EP0644996B1 - Gas cooling process and plant, especially for natural gas liquefaction - Google Patents

Gas cooling process and plant, especially for natural gas liquefaction Download PDF

Info

Publication number
EP0644996B1
EP0644996B1 EP94913137A EP94913137A EP0644996B1 EP 0644996 B1 EP0644996 B1 EP 0644996B1 EP 94913137 A EP94913137 A EP 94913137A EP 94913137 A EP94913137 A EP 94913137A EP 0644996 B1 EP0644996 B1 EP 0644996B1
Authority
EP
European Patent Office
Prior art keywords
liquid
cooling
pressure
natural gas
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94913137A
Other languages
German (de)
French (fr)
Other versions
EP0644996A1 (en
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Publication of EP0644996A1 publication Critical patent/EP0644996A1/en
Application granted granted Critical
Publication of EP0644996B1 publication Critical patent/EP0644996B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/60Integration in an installation using hydrocarbons, e.g. for fuel purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the present invention relates to a cooling process a fluid, especially for liquefying gas natural, as well as an integral waterfall type fluid cooling installation, where a mixture is compressed in at least two stages refrigerant composed of volatility constituents different and after at least each of the stages compression intermediates, we condense partially mixing at "room temperature", at least some of the condensed fractions as well as the high pressure gas fraction being cooled, relaxed, heat exchange relationships with the fluid to cool, then compressed again.
  • the refrigerant mixture consists of a number of fluids including, among others, nitrogen, hydrocarbons like methane, ethylene, ethane, propane, butane, pentane, etc.
  • the mixture is compressed, liquefied and then sub-cooled to the high pressure of the cycle which is generally between 20 and 50 bars.
  • This liquefaction can be carried out in one or more steps with separation of the condensed liquid at each step.
  • the liquid (s) obtained are, after their sub-cooling, relaxed at low pressure cycle, generally between 1.5 and 6 bars, and vaporized against the current of the natural gas to be liquefied and cycle gas to be cooled.
  • the refrigerant mixture After reheating in the vicinity of the room temperature, the refrigerant mixture is new tablet until high cycle pressure.
  • the invention aims to to obtain both a specific energy of the process and a relatively small investment, in best conditions.
  • the invention relates to a method according to claim 1.
  • room temperature stated at the beginning of the text as the room temperature thermodynamic reference corresponding to the coolant temperature (water in particular) available on the site and used in the cycle, increased by the difference in temperature fixed, by construction, at the outlet of the devices machine refrigerants (compressors, exchangers ). In practice, this difference is around 3 to 10 ° C, and preferably around 5 to 8 ° C.
  • the device head cooling temperature distillation (corresponding substantially to the temperature of the "liquid” acting for this purpose) will between about 0 and 20 ° C, and generally between 5 and 15 ° C, for an “ambient temperature” (or inlet line temperature) around 15 to 45 ° C, and generally between 30 and 40 ° C.
  • the subject of the invention is also a installation for cooling a fluid, in particular natural gas liquefaction, intended for the work of such a process.
  • the heat exchange line will consist of two plate heat exchangers in series, connected to each other by end domes, end to end.
  • the gas liquefaction facility natural shown in Figure 1 includes essentially: a single cycle compressor 1 to three stages 1A, 1B and 1C, each stage driving back, via a respective pipe 2A, 2B and 2C, in a respective refrigerant 3A, 3B and 3C water-cooled from sea, this water typically having a temperature of on the order of + 25 to + 35 ° C; a pump 4; a column of distillation 5 having some theoretical plateaus; of separator pots 6B, 6C, the top of which communicates respectively with the suction of stages 1B and 1C; a heat exchange line 7 comprising two heat exchangers in series, namely a "hot" heat exchanger 8 and a "cold” exchanger 9; a separator pot intermediate 10; an auxiliary liquid circuit 11 cooling ; an auxiliary heat exchanger 12; a denitrogenation column 13; and a storage of liquefied natural gas (LNG) 14.
  • LNG liquefied natural gas
  • the outlet of the 3A refrigerant leads into the separator 6, the bottom of which is connected to the suction of pump 4, while the latter flows back into the driving 2B.
  • 3B refrigerant outlet communicates with the tank in column 5, and the bottom of the separator 6C is connected by gravity, via a siphon 15 and a valve 16, at the head of column 5.
  • Exchangers 8, 9 are exchangers parallelepipedic with aluminum plates possibly brazed, with counter-current circulation of the set fluids in heat exchange relationship, and have the same length. They each include the passages necessary to ensure the functioning which will be described below.
  • the refrigerant mixture consisting of C1 to C5 hydrocarbons and nitrogen, comes out of the top (hot end) of the exchanger 8 in the gaseous state and via a line 17 to the suction of the first compressor stage 1A.
  • first intermediate pressure P1 typically of the order of 8 at 12 bar
  • second pressure intermediate P2 typically of the order of 14 to 20 bars, in lB
  • the mixture of the two phases is cooled and partially condensed in 3B, then distilled in 5.
  • the tank liquid in column 5 constitutes a first coolant, suitable for provide essential refrigeration of the exchanger hot 8.
  • this liquid is introduced laterally, via an input box 18, in the part upper part of this exchanger, sub-cooled in passages 19 to the cold end of the exchanger, towards - 20 to - 40 ° C, taken out laterally via a box of output 20, relaxed at low cycle pressure, which is typically of the order of 2.5 to 3.5 bars, in a expansion valve 21, and reintroduced in the form two-phase at the cold end of the same exchanger via a side box 22 and a distribution device suitable for spraying in low passages pressure 23 of the exchanger.
  • the head vapor of column 5 is cooled and partially condensed in passages 24 of exchanger 8 up to a temperature intermediate significantly below temperature ambient, for example up to + 5 to + 10 ° C, then introduced into pot 6C.
  • the liquid phase returns in reflux by gravity, via the siphon 15 and the valve 16, in head of column 5, while the vapor phase is compressed at high cycle pressure, typically from around 40 bars, in lC, then is reduced to + 30 to + 40 ° C in 3C.
  • This vapor phase is then cooled from the hot end to the cold end of the exchanger 8 in high pressure passages 25, and separated into two phases in 10.
  • the refrigeration of exchanger 9 is obtained by means of the high pressure fluid, the next way.
  • the liquid collected in 10 is sub-cooled in the hot part of the exchanger 9, in passages 27, then exited the exchanger, relaxed at the low pressure in an expansion valve 28, reintroduced into the exchanger and vaporized in the part hot low pressure passages 29 thereof.
  • the vapor phase from separator 10 is cooled, condensed and sub-cooled from the hot end to the cold end of the exchanger 9, and the liquid thus obtained is relaxed at low pressure in an expansion valve 30, and reintroduced at the cold end of the exchanger for be sprayed in the cold part of the lower passages pressure 29 then joined to the expanded fluid at 28.
  • Processed natural gas arriving at + 20 ° C, after drying, via line 31, is laterally introduced into the exchanger 8 and cooled to the cold end of it in passages 32.
  • natural gas is sent to a hydrocarbon removal device 33 in C2 to C5, and the remaining mixture, consisting mainly methane and nitrogen, with a small amount of ethane and propane, is divided in half streams: a first stream, cooled, liquefied and sub-cooled from the hot end to the cold end of the auxiliary exchanger 12 then expanded to 1.2 bar in an expansion valve 34, and a second current, cooled, liquefied and sub-cooled from hot end to cold end of the exchanger 9 in passages 35, sub-cooled again around 8-10 ° C in a coil 36 forming column reboiler 13, and expanded to around 1.2 bar in an expansion valve 37.
  • the two relaxed currents are united then introduced at reflux at the top of column 13, which thus ensures the denitrogenation of natural gas.
  • the liquid of the bottom of this column constitutes nitrogenous LNG produced by the facility and sent to storage 14, while the overhead steam is reheated to - 20 to - 40 ° C from the cold end to the hot end of the exchanger 12 and is sent via a line 38 to the "fuel gas" network to be burned or used in a gas turbine of the installation used to drive the compressor 1.
  • a cut additional on natural gas can be performed in the exchanger 9 at a temperature allowing recover additional quantities of hydrocarbons in C2 and C3 in the apparatus 33.
  • the hottest part of exchanger 8 can be used to cool from + 40 at around + 20 ° C a suitable liquid, especially pentane, put into circulation in passages 40 of the exchanger by a pump 41 and serving to refrigerate another part of the installation, for example gas natural raw intended to be dried before treatment in the liquefaction plant.
  • This circulation of liquid constitutes the refrigerant circuit 11 cited above.
  • the cutoff at around - 20 to - 40 ° C between the two exchangers also correspond to heat exchange surfaces of the same order above and below this cut, so that we can use two exchangers 8 and 9 of maximum length under thermal performance conditions optimal, and a single separator pot 10, at the cutoff above, for the high pressure fluid.
  • the outlet of the 3B refrigerant opens in a 6D separator pot, the vapor phase of which supplies the 1D stage.
  • the repression of it is cooled by a 3D refrigerant then introduced to the base from column 5.
  • the liquid in the 6D pot constitutes a additional coolant, sub-cooled in additional passages 45 provided in the hot part exchanger 8, out of it, relaxed at low pressure in an expansion valve 46 and reintroduced in the exchanger to be vaporized in the part low pressure passages 23.
  • the overhead vapor from the column 5 is sent directly to the suction of the last stage of compression 1C, and the high fluid pressure is sent to the base of a dephlegmator 47 cooled by seawater runoff around tubes vertical 48.
  • the majority of heavy products are collected at the base of the dephlegmator, relaxed in an expansion valve 49 and introduced at reflux at the head from column 5, and the top vapor from the dephlegmator as above, forms the high refrigerant pressure, which is cooled to the cold end of exchanger 8 then, after phase separation at 10, to the cold end of the exchanger 9.
  • FIG. 3 shows a mode of realization of a heat exchanger which can be used as an intermediate refrigerant 3B.
  • This exchanger comprises a calender 50 in which a number of vertical tubes 51 open to their two ends extend between an upper shelf 52 and a lower plate 53. Between these plates, and at the outside of the tubes, are mounted a number horizontal baffles 54. Cooling water arrives via a lower pipe 55 on the tray 52, flows upward through tubes 51 and is discharged through an upper pipe 56. The two-phase mixture carried by line 2B penetrates laterally in the grille under the plate 52 and descends along the baffles, then exits by the pipe outlet 57 of the exchanger, located a little above the tray 53.
  • Figure 4 shows another variant arrangement of the distillation column 5.
  • the column head vapor is heated a few degrees Celsius in an exchanger auxiliary heat 58, then sent to suction of the last compression stage 1C.
  • the high fluid pressure after cooling and condensing partial in 3C around + 30 to + 40 ° C, is separated in two phases in a separator pot 59.
  • the vapor from this pot constitutes the high pressure refrigerant, while the liquid phase, after sub-cooling a few degrees Celsius in the exchanger 58, is expanded in an expansion valve 49 as in Figure 2 and then introduced under reflux at the top of column 5.
  • sub-cooling 58 is optional.
  • the denitrogenation column 13 must operate at 1.15 bar or 1.2 bar, and therefore the nitrogen-free LNG leaving the tank of this column should be relaxed to atmospheric pressure at the entrance to storage 14, which produces gas from flash.
  • This gas, as well as the gas resulting from the inputs of heat in storage 14, must therefore be taken up and compressed by an auxiliary compressor to be distributed to the "fuel gas" network.
  • Figure 5 shows a arrangement which eliminates this compressor auxiliary, in the event that LNG leaving exchanger 9 contains a few% of nitrogen.
  • the LNG leaving the exchanger 9 is sub-cooled in the coil 36 of the column 13 and again sub-cooled in a heat exchanger auxiliary heat 60.
  • the liquid is then expanded around 1.2 bar in the expansion valve 37 and the turbine 39, then divided into two streams: a stream which is vaporized in a heat exchanger 60 then introduced to a intermediate level in column 13, and a current which is sent in reflux at the head of the latter.
  • the tank liquid from column 13, which is LNG without nitrogen, is then, for each storage, divided into two streams, one of which is sub-cooled in the exchanger 60 while the other passes through a bypass 61 to adjust the degree of subcooling overall, the circulation of the liquid being provided by a pump 62.
  • the overhead vapor of column 5 is generally rich enough in methane to be recovered as "fuel gas", in the sense indicated upper. It is therefore necessary to provide another auxiliary compressor for this purpose. If more cycle compressor 1 is driven by a turbine gas, it is necessary to supply it with gas fuel under a pressure of the order of 20 to 25 bars, which leads to installing a compressor high power auxiliary.
  • the layout of the Figure 6 shows how we can remove the need of such an auxiliary compressor.
  • the portion of natural gas from the device 33 which is treated in the exchanger 12 is cooled only to an intermediate temperature T1, then is introduced into the tank of column 63, via a pipe 65 while the rest of this natural gas is only cooled in the exchanger 9 to a intermediate temperature T2 lower than T1 then introduced at an intermediate level of the same column, via a pipe 66.
  • the cooling of the condenser 64 is assured by expanding part of the liquid around 25 bars of the column tank in an expansion valve 67.
  • the gas resulting from this vaporization has the same composition as the column bottom liquid, that is to say has a low nitrogen content, and therefore constitutes a combustible gas at 25 bars directly usable, via a pipe 68, in the gas turbine 69.
  • the rest of the column tank liquid 63 is, after sub-cooling partly in the cold part of the exchanger 9 and in the coil 36 of column 13, and partly in the cold part exchanger 12, expanded at 37, respectively at 70, and introduced to an intermediate level of the column 13.
  • the overhead vapor of column 63 containing 30 to 35% nitrogen, is cooled and condensed in the part exchanger 9 cold, sub-cooled in that of the exchanger 12, and, after expansion in a valve trigger 71, introduced in reflux at the top of the column 13.
  • the nitrogen enrichment of the washing of column 13 thus obtained has the consequence that the nitrogen vapor from this column is sufficient low in methane, for example contains 10 to 15% of methane, to be vented through the pipeline 38 after heating in 12.
  • a fraction of the natural gas to be treated conveyed by the line 31 can be cooled in the hot part of the exchanger 12 before being sent to the device 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

