EP0662869B1 - Rolling mill with a device for controlling the rotational speed of the rolls - Google Patents

Rolling mill with a device for controlling the rotational speed of the rolls Download PDF

Info

Publication number
EP0662869B1
EP0662869B1 EP93918963A EP93918963A EP0662869B1 EP 0662869 B1 EP0662869 B1 EP 0662869B1 EP 93918963 A EP93918963 A EP 93918963A EP 93918963 A EP93918963 A EP 93918963A EP 0662869 B1 EP0662869 B1 EP 0662869B1
Authority
EP
European Patent Office
Prior art keywords
loop
rolled material
stand
rolling mill
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93918963A
Other languages
German (de)
French (fr)
Other versions
EP0662869A1 (en
Inventor
Harald Bax
Herbert Polster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6469167&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0662869(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0662869A1 publication Critical patent/EP0662869A1/en
Application granted granted Critical
Publication of EP0662869B1 publication Critical patent/EP0662869B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/50Tension control; Compression control by looper control

Definitions

  • a rolling mill according to the preamble of claim 1 is known for example from JP-A-62-207509.
  • the present invention has for its object to provide a further rolling mill with a device for regulating the speeds of the rolls.
  • the loop height is expediently used as a measure of the length of the rolling stock between the rolls or for the loop extension.
  • the last stand of a rolling mill is advantageous, the initial stand, the guide stand, the speed of which determines the output speed of the rolling stock and should therefore be constant.
  • the stands in front of the loop in the rolling direction are then regulated.
  • A1, A2, A3 ... A6 are used to designate rolling stands in which a rolling stock coming from a furnace is formed.
  • the last roll stand A6 serves as a guide stand, the speed of which is predetermined according to the exit speed of the rolling stock.
  • the drives of the scaffolds are controlled so that setpoints from control modules RB1, RB2 ... RB6 are fed to them to set the speeds.
  • These can be program modules which each contain a minimum tension controller MZR1, MZR2 ... MZR6 and a loop controller SLR1, SLR2 ... SLR6 in the illustration according to FIG.
  • a central module ZB contains a material position tracking ABL, which determines the position of the rolling stock and communicates it to the controller blocks RB1 ...
  • the setpoint input supplies the control blocks RB1, RB2 ... RB6 with setpoint values which are corrected by the loop controllers SLR1 ... SLR5 or the minimum tension controllers MZR1 ... MZR5.
  • the minimum tension controller MZR6 and the loop controller SLR6 are ineffective in the controller module RB6, since the speed of the roll stand A6 is to be determined solely by the setpoint given by the setpoint specification SOL.
  • the rolling stock does not run straight between the stands A3, A4, A5 and A6, but it hangs or bulges, ie forms a loop between two roll stands.
  • Loop height transmitters S1, S2, S3 determine the heights of these loops and guide the loop heights accordingly Signals to the loop controllers SLR3, SLR4, SLR5. These set the speeds of the stands A3, A4, A5 so that the loop heights remain constant. It should be noted that the loop heights are normally kept constant by acting on the stand in front of the loop in the rolling direction.
  • the minimum tension controllers MZR3, MZR4, MZR5 are ineffective because the associated loop controllers are in operation.
  • the minimum tension controllers MZR1, MZR2 of the controller modules RB1, RB2, which are assigned to the first roll stands A1, A2 in the rolling direction, are released, but not the associated loop controllers SLR1, SLR2.
  • the last scaffold A6 serves as a guide scaffold
  • the loop regulators located in the single-core area then act in the direction of the outlet.
  • the exit stand that is the last stand in the single-core area, becomes the master stand for the relevant core, and the direction of action of the loop regulator working in this core is switched in the direction of the furnace. An increase in the exit speed caused by the pulling in of the loops is thereby avoided.
  • the position tracking unit ABL reports the rolling mill assignment of the minimum tension control MZR, the setpoint specification SOL and the loop controller SLR.
  • the output values of the last three units are summarized in a setpoint output SAS and passed on to the scaffold drive.
  • Figure 2 shows details of the structure and the connection of these five units.
  • the loop control SLR is transferred from the setpoint specification SOL the parameters required for the basic setting. This includes the operating setpoints for the loop heights or the current values for the working roll diameters and the gear ratios.
  • the input variables for the loop controller SLR are the loop height actual value and the loop height setpoint at inputs IW and SW.
  • the loop regulators are designed as PI regulators. However, fuzzy controllers or state controllers can also be used. Depending on the position of the rolling stock, the loop regulators are given different loop height setpoints or loop extension setpoints.
  • the loop height resulting from the tapping is adopted as the initial setpoint. Starting from this, the setpoint is increased to the operating setpoint with a predetermined slope.
  • the loop control SLR can also determine the time for switching to the operating setpoint from the road occupancy transferred by the material position tracking ABL.
  • the SLR loop control directly specifies the point in time at which a run-out setpoint value, which decreases continuously with a predetermined gradient, is entered for loosening the loops by the material position tracking.
  • loop extension Between the loop height and the lengthening of the rolling stock between two rolling stands caused by the loop, hereinafter referred to as loop extension, there is a non-linear relationship.
  • the actual value of the loop height and the setpoint are converted into a value for the loop extension and entered into the loop control via a characteristic curve with measured reference points or by conversion using a mathematical algorithm.
  • the actual value for the loop extension control or the length of the rolling stock that differs therefrom only by a constant additive size will be used between two roll stands.
  • Which of the two types of linearization is used depends on the rolling stock used, the geometric dimensions for the loop, such as loop height and loop length, the arrangement of guide rollers and the loop type, standing, lying or hanging.
  • the loop regulators preferably work with penetration, ie loop regulation also acts on the drives in front of them or on the controllers following in the direction of action of the loop regulators.
  • the output signals of the loop controller are each fed to the controller following in the effective direction via an input DU.
  • the signal supplied to the input DU is multiplied in a multiplier M by a factor indicating the speed ratio and supplied to an input VN.
  • the output signal of the multiplier MU is added in an adder AD to the output signals of the proportional part KP and the integral part TN and the sum signal is fed to the setpoint output.
  • the manipulated variable of a loop control is not effective as a disturbance for the loop control in front; this makes the rolling mill routing quieter.
  • the loop regulator can only be penetrated by the scaffolds that are engaged on the same rod as the scaffold directly influenced by the loop regulator.
  • the loop control receives the information required for this limitation of the penetration from the material position tracking ABL.
  • the rolling programs contain information about the active stands, drivers, roller tables, scissors, minimum tension controls and loop controls. They also contain the material speeds and drive speeds for the individual scaffolding and the loop height operating setpoints. Roll data records contain the working roll diameter, advance factors and, if necessary, gear ratios.
  • a set of speed ratios namely the ratios of the speeds of successive drives, is calculated and stored from a basic setpoint value set.
  • the speed ratios are optimized when passing through the rolling stock by means of the loop and minimum tension control or corrected by means of a handle.
  • the optimized speed ratios are given to the setpoint specification SOL at the time of the determination and are adopted by the latter in the stored set for the speed ratios. It is assumed that a speed ratio is then optimized when the sling or minimum tension control has reached the steady state.
  • the setpoint specification SOL therefore always has a set of the latest speed ratios, which contains all the corrections previously made by means of minimum tension controls, loop controls and manual adjustments.
  • the default setpoints for the individual drives are calculated on the basis of the speed of the guide stand and the currently stored speed ratios. Since there can be several bars in the street at the same time, a separate setpoint set is determined and saved for each bar when it enters the street. These setpoint sets remain valid until the associated member has left the street.
  • the setpoint specification SOL thus manages a complete set of setpoint values for all drives. It can e.g. B. ten setpoint sets, corresponding to ten bars, can be provided for 32 drives.
  • the setpoint specification SOL has an output memory for the currently setpoint values to be specified. Depending on the road occupancy, the corresponding values for the drives are selected from the setpoint memories for the bars, transferred to the output memory and sent to the SAS setpoint output.
  • FIG. 3 This is illustrated in FIG. 3 using an example of a rolling mill with eleven stands A1, A2 ... A11. Setpoints are stored for each of these roll stands; their entirety results in a basic setpoint set, which is illustrated in line a.
  • Two lines g show the road occupancy at a certain time.
  • a stick 4 is straight at the outlet of the scaffolding A11, which, for. B. is the scaffolding.
  • a rod 5 is located in the area of the stands A4, A5, A6, A7 and an incoming rod 6 is located in the area of the stands A1, A2.
  • the basic setpoint set has been optimized and the optimized values have been entered in a setpoint memory for bar 4.
  • the setpoint set for rod 4 is symbolized in line b.
  • lines c, d and e illustrate the setpoint memories for rod 5, rod 6 and the next incoming rod.
  • Line f shows the content of the output memory of the setpoint specification SOL.
  • the associated setpoints are taken from the setpoint memory for rod 4 (line b).
  • the stands A4, A5, A6, A7 in which rod 5 is located setpoints from the setpoint memory for rod 5 (line c) are entered. Since the entry is made in the bar space, the setpoint for bar 5 is also written into the output memory for frame A8 at the time shown.
  • the setpoints for rod 6 (row d) are entered in the output memory for the stands A1, A2, A3.
  • the associated areas for the target values also migrate through the output memory (line f).
  • Setpoints are sent from the setpoint specification each time the road is started or after the transfer of a new rolling program, as well as in gaps and after manual adjustments to the SAS setpoint output. At the same time, except for manual adjustments, the speed setpoints are transferred to the SLR loop control and the MZR minimum tension control.
  • the target value specification SOL determines the point in time for the target value specification in the template gap from the road occupancy transferred by the material position tracking ABL. By specifying the setpoint in The influence of active minimum tension controls and loop controls is avoided.
  • the equipment of the rolling stands, e.g. B. the gear ratios and the roller diameter can be changed. This also changes the path gain, which in turn must be taken into account in the controller parameter KP.
  • a standardization factor FKN is advantageously introduced, with which the control is adapted to the changed equipment, e.g. B. gear ratio and roller diameter is adjusted.
  • This automatic controller adjustment causes that when changing the route parameters, for. B. due to rolling program specifications, the optimal loop regulator setting is retained in all rolling programs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

