reinigungslösung mit größerer Verdünnung getaucht und wiederholt mit heißem Wasser abgespült. Die Verdünnung der Reinigungslösung wird solange schrittweise vergrößert, bis nur noch Wassser an den Oberflächen des Bauteils haftet, so daß mit einer anschließenden Vakuumtrocknung das Bauteil von Kontaminationen vollständig befreit werden kann.To remove the wax cover over the nickel layer and the nickel-based material of the component after the etching has ended, it is melted in a wax melt, treated in an oil bath and immersed in a cleaner according to Example 2 for 15 to 30 minutes at 78 ° C. After an intermediate rinse in demineralized water, the component is immersed in a cleaning solution with a first dilution stage and rinsed again with hot water. The component is then immersed in a cleaning solution with greater dilution and rinsed repeatedly with hot water. The dilution of the cleaning solution is gradually increased until only water adheres to the surfaces of the component, so that contamination can be completely removed from the component with a subsequent vacuum drying.

Claims (11)

Verfahren zum Entfernen von schmelzbaren organischen Abdeck-, Füll- oder Dämpfungsmaterialien aus Hohlräumen und von Oberflächen von Triebwerkskomponenten mit den folgenden Verfahrensschritten a) Abschmelzen des organischen Materials in einer artgleichen Schmelze, b) Verdünnen und Anlösen eines anhaftenden Restfilms mittels temperiertem Öl an der vorgewärmten Triebwerkskomponente, c) Verdünnen und Anlösen eines noch an den Oberflächen anhaftenden Materialfilms mittels organischen Reinigern, die FCKW und CKW frei sind, d) ein- oder mehrfaches Nachbehandeln der Oberflächen der Triebwerkskomponenten mittels verdünnten Reinigungslösungen mit zwischengeschalteten Spül- und/oder Trocknungsschritten, wobei die Reinigungslösungen schrittweise zunehmend verdünnt werden. Process for removing fusible organic covering, filling or damping materials from cavities and surfaces of engine components with the following process steps a) melting the organic material in a melt of the same type, b) diluting and dissolving an adhering residual film by means of tempered oil on the preheated engine component, c) diluting and dissolving a material film still adhering to the surfaces by means of organic cleaners which are CFC and CHC free, d) single or multiple aftertreatment of the surfaces of the engine components by means of diluted cleaning solutions with intermediate rinsing and / or drying steps, the cleaning solutions being gradually diluted step by step. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Auflösung des anhaftenden Restfilms in einem Mineralöl oder voll synthetischen Öl mit einer Dichte von 0,6-0,8 g/cm³ erfolgt.A method according to claim 1, characterized in that the adhering residual film is dissolved in a mineral oil or fully synthetic oil with a density of 0.6-0.8 g / cm³. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Auflösung des anhaftenden Restfilms in einem Ölbad bei Badtemperaturen von 80 °C bis 150 °C erfolgt.A method according to claim 1 or 2, characterized in that the adhering residual film is dissolved in an oil bath at bath temperatures of 80 ° C to 150 ° C. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Nachbehandeln des Materialfilms mittels eines Reinigers aus 0,1 Vol% bis 1 Vol% Tensid und 99 Vol% bis 99,9 Vol% Glycolderivat oder Mischungen von Glycolderivaten erfolgt.Method according to one of claims 1 to 3, characterized in that the aftertreatment of the material film is carried out by means of a cleaner composed of 0.1 vol% to 1 vol% surfactant and 99 vol% to 99.9 vol% glycol derivative or mixtures of glycol derivatives. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Reiniger mindesten eines der folgenden Glycolderivate enthält: a) R1-(CH₄O)OH, mit R1 = CH₃, R1 = C₂H₅ oder R1 = C₄H₉, b) R1-(C₄H₇O₃), mit R1 = CH₃, R1 = C₂H oder R1 = C₄H₉
und
c) R2-(C₂H₄O)nH, mit R2 = CH₃O, R2 = C₂H₅O oder R2 = C₄H₉O
und mit n = 2 bis 5.
Method according to one of claims 1 to 4, characterized in that the cleaner contains at least one of the following glycol derivatives: a) R1- (CH₄O) OH, with R1 = CH₃, R1 = C₂H₅ or R1 = C₄H₉, b) R1- (C₄H₇O₃), with R1 = CH₃, R1 = C₂H or R1 = C₄H₉
and
c) R2- (C₂H₄O) nH, with R2 = CH₃O, R2 = C₂H₅O or R2 = C₄H₉O
and with n = 2 to 5.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Reiniger in Verdünnungsgraden mit Wasser im Verhältnis 1:2 bis 1:10 als Reinigungslösung eingesetzt wird.Method according to one of claims 1 to 5, characterized in that the cleaner is used in dilution degrees with water in a ratio of 1: 2 to 1:10 as a cleaning solution. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Reiniger und/oder die Reinigungslösungen auf 60 °C bis 80 °C aufgeheizt werden.Method according to one of claims 1 to 6, characterized in that the cleaner and / or the cleaning solutions are heated to 60 ° C to 80 ° C. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Verdünnung und für die Spülschritte demineralisiertes Wasser eingesetzt wird.Method according to one of claims 1 to 7, characterized in that demineralized water is used for the dilution and for the rinsing steps. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß für die Spülschritte das Wasser auf 80 °C bis 95 °C aufgeheizt wird.Method according to one of claims 1 to 8, characterized in that the water is heated to 80 ° C to 95 ° C for the rinsing steps. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß beim Trocknungsschritt Heißluft einer Temperatur zwischen 110 und 150 °C eingesetzt wird.Method according to one of claims 1 to 9, characterized in that hot air at a temperature between 110 and 150 ° C is used in the drying step. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als letzter Trocknungsschritt ein Vakuumtrocknen durchgeführt wird.Method according to one of claims 1 to 10, characterized in that vacuum drying is carried out as the last drying step.
EP95104352A 1994-04-05 1995-03-24 Process for removing organic materials from machinery components Expired - Lifetime EP0676488B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4411677 1994-04-05
DE4411677A DE4411677C1 (en) 1994-04-05 1994-04-05 Process for removing organic materials from engine components

