EP0648068B1 - Schaltungsanordnung zum Betrieb elektrischer Lampen - Google Patents

Schaltungsanordnung zum Betrieb elektrischer Lampen Download PDF

Info

Publication number
EP0648068B1
EP0648068B1 EP94113515A EP94113515A EP0648068B1 EP 0648068 B1 EP0648068 B1 EP 0648068B1 EP 94113515 A EP94113515 A EP 94113515A EP 94113515 A EP94113515 A EP 94113515A EP 0648068 B1 EP0648068 B1 EP 0648068B1
Authority
EP
European Patent Office
Prior art keywords
circuit arrangement
transistor
circuit
switched
electric lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP94113515A
Other languages
English (en)
French (fr)
Other versions
EP0648068A1 (de
Inventor
Rudolph Bernd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6499549&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0648068(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0648068A1 publication Critical patent/EP0648068A1/de
Application granted granted Critical
Publication of EP0648068B1 publication Critical patent/EP0648068B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2855Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions

Definitions

  • the invention relates to a circuit arrangement for operating electric lamps according to the preamble of claim 1.
  • Such a circuit arrangement is disclosed, for example, in EP 0 276 460 B1. It is used to operate a low-pressure discharge lamp and has an inverter on that of two alternately switching, arranged in a half-bridge Transistors.
  • This circuit arrangement has a safety shutdown, which shuts down the inverter during abnormal operation.
  • the shutdown device consists essentially of a thyristor, which is parallel to the control electrode Switching transistor of the inverter is switched, and from a Zener diode that the Gate of the thyristor controls. In the event of an abnormal operating state, the thyristor switches through and withdraws the control signal from a switching transistor of the inverter and thus causes the circuit arrangement to be shut down.
  • the circuit arrangement according to the invention has a shutdown device, which at the operating device is switched off in the event of an abnormal operating state.
  • This shutdown device consists essentially of a controllable electronic switch, in particular a field effect transistor, the switching path parallel to the control path a transistor of the switching power supply is switched, and a bistable multivibrator, from which an output with the control electrode of the electronic switch is connected, as well as from a threshold switch, which is connected to an input of the bistable Multivibrators is connected. If there is an abnormal operating state, e.g. in the case of a defective lamp, the threshold switch switches through and sets the bistable multivibrator, making the switching path of the controllable electronic Switch is conductive and thus a transistor of the switching power supply Control signal is withdrawn.
  • the circuit arrangement according to the invention takes up less space than that in Circuit disclosed above as prior art patent EP 0 274 460 B1 the circuit according to the invention on large-volume ohmic resistors with some Watts resilience waived. It is even possible to switch off the device according to the invention Circuit arrangement extremely compact in SMD technology. In addition, this switch-off device can in principle in any inverter to get integrated.
  • the use of a bistable multivibrator in the shutdown device the circuit arrangement according to the invention offers the further advantage that this circuit on an external switching on / off of the lamp operating device is prepared. Via additional sensors, for example a touch contact with a subsequent evaluation logic, the bistable multivibrator can too externally controlled and thus the control gear can be switched on and off. In order to the possibility is created in a lighting system that has a larger Number of lamps and operating devices, individual lamps or lamp groups to switch separately.
  • FIG Operation of a low-pressure discharge lamp using a circuit diagram schematically shown The principle of the circuit arrangement according to the invention is shown in FIG Operation of a low-pressure discharge lamp using a circuit diagram schematically shown.
  • This circuit is a self-oscillating half-bridge inverter, that of a parallel to the DC voltage input of the circuit Smoothing capacitor 1 is fed.
  • the half-bridge inverter consists of essentially of two alternating switching transistors 2, 3, here as bipolar transistors shown, which form a half-bridge and each with a control for the base connection and with return diodes 4, 5 parallel to their switching path are provided.
  • the bipolar transistors 2, 3 are controlled via a toroidal core transformer, whose secondary windings 6b, 6c each have a series resistor 7, 8 are guided to the base of a switching transistor 2, 3 and its primary winding 6a on the one hand with the center tap M of the half bridge and on the other hand via the lamp inductor 27 and the discharge path of the lamp L or via a parallel connected to the lamp L resonant capacitance 28 is connected to a tap A.
  • the tap A is via a first coupling capacitor 10 to the collector of the Bipolar transistor 2 and via a second coupling capacitor 11 to the emitter of the bipolar transistor 3 out.
  • the smoothing capacitor 1 charges to the full input voltage U.
  • Switch transistors 2, 3 of the half bridge alternating with a switching frequency greater than 20 KHz. This means that the center tap is located M alternately on the positive or negative pole of the smoothing capacitor 1 while tap A with suitable dimensioning of the circuit components the potential U / 2 is thus flowing in the branch between the center tap M and the node A a medium frequency alternating current (greater than 20 KHz), the frequency of which is determined by the switching frequency of transistors 2, 3.
  • Diac 14 is mainly responsible for starting the half-bridge inverter. Immediately after switching on the circuit arrangement builds on Capacitor 13 the breakover voltage of the diac 14, so that the diac 14 trigger pulses on the base of transistor 3 there. After starting the inverter the capacitor 13 discharged via the diode 16 so far that no further trigger pulses can be generated by the diac 14.
  • the remaining elements 9 and 17 to 26 of the circuit arrangement which have not yet been explained belong to the shutdown device according to the invention, the inverter if the lamp L is defective or if there is an abnormal operating state switches off.
  • the main component of this shutdown device is a bistable multivibrator, consisting of the bipolar transistors 17, 18 and the ohmic resistors 19 to 22, which drives the gate electrode of a field effect transistor 23.
  • To for this purpose is an output of the bistable multivibrator, i.e. the collector of the Transistor 17, connected to the gate electrode of the field effect transistor 23.
  • the Switching path, i.e. the drain-source path, of the field effect transistor 23 lies in parallel to the control electrode, i.e.
  • An abnormal operating condition manifests itself in the circuit according to the preferred one Embodiment by an excessive compared to the normal operating state Voltage drop across the smoothing capacitor 1.
  • the voltage across the smoothing capacitor 1 is made with the help of one consisting of ohmic resistors 24, 25 Voltage divider, which is connected in parallel to the smoothing capacitor 1, and by means of a Zener diode 26 sampled.
  • the Zener diode 26 is parallel to the resistor 25 of the Arranged voltage divider and with the set or reset input of the bistable Multivibrators, i.e. connected to the base terminal of transistor 18.
  • FIG. 2 shows a detailed circuit diagram of a circuit arrangement according to the invention for operating a low-pressure discharge lamp, in particular for operating a Fluorescent lamp with an electrical power consumption between 9 and 13 watts.
  • This circuit arrangement contains an essential component a self-oscillating half-bridge inverter from the DC voltage output a voltage source V is fed.
  • the transistors T1, T2 of the half inverter are with a control device and series resistors R3 to R6 and arranged parallel to the switching paths of the transistors T1, T2 Return diodes D3, D4 provided.
  • the transistors T1, T2 are activated via the secondary windings RK1b and RK1c of a toroidal transformer, which are each connected to the base of a transistor T1, T2.
  • the primary winding RK1a of the toroidal transformer is integrated in the series resonant circuit, the from the center tap M between the transistors T1, T2 via the primary winding RK1a, the resonance inductance LD, the coupling capacitor C10, the resonance capacitance C9 and the lamp electrode E2 to the collector connection of the Transistor T1 extends.