PCT No. PCT/DE93/00826 Sec. 371 Date Mar. 29, 1995 Sec. 102(e) Date Mar. 29, 1995 PCT Filed Sep. 8, 1993 PCT Pub. No. WO94/07618 PCT Pub. Date Apr. 14, 1994The rotational speed of the rolls of a rolling mill is controlled such that the loops of rolled material between two roll stands have a constant height. The last roll stand in the direction of rolling preferably acts as a guide roller stand, whose speed is controlled. The loop height is controlled by adjusting the rotational speed of the roll stand ahead of the loop.

Description

Es ist bekannt, in Walzwerken für Bleche, Bänder oder Drähte zumindest zwischen einem Teil der Walzgerüste das Walzgut in Schlingen zu führen, die als Materialpuffer bei Drehzahländerungen dienen. Trotz der unterschiedlichen z.B. durch Temperaturänderungen bedingten Eigenschaften des Walzgutes am Eingang einer Walzstraße soll es am Ausgang in der gewünschten Form mit möglichst vorgegebener Geschwindigkeit austreten. Um dies zu erreichen, werden u. a. die Drehzahlen der Walzen entsprechend den jeweiligen Erfordernissen eingestellt. Ein Walzwerk nach dem Oberbegriff des Anspruchs 1 ist beispielsweise aus der JP-A-62-207509 bekannt.In rolling mills for sheets, strips or wires, it is known to guide the rolling stock in loops, at least between part of the rolling stands, which serve as material buffers in the event of changes in speed. Despite the different e.g. properties of the rolling stock at the entrance of a rolling mill caused by temperature changes should exit at the exit in the desired form at the predetermined speed as possible. To achieve this, u. a. the speeds of the rollers set according to the respective requirements. A rolling mill according to the preamble of claim 1 is known for example from JP-A-62-207509.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein weiteres Walzwerk mit einer Vorrichtung zum Regeln der Drehzahlen der Walzen anzugeben.The present invention has for its object to provide a further rolling mill with a device for regulating the speeds of the rolls.

Erfindungsgemäß wird diese Aufgabe mit den in Anspruch 1 angegebenen Maßnahmen gelöst.According to the invention, this object is achieved with the measures specified in claim 1.