Publications (2)

Publication Number Publication Date
EP0676488A1 true EP0676488A1 (en) 1995-10-11
EP0676488B1 EP0676488B1 (en) 1998-06-10

Family

ID=6514646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95104352A Expired - Lifetime EP0676488B1 (en) 1994-04-05 1995-03-24 Process for removing organic materials from machinery components

Country Status (3)

Country Link
US (1) US5653817A (en)
EP (1) EP0676488B1 (en)
DE (1) DE4411677C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115283374A (en) * 2022-07-22 2022-11-04 东风柳州汽车有限公司 Cleaning method for solvent type coating paint conveying system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856375B1 (en) 1996-12-03 2001-09-12 MTU Aero Engines GmbH Partially coated workpieces and process for manufacturing same
CA2251208A1 (en) 1998-11-12 2000-05-12 Claude Perreault Fully automatic plating wax collecting device and method thereof
DE10210518A1 (en) 2002-03-09 2003-10-02 Mtu Aero Engines Gmbh Process for stripping engine components and device for carrying out the process
ES2268635T3 (en) * 2003-03-03 2007-03-16 Dechema Gesellschaft Fur Chemische Technik Und Biotechnologie E.V. PROCEDURE TO COVER A SUBSTRATE.
US20060073348A1 (en) * 2004-10-06 2006-04-06 General Electric Company Electroplated fuel nozzle/swirler wear coat
DE102004049825B4 (en) * 2004-10-13 2006-11-09 Mtu Aero Engines Gmbh Method for stripping coated components
US10830093B2 (en) 2017-06-13 2020-11-10 General Electric Company System and methods for selective cleaning of turbine engine components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH513991A (en) * 1969-09-18 1971-11-30 Motag Bmw Imp Removal of temporary protective coatings - from machine parts
EP0426943A2 (en) * 1989-11-08 1991-05-15 Arakawa Chemical Industries, Ltd. Agent and method for removing rosinbase solder flux
EP0464652A1 (en) * 1990-06-27 1992-01-08 Arakawa Chemical Industries, Ltd. Agent and method for removing rosin-base solder flux
WO1993006204A1 (en) * 1991-09-24 1993-04-01 The Dow Chemical Company Semi-aqueous cleaning process and solvent compositions
WO1993009270A1 (en) * 1991-10-30 1993-05-13 United Technologies Corporation Non-chlorinated solvent dewax process
EP0541892A2 (en) * 1991-11-11 1993-05-19 Leybold Aktiengesellschaft Process of de-oiling and cleaning material covered with greasy and/or oily substances