  • the resonance capacitance C9 is parallel to the discharge path the low-pressure discharge lamp LP switched.
  • the circuit arrangement also contains an electrode heating circuit which preheats of the electrode filaments E1, E2 of the lamp LP and in addition to the electrode filaments E1, E2 also the PTC thermistor R12, the capacitances C12, C15 and the Diode D1 includes.
  • the PTC thermistor bridges during the electrode preheating phase R12 is the capacitance C15 lying parallel to it.
  • the electrode E2 of the lamp LP is connected to the positive pole of the smoothing capacitor C6, which is parallel to the switching paths of the transistors T1, T2 and parallel to the DC voltage output of the voltage source V is switched.
  • This circuit arrangement also contains an active harmonic filter, which is a sinusoidal one Mains current drain enabled.
  • the active harmonic filter consists of two Diode pairs D11, D13 and D12, D14 and from the capacitors C8 and C13.
  • Both diode pairs are in the forward DC direction on the parallel to the DC output connected to the voltage source V supporting capacitor C5 and connected to the smoothing capacitor C6 via the electrode coil E2.
  • Capacitor C13 is tapped between the diodes connected in series D12, D14 and with a node M1, which is potentially the center tap M corresponds, connected in the series resonance circuit, while the capacitor C8 with one tap between the diodes D11, D13 of the other connected in series Diode pair connected and led to node M1 in the series resonance circuit is.
  • a diac DK and a start capacitor ensure that the half-bridge inverter starts to oscillate C7 and resistors R2, R8.
  • the start capacitor C7 is on the one hand with the negative pole of the smoothing capacitor C6 and on the other hand over the Resistor R2 connected to the positive pole of the smoothing capacitor C6.
  • the diac DK is connected in parallel to the starting capacitor C7 and to the base of the transistor T2 connected.
  • a tap M3 between the start capacitor C7 and the Resistor R2 is via a resistor R15 and a diode D5 for center tap M of the inverter.
  • the resistor R8 is parallel to the flyback diode D3 switched.
  • a capacitor C14 arranged in parallel with the flyback diode D4 is reduced the power losses that occur when the inductors are magnetized, by slowing down the voltage edges generated by the inverter.
  • the shutdown device comprises this circuit arrangement a bistable multivibrator made by transistors T3, T4 and ohmic Resistors R9, R10, R11, R13 is formed, and a field effect transistor T5, two Zener diodes D2, D6 and a voltage divider R1, R7 and an ohmic Resistor R14.
  • the collector of transistor T4 is on the one hand via the resistor R10 with the tap M3 and on the other hand with the gate electrode of the field effect transistor T5 connected, and via the resistor R13 to the base of the transistor T3 led. Parallel to the collector-emitter path of transistor T4 and to the gate of the field effect transistor T5, the zener diode D2 is connected.
  • the transistor T3 collector is connected to a node via the resistor R9 passed between the resistors R2 and R10 and with the resistor R11 connected to the base of transistor T4.
  • the source of the field effect transistor T5 and the emitter connection of the transistors T3, T4 are with the negative pole of the smoothing capacitor C6.
  • the one from the ohmic resistors R1, R7 existing voltage divider is parallel to the smoothing capacitor C6 and has a tap M4, which leads to the base of the transistor T3 via the Zener diode D6 is.
  • the transistors T1, T2 of the half-bridge inverter switch alternately a frequency above 20 kHz, so that the center tap M alternately with the positive or negative pole of the smoothing capacitor C6 is connected during the Coupling capacitor C10 carries the voltage U / 2 when connected to the smoothing capacitor C6 applied voltage is denoted by U.
  • U the voltage
  • U the voltage
  • the inverter swings through the diac DK, which gives trigger pulses to the base of transistor T2 after the starting capacitor C7 has previously charged to the breakdown voltage of the Diac DK.
  • the low-pressure discharge lamp LP Before the low-pressure discharge lamp LP ignites, it first flows through the Electrode coils E1, E2, the capacitance C12 and the PTC thermistor R12 a heating current. After sufficient electrode preheating, the PTC thermistor R12 becomes high-resistance, so that to the now connected in series, arranged parallel to the lamp LP Capacities C12, C15 in interaction with the resonance inductance LD by means of Exaggerated resonance builds up the ignition voltage required for the lamp LP. The Lamp LP ignites and the lower operating voltage arises above the lamp a.
  • the mode of operation of the diodes D11 to D14 and the capacitors C8, C13 existing active harmonic filter in combination with the resonance inductance LD and the capacitors C5, C6 is described in detail in DE 36 23 749 A1 and should therefore not be explained in more detail here.
  • the active harmonic filter pumps energy from the. with the help of the capacitors C8, C9, C13 Series resonance circuit in the smoothing capacitor C6 back, so that an approximate sinusoidal mains current draw is possible.
  • the bistable multivibrator consisting essentially of transistors T3, T4, is fed by the start capacitor C7. After switching on the circuit arrangement becomes the bistable multivibrator with that rising at the start capacitor C7 Voltage defined by resetting that through resistor R10 and the gate-source capacitance of the field effect transistor T5, the base-emitter voltage at the transistor T3 is delayed more than that at transistor T4, so that transistor T3 turns off while transistor T4 conducts.
  • the field effect transistor T5 also blocks.
  • the breakover voltage of the diac DK builds up at the start capacitor C7, so that this Trigger pulses on the base of transistor T2 there.
  • An abnormal operating state of the half-bridge inverter manifests itself in the present circuit arrangement in an excessive voltage drop across the smoothing capacitor C6. Becomes a through the Zener diode D6, the voltage divider resistors R1, R7 and the transistor T3 defined threshold value exceeded, flows Base current for transistor T3 and the bistable multivibrator is reset, i.e. the switching path of transistor T3 conducts and blocks that of transistor T4. Of the Field effect transistor T5 is now switched through by the bistable multivibrator, see above that the base of the half-bridge transistor T2 through the resistor R14 and through the now conductive source-drain path of the field effect transistor T5 the control signal is withdrawn.
  • the inverter is de-energized and the voltage at the starting capacitor C7 remains due to the load due to the resistance now connected in parallel R9 below the breakover voltage of the Diac DK. There are therefore no trigger pulses generated by the Diac DK.
  • the inverter can only start again when the bistable multivibrator set again by interrupting the power supply becomes.
  • the invention is not limited to the exemplary embodiment described in more detail above.
  • the shutdown device according to the invention consisting of the electrical components 9 and 17 to 26, also in a circuit arrangement for Operation of low-voltage halogen bulbs can be integrated.
  • the voltage divider 24, 25 is here, however, not connected in parallel to the input capacitor 1, but Part of the load or lamp circuit.
  • the short circuit current in the Voltage divider resistors have an excessive voltage drop from the zener diode 26 is detected and leads to the triggering of the shutdown device.
  • Voltage divider 24, 25 can be used in a circuit arrangement for low-voltage halogen incandescent lamps can also be replaced by a simple load or emitter resistor, with the emitter connection of the half-bridge transistor 3 and the negative pole of the Input capacitor 1 is connected, and to which the Zener diode 26 is connected in parallel is.
  • the bistable multivibrator can save space as one in C-MOS technology implemented integrated circuit can be realized.
  • Circuit arrangement is particularly suitable for a D flip-flop in which an indefinite one Initial state cannot occur. This opens up the possibility the circuit arrangement via a sensor, for example a touch contact with downstream evaluation logic, to be switched off externally by the clock input of the D flip-flop is controlled by the sensor.
  • the shutdown device according to the invention can also be integrated into a full-bridge inverter.
  • Dimensioning of the circuit according to FIG. 3 R1 2.2 M ⁇ , 1% R2 820 K ⁇ R3, R4 8.2 ⁇ R5, R6 0.56 ⁇ R7, R9 39 K ⁇ R8 510 K ⁇ R10, R11, R13 330 K ⁇ R14 0.22 ⁇ R15 33 K ⁇ C5 47 nF C6 10 ⁇ F C7 100 nF, 63 V C8 3.3 nF C9 5.6 nF C10 150 nF C12 10 nF C13 4.7 nF C14 1.0 nF C15 3.3 nF DK N413M T3, T4 BC547C T5 BSS295 D2 BZX55 / C10 D6 BZX55B7V5 LD 3 mH, EF16