In this process, which incorporates an integral cascade, the coolant mixture issuing from the penultimate stage (1B) of the compressor cycle (1) is delivered to a distillation apparatus (5) the head vapor of which is cooled (in 24) to a temperature significantly lower than the ambient temperature, then separated into two phases (in 6C); the vapor stage is supplied to the last stage (1C) of the compressor, and the liquid phase constitutes a coolant fluid for the hot part (8) of the heat exchange line (7).

Description

La présente invention concerne un procédé de refroidissement d'un fluide, notamment pour la liquéfaction de gaz naturel, ainsi qu'une installation de refroidissement d'un fluide du type à cascade incorporé intégrale, où l'on comprime en au moins deux stades un mélange frigorigène composé de constituants de volatilités différentes et, après au moins chacun des stades intermédiaires de compression, on condense partiellement le mélange à "une température ambiante", certaines au moins des fractions condensées ainsi que la fraction gazeuse haute pression étant refroidies, détendues, mises en relation d'échange de chaleur avec le fluide à refroidir, puis comprimées de nouveau.The present invention relates to a cooling process a fluid, especially for liquefying gas natural, as well as an integral waterfall type fluid cooling installation, where a mixture is compressed in at least two stages refrigerant composed of volatility constituents different and after at least each of the stages compression intermediates, we condense partially mixing at "room temperature", at least some of the condensed fractions as well as the high pressure gas fraction being cooled, relaxed, heat exchange relationships with the fluid to cool, then compressed again.

Conformément aux préambules des revendications 1 et 9 respectivement, un tel procédé et une telle installation sont connus par EP-A-0 117 793.In accordance with the preambles of claims 1 and 9 respectively, such a method and such an installation are known from EP-A-0 117 793.

Les pressions dont il est question ci-dessous sont des pressions absolues.The pressures discussed below are absolute pressures.

Il a été proposé depuis longtemps de liquéfier le gaz naturel en utilisant un cycle frigorifique dit "à cascade incorporée" utilisant un mélange de fluides.It has long been proposed to liquefy natural gas using a cycle called "built-in cascade" refrigerator using a mixture of fluids.

Le mélange frigorigène est constitué d'un certain nombre de fluides dont, entre autres, l'azote, des hydrocarbures comme le méthane, l'éthylène, l'éthane, le propane, le butane, le pentane, etc...The refrigerant mixture consists of a number of fluids including, among others, nitrogen, hydrocarbons like methane, ethylene, ethane, propane, butane, pentane, etc.

Le mélange est comprimé, liquéfié puis sous-refroidi à la haute pression du cycle qui est généralement comprise entre 20 et 50 bars. Cette liquéfaction peut être réalisée en une ou plusieurs étapes avec séparation du liquide condensé a chaque étape. The mixture is compressed, liquefied and then sub-cooled to the high pressure of the cycle which is generally between 20 and 50 bars. This liquefaction can be carried out in one or more steps with separation of the condensed liquid at each step.

Le ou les liquides obtenus sont, après leur sous-refroidissement, détendus à la basse pression du cycle, généralement comprise entre 1,5 et 6 bars, et vaporisés en contre-courant du gaz naturel à liquéfier et du gaz de cycle à refroidir.The liquid (s) obtained are, after their sub-cooling, relaxed at low pressure cycle, generally between 1.5 and 6 bars, and vaporized against the current of the natural gas to be liquefied and cycle gas to be cooled.

Après réchauffage au voisinage de la température ambiante, le mélange frigorigène est de nouveau comprimé jusqu'à la haute pression du cycle.After reheating in the vicinity of the room temperature, the refrigerant mixture is new tablet until high cycle pressure.

Pour que le fonctionnement soit possible, il est nécessaire de disposer d'un fluide capable de se condenser à la température ambiante à la haute pression du cycle. Ceci pose une difficulté particulière, provenant du fait que le mélange et les pressions sont généralement optimisés pour la partie froide de l'installation de liquéfaction et conviennent mal à une réfrigération également performante dans la partie chaude, c'est-à-dire comprise entre la température ambiante (généralement de l'ordre de + 30 à + 40°C dans les régions productrices de gaz naturel) et une température intermédiaire de l'ordre de - 20 à -40°C.To make operation possible, it is necessary to have a fluid capable of condense at room temperature at high pressure of the cycle. This poses a particular difficulty, from the fact that the mixture and the pressures are generally optimized for the cold part of the liquefaction facility and are unsuitable for a refrigeration also effective in the part hot, i.e. between the temperature ambient (generally around + 30 to + 40 ° C in natural gas producing regions) and a intermediate temperature of the order of - 20 to -40 ° C.

De nombreuses installations existantes font ainsi appel, pour la partie chaude, à un cycle de réfrigération séparé, à propane ou à mélange propaneéthane. On obtient ainsi une dépense d'énergie spécifique relativement faible, mais au prix d'un alourdissement important de la complexité et du coût de l'installation.Many existing installations make so call, for the hot part, to a cycle of separate, propane or propaneethane mixture refrigeration. We thus obtain an energy expenditure relatively low specific, but at the cost of significant increase in the complexity and cost of the installation.