Als Maß für die Länge des Walzgutes zwischen den Walzen bzw. für die Schlingenverlängerung dient zweckmäßig die Schlingenhöhe. Vorteilhaft ist das letzte Gerüst einer Walzstraße, das Ausgangsgerüst, das Leitgerüst, dessen Drehzahl die Ausgabegeschwindigkeit des Walzgutes bestimmt und daher konstant sein soll. Geregelt werden dann die jeweils in Walzrichtung vor der Schlinge liegenden Gerüste.The loop height is expediently used as a measure of the length of the rolling stock between the rolls or for the loop extension. The last stand of a rolling mill is advantageous, the initial stand, the guide stand, the speed of which determines the output speed of the rolling stock and should therefore be constant. The stands in front of the loop in the rolling direction are then regulated.

Anhand der Zeichnung werden im folgenden die Erfindung sowie Weiterbildungen und Ergänzungen näher beschrieben und erläutert.The invention and further developments and additions are described and explained in more detail below with reference to the drawing.

Es zeigen

Figur 1
ein Prinzipschaltbild einer Walzwerkregelung,
Figur 2
eine Anordnung zum Bilden des Drehzahl-Sollwer tes eines Walzgerüstes,
Figur 3
die Regelung von Sollwertspeichern.
Show it
Figure 1
a basic circuit diagram of a rolling mill control,
Figure 2
an arrangement for forming the speed setpoint of a roll stand,
Figure 3
the regulation of setpoint memories.

In Figur 1 sind mit A1, A2, A3 ... A6 Walzgerüste bezeichnet, in denen ein aus einem Ofen kommendes Walzgut geformt wird. Das letzte Walzgerüst A6 dient als Leitgerüst, dessen Drehzahl entsprechend der Austrittsgeschwindigkeit des Walzgutes vorgegeben ist. Die Antriebe der Gerüste sind geregelt, so daß ihnen zur Einstellung der Drehzahlen Sollwerte von Regelbausteinen RB1, RB2 ... RB6 zugeführt sind. Diese können Programmbausteine sein, die in der Darstellung nach Figur 1 jeweils einen Minimalzugregler MZR1, MZR2 ... MZR6 und einen Schlingenregler SLR1, SLR2 ... SLR6 enthalten. Ein zentraler Baustein ZB enthält eine Materialpositionsverfolgung ABL, welche die Position des Walzgutes feststellt und den Reglerbausteinen RB1 ... RB6 mitteilt, sowie eine Sollwertvorgabe, die u.a. Sollwertspeicher enthält, die den einzelnen Walzgerüsten zugeordnet sind, so daß die Sollwertvorgabe SOL zumindest teilweise auch auf die einzelnen Regelbausteine RB1, RB2 ... RB6 verteilt sein könnte. Die Sollwertvorgabe führt den Regelbausteinen RB1, RB2 ... RB6 Vorgabe-Sollwerte zu, die von den Schlingenreglern SLR1 ... SLR5 oder den Minimalzugreglern MZR1 ... MZR5 korrigiert werden. Im Reglerbaustein RB6 sind der Minimalzugregler MZR6 und der Schlingenregler SLR6 unwirksam, da die Drehzahl des Walzgerüstes A6 allein durch den von der Sollwertvorgabe SOL gegebenen Sollwert bestimmt sein soll. Im Ausführungsbeispiel verläuft das Walzgut zwischen den Gerüsten A3, A4, A5 und A6 nicht gerade, sondern es hängt durch oder wölbt sich auf, bildet also zwischen je zwei Walzgerüsten eine Schlinge. Schlingenhöhengeber S1, S2, S3 ermitteln die Höhen dieser Schlingen und führen den Schlingenhöhen entsprechende Signale den Schlingenreglern SLR3, SLR4, SLR5 zu. Diese stellen die Drehzahlen der Gerüste A3, A4, A5 so ein, daß die Schlingenhöhen konstant bleiben. Es ist zu beachten, daß im Normalfalle die Schlingenhöhen jeweils durch Einwirkung auf das in Walzrichtung vor der Schlinge befindliche Gerüst konstantgehalten werden.In Figure 1, A1, A2, A3 ... A6 are used to designate rolling stands in which a rolling stock coming from a furnace is formed. The last roll stand A6 serves as a guide stand, the speed of which is predetermined according to the exit speed of the rolling stock. The drives of the scaffolds are controlled so that setpoints from control modules RB1, RB2 ... RB6 are fed to them to set the speeds. These can be program modules which each contain a minimum tension controller MZR1, MZR2 ... MZR6 and a loop controller SLR1, SLR2 ... SLR6 in the illustration according to FIG. A central module ZB contains a material position tracking ABL, which determines the position of the rolling stock and communicates it to the controller blocks RB1 ... RB6, as well as a setpoint specification, which contains setpoint memories that are assigned to the individual roll stands, so that the setpoint specification SOL is at least partially also available the individual rule blocks RB1, RB2 ... RB6 could be distributed. The setpoint input supplies the control blocks RB1, RB2 ... RB6 with setpoint values which are corrected by the loop controllers SLR1 ... SLR5 or the minimum tension controllers MZR1 ... MZR5. The minimum tension controller MZR6 and the loop controller SLR6 are ineffective in the controller module RB6, since the speed of the roll stand A6 is to be determined solely by the setpoint given by the setpoint specification SOL. In the exemplary embodiment, the rolling stock does not run straight between the stands A3, A4, A5 and A6, but it hangs or bulges, ie forms a loop between two roll stands. Loop height transmitters S1, S2, S3 determine the heights of these loops and guide the loop heights accordingly Signals to the loop controllers SLR3, SLR4, SLR5. These set the speeds of the stands A3, A4, A5 so that the loop heights remain constant. It should be noted that the loop heights are normally kept constant by acting on the stand in front of the loop in the rolling direction.

Die Minimalzugregler MZR3, MZR4, MZR5 sind unwirksam, da die zugehörigen Schlingenregler in Betrieb sind. Dagegen sind die Minimalzugregler MZR1, MZR2 der Reglerbausteine RB1, RB2, die den in Walzrichtung den ersten Walzgerüsten A1, A2 zugeordnet sind, freigegeben, nicht dagegen die zugehörigen Schlingenregler SLR1, SLR2.The minimum tension controllers MZR3, MZR4, MZR5 are ineffective because the associated loop controllers are in operation. In contrast, the minimum tension controllers MZR1, MZR2 of the controller modules RB1, RB2, which are assigned to the first roll stands A1, A2 in the rolling direction, are released, but not the associated loop controllers SLR1, SLR2.