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zum Betrieb elektrischer Lampen gemäß dem Oberbegriff des Patentanspruchs 1.
Eine derartige Schaltungsanordnung ist beispielsweise in der EP 0 276 460 B1 offenbart. Sie dient zum Betrieb einer Niederdruckentladungslampe und weist einen Wechselrichter auf, der aus zwei alternierend schaltenden, in einer Halbbrücke angeordneten Transistoren besteht. Diese Schaltungsanordnung besitzt eine Sicherheitsabschaltung, die den Wechselrichter bei anomalen Betrieb stillegt. Die Abschaltvorrichtung besteht im wesentlichen aus einem Thyristor, der parallel zur Steuerelektrode eines Schalttransistors des Wechselrichters geschaltet ist, und aus einer Zenerdiode, die das Gate des Thyristors steuert. Bei einem anomalen Betriebszustand schaltet der Thyristor durch und entzieht einem Schalttransistor des Wechselrichters das Steuersignal und bewirkt so eine Stillegung der Schaltungsanordnung. Zur Realisierung dieser Sicherheitsabschaltung werden ein spannungsfester Thyristor sowie mehrere relativ großvolumige ohmsche Widerstände mit einigen Watt Belastbarkeit benötigt, die zur Strombegrenzung im Abschaltfall und zur Erzeugung des Thyristor-Haltestromes dienen.
Es ist die Aufgabe der Erfindung, eine Schaltungsanordnung zum Betrieb elektrischer Lampen bereitzustellen, die eine möglichst einfache, universell anwendbare und kostengünstige Sicherheitsabschaltung besitzt, die die Schaltungsanordnung bei einem anomalen Betriebszustand zuverlässig abschaltet.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.
Die erfindungsgemäße Schaltungsanordnung besitzt eine Abschaltvorrichtung, die bei einem anomalen Betriebszustand das Betriebs gerät abgeschaltet. Diese Abschaltvorrichtung besteht im wesentlichen aus einem steuerbaren elektronischen Schalter, insbesondere einem Feldeffekttransistor, dessen Schaltstrecke parallel zur Steuerstrecke eines Transistors des Schaltnetzteils geschaltet ist, und aus einem bistabilen Multivibrator, von dem ein Ausgang mit der Steuerelektrode des elektronischen Schalters verbunden ist, sowie aus einem Schwellwertschalter, der mit einem Eingang des bistabilen Multivibrators verschaltet ist. Bei Vorliegen eines anomalen Betriebszustandes, z.B im Fall einer defekten Lampe, schaltet der Schwellwertschalter durch und setzt den bistabilen Multivibrator, wodurch die Schaltstrecke des steuerbaren elektronischen Schalters leitfähig wird und damit einem Transistor des Schaltnetzteiles das Steuersignal entzogen wird.
Die erfindungsgemäße Schaltungsanordnung beansprucht weniger Raum als die im oben als Stand der Technik zitierten Patent EP 0 274 460 B1 offenbarte Schaltung, da die erfindungsgemäße Schaltung auf großvolumige ohmsche Widerstände mit einigen Watt Belastbarkeit verzichtet. Es ist sogar möglich, die Abschaltvorrichtung der erfindungsgemäßen Schaltungsanordnung äußerst kompakt in SMD-Technologie auszuführen. Außerdem kann diese Abschaltvorrichtung prinzipiell in jeden Wechselrichter integriert werden. Die Verwendung eines bistabilen Multivibrators in der Abschaltvorrichtung der erfindungsgemäßen Schaltungsanordnung bietet den weiteren Vorteil, daß diese Schaltung auf ein externes Ein-/Ausschalten des Lampenbetriebsgerätes vorbereitet ist. Über eine zusätzliche Sensorik, beispielsweise einen Berührungskontakt mit nachgeschalteter Auswertungslogik, kann der bistabile Multivibrator auch extern gesteuert und somit das Betriebsgerät ein- und ausgeschaltet werden. Damit wird die Möglichkeit geschaffen, in einer Beleuchtungsanlage, die eine größere Anzahl von Lampen und Betriebsgeräten umfaßt, einzelne Lampen oder Lampengruppen separat zu schalten.
Die Erfindung wird nachstehend anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:
Figur 1
Eine schematisierte Schaltskizze einer erfindungsgemäßen Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe
Figur 2
Ein detailliertes Schaltbild der erfindungsgemäßen Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe
In der Figur 1 ist das Prinzip der erfindungsgemäßen Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe anhand einer Schaltskizze schematisch dargestellt.
Bei dieser Schaltung handelt es sich um einen selbstschwingenden Halbbrückenwechselrichter, der von einem parallel zum Gleichspannungseingang der Schaltung liegenden Glättungskondensator 1 gespeist wird. Der Halbbrückenwechselrichter besteht im wesentlichen aus zwei alternierend schaltenden Transistoren 2, 3, hier als Bipolar-Transistoren dargestellt, die eine Halbbrücke bilden und jeweils mit einer Ansteuerung für den Basisanschluß sowie mit Rücklaufdioden 4, 5 parallel zu ihrer Schaltstrecke versehen sind. Die Ansteuerung der Bipolar-Transistoren 2, 3 erfolgt über einen Ringkern-Transformator, dessen Sekundärwicklungen 6b, 6c jeweils über einen Vorwiderstand 7, 8 zur Basis eines Schalttransistors 2, 3 geführt sind und dessen Primärwicklung 6a einerseits mit dem Mittenabgriff M der Halbbrücke sowie andererseits über die Lampendrossel 27 und die Entladungsstrecke der Lampe L bzw. über eine parallel zur Lampe L geschaltete Resonanzkapazität 28 mit einem Abgriff A verbunden ist. Der Abgriff A ist über einen ersten Kopplungskondensator 10 zum Kollektor des Bipolar-Transistors 2 und über einen zweiten Kopplungskondensator 11 zum Emitter des Bipolar-Transistors 3 geführt. Die Induktivität 27 und die Kapazität 28 bilden einen Serienresonanzkreis, der es ermöglicht, nach ausreichender Vorheizung der Lampenelektroden an der Kapazität 28 durch Resonanzüberhöhung die Zündspannung für die Niederdruckentladungslampe L bereitzustellen.