Il est déjà connu dans EP-A-0 117 793 un procédé de refroidissement reprenant les caractéristiques énoncées au préambule de la revendication 1. He is already known in EP-A-0 117 793 a cooling process using the characteristics set out in the preamble of claim 1.

Mais dans ce document,lorsqu'un appareil de distillation est prévu pour distiller donc le gaz issu de l'avant-dernier étage de compression (Figure 3), un appareil dit "réfrigérant" suivi d'un séparateur assurent un refroidissement avec renvoi partiel en tête de colonne du fluide qui en sort en partie supérieure, le reste de ce fluide partiellement condensé et séparé (à savoir la fraction vapeur) étant envoyé au dernier étage de compression.But in this document, when a distillation is planned to distill the gas from of the penultimate compression stage (Figure 3), a "refrigerant" device followed by a separator provide cooling with partial return at the top column of the fluid which leaves there at the top, the rest of this fluid partially condensed and separated (i.e. the vapor fraction) being sent to the last compression stage.

Or, avec un tel agencement, la tête de l'appareil de distillation ne peut être suffisamment refroidie.However, with such an arrangement, the head of the distillation apparatus cannot be sufficiently cooled.

Et il est considéré que ceci ne constitue pas une optimisation du cycle opératoire.And it is considered that this does not constitute not an optimization of the operating cycle.

Dans ces conditions, l'invention vise à d'obtenir à la fois une énergie spécifique du procédé et un investissement relativement réduits, dans les meilleures conditions.Under these conditions, the invention aims to to obtain both a specific energy of the process and a relatively small investment, in best conditions.

Pour ce faire, l'invention concerne un procédé selon la revendication 1. To do this, the invention relates to a method according to claim 1.

Par souci de clarté, on définira la "température ambiante" énoncée en début de texte comme la température de référence thermodynamique correspondant à la température du fluide de refroidissement (eau notamment) disponible sur le site et utilisé dans le cycle, augmentée de l'écart de température que l'on se fixe, par construction, à la sortie des appareils réfrigérants de machine (compresseurs, échangeurs...). En pratique, cet écart est d'environ 3 à 10°C, et de préférence de l'ordre de 5 à 8°C.For the sake of clarity, we will define the "room temperature" stated at the beginning of the text as the room temperature thermodynamic reference corresponding to the coolant temperature (water in particular) available on the site and used in the cycle, increased by the difference in temperature fixed, by construction, at the outlet of the devices machine refrigerants (compressors, exchangers ...). In practice, this difference is around 3 to 10 ° C, and preferably around 5 to 8 ° C.

On notera également, dès à présent, que la température de refroidissement de la tête de l'appareil de distillation (correspondant sensiblement à la température du "liquide" agissant à cet effet) sera comprise entre environ 0 et 20°C, et généralement entre 5 et 15°C, pour une "température ambiante" (ou température d'entrée dans la ligne d'échange) de l'ordre de 15 à 45°C, et généralement comprise entre 30 et 40°C.It will also be noted, as of now, that the device head cooling temperature distillation (corresponding substantially to the temperature of the "liquid" acting for this purpose) will between about 0 and 20 ° C, and generally between 5 and 15 ° C, for an "ambient temperature" (or inlet line temperature) around 15 to 45 ° C, and generally between 30 and 40 ° C.

Le procédé peut comprendre par ailleurs un ou plusieurs des modes de réalisation suivants :

  • on refroidit et on condense partiellement la vapeur de tête de l'appareil de distillation par échange de chaleur avec au moins lesdites fractions détenduesque l'on fait circuler dans une ligne d'échange thermique (comprenant une partie "chaude" et une partie "froide", et on refroidit la tête de l'appareil de distillation avec la phase liquide ainsi obtenue ;
  • on refroidit et on condense partiellement au voisinage de la température ambiante le gaz issu du dernier stade de compression, on détend la phase liquide obtenue, et on refroidit la tête de l'appareil de distillation au moyen de cette phase liquide détendue ;
  • on opère une déphlegmation du gaz issu du dernier stade de compression pendant son refroidissement ;
  • on effectue un échange de chaleur indirect entre le liquide résultant du refroidissement du gaz issu du dernier stade de compression et la vapeur de tête de l'appareil de distillation avant d'envoyer cette vapeur au dernier étage de compression et de détendre ledit liquide ;
  • on pompe une partie au moins du condensat du premier stade de compression jusqu'à la pression de sortie du deuxième stade de compression, et on le mélange au gaz issu de ce deuxième stade de compression ;
  • lorsque le procédé est destiné à la liquéfaction de gaz naturel contenant de l'azote, on sous-refroidit le gaz naturel liquéfié résultant de la réfrigération puis désazoté, par échange de chaleur avec du gaz naturel liquéfié non désazoté détendu ;
  • lorsque le procédé est destiné à la liquéfaction de gaz naturel contenant de l'azote, on effectue une désazotation primaire du gaz naturel sous sa pression de traitement dans une colonne auxiliaire, on détend à une pression intermédiaire une partie du gaz naturel liquéfié ayant subi cette désazotation primaire, on vaporise le liquide ainsi détendu en refroidissant la tête de la colonne auxiliaire, ce qui produit un gaz combustible sous la pression intermédiaire, on envoie ce gaz combustible à une turbine à gaz d'entraínement du compresseur, et on traite le reste du gaz naturel liquéfié ayant subi la désazotation primaire ainsi que la vapeur de tête de la colonne auxiliaire dans une colonne de désazotation finale sous basse pression produisant en cuve le gaz naturel liquéfié désazoté destiné à être stocké.
The method can moreover comprise one or more of the following embodiments:
  • the overhead vapor of the distillation apparatus is cooled and partially condensed by heat exchange with at least the said expanded fractions which are circulated in a heat exchange line (comprising a "hot" part and a "cold" part ", and the head of the distillation apparatus is cooled with the liquid phase thus obtained;
  • the gas from the last compression stage is partially cooled and partially condensed near ambient temperature, the liquid phase obtained is expanded, and the head of the distillation apparatus is cooled by means of this expanded liquid phase;
  • a gas dephlegmation from the last stage of compression is operated during its cooling;
  • an indirect heat exchange is carried out between the liquid resulting from the cooling of the gas originating from the last stage of compression and the overhead vapor of the distillation apparatus before sending this vapor to the last compression stage and expanding said liquid;
  • pumping at least part of the condensate from the first compression stage to the outlet pressure of the second compression stage, and mixing it with the gas from this second compression stage;
  • when the process is intended for the liquefaction of natural gas containing nitrogen, the liquefied natural gas resulting from refrigeration and then denitrogenated is sub-cooled, by heat exchange with expanded non-denitrogenated liquefied natural gas;
  • when the process is intended for the liquefaction of natural gas containing nitrogen, a primary denitrogenation of the natural gas is carried out under its treatment pressure in an auxiliary column, part of the liquefied natural gas having undergone this is expanded to an intermediate pressure primary denitrogenization, the liquid thus expanded is vaporized by cooling the head of the auxiliary column, which produces a combustible gas under intermediate pressure, this combustible gas is sent to a gas turbine driving the compressor, and the rest is treated liquefied natural gas having undergone the primary denitrogenation as well as the overhead vapor of the auxiliary column in a final denitrogenation column under low pressure producing in tank the denitrogenated liquefied natural gas intended to be stored.

L'invention a également pour objet une installation de refroidissement d'un fluide, notamment de liquéfaction de gaz naturel, destinée à la mise en oeuvre d'un tel procédé.The subject of the invention is also a installation for cooling a fluid, in particular natural gas liquefaction, intended for the work of such a process.

Cette installation comprend les caractéristiques de la revendication 9. This installation includes the features of claim 9.

Grâce aux caractéristiques de l'invention, on va pouvoir optimiser le cycle d'échange et les rendements thermique et mécanique. A noter également qu'en sortie de l'étage haute pression, le fluide est alors gazeux et ne condense pas, même si un "réfrigérant" est mis en place.Thanks to the features of the invention, we will be able to optimize the exchange cycle and thermal and mechanical yields. Also note when leaving the high pressure stage, the fluid is then gaseous and does not condense, even if a "refrigerant" is set up.

Dans un mode de réalisation particulier, la ligne d'échange thermique sera constituée de deux échangeurs à plaques en série, reliés l'un à l'autre par des dômes d'extrémité, bout à bout.In a particular embodiment, the heat exchange line will consist of two plate heat exchangers in series, connected to each other by end domes, end to end.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en relation avec les dessins annexés, où :

  • la Figure 1 représente schématiquement une installation de liquéfaction de gaz naturel conforme à l'invention ;
  • la Figure 2 représente schématiquement un autre mode de réalisation de l'installation suivant l'invention ;
  • la Figure 3 représente plus en détail un élément de l'installation de la Figure 2 ;
  • la Figure 4 représente schématiquement une partie d'une variante de l'installation de la Figure 1 ;
  • la Figure 5 représente schématiquement une variante de la partie froide de l'installation de la Figure 1 ou de la Figure 2 ; et
  • la Figure 6 est une vue partielle schématique d'une autre variante d'installation.
Examples of implementation of the invention will now be described in relation to the accompanying drawings, in which:
  • Figure 1 schematically shows a natural gas liquefaction installation according to the invention;
  • Figure 2 schematically shows another embodiment of the installation according to the invention;
  • Figure 3 shows in more detail an element of the installation of Figure 2;
  • Figure 4 schematically shows part of a variant of the installation of Figure 1;
  • Figure 5 schematically shows a variant of the cold part of the installation of Figure 1 or Figure 2; and
  • Figure 6 is a partial schematic view of another alternative installation.