Während im Ausführungsbeispiel das letzte Gerüst A6 als Leitgerüst dient, ist es bei mehradrigen Straßen zweckmäßig, zunächst das letzte im mehradrigen Bereich liegende Gerüst als Leitgerüst zu verwenden. Die im einadrigen Bereich liegenden Schlingenregler wirken dann in Richtung Auslauf. Dies gilt aber nur so lange, wie Materialkontakt mit dem mehradrigen Bereich besteht. Sobald das betrachtete Walzgut den mehradrigen Bereich verläßt, wird für die betreffende Ader das Austrittsgerüst, das ist das letzte Gerüst im einadrigen Bereich, zum Leitgerüst, und es wird die Wirkungsrichtung der in dieser Ader arbeitenden Schlingenregler in Richtung Ofen umgeschaltet. Ein durch das Einziehen der Schlingen bedingtes Ansteigen der Austrittsgeschwindigkeit wird dadurch vermieden.While in the exemplary embodiment the last scaffold A6 serves as a guide scaffold, it is expedient in the case of multi-core roads to first use the last scaffold lying in the multi-core area as a guide framework. The loop regulators located in the single-core area then act in the direction of the outlet. However, this only applies as long as there is material contact with the multi-core area. As soon as the rolling stock under consideration leaves the multi-core area, the exit stand, that is the last stand in the single-core area, becomes the master stand for the relevant core, and the direction of action of the loop regulator working in this core is switched in the direction of the furnace. An increase in the exit speed caused by the pulling in of the loops is thereby avoided.

Zur Ermittlung des Drehzahl-Sollwertes für ein Walzgerüst arbeiten fünf Einheiten zusammen. Die Positionsverfolgungseinheit ABL meldet die Walzstraßenbelegung der Minimalzugregelung MZR, der Sollwertvorgabe SOL und dem Schlingenregler SLR. Die Ausgabewerte der drei letztgenannten Einheiten werden in einer Sollwertausgabe SAS zusammengefaßt und an den Gerüstantrieb weitergegeben.Five units work together to determine the speed setpoint for a roll stand. The position tracking unit ABL reports the rolling mill assignment of the minimum tension control MZR, the setpoint specification SOL and the loop controller SLR. The output values of the last three units are summarized in a setpoint output SAS and passed on to the scaffold drive.

Figur 2 zeigt Einzelheiten des Aufbaus und der Verknüpfung dieser fünf Einheiten. Zu Beginn eines neuen Walzprogramms bzw. einer neuen Walzstraßenkonfiguration werden der Schlingenregelung SLR von der Sollwertvorgabe SOL die zur Grundeinstellung benötigten Parameter übertragen. Darin enthalten sind die Betriebs-Sollwerte für die Schlingenhöhen bzw. die aktuellen Werte für die arbeitenden Walzendurchmesser und die Getriebeübersetzungen. Die Eingangsgrößen für den Schlingenregler SLR sind der Schlingenhöhen-Istwert und der Schlingenhöhen-Sollwert an Eingängen IW bzw. SW.Figure 2 shows details of the structure and the connection of these five units. At the beginning of a new rolling program or a new rolling mill configuration, the loop control SLR is transferred from the setpoint specification SOL the parameters required for the basic setting. This includes the operating setpoints for the loop heights or the current values for the working roll diameters and the gear ratios. The input variables for the loop controller SLR are the loop height actual value and the loop height setpoint at inputs IW and SW.

Die Schlingenregler sind im Ausführungsbeispiel als PI-Regler ausgeführt. Es können aber auch Fuzzy-Regler oder Zustandsregler eingesetzt werden. Den Schlingenreglern werden in Abhängigkeit der Position des Walzgutes unterschiedliche Schlingenhöhen-Sollwerte bzw. Schlingenverlängerungs-Sollwerte vorgegeben.In the exemplary embodiment, the loop regulators are designed as PI regulators. However, fuzzy controllers or state controllers can also be used. Depending on the position of the rolling stock, the loop regulators are given different loop height setpoints or loop extension setpoints.

Die sich beim Anstich ergebende Schlingenhöhe wird als Anfangs-Sollwert übernommen. Von diesem ausgehend wird der Sollwert mit vorgegebener Steilheit auf den Betriebs-Sollwert erhöht. Den Zeitpunkt zum Umschalten auf den Betriebs-Sollwert kann die Schlingenregelung SLR auch aus der von der Materialpositionsverfolgung ABL übergebenen Straßenbelegung ermitteln. Der Zeitpunkt zum Aufschalten eines kontinuierlich mit vorgegebener Steigung abnehmenden Auslauf-Sollwertes, der zum Abbauen der Schlingen eingegeben wird, wird der Schlingenregelung SLR von der Materialpositionsverfolgung direkt vorgegeben.The loop height resulting from the tapping is adopted as the initial setpoint. Starting from this, the setpoint is increased to the operating setpoint with a predetermined slope. The loop control SLR can also determine the time for switching to the operating setpoint from the road occupancy transferred by the material position tracking ABL. The SLR loop control directly specifies the point in time at which a run-out setpoint value, which decreases continuously with a predetermined gradient, is entered for loosening the loops by the material position tracking.

Zwischen der Schlingenhöhe und der durch die Schlinge bedingten Verlängerung des Walzgutes zwischen zwei Walzgerüsten, im folgenden Schlingenverlängerung genannt, besteht ein nichtlinearer Zusammenhang. Zur Linearisierung des Regelkreises werden daher der Istwert der Schlingenhöhe und der Sollwert über eine Kennlinie mit ausgemessenen Stützpunkten oder durch Umrechnung mittels eines mathematischen Algorithmus in einen Wert für die Schlingenverlängerung umgewandelt und in die Schlingenregelung eingegeben. Tatsächlich wird daher der Istwert für die Regelung Schlingenverlängerung bzw. die sich davon nur durch eine konstante additive Größe unterscheidende Länge des Walzgutes zwischen zwei Walzgerüsten verwenden. Welche der beiden Linearisierungsarten verwendet wird, hängt vom eingesetzten Walzgut, den geometrischen Abmessungen für die Schlinge, wie Schlingenhöhe und Schlingenlänge, der Anordnung von Führungsrollen sowie der Schlingenart, stehend, liegend oder hängend, ab. In vielen Fällen genügt zur Berechnung der Schlingenverlängerung aus der Schlingenhöhe SH und dem Abstand 2a der die Schlinge begrenzenden Führungsrollen die Annahme einer dreieckigen Schlinge, so daß die Schlingenverlängerung nach der einfachen Formel SV = 2 . (a 2 + SH 2 ) 0,5 - 2a