Zum Anlauf des Halbbrückenwechselrichters dienen ein Widerstand 12, ein Kondensator 13 und ein parallel zum Kondensator 13 angeordneter Diac 14, der über einen ohmschen Widerstand 15 zur Basis des Transistors 3 geführt ist. Eine zusätzliche Diode 16, die mit dem Knotenpunkt B zwischen Widerstand 12, Kondensator 13, und Diac 14 und mit dem Mittenabgriff M verbunden ist, sorgt für eine Stillegung dieser Startschaltung bei arbeitendem Wechselrichter.
Soweit entspricht diese Schaltungsanordnung einer typischen selbstschwingenden Halbbrückenschaltung, wie sie beispielsweise im Buch "Schaltnetzteile" von W. Hirschmann/A. Hauenstein, Hrsg. Siemens AG, Ausgabe 1990 auf Seite 63 beschrieben ist.
Nach dem Einschalten der Schaltungsanordnung lädt sich der Glättungskondensator 1 auf die volle Eingangsspannung U auf. Die Transistoren 2, 3 der Halbbrücke schalten alternierend mit einer Schaltfrequenz größer als 20 KHz. Dadurch liegt der Mittenabgriff M abwechselnd am Plus- bzw. Minuspol des Glättungskondensators 1 an, während sich der Abgriff A bei geeigneter Dimensionierung der Schaltungsbauteile auf dem Potential U/2 befindet Auf diese Weise fließt im Zweig zwischen dem Mittenabgriff M und dem Knotenpunkt A ein mittelfrequenter Wechselstrom (größer als 20 KHz), dessen Frequenz durch die Schaltfrequenz der Transistoren 2, 3 bestimmt wird.
Für den Anlauf des Halbbrücken-Wechselrichters ist hauptsächlich der Diac 14 verantwortlich. Unmittelbar nach dem Einschalten der Schaltungsanordnung baut sich am Kondensator 13 die Kippspannung des Diacs 14 auf, so daß der Diac 14 Triggerimpulse auf die Basis des Transistors 3 gibt. Nach dem Start des Wechselrichters wird der Kondensator 13 über die Diode 16 soweit entladen, daß keine weiteren Triggerimpulse vom Diac 14 erzeugt werden können.
Die übrigen, bisher noch nicht erläuterten Elemente 9 und 17 bis 26 der Schaltungsanordnung gehören zur erfindungsgemäßen Abschaltungsvorrichtung, die den Wechselrichter bei defekter Lampe L oder bei Vorliegen eines anomalen Betriebszustandes abschaltet. Hauptbestandteil dieser Abschaltungsvorrichtung ist ein bistabiler Multivibrator, bestehend aus den Bipolar-Transistoren 17, 18 und den ohmschen Widerständen 19 bis 22, der die Gate-Elektrode eines Feldeffekt-Transistors 23 ansteuert. Zu diesem Zweck ist ein Ausgang des bistabilen Multivibrators, d.h., der Kollektor des Transistors 17, mit der Gate-Elektrode des Feldeffekt-Transistors 23 verbunden. Die Schaltstrecke, d.h., die Drain-Source-Strekke, des Feldeffekt-Transistors 23 liegt parallel zur Steuerelektrode, d.h., zur Basis-Emitter-Strecke, des Transistors 3. Bei defekter Lampe L oder bei Vorliegen eines anomalen Betriebszustandes schaltet der bistabile Multivibrator um und schließt die Schaltstrecke des Feldeffekt-Transistors 23, so daß der Basisanschluß des Transistors 3 am Minuspol der Spannungsquelle bzw. des Glättungskondensators 1 anliegt und dem Transistor 3 das Steuersignal entzogen wird. Die Zenerdiode 9 schützt das Gate des Feldeffekt-Transistors 23 vor Spannungsüberlastung.
Ein anomaler Betriebszustand äußert sich bei der Schaltung gemäß des bevorzugten Ausführungsbeispiels durch einen gegenüber dem normalen Betriebszustand überhöhten Spannungsabfall am Glättungskondensator 1. Die Spannung am Glättungskondensator 1 wird mit Hilfe eines aus den ohmschen Widerständen 24, 25 bestehenden Spannungsteilers, der parallel zum Glättungskondensator 1 geschaltet ist, und mittels einer Zenerdiode 26 abgetastet. Die Zenerdiode 26 ist parallel zum Widerstand 25 des Spannungsteilers angeordnet und mit dem Setz- oder Rücksetzeingang des bistabilen Multivibrators, d.h., mit dem Basisanschluß des Transistors 18, verbunden. Bei defekter Lampe baut sich an der Zenerdiode 26 die Durchbruchspannung auf, so daß diese leitfähig wird und den bistabilen Multivibrator setzt, der seinerseits den Feldeffekt-Transistor 23 durchschaltet, wodurch dem Transistor 3 des Halbbrücken-Wechselrichters das Steuersignal entzogen wird.
Figur 2 zeigt ein detailliertes Schaltbild einer erfindungsgemäßen Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe, insbesondere zum Betrieb einer Leuchtstofflampe mit einer elektrischen Leistungsaufnahme zwischen 9 und 13 Watt. Eine geeignete Dimensionierung der verwendeten Schaltungsbauteile kann der Tabelle entnommen werden. Diese Schaltungsanordnung enthält als wesentliches Bestandteil einen selbstschwingenden Halbbrückenwechselrichter, der von dem Gleichspannungsausgang einer Spannungsquelle V gespeist wird. Die Transistoren T1, T2 des Halbwechselrichters sind mit einer Ansteuerungsvorrichtung und mit Vorwiderständen R3 bis R6 sowie mit parallel zu den Schaltstrecken der Transistoren T1, T2 angeordneten Rücklaufdioden D3, D4 versehen. Die Ansteuerung der Transistoren T1, T2 erfolgt über die Sekundärwicklungen RK1b und RK1c eines Ringkerntransformators, die jeweils mit dem Basis eines Transistors T1, T2 verbunden sind. Die Primärwicklung RK1a des Ringkerntransformators ist in den Serienresonanzkreis integriert, der sich vom Mittenabgriff M zwischen den Transistoren T1, T2 über die Primärwicklung RK1a, die Resonanzinduktivität LD, den Kopplungskondensator C10, die Resonanzkapazität C9 und über die Lampenelektrode E2 bis zum Kollektoranschluß des Transistors T1 erstreckt. Die Resonanzkapazität C9 ist parallel zur Entladungsstrecke der Niederdruckentladungslampe LP geschaltet.