L'installation de liquéfaction de gaz naturel représentée à la Figure 1 comprend essentiellement : un compresseur de cycle unique 1 à trois étages 1A, 1B et 1C, chaque étage refoulant, via une conduite respective 2A, 2B et 2C, dans un réfrigérant respectif 3A, 3B et 3C refroidi à l'eau de mer, cette eau ayant typiquement une température de l'ordre de + 25 à + 35°C ; une pompe 4 ; une colonne de distillation 5 ayant quelques plateaux théoriques ; des pots séparateurs 6B, 6C dont le sommet communique respectivement avec l'aspiration des étages 1B et 1C ; une ligne d'échange thermique 7 comprenant deux échangeurs en série, à savoir un échangeur "chaud" 8 et un échangeur "froid" 9 ; un pot séparateur intermédiaire 10 ; un circuit auxiliaire 11 de liquide de refroidissement ; un échangeur de chaleur auxiliaire 12 ; une colonne de désazotation 13 ; et un stockage de gaz naturel liquéfié (GNL) 14.The gas liquefaction facility natural shown in Figure 1 includes essentially: a single cycle compressor 1 to three stages 1A, 1B and 1C, each stage driving back, via a respective pipe 2A, 2B and 2C, in a respective refrigerant 3A, 3B and 3C water-cooled from sea, this water typically having a temperature of on the order of + 25 to + 35 ° C; a pump 4; a column of distillation 5 having some theoretical plateaus; of separator pots 6B, 6C, the top of which communicates respectively with the suction of stages 1B and 1C; a heat exchange line 7 comprising two heat exchangers in series, namely a "hot" heat exchanger 8 and a "cold" exchanger 9; a separator pot intermediate 10; an auxiliary liquid circuit 11 cooling ; an auxiliary heat exchanger 12; a denitrogenation column 13; and a storage of liquefied natural gas (LNG) 14.

La sortie du réfrigérant 3A débouche dans le séparateur 6, dont le fond est relié à l'aspiration de la pompe 4, tandis que celle-ci refoule dans la conduite 2B. La sortie du réfrigérant 3B communique avec la cuve de la colonne 5, et le fond du séparateur 6C est relié par gravité, via un siphon 15 et une vanne de réglage 16, à la tête de la colonne 5.The outlet of the 3A refrigerant leads into the separator 6, the bottom of which is connected to the suction of pump 4, while the latter flows back into the driving 2B. 3B refrigerant outlet communicates with the tank in column 5, and the bottom of the separator 6C is connected by gravity, via a siphon 15 and a valve 16, at the head of column 5.

Les échangeurs 8, 9 sont des échangeurs parallélepipédiques à plaques d'aluminium possiblement brasées, à circulation à contre-courant des fluides mis en relation d'échange thermique, et ont la même longueur. Ils comportent chacun les passages nécessaires pour assurer le fonctionnement qui sera décrit ci-dessous.Exchangers 8, 9 are exchangers parallelepipedic with aluminum plates possibly brazed, with counter-current circulation of the set fluids in heat exchange relationship, and have the same length. They each include the passages necessary to ensure the functioning which will be described below.

Le mélange frigorigène, constitué d'hydrocarbures en C1 à C5 et d'azote, sort du sommet (bout chaud) de l'échangeur 8 à l'état gazeux et parvient via une conduite 17 à l'aspiration du premier étage de compresseur 1A.The refrigerant mixture, consisting of C1 to C5 hydrocarbons and nitrogen, comes out of the top (hot end) of the exchanger 8 in the gaseous state and via a line 17 to the suction of the first compressor stage 1A.

Il est ainsi comprimé à une première pression intermédiaire P1, typiquement de l'ordre de 8 à 12 bars, puis est refroidi vers + 30 à + 40°C en 3A et séparé en deux phases dans le pot 6B. La phase vapeur est comprimée à une deuxième pression intermédiaire P2, typiquement de l'ordre de 14 à 20 bars, en lB, tandis que la phase liquide est amenée par la pompe 4 à la même pression P2 et injectée dans la conduite 2B. Le mélange des deux phases est refroidi et partiellement condensé en 3B, puis distillé en 5.It is thus compressed to a first intermediate pressure P1, typically of the order of 8 at 12 bar, then cooled to + 30 to + 40 ° C in 3A and separated into two phases in the pot 6B. The sentence vapor is compressed at a second pressure intermediate P2, typically of the order of 14 to 20 bars, in lB, while the liquid phase is supplied by pump 4 at the same pressure P2 and injected into the driving 2B. The mixture of the two phases is cooled and partially condensed in 3B, then distilled in 5.

Le liquide de cuve de la colonne 5 constitue un premier liquide réfrigérant, adapté pour assurer l'essentiel de la réfrigération de l'échangeur chaud 8. Pour cela, ce liquide est introduit latéralement, via une boíte d'entrée 18, dans la partie supérieure de cet échangeur, sous-refroidi dans des passages 19 jusqu'au bout froid de l'échangeur, vers - 20 à - 40°C, sorti latéralement via une boíte de sortie 20, détendu à la basse pression du cycle, qui est typiquement de l'ordre de 2,5 à 3,5 bars, dans une vanne de détente 21, et réintroduit sous forme diphasique au bout froid du même échangeur via une boíte latérale 22 et un dispositif de distribution approprié, pour être vaporisé dans les passages basse pression 23 de l'échangeur. The tank liquid in column 5 constitutes a first coolant, suitable for provide essential refrigeration of the exchanger hot 8. For this, this liquid is introduced laterally, via an input box 18, in the part upper part of this exchanger, sub-cooled in passages 19 to the cold end of the exchanger, towards - 20 to - 40 ° C, taken out laterally via a box of output 20, relaxed at low cycle pressure, which is typically of the order of 2.5 to 3.5 bars, in a expansion valve 21, and reintroduced in the form two-phase at the cold end of the same exchanger via a side box 22 and a distribution device suitable for spraying in low passages pressure 23 of the exchanger.

La vapeur de tête de la colonne 5 est refroidie et partiellement condensée dans des passages 24 de l'échangeur 8 jusqu'à une température intermédiaire nettement inférieure à la température ambiante, par exemple jusqu'à + 5 à + 10°C, puis introduite dans le pot 6C. La phase liquide retourne en reflux par gravité, via le siphon 15 et la vanne 16, en tête de la colonne 5, tandis que la phase vapeur est comprimée à la haute pression du cycle, typiquement de l'ordre de 40 bars, en lC, puis est ramenée vers + 30 à + 40°C en 3C. Cette phase vapeur est ensuite refroidie du bout chaud au bout froid de l'échangeur 8 dans des passages haute pression 25, et séparée en deux phases en 10.The head vapor of column 5 is cooled and partially condensed in passages 24 of exchanger 8 up to a temperature intermediate significantly below temperature ambient, for example up to + 5 to + 10 ° C, then introduced into pot 6C. The liquid phase returns in reflux by gravity, via the siphon 15 and the valve 16, in head of column 5, while the vapor phase is compressed at high cycle pressure, typically from around 40 bars, in lC, then is reduced to + 30 to + 40 ° C in 3C. This vapor phase is then cooled from the hot end to the cold end of the exchanger 8 in high pressure passages 25, and separated into two phases in 10.

Pour compléter la réfrigération de l'échangeur 8, on peut, comme représenté en trait interrompu, sous-refroidir jusqu'à une température intermédiaire une partie du liquide recueilli en 6B, puis le sortir latéralement de l'échangeur, le détendre à la basse pression dans une vanne de détente 26, et le réintroduire latéralement dans l'échangeur pour le vaporiser dans la partie intermédiaire des passages basse pression 23.To complete the refrigeration of the exchanger 8, it is possible, as shown in line interrupted, subcool to a temperature intermediate part of the liquid collected in 6B, then remove it laterally from the exchanger, relax it at low pressure in an expansion valve 26, and the reintroduce laterally into the exchanger for the spray in the middle of the passages low pressure 23.

La réfrigération de l'échangeur 9 est obtenue au moyen du fluide haute pression, de la manière suivante.The refrigeration of exchanger 9 is obtained by means of the high pressure fluid, the next way.

Le liquide recueilli en 10 est sous-refroidi dans la partie chaude de l'échangeur 9, dans des passages 27, puis sorti de l'échangeur, détendu à la basse pression dans une vanne de détente 28, réintroduit dans l'échangeur et vaporisé dans la partie chaude des passages basse pression 29 de celui-ci. La phase vapeur issue du séparateur 10 est refroidie, condensée et sous-refroidie du bout chaud au bout froid de l'échangeur 9, et le liquide ainsi obtenu est détendu à la basse pression dans une vanne de détente 30, et réintroduit au bout froid de l'échangeur pour être vaporisé dans la partie froide des passages basse pression 29 puis réuni au fluide détendu en 28.The liquid collected in 10 is sub-cooled in the hot part of the exchanger 9, in passages 27, then exited the exchanger, relaxed at the low pressure in an expansion valve 28, reintroduced into the exchanger and vaporized in the part hot low pressure passages 29 thereof. The vapor phase from separator 10 is cooled, condensed and sub-cooled from the hot end to the cold end of the exchanger 9, and the liquid thus obtained is relaxed at low pressure in an expansion valve 30, and reintroduced at the cold end of the exchanger for be sprayed in the cold part of the lower passages pressure 29 then joined to the expanded fluid at 28.

Le gaz naturel traité, arrivant vers + 20°C, après dessiccation, via une conduite 31, est introduit latéralement dans l'échangeur 8 et refroidi jusqu'au bout froid de celui-ci dans des passages 32.Processed natural gas arriving at + 20 ° C, after drying, via line 31, is laterally introduced into the exchanger 8 and cooled to the cold end of it in passages 32.