Figure imgb0001
berechnet werden kann.Between the loop height and the lengthening of the rolling stock between two rolling stands caused by the loop, hereinafter referred to as loop extension, there is a non-linear relationship. For the linearization of the control loop, the actual value of the loop height and the setpoint are converted into a value for the loop extension and entered into the loop control via a characteristic curve with measured reference points or by conversion using a mathematical algorithm. In fact, therefore, the actual value for the loop extension control or the length of the rolling stock that differs therefrom only by a constant additive size will be used between two roll stands. Which of the two types of linearization is used depends on the rolling stock used, the geometric dimensions for the loop, such as loop height and loop length, the arrangement of guide rollers and the loop type, standing, lying or hanging. In many cases it is sufficient to calculate the loop extension from the loop height SH and the distance 2a of the guide rollers delimiting the loop, a triangular loop, so that the loop extension according to the simple formula SV = 2. (a 2nd + SH 2nd ) 0.5 - 2a
Figure imgb0001
can be calculated.

Die Schlingenregler arbeiten, wie schon erwähnt, vorzugsweise mit Durchgriff, d. h. eine Schlingenregelung wirkt auch auf die davorliegenden Antriebe bzw. auf die in der Wirkrichtung der Schlingenregler folgenden Regler. Hierzu werden die Ausgangssignale der Schlingenregler jeweils dem in der Wirkrichtung folgenden Regler über einen Eingang DU zugeführt. Damit der Durchgriff entsprechend dem Drehzahlverhältnis wirksam ist, wird das dem Eingang DU zugeführte Signal in einem Multiplizierer M mit einem das Drehzahlverhältnis angebenden Faktor, der einem Eingang VN zugeführt ist, multipliziert. Das Ausgangssignal des Multiplizierers MU wird in einem Addierer AD zu den Ausgangssignalen des Proportionalteils KP und des Integralteils TN addiert und das Summensignal der Sollwertausgabe zugeführt. Infolge des Durchgriffs wird die Stellgröße einer Schlingenregelung nicht als Störgröße für die davorliegende Schlingenregelung wirksam; die Walzstraßenführung wird dadurch ruhiger.As already mentioned, the loop regulators preferably work with penetration, ie loop regulation also acts on the drives in front of them or on the controllers following in the direction of action of the loop regulators. For this purpose, the output signals of the loop controller are each fed to the controller following in the effective direction via an input DU. In order for the penetration to be effective in accordance with the speed ratio, the signal supplied to the input DU is multiplied in a multiplier M by a factor indicating the speed ratio and supplied to an input VN. The output signal of the multiplier MU is added in an adder AD to the output signals of the proportional part KP and the integral part TN and the sum signal is fed to the setpoint output. As a result of the penetration, the manipulated variable of a loop control is not effective as a disturbance for the loop control in front; this makes the rolling mill routing quieter.

Der Durchgriff der Schlingenregler darf nur für die Gerüste wirksam werden, die an demselben Stab in Eingriff sind, wie das vom Schlingenregler direkt beeinflußte Gerüst. Die für diese Begrenzung des Durchgriffs erforderlichen Informationen erhält die Schlingenregelung von der Materialpositionsverfolgung ABL.The loop regulator can only be penetrated by the scaffolds that are engaged on the same rod as the scaffold directly influenced by the loop regulator. The loop control receives the information required for this limitation of the penetration from the material position tracking ABL.

Die Walzprogramme enthalten Angaben über die aktiven Gerüste, Treiber, Rollgänge, Scheren, Minimalzugregelungen und Schlingenregelungen. Ferner sind in ihnen die Materialgeschwindigkeiten bzw. Antriebsdrehzahlen für die einzelnen Gerüste und die Schlingenhöhen-Betriebssollwerte enthalten. Rollendatensätze enthalten die arbeitenden Walzendurchmesser, Voreilfaktoren und gegebenenfalls Getriebeübersetzungen.The rolling programs contain information about the active stands, drivers, roller tables, scissors, minimum tension controls and loop controls. They also contain the material speeds and drive speeds for the individual scaffolding and the loop height operating setpoints. Roll data records contain the working roll diameter, advance factors and, if necessary, gear ratios.

Bei Start eines solchen Walzprogrammes wird aus einem Grundsollwertsatz ein Satz von Drehzahlverhältnissen, und zwar die Verhältnisse der Drehzahlen von aufeinanderfolgenden Antrieben, errechnet und gespeichert. Die Drehzahlverhältnisse werden beim Durchlaufen des Walzgutes durch die Schlingen- und Minimalzugregelung optimiert oder durch Handgriff korrigiert. Die optimierten Drehzahlverhältnisse werden zum Ermittlungszeitpunkt an die Sollwertvorgabe SOL gegeben und von dieser in den abgespeicherten Satz für die Drehzahlverhältnisse übernommen. Dabei wird angenommen, daß ein Drehzahlverhältnis dann optimiert ist, wenn die Schlingen- oder die Minimalzugregelung den eingeschwungenen Zustand erreicht hat.At the start of such a rolling program, a set of speed ratios, namely the ratios of the speeds of successive drives, is calculated and stored from a basic setpoint value set. The speed ratios are optimized when passing through the rolling stock by means of the loop and minimum tension control or corrected by means of a handle. The optimized speed ratios are given to the setpoint specification SOL at the time of the determination and are adopted by the latter in the stored set for the speed ratios. It is assumed that a speed ratio is then optimized when the sling or minimum tension control has reached the steady state.

Die Sollwertvorgabe SOL besitzt damit immer einen Satz der aktuellsten Drehzahlverhältnisse, in denen alle bis dahin durch Minimalzugregelungen, Schlingenregelungen und Handverstellungen bewirkten Korrekturen enthalten sind.The setpoint specification SOL therefore always has a set of the latest speed ratios, which contains all the corrections previously made by means of minimum tension controls, loop controls and manual adjustments.