Außerdem enthält die Schaltungsanordnung einen Elektrodenheizkreis, der ein Vorheizen der Elektrodenwendeln E1, E2 der Lampe LP ermöglicht und neben den Elektrodenwendeln E1, E2 noch den Kaltleiter R12, die Kapazitäten C12, C15 sowie die Diode D1 umfaßt. Während der Elektrodenvorheizphase überbrückt der Kaltleiter R12 die parallel zu ihm liegende Kapazität C15. Die Elektrode E2 der Lampe LP ist mit dem Pluspol des Glättungskondensators C6 verbunden, der parallel zu den Schaltstrecken der Transistoren T1, T2 und parallel zum Gleichspannungsausgang der Spannungsquelle V geschaltet ist.
Ferner enthält diese Schaltungsanornung ein aktives Oberwellenfilter, das eine sinusförmige Netzstromentnahme ermöglicht. Das aktive Oberwellenfilter besteht aus zwei Diodenpaaren D11, D13 und D12, D14 sowie aus den Kondensatoren C8 und C13.
Beide Diodenpaare sind in Gleichstromvorwärtsrichtung an den parallel zum Gleichstromausgang der Spannungsquelle V liegenden Stützkondensator C5 angeschlossen und über die Elektrodenwendel E2 mit dem Glättungskondensator C6 verbunden. Der Kondensator C13 ist mit einem Abgriff zwischen den in Reihe geschalteten Dioden D12, D14 und mit einem Knotenpunkt M1, der potentialmäßig dem Mittenabgriff M entspricht, im Serienresonanzkreis verbunden, während der Kondensator C8 mit einem Abgriff zwischen den in Reihe geschalteten Dioden D11, D13 des anderen Diodenpaares verbunden und zum Knotenpunkt M1 im Serienresonanzkreis geführt ist.
Für das Anschwingen des Halbbrückenwechselrichters sorgen ein Diac DK, ein Startkondensator C7 sowie die Widerstände R2, R8. Der Startkondensator C7 ist einerseits mit dem Minuspol des Glättungskondensators C6 und andererseits über den Widerstand R2 mit dem Pluspol des Glättungskondensators C6 verbunden. Der Diac DK ist parallel zum Startkondensator C7 geschaltet und an die Basis des Transistors T2 angeschlossen. Ein Abgriff M3 zwischen dem Startkondensator C7 und dem Widerstand R2 ist über einen Widerstand R15 und eine Diode D5 zum Mittenabgriff M des Wechselrichters geführt. Der Widerstand R8 ist parallel zur Rücklaufdiode D3 geschaltet. Ein parallel zur Rücklaufdiode D4 angeordneter Kondensator C14 verringert die beim Ummagnetisieren der Induktivitäten auftretenden Verlustleistungen, indem er die vom Wechselrichter generierten Spannungsflanken verlangsamt.
Die erfindungsgemäße Abschaltungsvorrichtung dieser Schaltungsanordnung umfaßt einen bistabilen Multivibrator, der von den Transistoren T3, T4 und den ohmschen Widerständen R9, R10, R11, R13 gebildet wird, und einen Feldeffekt-Transistor T5, zwei Zenerdioden D2, D6 sowie einen Spannungsteiler R1, R7 und einen ohmschen Widerstand R14. Der Kollektor des Transistors T4 ist einerseits über den Widerstand R10 mit dem Abgriff M3 und andererseits mit der Gate-Elektrode des Feldeffekt-Transistors T5 verbunden, sowie über den Widerstand R13 zur Basis des Transistors T3 geführt. Parallel zur Kollektor-Emitter-Strecke des Transistors T4 und zum Gate des Feldeffekt-Transistors T5 ist die Zenerdiode D2 geschaltet. Sie schützt das Gate des Niedervolt-Feldeffekt-Transistors T5 vor zu hohen Eingangsspannungen. Der Kollektor des Transistors T3 ist über den Widerstand R9 zu einem Knotenpunkt zwischen den Widerständen R2 und R10 geführt und über den Widerstand R11 mit der Basis des Transistors T4 verbunden. Der Source-Anschluß des Feldeffekt-Transistors T5 und der Emitter-Anschluß der Transistoren T3, T4 sind mit dem Minuspol des Glättungskondensators C6 verbunden. Der aus den ohmschen Widerständen R1, R7 bestehende Spannungsteiler liegt parallel zum Glättungskondensator C6 und besitzt einen Abgriff M4, der über die Zenerdiode D6 zur Basis des Transistors T3 geführt ist.
Die Funktionsweise dieser Schaltungsanordnung entspricht weitgehend dem Funktionsprinzip der bereits oben erläuterten und in der Figur 1 abgebildeten Schaltung.
Die Transistoren T1, T2 des Halbbrückenwechselrichters schalten alternierend mit einer Frequenz oberhalb von 20 KHz, so daß der Mittenabgriff M abwechselnd mit dem Plus- bzw Minuspol des Glättungskondensators C6 verbunden ist, während der Kopplungskondensator C10 die Spannung U/2 führt, wenn die am Glättungskondensator C6 anliegende Spannung mit U bezeichnet wird. Dadurch fließt im Serienresonanzkreis ein Wechselstrom, dessen Frequenz durch die Schaltfrequenz des Wechselrichters bestimmt wird. Das Anschwingen des Wechselrichters erfolgt durch den Diac DK, der Triggerimpulse auf die Basis des Transistors T2 gibt, nachdem sich der Startkondensator C7 zuvor auf die Kippspannung des Diac DK aufgeladen hat. Nach dem erfolgreichen Anschwingen des Wechselrichters wird der Startkondensator C7 über den Knotenpunkt M3, den Widerstand R15, die Diode D5 und die Schaltstrecke des Transistors T1 oder T2 soweit entladen, daß die Kippspannung des Diac DK unterschritten wird und dieser keine weiteren Triggerimpulse an den Transistor T2 geben kann.
Vor dem Durchzünden der Niederdruckentladungslampe LP fließt zunächst durch die Elektrodenwendeln E1, E2, die Kapazität C12 und den Kaltleiter R12 ein Heizstrom. Nach ausreichender Elektrodenvorheizung wird der Kaltleiter R12 hochohmig, so daß sich an den nun in Reihe geschalteten, parallel zur Lampe LP angeordneten Kapazitäten C12, C15 im Zusammenspiel mit der Resonanzinduktivität LD mittels Resonanzüberhöhung die für die Lampe LP erforderliche Zündspannung aufbaut. Die Lampe LP zündet durch und es stellt sich über der Lampe die niedrigere Betriebsspannung ein.