A cette température, le gaz naturel est envoyé à un appareil 33 d'élimination d'hydrocarbures en C2 à C5, et le mélange restant, constitué essentiellement de méthane et d'azote, avec une petite quantité d'éthane et de propane, est divisé en deux courants : un premier courant, refroidi, liquéfié et sous-refroidi du bout chaud au bout froid de l'échangeur auxiliaire 12 puis détendu vers 1,2 bar dans une vanne de détente 34, et un deuxième courant, refroidi, liquéfié et sous-refroidi du bout chaud au bout froid de l'échangeur 9 dans des passages 35, sous-refroidi de nouveau d'environ 8 à 10°C dans un serpentin 36 formant rebouilleur de cuve de la colonne 13, et détendu vers 1,2 bar dans une vanne de détente 37. Les deux courants détendus sont réunis puis introduits en reflux en tête de la colonne 13, qui assure ainsi la désazotation du gaz naturel. Le liquide de cuve de cette colonne constitue le GNL désazoté produit par l'installation et est envoyé au stockage 14, tandis que la vapeur de tête est réchauffée jusqu'à - 20 à - 40°C du bout froid au bout chaud de l'échangeur 12 et est envoyée via une conduite 38 au réseau "fuel gas" pour être brûlée ou utilisée dans une turbine à gaz de l'installation servant à entraíner le compresseur 1.At this temperature, natural gas is sent to a hydrocarbon removal device 33 in C2 to C5, and the remaining mixture, consisting mainly methane and nitrogen, with a small amount of ethane and propane, is divided in half streams: a first stream, cooled, liquefied and sub-cooled from the hot end to the cold end of the auxiliary exchanger 12 then expanded to 1.2 bar in an expansion valve 34, and a second current, cooled, liquefied and sub-cooled from hot end to cold end of the exchanger 9 in passages 35, sub-cooled again around 8-10 ° C in a coil 36 forming column reboiler 13, and expanded to around 1.2 bar in an expansion valve 37. The two relaxed currents are united then introduced at reflux at the top of column 13, which thus ensures the denitrogenation of natural gas. The liquid of the bottom of this column constitutes nitrogenous LNG produced by the facility and sent to storage 14, while the overhead steam is reheated to - 20 to - 40 ° C from the cold end to the hot end of the exchanger 12 and is sent via a line 38 to the "fuel gas" network to be burned or used in a gas turbine of the installation used to drive the compressor 1.

Il est à noter qu'une coupure supplémentaire sur le gaz naturel peut être effectuée dans l'échangeur 9 à une température permettant de récupérer des quantités additionnelles d'hydrocarbures en C2 et C3 dans l'appareil 33.It should be noted that a cut additional on natural gas can be performed in the exchanger 9 at a temperature allowing recover additional quantities of hydrocarbons in C2 and C3 in the apparatus 33.

Comme on l'a représenté, compte-tenu des débits très importants généralement mis en oeuvre dans une telle installation, il peut être souhaitable de détendre une partie des liquides froids dans des turbines à liquide ou "expanders" 39 pour produire du froid ainsi qu'une partie du courant électrique nécessaire. De plus, la partie la plus chaude de l'échangeur 8 peut être utilisée pour refroidir de + 40 à + 20°C environ un liquide approprié, notamment du pentane, mis en circulation dans des passages 40 de l'échangeur par une pompe 41 et servant à réfrigérer une autre partie de l'installation, par exemple le gaz naturel brut destiné à être desséché avant son traitement dans l'installation de liquéfaction. Cette circulation de liquide constitue le circuit réfrigérant 11 précité.As shown, taking into account the very high flows generally implemented in such an installation, it may be desirable to relax some of the cold liquids in liquid turbines or "expanders" 39 to produce cold as well as part of the electric current necessary. Plus, the hottest part of exchanger 8 can be used to cool from + 40 at around + 20 ° C a suitable liquid, especially pentane, put into circulation in passages 40 of the exchanger by a pump 41 and serving to refrigerate another part of the installation, for example gas natural raw intended to be dried before treatment in the liquefaction plant. This circulation of liquid constitutes the refrigerant circuit 11 cited above.

L'agencement décrit ci-dessus permet à la fois d'accélérer la condensation du mélange issu du deuxième étage de compression 1B, grâce à l'injection de liquide dans la conduite 2B au moyen de la pompe 4, de simplifier l'échangeur 8 si la totalité du liquide du pot 6B est pompé, et d'obtenir un mélange haute pression suffisamment débarrassé des produits lourds, plus précisément, dans l'exemple considéré, de la presque totalité des hydrocarbures en C5 et de la majorité des hydrocarbures en C4, pour être totalement vaporisé au bout chaud des passages 29 de l'échangeur froid 9. Ceci présente l'avantage important que ces passages peuvent déboucher dans un dôme supérieur 42 de l'échangeur 9 communiquant directement avec un dôme inférieur 43 de l'échangeur 8, sans qu'aucune redistribution diphasique soit nécessaire à la coupure entre les deux échangeurs. On peut alors simplifier encore l'installation en soudant bout à bout les deux échangeurs 8 et 9.The arrangement described above allows the times to accelerate the condensation of the mixture from the second compression stage 1B, thanks to injection liquid in line 2B by means of pump 4, to simplify the exchanger 8 if all of the liquid from pot 6B is pumped, and to obtain a high mixture pressure sufficiently freed from heavy products, more precisely, in the example considered, of the almost all of the C5 hydrocarbons and majority of C4 hydrocarbons, to be completely vaporized at the hot end of passages 29 of the exchanger cold 9. This has the important advantage that these passages can lead to an upper dome 42 of the exchanger 9 communicating directly with a dome lower 43 of exchanger 8, without any two-phase redistribution is necessary for cutting between the two exchangers. We can then simplify again the installation by butt welding the two exchangers 8 and 9.

On peut également remarquer que l'aspiration de l'étage de compresseur 1C à une température relativement froide est favorable aux performances de celui-ci.We can also notice that the suction of compressor stage 1C to a relatively cold temperature is favorable to performance of it.

La coupure vers - 20 à - 40°C environ entre les deux échangeurs correspond par ailleurs à des surfaces d'échange thermique du même ordre au-dessus et au-dessous de cette coupure, de sorte que l'on peut utiliser deux échangeurs 8 et 9 de longueur maximale dans des conditions de performances thermiques optimales, et un unique pot séparateur 10, à la coupure précitée, pour le fluide haute pression.The cutoff at around - 20 to - 40 ° C between the two exchangers also correspond to heat exchange surfaces of the same order above and below this cut, so that we can use two exchangers 8 and 9 of maximum length under thermal performance conditions optimal, and a single separator pot 10, at the cutoff above, for the high pressure fluid.

On comprend que le contrôle de la température et de la pression (+ 5 à + 10°C, 14 à 20 bars) du liquide de refroidissement de la tête de la colonne 5 permet d'obtenir un gaz monophasique à la fois en sortie du réfrigérant 3C et en sortie (en 42) de l'échangeur froid 9 (- 20°C à - 40°C, 2,5 à 3,5 bars).We understand that the control of the temperature and pressure (+ 5 to + 10 ° C, 14 to 20 bars) coolant from the head of the column 5 provides a single-phase gas at the times at the outlet of the 3C refrigerant and at the outlet (at 42) of the cold exchanger 9 (- 20 ° C to - 40 ° C, 2.5 to 3.5 bars).

Il est à noter qu'en pratique, on monte n échangeurs 8 en parallèle, et n échangeurs 9 en parallèle.It should be noted that in practice, we climb n exchangers 8 in parallel, and n exchangers 9 in parallel.

L'installation représentée à la Figure 2 ne diffère de celle de la Figure 1 que par l'ajout, entre les étages de compression 1B et 1C, d'un autre étage de compression intermédiaire lD, ainsi que par le mode de refroidissement du liquide de reflux de la colonne 5.The installation shown in Figure 2 does not differs from that in Figure 1 only by adding, between compression stages 1B and 1C, from another stage of lD intermediate compression, as well as the cooling of the reflux liquid from column 5.

Ainsi, la sortie du réfrigérant 3B débouche dans un pot séparateur 6D, dont la phase vapeur alimente l'étage 1D. Le refoulement de celui-ci est refroidi par un réfrigérant 3D puis introduit à la base de la colonne 5. Le liquide du pot 6D constitue un liquide réfrigérant additionnel, sous-refroidi dans des passages additionnels 45 prévus dans la partie chaude de l'échangeur 8, sorti de celui-ci, détendu à la basse pression dans une vanne de détente 46 et réintroduit dans l'échangeur pour être vaporisé dans la partie intermédiaire des passages basse pression 23.Thus, the outlet of the 3B refrigerant opens in a 6D separator pot, the vapor phase of which supplies the 1D stage. The repression of it is cooled by a 3D refrigerant then introduced to the base from column 5. The liquid in the 6D pot constitutes a additional coolant, sub-cooled in additional passages 45 provided in the hot part exchanger 8, out of it, relaxed at low pressure in an expansion valve 46 and reintroduced in the exchanger to be vaporized in the part low pressure passages 23.