Vor dem Einlauf eines Stabes als Walzgut in die Walzstraße werden ausgehend von der Drehzahl des Leitgerüstes und den aktuellen gespeicherten Drehzahlverhältnissen die Vorgabe-Sollwerte für die einzelnen Antriebe errechnet. Da sich mehrere Stäbe gleichzeitig in der Straße befinden können, wird für jeden Stab beim Einlauf ein eigener Sollwertsatz ermittelt und abgespeichert. Diese Sollwertsätze bleiben so lange gültig, bis der zugehörige Stab die Straße verlassen hat. Für jeden in der Straße befindlichen Stab und den nächsten einlaufenden Stab verwaltet die Sollwertvorgabe SOL also einen kompletten Satz von Vorgabe-Sollwerten für alle Antriebe. Es können z. B. zehn Sollwertsätze, entsprechend zehn Stäben, für 32 Antriebe vorgesehen werden. Neben den Sollwertspeichern für die Stäbe besitzt die Sollwertvorgabe SOL einen Ausgabespeicher für die aktuell vorzugebenden Sollwerte. Abhängig von der Straßenbelegung werden die entsprechenden Werte für die Antriebe aus den Sollwertspeichern für die Stäbe ausgewählt, in den Ausgabespeicher übertragen und an die Sollwertausgabe SAS gegeben.Before a rod enters the rolling mill as rolled stock, the default setpoints for the individual drives are calculated on the basis of the speed of the guide stand and the currently stored speed ratios. Since there can be several bars in the street at the same time, a separate setpoint set is determined and saved for each bar when it enters the street. These setpoint sets remain valid until the associated member has left the street. For each rod in the street and the next incoming rod, the setpoint specification SOL thus manages a complete set of setpoint values for all drives. It can e.g. B. ten setpoint sets, corresponding to ten bars, can be provided for 32 drives. In addition to the setpoint memories for the bars, the setpoint specification SOL has an output memory for the currently setpoint values to be specified. Depending on the road occupancy, the corresponding values for the drives are selected from the setpoint memories for the bars, transferred to the output memory and sent to the SAS setpoint output.

In Figur 3 ist dies an einem Beispiel für eine Walzstraße mit elf Walzgerüsten A1, A2 ... A11 veranschaulicht. Fur jedes dieser Walzgerüste sind Sollwerte gespeichert; ihre Gesamtheit ergibt einen Grundsollwertsatz, der in Zeile a veranschaulicht ist. Zwei Zeilen g zeigen die Straßenbelegung zu einem bestimmten Zeitpunkt. Ein Stab 4 ist gerade am Auslauf des Gerüstes A11, das z. B. das Leitgerüst ist. Ein Stab 5 befindet sich im Bereich der Gerüste A4, A5, A6, A7 und ein einlaufender Stab 6 befindet sich im Bereich der Gerüste A1, A2. Aufgrund der bisher durchgelaufenen Stäbe 1 bis 3 wurde der Grundsollwertsatz optimiert und die optimierten Werte in einen Sollwertspeicher für den Stab 4 eingetragen. Der Sollwertsatz für den Stab 4 ist in Zeile b symbolisiert. Entsprechend veranschaulichen die Zeilen c, d und e die Sollwertspeicher für den Stab 5, den Stab 6 und den nächsten einlaufenden Stab. Den Inhalt des Ausgabespeichers der Sollwertvorgabe SOL zeigt Zeile f. Für die Gerüste, in deren Bereich der Stab 4 ist, werden die zugehörigen Sollwerte aus dem Sollwertspeicher für den Stab 4 (Zeile b) entnommen. Für die Gerüste A4, A5, A6, A7, in denen sich der Stab 5 befindet, sind Sollwerte aus dem Sollwertspeicher für den Stab 5 (Zeile c) eingetragen. Da die Eintragung in der Stablücke erfolgt, ist zum dargestellten Zeitpunkt auch für das Gerüst A8 der Sollwert für den Stab 5 in den Ausgabespeicher eingeschrieben. Entsprechend sind in den Ausgabespeicher für die Gerüste A1, A2, A3 die Sollwerte für den Stab 6 (Zeile d) eingetragen. Mit dem Durchlaufen der Stäbe durch die Walzstraße wandern auch die zugehörigen Bereiche für die Sollwerte durch den Ausgabespeicher (Zeile f).This is illustrated in FIG. 3 using an example of a rolling mill with eleven stands A1, A2 ... A11. Setpoints are stored for each of these roll stands; their entirety results in a basic setpoint set, which is illustrated in line a. Two lines g show the road occupancy at a certain time. A stick 4 is straight at the outlet of the scaffolding A11, which, for. B. is the scaffolding. A rod 5 is located in the area of the stands A4, A5, A6, A7 and an incoming rod 6 is located in the area of the stands A1, A2. On the basis of the bars 1 to 3 that have been run through so far, the basic setpoint set has been optimized and the optimized values have been entered in a setpoint memory for bar 4. The setpoint set for rod 4 is symbolized in line b. Correspondingly, lines c, d and e illustrate the setpoint memories for rod 5, rod 6 and the next incoming rod. Line f shows the content of the output memory of the setpoint specification SOL. For the frameworks in the area of which rod 4 is located, the associated setpoints are taken from the setpoint memory for rod 4 (line b). For the stands A4, A5, A6, A7 in which rod 5 is located, setpoints from the setpoint memory for rod 5 (line c) are entered. Since the entry is made in the bar space, the setpoint for bar 5 is also written into the output memory for frame A8 at the time shown. Correspondingly, the setpoints for rod 6 (row d) are entered in the output memory for the stands A1, A2, A3. As the bars pass through the rolling mill, the associated areas for the target values also migrate through the output memory (line f).