Die Funktionsweise des aus den Dioden D11 bis D14 und aus den Kondensatoren C8, C13 bestehenden aktiven Oberwellenfilters in Kombination mit der Resonanzinduktivität LD und den Kondensatoren C5, C6 ist detailliert in der DE 36 23 749 A1 beschrieben und soll daher hier nicht näher ausgeführt werden. Das aktive Oberwellenschrieben und soll daher hier nicht näher ausgeführt werden. Das aktive Oberwellenfilter pumpt mit Hilfe der Kondensatoren C8, C9, C13 laufend Energie aus dem Serienresonanzkreis in den Glättungskondensator C6 zurück, so daß eine annähernd sinusförmige Netzstromentnahme möglich wird.
Der bistabile Multivibrator, im wesentlichen bestehend aus den Transistoren T3, T4, wird vom Startkondensator C7 gespeist. Nach dem Einschalten der Schaltungsanordnung wird der bistabile Multivibrator mit der am Startkondensator C7 ansteigenden Spannung dadurch definiert rückgesetzt, daß über den Widerstand R10 und die Gate-Source-Kapazität des Feldeffekt-Transistors T5 die Basis-Emitter-Spannung am Transistor T3 stärker verzögert wird als die am Transistor T4, so daß der Transistor T3 sperrt, während der Transistor T4 leitet. Der Feldeffekt-Transistor T5 sperrt ebenfalls. Am Startkondensator C7 baut sich die Kippspannung des Diac DK auf, so daß dieser Triggerimpulse auf die Basis des Transistors T2 gibt. Schwingt der Wechselrichter, so schalten die Transistoren T1, T2 alternierend und der Startkondensator C7 wird über den Widerstand R15, die Diode D5 und die Schaltstrecke des Transistors T1 oder T2 soweit entladen, daß die Durchbruchspannung des Diac DK unterschritten wird und keine weiteren Triggerimpulse generiert werden. Die Transistoren T3, T4 und T5 behalten ihren Ausgangszustand bei.
Ein anomaler Betriebszustand des Halbbrückenwechselrichters äußert sich bei der vorliegenden Schaltungsanordnung in einem überhöhten Spannungsabfall am Glättungskondensator C6. Wird ein durch die Zenerdiode D6, die Spannungsteilerwiderstände R1, R7 und den Transistor T3 definierter Schwellwert überschritten, fließt ein Basisstrom für den Transistor T3 und der bistabile Multivibrator wird zurückgesetzt, d.h., die Schaltstrecke des Transistors T3 leitet und die des Transistors T4 sperrt. Der Feldeffekt-Transistor T5 wird nun vom bistabilen Multivibrator durchgeschaltet, so daß der Basis des Halbbrückentransistors T2 über den Widerstand R14 und über die jetzt leitfähige Source-Drain-Strecke des Feldeffekt-Transistors T5 das Steuersignal entzogen wird. Der Wechselrichter wird entregt und die Spannung am Startkondensator C7 bleibt aufgrund der Belastung durch den nun parallel geschalteten Widerstand R9 unterhalb der Kippspannung des Diac DK. Es werden somit keine Triggerimpulse vom Diac DK erzeugt. Der Wechselrichter kann erst wieder anschwingen, wenn der bistabile Multivibrator durch Unterbrechen der Spannungsversorgung erneut gesetzt wird.
Die Erfindung beschränkt sich nicht auf das oben näher beschriebene Ausführungsbeispiel. So kann die erfindungsgemäße Abschaltungsvorrichtung, bestehend aus den elektrischen Bauelementen 9 und 17 bis 26, auch in eine Schaltungsanordnung zum Betrieb von Niedervolt-Halogenglühlampen integriert werden. Der Spannungsteiler 24, 25 ist hier allerdings nicht parallel zum Eingangskondensator 1 geschaltet, sondern Bestandteil des Last- oder Lampenstromkreises. Im Falle eines anomalen Betriebszustandes, d.h., im Falle eines Kurzschlusses, verursacht der Kurzschlußstrom in den Spannungsteilerwiderständen einen überhöhten Spannungsabfall, der von der Zenerdiode 26 detektiert wird und zur Auslösung der Abschaltungsvorrichtung führt. Der Spannungsteiler 24, 25 kann bei einer Schaltungsanordnung für Niedervolt-Halogenglühlampen auch durch einen einfachen Last- oder Emitterwiderstand ersetzt werden, der mit dem Emitteranschluß des Halbbrücken-Transistors 3 und dem Minuspol des Eingangskondensators 1 verbunden ist, und zu dem die Zenerdiode 26 parallel geschaltet ist.
Ferner kann bei Schaltungsanordnungen, bei denen der Wechselrichter nach jeder Netzhalbwelle neu gestartet wird, auf den Feldeffekt-Transistor verzichtet werden, da bei diesen Schaltungen nur der Triggerimpuls vom Diac unterdrückt werden muß, der den Start des Wechselrichters auslöst.
Außerdem kann der bistabile Multivibrator platzsparend als ein in C-MOS Technik ausgeführter integrierter Schaltkreis realisiert werden. Für die erfindungsgemäße Schaltungsanordnung eignet sich insbesondere ein D-Flip-Flop, bei dem ein unbestimmter Ausgangszustand nicht auftreten kann. Dadurch eröffnet sich die Möglichkeit, die Schaltungsanordnung über einen Sensor, beispielsweise einen Berührungskontakt mit nachgeschalteter Auswertungslogik, extem abzuschalten, indem der Takteingang des D-Flip-Flops vom Sensor gesteuert wird.
Die erfindungsgemäße Abschaltungsvorrichtung kann auch in einen Vollbrückenwechselrichter intergiert werden.
Dimensionierung der Schaltung gemäß Figur 3
R1 2,2 MΩ, 1 %
R2 820 KΩ
R3, R4 8,2 Ω
R5, R6 0,56 Ω
R7, R9 39 KΩ
R8 510 KΩ
R10, R11, R13 330 KΩ
R14 0,22Ω
R15 33 KΩ
C5 47 nF
C6 10 µF
C7 100 nF, 63 V
C8 3,3 nF
C9 5,6 nF
C10 150 nF
C12 10 nF
C13 4,7 nF
C14 1,0 nF
C15 3,3 nF
DK N413M
T3, T4 BC547C
T5 BSS295
D2 BZX55/C10
D6 BZX55B7V5
LD 3 mH, EF16