Par ailleurs, la vapeur de tête de la colonne 5 est directement envoyée à l'aspiration du dernier étage de compression 1C, et le fluide haute pression est envoyé à la base d'un déphlegmateur 47 refroidi par ruissellement d'eau de mer autour de tubes verticaux 48. La majorité des produits lourds sont recueillis à la base du déphlegmateur, détendus dans une vanne de détente 49 et introduits en reflux en tête de la colonne 5, et la vapeur de tête du déphlegmateur forme comme précédemment le fluide frigorigène haute pression, qui est refroidi jusqu'au bout froid de l'échangeur 8 puis, après séparation de phases en 10, jusqu'au bout froid de l'échangeur 9.In addition, the overhead vapor from the column 5 is sent directly to the suction of the last stage of compression 1C, and the high fluid pressure is sent to the base of a dephlegmator 47 cooled by seawater runoff around tubes vertical 48. The majority of heavy products are collected at the base of the dephlegmator, relaxed in an expansion valve 49 and introduced at reflux at the head from column 5, and the top vapor from the dephlegmator as above, forms the high refrigerant pressure, which is cooled to the cold end of exchanger 8 then, after phase separation at 10, to the cold end of the exchanger 9.

La Figure 3 représente un mode de réalisation d'un échangeur de chaleur pouvant être utilisé en tant que réfrigérant intermédiaire 3B. Cet échangeur comprend une calandre 50 dans laquelle un certain nombre de tubes verticaux 51 ouverts à leurs deux extrémités s'étendent entre un plateau supérieur 52 et un plateau inférieur 53. Entre ces plateaux, et à l'extérieur des tubes, sont montées un certain nombre de chicanes horizontales 54. L'eau de refroidissement arrive par une canalisation inférieure 55 sur le plateau 52, circule vers le haut dans les tubes 51 et est évacuée par une canalisation supérieure 56. Le mélange diphasique véhiculé par la conduite 2B pénètre latéralement dans la calandre sous le plateau 52 et descend le long des chicanes, puis sort par la conduite de sortie 57 de l'échangeur, située un peu au-dessus du plateau 53.Figure 3 shows a mode of realization of a heat exchanger which can be used as an intermediate refrigerant 3B. This exchanger comprises a calender 50 in which a number of vertical tubes 51 open to their two ends extend between an upper shelf 52 and a lower plate 53. Between these plates, and at the outside of the tubes, are mounted a number horizontal baffles 54. Cooling water arrives via a lower pipe 55 on the tray 52, flows upward through tubes 51 and is discharged through an upper pipe 56. The two-phase mixture carried by line 2B penetrates laterally in the grille under the plate 52 and descends along the baffles, then exits by the pipe outlet 57 of the exchanger, located a little above the tray 53.

Un tel agencement permet de bien homogénéiser le mélange diphasique pendant son refroidissement, et d'obtenir à un degré élevé l'avantage d'accélération de la condensation dans le deuxième étage du compresseur 1 qu'apporte la boucle comportant la pompe 4.Such an arrangement makes it possible homogenize the two-phase mixture during its cooling, and get to a high degree the advantage of accelerating condensation in the second stage of compressor 1 provided by the loop with pump 4.

La Figure 4 représente une autre variante d'agencement de la colonne de distillation 5. Dans cette variante, la vapeur de tête de la colonne est rechauffée de quelques degrés Celsius dans un échangeur de chaleur auxiliaire 58, puis envoyée à l'aspiration du dernier étage de compression 1C. Le fluide haute pression, après refroidissement et condensation partielle en 3C vers + 30 à + 40°C, est séparé en deux phases dans un pot séparateur 59. La vapeur issue de ce pot constitue le fluide frigorigène haute pression, tandis que la phase liquide, après sous-refroidissement de quelques degrés Celsius dans l'échangeur 58, est détendue dans une vanne de détente 49 comme à la Figure 2 puis introduite en reflux en tête de la colonne 5.Figure 4 shows another variant arrangement of the distillation column 5. In this variant, the column head vapor is heated a few degrees Celsius in an exchanger auxiliary heat 58, then sent to suction of the last compression stage 1C. The high fluid pressure, after cooling and condensing partial in 3C around + 30 to + 40 ° C, is separated in two phases in a separator pot 59. The vapor from this pot constitutes the high pressure refrigerant, while the liquid phase, after sub-cooling a few degrees Celsius in the exchanger 58, is expanded in an expansion valve 49 as in Figure 2 and then introduced under reflux at the top of column 5.

On comprend que cette variante peut s'appliquer à une installation soit à trois soit à quatre étages de compression. De plus, le sous-refroidissement 58 est optionnel.We understand that this variant can apply to an installation either three or four stages of compression. In addition, sub-cooling 58 is optional.

Quel que soit le mode de réalisation considéré, la colonne de désazotation 13 doit fonctionner vers 1,15 bar ou 1,2 bar, et par conséquent le GNL désazoté sortant de la cuve de cette colonne doit être détendu à la pression atmosphérique à l'entrée du stockage 14, ce qui produit du gaz de flash. Ce gaz, ainsi que le gaz résultant des entrées de chaleur dans le stockage 14, doit donc être repris et comprimé par un compresseur auxiliaire pour être distribué au réseau "fuel gas". La Figure 5 montre un agencement qui permet de supprimer ce compresseur auxiliaire, dans le cas où le GNL sortant de l'échangeur 9 contient quelques % d'azote. Whatever the embodiment considered, the denitrogenation column 13 must operate at 1.15 bar or 1.2 bar, and therefore the nitrogen-free LNG leaving the tank of this column should be relaxed to atmospheric pressure at the entrance to storage 14, which produces gas from flash. This gas, as well as the gas resulting from the inputs of heat in storage 14, must therefore be taken up and compressed by an auxiliary compressor to be distributed to the "fuel gas" network. Figure 5 shows a arrangement which eliminates this compressor auxiliary, in the event that LNG leaving exchanger 9 contains a few% of nitrogen.

Pour cela, le GNL sortant de l'échangeur 9 est sous-refroidi dans le serpentin 36 de la colonne 13 et de nouveau sous-refroidi dans un échangeur de chaleur auxiliaire 60. Le liquide est ensuite détendu vers 1,2 bar dans la vanne de détente 37 et la turbine 39, puis divisé en deux courants : un courant qui est vaporisé dans un échangeur 60 puis introduit à un niveau intermédiaire dans la colonne 13, et un courant qui est envoyé en reflux en tête de cette dernière.For this, the LNG leaving the exchanger 9 is sub-cooled in the coil 36 of the column 13 and again sub-cooled in a heat exchanger auxiliary heat 60. The liquid is then expanded around 1.2 bar in the expansion valve 37 and the turbine 39, then divided into two streams: a stream which is vaporized in a heat exchanger 60 then introduced to a intermediate level in column 13, and a current which is sent in reflux at the head of the latter.

Le liquide de cuve de la colonne 13, qui est du GNL sans azote, est alors, pour chaque stockage, divisé en deux courants dont l'un est sous-refroidi dans l'échangeur 60 tandis que l'autre passe dans une dérivation 61 pour régler le degré de sous-refroidissement global, la circulation du liquide étant assurée par une pompe 62.The tank liquid from column 13, which is LNG without nitrogen, is then, for each storage, divided into two streams, one of which is sub-cooled in the exchanger 60 while the other passes through a bypass 61 to adjust the degree of subcooling overall, the circulation of the liquid being provided by a pump 62.

De cette manière, c'est du liquide sous-refroidi d'environ 2°C qui est envoyé vers les stockages 14, ce qui supprime pratiquement tout flash à l'entrée de ces stockages et toute évaporation due aux entrées de chaleur au cours du temps. Comme on le comprend, c'est la différence des compositions du GNL avant et après désazotation qui permet d'obtenir un tel sous-refroidissement dans l'échangeur 60.In this way, it is sub-cooled liquid about 2 ° C which is sent to 14 storages, which removes virtually any flash at the entry of these storages and any evaporation due to heat inputs over time. As we understand is the difference in LNG compositions before and after denitrogenation which makes it possible to obtain such a subcooling in exchanger 60.

De même, la vapeur de tête de la colonne 5 est généralement suffisamment riche en méthane pour être récupérée en tant que "fuel gas", au sens indiqué plus haut. Il est donc nécessaire de prévoir un autre compresseur auxiliaire dans ce but. Si de plus le compresseur de cycle 1 est entraíné par une turbine à gaz, il est nécessaire d'alimenter celle-ci par du gaz combustible sous une pression de l'ordre de 20 à 25 bars, ce qui conduit à installer un compresseur auxiliaire de puissance importante. L'agencement de la Figure 6 montre comment on peut supprimer la nécessité d'un tel compresseur auxiliaire. Likewise, the overhead vapor of column 5 is generally rich enough in methane to be recovered as "fuel gas", in the sense indicated upper. It is therefore necessary to provide another auxiliary compressor for this purpose. If more cycle compressor 1 is driven by a turbine gas, it is necessary to supply it with gas fuel under a pressure of the order of 20 to 25 bars, which leads to installing a compressor high power auxiliary. The layout of the Figure 6 shows how we can remove the need of such an auxiliary compressor.

Sur cette Figure 6, on utilise une colonne additionnelle 63 de désazotation primaire sous pression du gaz naturel, munie d'un condenseur de tête 64.In this Figure 6, we use a column additional 63 primary denitrogenation under pressure natural gas, fitted with an overhead condenser 64.

La partie du gaz naturel provenant de l'appareil 33 qui est traitée dans l'échangeur 12 n'y est refroidie que jusqu'à une température intermédiaire T1, puis est introduite en cuve de la colonne 63, via une conduite 65, tandis que le reste de ce gaz naturel n'est refroidi dans l'échangeur 9 que jusqu'à une température intermédiaire T2 inférieure à T1 puis introduit à un niveau intermédiaire de la même colonne, via une conduite 66.The portion of natural gas from the device 33 which is treated in the exchanger 12 is cooled only to an intermediate temperature T1, then is introduced into the tank of column 63, via a pipe 65 while the rest of this natural gas is only cooled in the exchanger 9 to a intermediate temperature T2 lower than T1 then introduced at an intermediate level of the same column, via a pipe 66.