Sollwerte werden von der Sollwertvorgabe jeweils beim Anfahren der Straße bzw. nach der Übergabe eines neuen Walzprogrammes sowie in Stablücken und nach Handverstellungen an die Sollwertausgabe SAS gesendet. Zu den gleichen Zeitpunkten, außer bei Handverstellungen, erfolgt die Übergabe der Drehzahl-Sollwerte an die Schlingenregelung SLR und an die Minimalzugregelung MZR. Den Zeitpunkt für die Sollwertvorgabe in der Stablücke ermittelt die Sollwertvorgabe SOL aus der durch die Materialpositionsverfolgung ABL übergebenen Straßenbelegung. Durch die Sollwertvorgabe in der Stablücke wird die Beeinflussung aktiver Minimalzugregelungen und Schlingenregelungen vermieden.Setpoints are sent from the setpoint specification each time the road is started or after the transfer of a new rolling program, as well as in gaps and after manual adjustments to the SAS setpoint output. At the same time, except for manual adjustments, the speed setpoints are transferred to the SLR loop control and the MZR minimum tension control. The target value specification SOL determines the point in time for the target value specification in the template gap from the road occupancy transferred by the material position tracking ABL. By specifying the setpoint in The influence of active minimum tension controls and loop controls is avoided.

Aufgrund von Walzprogrammänderungen oder Richtungsumschaltungen kann die Ausrüstung der Walzgerüste, z. B. die Getriebeübersetzungen und die Walzendurchmesser, geändert werden. Dadurch ändert sich auch die Streckenverstärkung, was wiederum im Reglerparameter KP berücksichtigt werden muß. Um den unter regelungstechnischen Gesichtspunkten errechneten KP-Wert nicht ändern zu müssen, wird vorteilhaft ein Normierungsfaktor FKN eingeführt, mit dem die Regelung an die geänderte Ausrüstung, z. B. Getriebeübersetzung und Walzendurchmesser, angepaßt wird.Due to changes in the rolling program or changes of direction, the equipment of the rolling stands, e.g. B. the gear ratios and the roller diameter can be changed. This also changes the path gain, which in turn must be taken into account in the controller parameter KP. In order not to have to change the KP value calculated from the control engineering point of view, a standardization factor FKN is advantageously introduced, with which the control is adapted to the changed equipment, e.g. B. gear ratio and roller diameter is adjusted.

Diese automatische Regleranpassung bewirkt, daß bei Veränderung der Streckenparameter, z. B. aufgrund von Walzprogrammvorgaben, bei allen Walzprogrammen die optimale Schlingenreglereinstellung erhalten bleibt.This automatic controller adjustment causes that when changing the route parameters, for. B. due to rolling program specifications, the optimal loop regulator setting is retained in all rolling programs.

Claims (10)

  1. Rolling mill for strip-shaped or rod-shaped rolled material which forms a loop between two roll stands in each case, having a device for regulating the rotational speeds of the roll stands, said device having means for detecting the length of the rolled material that effects the loop, or the length of the rolled material between the roll stands as an actual value, and a loop controller (SLR3, SLR4, SLR5), which regulates the rotational speed of a stand (A3, A4, A5) which is adjacent to the loop, in such a way that the actual value is equal to a preselected setpoint value, characterised in that there is a setpoint memory in which, in the case of the processing of a rolled material, the rotational speeds or the rotational speed of the leading stand and the rotational speed ratios of the roll stands are stored, which rotational speeds and rotational speed ratios are preselected as setpoint values upon entry of a new rolled material, wherein before the entry of the new rolled material into the rolling train, the setpoint inputs for the individual drives are calculated, starting from the rotational speed of the leading stand and the currently stored rotational speed ratios.
  2. Rolling mill according to claim 1, characterised in that in the case of a controller having a parameter, e.g. gain factor, that is dependent on the equipment of the roll stand, e.g. gear transmission ratio or roll diameter, the said parameter is multiplied by a scaling factor which takes into account the respective roll-stand equipment.
  3. Rolling mill according to claim 1 or 2, characterised in that arranged between each two roll stands (A3, A4; A4, A5; A5, A6) is a loop height sensor (S1, S2, S3) for detecting the loop height, and in that there is a computing circuit for converting the loop height into the loop extension or the length of the rolled material.
  4. Rolling mill according to claim 3, characterised in that there is stored in the computing circuit a characteristic curve, by means of which the loop extension or the length of the rolled material is established from the respective loop height.
  5. Rolling mill according to claim 3, characterised in that the computing circuit calculates the loop extension or the length of the rolled material from the loop height by means of an algorithm.
  6. Rolling mill according to claim 5, characterised in that the computing circuit establishes the loop extension according to the formula SV = 2·( a 2 + SH 2 ) 0.5 - 2 a
    Figure imgb0003
    where
    2a =   distance between the drums or rollers delimiting the loop, and
    SH =   loop height.
  7. Rolling mill according to one of the claims 1 to 6, characterised in that the controller regulates in each case the rotational speed of the roll stand located in front of the loop in terms of the rolling direction.
  8. Rolling mill according to claim 7, characterised in that the rotational speeds of further roll stands located in the region of the same rolled material are altered in the same ratio as the rotational speed of the regulated roll stand.
  9. Rolling mill according to claim 7 or 8, characterised in that the last roll stand is the leading stand, the rotational speed of which is preselected.
  10. Rolling mill according to one of the claims 7 to 9, characterised in that in the case of a multi-strand rolling train, the last stand of the multi-strand region in terms of the rolling direction is the leading stand for at least as long as a rolled material is located in the multi-strand region, wherein in the multi-strand region, the rotational speeds of the stands which are located in front of the loop in terms of the rolling direction in each case are regulated, and in the single-strand region of the rolled material, the rotational speeds of the stands which are located after the loop in terms of the rolling direction in each case are regulated, and in that after the rolled material has exited from the leading stand of the multi-strand region, the effective direction of the loop control of the single-strand region is reversed, in such a way that the rotational speeds of the stands which are located in front of the loops in terms of the rolling direction in each case are regulated.
EP93918963A 1992-09-29 1993-09-08 Rolling mill with a device for controlling the rotational speed of the rolls Revoked EP0662869B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4232685 1992-09-29
DE4232685A DE4232685A1 (en) 1992-09-29 1992-09-29 Device for regulating the speeds of the rolls of a rolling mill
PCT/DE1993/000826 WO1994007618A1 (en) 1992-09-29 1993-09-08 Device for controlling the rotational speed of the rolls of a rolling mill

Publications (2)

Publication Number Publication Date
EP0662869A1 EP0662869A1 (en) 1995-07-19
EP0662869B1 true EP0662869B1 (en) 1997-12-29