Claims (8)

  1. Schaltungsanordnung zum Betrieb elektrischer Lampen, wobei die Schaltungsanordnung folgende Merkmale aufweist:
    ein mit Gleichspannung gespeistes Schaltnetzeil, das mindestens zwei alternierend schaltende Transistoren (2, 3; T1, T2) besitzt,
    eine Ansteuerung für die Transistoren (2, 3; T1, T2) des Schaltnetzteils
    einen parallel zu den Schaltstrecken der Transistoren (2, 3; T1, T2) des Schaltnetzteils angeordneten Glättungskondensator (1; C6)
    eine Abschaltvorrichtung, die bei einem anomalen Betriebszustand der Schaltungsanordnung diese stillegt, indem sie wenigstens einem Transistor (3; T2) des Schaltnetzteils das Steuersignal für dessen Steuerelektrode entzieht,
    dadurch gekennzeichnet, daß die Abschaltvorrichtung folgende Merkmale aufweist:
    einen steuerbaren elektronischen Schalter (23; T5), dessen Schaltstrecke parallel zur Steuerelektrode eines Transistors (3; T2) des Schaltnetzteils geschaltet ist,
    einen bistabilen Multivibrator (17, 18; T3, T4), wobei ein Ausgang des Multivibrators (17, 18; T3, T4) mit der Steuerelektrode des elektronischen Schalters (23; T5) verbunden ist und der Setz- oder Rücksetzeingang des Multivibrators (17, 18; T3, T4) mit dem Ausgang eines Schwellwertschalters (26; D6) verbunden ist.
  2. Schaltungsanordnung zum Betrieb elektrischer Lampen nach Anspruch 1, dadurch gekennzeichnet, daß der steuerbare elektronische Schalter ein Feldeffekt-transistor (23; T5) ist.
  3. Schaltungsanordnung zum Betrieb elektrischer Lampen nach Anspruch 1, dadurch gekennzeichnet, daß das Schaltnetzteil ein selbstschwingender Halbbrükkenwechselrichter ist.
  4. Schaltungsanordnung zum Betrieb elektrischer Lampen nach Anspruch 1, dadurch gekennzeichnet, daß der Schwellwertschalter (26; D6) parallel zu einem Widerstand (25; R7) eines Spannungsteilers (24, 25; R1, R7) geschaltet ist, wobei der Spannungsteiler (24, 25; R1, R7) parallel zum Glättungskondensator (1; C6) angeordnet ist.
  5. Schaltungsanordnung zum Betrieb elektrischer Lampen nach Anspruch 1, dadurch gekennzeichnet, daß der bistabile Multivibrator ein in C-MOS-Technik ausgeführter integrierter Schaltkreis ist.
  6. Schaltungsanordnung zum Betrieb elektrischer Lampen nach Anspruch 5, dadurch gekennzeichnet, daß der bistabile Multivibrator ein D-Flip-Flop ist.
  7. Schaltungsanordnung zum Betrieb elektrischer Lampen nach Anspruch 6, dadurch gekennzeichnet, daß der Takteingang des D-Flip-Flops von einem Sensor mit nachgeschalteter Auswertungslogik gesteuert wird.
  8. Schaltungsanordnung zum Betrieb elektrischer Lampen nach Anspruch 7, dadurch gekennzeichnet, daß der Sensor ein Berührungskontakt ist.
EP94113515A 1993-10-06 1994-08-30 Schaltungsanordnung zum Betrieb elektrischer Lampen Revoked EP0648068B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4334076A DE4334076A1 (de) 1993-10-06 1993-10-06 Schaltungsanordnung zum Betrieb elektrischer Lampen
DE4334076 1993-10-06