Le refroidissement du condenseur 64 est assuré en détendant vers 25 bars une partie du liquide de cuve de la colonne dans une vanne de détente 67. Le gaz résultant de cette vaporisation a la même composition que le liquide de cuve de la colonne, c'est-à-dire possède une faible teneur en azote, et constitue donc un gaz combustible sous 25 bars directement utilisable, via une conduite 68, dans la turbine à gaz 69.The cooling of the condenser 64 is assured by expanding part of the liquid around 25 bars of the column tank in an expansion valve 67. The gas resulting from this vaporization has the same composition as the column bottom liquid, that is to say has a low nitrogen content, and therefore constitutes a combustible gas at 25 bars directly usable, via a pipe 68, in the gas turbine 69.

Le reste du liquide de cuve de la colonne 63 est, après sous-refroidissement pour partie dans la partie froide de l'échangeur 9 et dans le serpentin 36 de la colonne 13, et pour partie dans la partie froide de l'échangeur 12, détendu en 37, respectivement en 70, et introduit à un niveau intermédiaire de la colonne 13. La vapeur de tête de la colonne 63, contenant 30 à 35 % d'azote, est refroidie et condensée dans la partie froide de l'échangeur 9, sous-refroidie dans celle de l'échangeur 12, et, après détente dans une vanne de détente 71, introduite en reflux au sommet de la colonne 13.The rest of the column tank liquid 63 is, after sub-cooling partly in the cold part of the exchanger 9 and in the coil 36 of column 13, and partly in the cold part exchanger 12, expanded at 37, respectively at 70, and introduced to an intermediate level of the column 13. The overhead vapor of column 63, containing 30 to 35% nitrogen, is cooled and condensed in the part exchanger 9 cold, sub-cooled in that of the exchanger 12, and, after expansion in a valve trigger 71, introduced in reflux at the top of the column 13.

L'enrichissement en azote du liquide de lavage de la colonne 13 ainsi obtenu a pour conséquence que la vapeur d'azote de cette colonne est suffisamment pauvre en méthane, par exemple contient 10 à 15 % de méthane, pour être mise à l'atmosphère via la conduite 38 après réchauffement en 12.The nitrogen enrichment of the washing of column 13 thus obtained has the consequence that the nitrogen vapor from this column is sufficient low in methane, for example contains 10 to 15% of methane, to be vented through the pipeline 38 after heating in 12.

Au total, on obtient donc deux gaz résiduaires, dont l'un est riche en méthane et sous 25 bars, et alimente la turbine à gaz, et dont l'autre, sous basse pression, est pauvre en méthane et n'est pas récupéré.In total, we thus obtain two gases waste, one of which is rich in methane and under 25 bars, and powers the gas turbine, and one of which, under low pressure, is poor in methane and is not recovered.

Comme représenté à la Figure 6, une fraction du gaz naturel à traiter véhiculé par la conduite 31 peut être refroidie dans la partie chaude de l'échangeur 12 avant d'être envoyée à l'appareil 33.As shown in Figure 6, a fraction of the natural gas to be treated conveyed by the line 31 can be cooled in the hot part of the exchanger 12 before being sent to the device 33.

Claims (19)

  1. A method for cooling a fluid, especially for the liquefaction of natural gas, of the type having an integral incorporated cascade, in which:
    a) a refrigerant mixture consisting of constituents of different volatilities is compressed in at least two stages (1A, 1B; 1A, 1B, 1D),
    b) after at least each of the intermediate compression stages (1A, 1B; 1A, 1B, 1D), the mixture is partially condensed by means of a liquid coolant available at the site, especially water, some at least of the condensed fractions and also the high-pressure gaseous fraction being cooled (at 19 or 25), pressure-relieved (at 21 and 26 or at 21 and 46), brought into a heat exchange relationship with the fluid to be cooled (at 23 or 32), then compressed again,
    c) and the mixture derived from the penultimate compression stage (1B; 1D) is distilled in a distilling apparatus (5), the top of which is cooled with a liquid, to form firstly the condensate of this penultimate stage, and secondly a vapour phase which is sent to the last compression stage (1C) where it is compressed, before being used as a high-pressure gaseous fraction,
    characterised in that:
    at the time of step b) and at the penultimate compression stage, a cooling of the said mixture is created, before supplying the distilling apparatus (5), and
    at the time of step c), the top of the distilling apparatus (5) is cooled with the said liquid by introducing this liquid, at the top of this apparatus, at a temperature lower than the temperature of the liquid coolant.
  2. A method according to Claim 1,
    characterised in that the vapour coming out of the top of the distilling apparatus (5) is cooled and partially condensed by heat exchange (at 24) with at least the said pressure-relieved fractions which are made to circulate in a heat exchange line (8), to obtain a vapour phase and a liquid phase, and the top of the distilling apparatus (5) is cooled with the liquid phase thus obtained (at 6C), the vapour phase forming the said vapour phase which is sent to the last compression stage.
  3. A method according to Claim 1,
    characterised in that the gas derived from the last compression stage (1C) is cooled and partially condensed, to the proximity of the temperature of the liquid coolant (at 47, Figure 2; at 3C, Figure 4), the pressure of the liquid phase obtained is relieved (at 49), and the top of the distilling apparatus (5) is cooled with the thus pressure-relieved liquid phase.
  4. A method according to Claim 3,
    characterised in that a defuseling of the gas derived from the last compression stage (1C) is operated during its cooling.
  5. A method according to any one of Claims 3 to 4,
    characterised in that an indirect heat exchange is performed (at 58) between the liquid resulting from the cooling of the gas derived from the last compression stage (1C) and the vapour coming from the top of the distilling apparatus (5) before sending this vapour to the last compression stage (1C) and pressure-relieving the said liquid (at 49).
  6. A method according to any one of Claims 1 to 5,
    characterised in that a part at least of the condensate of the first compression stage (1A) is pumped (at 4) to the output pressure of the second compression stage (1B), and it is mixed (at 2B) with the gas derived from this second compression stage.
  7. A method according to any one of Claims 1 to 6, for the liquefaction of natural gas containing nitrogen,
    characterised in that the liquefied natural gas resulting from the refrigeration (at 7, 8) is supercooled (at 60) then denitrified (at 13), by heat exchange with the non-denitrified liquefied natural gas which is pressure-relieved (at 37).
  8. A method according to any one of Claims 1 to 7, for the liquefaction of natural gas containing nitrogen,
    characterised in that a primary denitrification of the natural gas is performed (at 63) under its treatment pressure in an auxiliary column (63), a part of the liquefied natural gas is relieved to an intermediate pressure (at 67) after having undergone this primary denitrification, the thus relieved liquid is vaporised by cooling the top (64) of the auxiliary column, which produces a gas combustible under intermediate pressure, this combustible gas is sent to a gas turbine (70) for driving the compressor (1), and the remainder of the liquefied natural gas which has undergone primary denitrification as well as the top vapour of the auxiliary column (63) is treated in a final denitrification column (13) at low pressure producing in the vat the denitrified liquefied natural gas intended to be stored (at 14).
  9. A fluid cooling installation, especially for the liquefaction of natural gas, comprising:
    a refrigerating circuit having an integral incorporated cascade in which a refrigerant mixture circulates and which comprises a compressor (1) having at least two stages (1A to 1C) of which at least the intermediate stage(s)(1A, 1B; 1A, 1B, 1D) is(are) provided (each) with a cooling apparatus (3A, 3B; 3A, 3B, 3D) cooled by a liquid coolant available on site, especially water, to partially condense the mixture,
    a distilling apparatus (5) supplied by the penultimate stage (1B; 1D) of the compressor and the top of which is connected to the suction of the last stage (1C) of the compressor,
    means (24, 6C: 47, 48, 49; 58, 59, 3C) for cooling the top of the distilling apparatus (5) by means of a liquid,
    and a heat exchange line (7, 8),
    characterised in that to cool the said liquid intended for the cooling of the top of the distilling apparatus (5) to a temperature lower than the temperature of the liquid coolant:
    the cooling apparatus (3B, 3D) with which the penultimate stage (1B) of the compressor is provided is situated between this penultimate stage of the compressor (1B) and the distilling apparatus (5), and
    the said cooling means for the top of the distilling apparatus (5) comprise:
    a cooling device (24, 6C; 47, 48, 49; 58, 59, 3C) capable of cooling the said liquid intended for the cooling of the top of the distilling apparatus (5) to a temperature lower than the said temperature of the liquid coolant, and
    means (15) for introducing the said cooled liquid at the top of the said apparatus.
  10. An installation according to Claim 9,
    characterised in that the cooling device (24, 6C; 47, 48, 49; 58, 59, 3C) comprises condensation means (24; 47, 48; 3C) capable of cooling, to the said temperature lower than that liquid coolant the vapour phase produced in the distilling apparatus and coming out of its top, to form the liquid intended for the cooling of the top of this distilling apparatus.
  11. An installation according to any one of Claims 9 and 10,
    characterised in that the cooling device comprises heat exchange passages (24) passing through the hot portion (8) of the heat exchange line (7), and a separating pot (6C), the bottom of which is connected to the top of the distilling apparatus (5) and the top to the suction of the last compression stage (1C).
  12. An installation according to any one of Claims 9 to 10,
    characterised in that the said cooling device (47, 49) comprises means (3C: 47) for cooling, to the proximity of the temperature of the liquid coolant, the gas derived from the last stage (1C) of the compressor (1), and a pressure reducing valve (49) for the liquid derived from these cooling means, the output of this valve being connected to the top of the distilling apparatus (5).
  13. An installation according to Claim 12,
    characterised in that the said cooling means (47) of the said gas comprise a Dephlegmator.
  14. An installation according to any one of Claims 12 to 13,
    characterised in that an auxiliary heat exchanger (58) is provided to bring the liquid derived from the cooling means (47) of the said gas and the vapour coming out of the top of the distilling apparatus (5) into an indirect heat exchange relationship.
  15. An installation according to any one of Claims 9 to 14,
    characterised in that a separating pot (6B) is interposed between the cooling apparatus (3A) of the first stage (1A) of the compressor (1) and the second stage (1B) of this compressor,
    and in that a pump (4) is provided, the suction of which is connected to the bottom of this separating pot (6B) and the delivery of which is connected to the delivery of the second stage of the compressor.
  16. An installation according to any one of Claims 9 to 15, for the liquefaction of natural gas containing nitrogen,
    characterised in that it comprises a denitrification column (13) and a supercooling exchanger (60) suitable for supercooling the denitrified liquefied natural gas derived from the vat of this column by heat exchange with the non-denitrified natural gas which is pressure relieved (at 37).
  17. An installation according to any one of Claims 9 to 15, for the liquefaction of natural gas containing nitrogen,
    characterised in that it comprises a denitrification column (63) supplied by natural gas under its treatment pressure and comprising a top condenser (64) supplied by the vat liquid of this column relieved (at 67) to an intermediate pressure, a gas turbine (69) supplied by the gas resulting from the vaporisation of this vat liquid, and a low-pressure final denitrification column (13) producing at its bottom the denitrified liquefied natural gas intended to be stored (at 14).
  18. An installation according to any one of Claims 9 to 17,
    characterised in that the heat exchange line (7) is formed of two plate heat exchangers (8, 9) in series, connected end to end to one another by end domes (42, 43).
  19. An installation according to any one of Claims 9 to 17,
    characterised in that the heat exchange line (7) comprises two plate heat exchangers (8, 9) in series, which are butt- welded.
EP94913137A 1993-04-09 1994-04-05 Gas cooling process and plant, especially for natural gas liquefaction Expired - Lifetime EP0644996B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9304276 1993-04-09
FR9304276A FR2703762B1 (en) 1993-04-09 1993-04-09 Method and installation for cooling a fluid, in particular for liquefying natural gas.
PCT/FR1994/000380 WO1994024500A1 (en) 1993-04-09 1994-04-05 Fluid cooling process and plant, especially for natural gas liquefaction