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838188A1 (en) * 1988-11-10 1990-05-17 Fourne Maschinenbau Gmbh CLEANING POLYMER-TAPED PARTS
US5484488A (en) * 1994-04-06 1996-01-16 Bj Services Company, U.S.A. Methods for melting and dispersing paraffin wax in oil field production equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH513991A (en) * 1969-09-18 1971-11-30 Motag Bmw Imp Removal of temporary protective coatings - from machine parts
EP0426943A2 (en) * 1989-11-08 1991-05-15 Arakawa Chemical Industries, Ltd. Agent and method for removing rosinbase solder flux
EP0464652A1 (en) * 1990-06-27 1992-01-08 Arakawa Chemical Industries, Ltd. Agent and method for removing rosin-base solder flux
WO1993006204A1 (en) * 1991-09-24 1993-04-01 The Dow Chemical Company Semi-aqueous cleaning process and solvent compositions
WO1993009270A1 (en) * 1991-10-30 1993-05-13 United Technologies Corporation Non-chlorinated solvent dewax process
EP0541892A2 (en) * 1991-11-11 1993-05-19 Leybold Aktiengesellschaft Process of de-oiling and cleaning material covered with greasy and/or oily substances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115283374A (en) * 2022-07-22 2022-11-04 东风柳州汽车有限公司 Cleaning method for solvent type coating paint conveying system

Also Published As

Publication number Publication date
DE4411677C1 (en) 1995-10-26
US5653817A (en) 1997-08-05
EP0676488B1 (en) 1998-06-10

Similar Documents

Publication Publication Date Title
DE69834931T2 (en) METHOD FOR REMOVING RESIDUES FROM A SEMICONDUCTOR SUBSTRATE
US4983224A (en) Cleaning compositions and methods for removing soldering flux
DE10248093A1 (en) Method and device for cleaning generators or turbines uses laser beam directed by program control device to remove surface impurities without changing properties of basic material
US2032174A (en) Process for cleaning metal surfaces
EP2478300B1 (en) Method for producing a coated extension guide
DE69914409T2 (en) Process for the pretreatment of a surface for ceramic coatings
DE4411677C1 (en) Process for removing organic materials from engine components
DE2717435C3 (en) Process for removing a coating containing aluminum and chromium together with cobalt from a substrate made of a nickel-based alloy
US5421899A (en) Method for cleaning manufacturing lubricants and coolants from metal containers
EP0310922B1 (en) Procedure for cleaning, in particular disc-shaped oxidized susbtrates
DE4142358C2 (en) Degreasing cleaning process
DE10128507B4 (en) Use of a device for the chemical or electrochemical machining of components
DE4218836C2 (en) Process for removing surface contaminants
US4590100A (en) Passivation of steel with aqueous amine solutions preparatory to application of non-aqueous protective coatings
DE69432702T2 (en) METHOD FOR PRODUCING CLEAN ITEMS
DE3600415C2 (en)
EP0230903B1 (en) Process for cleaning aluminium containers
DE2225366A1 (en) Process for removing pre-cracks on epitaxial layers
DE102004014387B4 (en) Cleaning method for magnetic foreign bodies on the surface of objects
DE102005041844A1 (en) Process for coating or stripping a component
CN109370295B (en) Paint remover special for automobile plastic parts
CN108107142B (en) Analysis method of surfactant in wax removal water
EP1775354B1 (en) Process for cleaning metal surfaces
DE4041307A1 (en) METHOD FOR DE-PAINTING WORKPIECES
DE102007037903A1 (en) Process for cleaning surfaces and use of the process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19960411

17Q First examination report despatched

Effective date: 19960515

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980615

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110314

Year of fee payment: 17

Ref country code: FR

Payment date: 20110404

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110321

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110329

Year of fee payment: 17

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120324

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120324