Publications (2)

Publication Number Publication Date
EP0648068A1 EP0648068A1 (de) 1995-04-12
EP0648068B1 true EP0648068B1 (de) 1998-08-12

Family

ID=6499549

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94113515A Revoked EP0648068B1 (de) 1993-10-06 1994-08-30 Schaltungsanordnung zum Betrieb elektrischer Lampen

Country Status (2)

Country Link
EP (1) EP0648068B1 (de)
DE (2) DE4334076A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505459A1 (de) * 1995-02-17 1996-08-22 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb einer Entladungslampe
JP3210561B2 (ja) * 1995-06-14 2001-09-17 株式会社小糸製作所 放電灯点灯回路
US5783911A (en) * 1995-07-12 1998-07-21 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Circuit arrangement for operating electric lamps, and operating method for electric lamps
US6005354A (en) * 1996-10-21 1999-12-21 International Rectifier Corporation Ballast IC with shut-down function
EP1438879A1 (de) * 2001-10-01 2004-07-21 Koninklijke Philips Electronics N.V. Selbstschwingende brückenschaltung mit anlaufschaltung
DE102005028419A1 (de) * 2005-06-20 2006-12-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Abschaltschaltung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538095A (en) * 1983-06-03 1985-08-27 Nilssen Ole K Series-resonant electronic ballast circuit
US4680506A (en) * 1984-12-10 1987-07-14 Nilssen Ole K Inverter-type microwave oven power supply
DE3700421A1 (de) * 1987-01-08 1988-07-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum betrieb einer niederdruckentladungslampe

Also Published As

Publication number Publication date
EP0648068A1 (de) 1995-04-12
DE59406663D1 (de) 1998-09-17
DE4334076A1 (de) 1995-06-08

Similar Documents

Publication Publication Date Title
DE2941822C2 (de)
EP0679046B1 (de) Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen
EP0798952B1 (de) Schaltungsanordnung zum Betrieb von elektrischen Lampen und Betriebsverfahren für elektrische Lampen
EP0239793B1 (de) Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen
EP0264765B1 (de) Schaltungsanordnung zum Betrieb von Niedervolt-Halogenglühlampen
EP0800335B1 (de) Schaltungsanordnung zum Betrieb elektrischer Lampen
EP0062275B1 (de) Vorschaltanordnung zum Betreiben von Niederdruckentladungslampen
WO1993012631A1 (de) Schaltungsanordnung zum betrieb einer oder mehrerer niederdruckentladungslampen
EP0693864B1 (de) Schaltungsanordnung zum Betrieb einer oder mehrerer Niederdruckentladungslampen
EP0062276B1 (de) Vorschaltanordnung zum Betreiben von Niederdruckentladungslampen
DE19819027A1 (de) Schaltungsanordnung zum Betrieb mindestens einer Entladungslampe
EP0753987B1 (de) Schaltungansordnung zum Betrieb elektrischer Lampen und Betriebsverfahren für elektrische Lampen
EP0648068B1 (de) Schaltungsanordnung zum Betrieb elektrischer Lampen
EP1608208B1 (de) Schaltung mit Abschalteinrichtung zum Betrieb von Lichtquellen
DE19715341C1 (de) Elektronisches Vorschaltgerät mit automatischem Wiederanlauf
DE3137940C2 (de) Elektronisches Vorschaltgerät für mindestens eine Leuchtstofflampe
DE3504803A1 (de) Gegentaktgenerator
EP0276460A1 (de) Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe
DE1803486A1 (de) Schaltungsanordnung zum Betrieb eines selbstgesteuerten Transistorwechselrichters
DE4143488C2 (de) Elektronisches Vorschaltgerät
DE3013805A1 (de) Schaltung zum starten und stabilisieren einer bogenentladungslampe
DE3429773C2 (de)
DE2954614C2 (de)
EP0541908A1 (de) Schaltungsanordnung zum Betrieb einer oder mehrerer Niederdruckentladungslampen
DE19525123A1 (de) Schaltungsanordnung zum Betrieb elektrischer Lampen und Betriebsverfahren für elektrische Lampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19950518

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971202

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59406663

Country of ref document: DE

Date of ref document: 19980917

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981013

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: VOSSLOH-SCHWABE GMBH

Effective date: 19990512

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011022

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020808

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020813

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020820

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020829

Year of fee payment: 9

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20020630

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20020630

NLR2 Nl: decision of opposition

Effective date: 20020630