Family

ID=6469167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93918963A Revoked EP0662869B1 (en) 1992-09-29 1993-09-08 Rolling mill with a device for controlling the rotational speed of the rolls

Country Status (6)

Country Link
US (1) US5619880A (en)
EP (1) EP0662869B1 (en)
JP (1) JPH08501501A (en)
AT (1) ATE161443T1 (en)
DE (2) DE4232685A1 (en)
WO (1) WO1994007618A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1280208B1 (en) * 1995-08-03 1998-01-05 Ceda Spa Costruzioni Elettrome INTERCAGE CONTROL PROCEDURE OF THE TENSION OF THE LAMINATE AND RELATED DEVICE
US6339945B2 (en) 1998-01-27 2002-01-22 Pacific Roller Die Co., Inc. Apparatus for forming tapered spiral tubes
DE19809917A1 (en) * 1998-03-07 1999-09-09 Schloemann Siemag Ag Fine steel or wire mill with roughing mill, intermediate mill and multi-stand finishing block
US6128934A (en) * 1999-04-30 2000-10-10 Lone Star Technologies, Inc. Stretch reduction mill
US6708077B2 (en) * 2002-08-16 2004-03-16 General Electric Company Furnace pacing for multistrand mill
DE102007031333A1 (en) * 2007-07-05 2009-01-15 Siemens Ag Rolling of a strip in a rolling train using the last stand of the rolling train as Zugverringerer
EP2135690A1 (en) * 2008-06-19 2009-12-23 Siemens Aktiengesellschaft Conti-mill train with integration/deintegration of roller frameworks in active operation
EP2460597A1 (en) * 2010-12-01 2012-06-06 Siemens Aktiengesellschaft Method for controlling a tandem mill train, control and/or regulating device for a tandem mill train, machine-readable programming code, storage medium and tandem mill train
CN108213092B (en) * 2018-02-08 2023-07-25 天津市富仁板带有限公司 Lifting loop

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181713A (en) * 1962-04-19 1965-05-04 Gen Electric Article handling system
US3811304A (en) * 1972-09-20 1974-05-21 Gen Electric Looper controlled rolling mill
US4099244A (en) * 1977-03-17 1978-07-04 Bethlehem Steel Corporation Recalibration system for electro-optical gage
CS209071B1 (en) * 1979-04-18 1981-10-30 Jiri Badal Method of loop regulation of continuous processes and connection for execution of this method
DE3101512A1 (en) * 1981-01-19 1982-08-26 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR SPEED CONTROL IN A MULTI-WIRE, LOOP-CONTROLLED CONTINUE ROAD
JPS57130712A (en) * 1981-02-02 1982-08-13 Mitsubishi Electric Corp Loop controlling device
JPS6092009A (en) * 1983-10-25 1985-05-23 Toshiba Corp Loop position controlling method
JPH0622726B2 (en) * 1986-03-07 1994-03-30 株式会社神戸製鋼所 Loop control device
DE4105321A1 (en) * 1991-02-20 1992-08-27 Siemens Ag CONTROL OF A HOT AND / OR COLD ROLLING PROCESS
DE4117054A1 (en) * 1991-05-22 1992-11-26 Mannesmann Ag SIZING-GERUEST GROUP

Also Published As

Publication number Publication date
US5619880A (en) 1997-04-15
DE59307903D1 (en) 1998-02-05
EP0662869A1 (en) 1995-07-19
ATE161443T1 (en) 1998-01-15
JPH08501501A (en) 1996-02-20
DE4232685A1 (en) 1994-03-31
WO1994007618A1 (en) 1994-04-14

Similar Documents

Publication Publication Date Title
DE19963186B4 (en) Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device
EP0121148B1 (en) Method of making hot rolled strip with a high quality section and flatness
EP0738547B1 (en) Steckel mill
EP0775536B1 (en) Device for the operation of a multiple stand rolling mill
EP0662869B1 (en) Rolling mill with a device for controlling the rotational speed of the rolls
DE1527761C3 (en) Device for the operational compensation of the change in the crowning of the work rolls of a rolling mill
EP0972581B1 (en) Rolling method for bar-shaped rolling stock, in particular steel bars and wire
DE3430034A1 (en) PLANNING REGULATION ON ROLLING MILLS
EP0375095B1 (en) Method and device for controlling the strip width during the hot-rolling of strip
EP1173295B1 (en) Rolling process for a metal strip and corresponding rolling device
DE10324679A1 (en) Control computer and computer-aided determination procedure for a profile and flatness control for a rolling mill
DE1923788A1 (en) Process for keeping the tensile stress of the rolling stock constant between the rolling stands
EP2460597A1 (en) Method for controlling a tandem mill train, control and/or regulating device for a tandem mill train, machine-readable programming code, storage medium and tandem mill train
DE3026229C2 (en)
EP0734795B1 (en) Method for feedforward thickness control in rolling of foils
EP0348777B1 (en) Control of section rolling mill trains
DE3401894A1 (en) Method for the production of rolled strip with high strip shape accuracy and flatness
DE2836595A1 (en) METHOD FOR CONTROLLING THE THICKNESS OF A FLAT PRODUCT DURING ROLLING AND DEVICE FOR CARRYING OUT THE METHOD
DE2816091A1 (en) DEVICE FOR CONTROLLING THE INTERFACE TENSION OF A CONTINUOUS ROLLING MILL
DE1527610A1 (en) Rolling process and device for carrying out the same
DE3637043A1 (en) Method for the predetermined maintenance of narrow thickness tolerances during the rolling of rolling stock in hot-strip rolling trains
EP1669141B1 (en) Process for the control of the cross-section of wires running out from a wire rolling mill and metal wire rolling mill
DE1958162A1 (en) Procedure for advance control of a tandem mill
DE10159608A1 (en) Computer-controlled cold rolling process for steel strip involves using tension regulation assembly which calculates tension in accordance with weld seam width
EP0272204A2 (en) Method for controlling the thickness of tubewall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE IT SE

17Q First examination report despatched

Effective date: 19950802

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19971229

REF Corresponds to:

Ref document number: 161443

Country of ref document: AT

Date of ref document: 19980115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59307903

Country of ref document: DE

Date of ref document: 19980205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980329

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ASEA BROWN BOVERI AKTIEBOLAG

Effective date: 19980924

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010816

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011119

Year of fee payment: 9

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20020901