Publications (2)

Publication Number Publication Date
EP0644996A1 EP0644996A1 (en) 1995-03-29
EP0644996B1 true EP0644996B1 (en) 1998-12-23

Family

ID=9445963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94913137A Expired - Lifetime EP0644996B1 (en) 1993-04-09 1994-04-05 Gas cooling process and plant, especially for natural gas liquefaction

Country Status (13)

Country Link
US (2) US5535594A (en)
EP (1) EP0644996B1 (en)
JP (1) JP3559283B2 (en)
AT (1) ATE175019T1 (en)
CA (1) CA2136755C (en)
DE (1) DE69415454T2 (en)
DZ (1) DZ1768A1 (en)
ES (1) ES2125448T3 (en)
FR (1) FR2703762B1 (en)
HK (1) HK1012700A1 (en)
NO (1) NO308969B1 (en)
RU (1) RU2121637C1 (en)
WO (1) WO1994024500A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723125B1 (en) * 1994-12-09 2001-10-24 Kabushiki Kaisha Kobe Seiko Sho Gas liquefying method and plant
MY118329A (en) * 1995-04-18 2004-10-30 Shell Int Research Cooling a fluid stream
US5657643A (en) * 1996-02-28 1997-08-19 The Pritchard Corporation Closed loop single mixed refrigerant process
FR2751059B1 (en) * 1996-07-12 1998-09-25 Gaz De France IMPROVED COOLING PROCESS AND INSTALLATION, PARTICULARLY FOR LIQUEFACTION OF NATURAL GAS
US5755114A (en) * 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
DE19722490C1 (en) * 1997-05-28 1998-07-02 Linde Ag Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption
GB9712304D0 (en) * 1997-06-12 1997-08-13 Costain Oil Gas & Process Limi Refrigeration cycle using a mixed refrigerant
US6044902A (en) * 1997-08-20 2000-04-04 Praxair Technology, Inc. Heat exchange unit for a cryogenic air separation system
TW421704B (en) * 1998-11-18 2001-02-11 Shell Internattonale Res Mij B Plant for liquefying natural gas
MY117548A (en) 1998-12-18 2004-07-31 Exxon Production Research Co Dual multi-component refrigeration cycles for liquefaction of natural gas
US7310971B2 (en) * 2004-10-25 2007-12-25 Conocophillips Company LNG system employing optimized heat exchangers to provide liquid reflux stream
TW480325B (en) * 1999-12-01 2002-03-21 Shell Int Research Plant for liquefying natural gas
FR2807826B1 (en) 2000-04-13 2002-06-14 Air Liquide BATH TYPE CONDENSER VAPORIZER
US6564578B1 (en) 2002-01-18 2003-05-20 Bp Corporation North America Inc. Self-refrigerated LNG process
US6705113B2 (en) 2002-04-11 2004-03-16 Abb Lummus Global Inc. Olefin plant refrigeration system
US6637237B1 (en) * 2002-04-11 2003-10-28 Abb Lummus Global Inc. Olefin plant refrigeration system
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
US7287294B2 (en) * 2003-10-24 2007-10-30 Harry Miller Co., Inc. Method of making an expandable shoe
US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
PL1861478T3 (en) * 2005-03-16 2012-07-31 Fuelcor Llc Systems and methods for production of synthetic hydrocarbon compounds
EP1715267A1 (en) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
US7415840B2 (en) * 2005-11-18 2008-08-26 Conocophillips Company Optimized LNG system with liquid expander
EP2021712A2 (en) 2006-05-15 2009-02-11 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
WO2008034875A2 (en) * 2006-09-22 2008-03-27 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
JP5530180B2 (en) * 2006-10-11 2014-06-25 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method and apparatus for cooling a hydrocarbon stream
US20090071190A1 (en) * 2007-03-26 2009-03-19 Richard Potthoff Closed cycle mixed refrigerant systems
EA016149B1 (en) * 2007-07-19 2012-02-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
US20090139263A1 (en) * 2007-12-04 2009-06-04 Air Products And Chemicals, Inc. Thermosyphon reboiler for the denitrogenation of liquid natural gas
US10539363B2 (en) 2008-02-14 2020-01-21 Shell Oil Company Method and apparatus for cooling a hydrocarbon stream
US20100175425A1 (en) * 2009-01-14 2010-07-15 Walther Susan T Methods and apparatus for liquefaction of natural gas and products therefrom
DE102010011052A1 (en) * 2010-03-11 2011-09-15 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
EP2369279A1 (en) 2010-03-12 2011-09-28 Ph-th Consulting AG Method for cooling or liquefying a hydrocarbon-rich flow and assembly for carrying out the method
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
KR101341798B1 (en) * 2012-08-10 2013-12-17 한국과학기술원 Natural gas liquefaction system
RU2525285C1 (en) * 2013-07-09 2014-08-10 Андрей Владиславович Курочкин Device for cooling and separation of liquid hydrocarbons released during gas compression
CN104048478B (en) * 2014-06-23 2016-03-30 浙江大川空分设备有限公司 The equipment of high extraction and the dirty nitrogen purification nitrogen of low energy consumption and extracting method thereof
CA2855383C (en) 2014-06-27 2015-06-23 Rtj Technologies Inc. Method and arrangement for producing liquefied methane gas (lmg) from various gas sources
US9759480B2 (en) 2014-10-10 2017-09-12 Air Products And Chemicals, Inc. Refrigerant recovery in natural gas liquefaction processes
US9816752B2 (en) * 2015-07-22 2017-11-14 Butts Properties, Ltd. System and method for separating wide variations in methane and nitrogen
CA2903679C (en) 2015-09-11 2016-08-16 Charles Tremblay Method and system to control the methane mass flow rate for the production of liquefied methane gas (lmg)
FR3045798A1 (en) 2015-12-17 2017-06-23 Engie HYBRID PROCESS FOR THE LIQUEFACTION OF A COMBUSTIBLE GAS AND INSTALLATION FOR ITS IMPLEMENTATION
FR3045797A1 (en) * 2015-12-17 2017-06-23 Engie PROCESS FOR THE LIQUEFACTION OF NATURAL GAS USING A REFRIGERANT MIXTURE CYCLING WITH DISTILLER COLUMN WITH REFRIGERANT
US10323880B2 (en) 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
GB201718485D0 (en) 2017-11-08 2017-12-20 Triple Red Ltd Water purification device
MX2022002972A (en) 2019-10-08 2022-04-06 Air Prod & Chem Heat exchange system and method of assembly.
US11650009B2 (en) 2019-12-13 2023-05-16 Bcck Holding Company System and method for separating methane and nitrogen with reduced horsepower demands
US11378333B2 (en) 2019-12-13 2022-07-05 Bcck Holding Company System and method for separating methane and nitrogen with reduced horsepower demands

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1939114B2 (en) * 1969-08-01 1979-01-25 Linde Ag, 6200 Wiesbaden Liquefaction process for gases and gas mixtures, in particular for natural gas
FR2292203A1 (en) * 1974-11-21 1976-06-18 Technip Cie METHOD AND INSTALLATION FOR LIQUEFACTION OF A LOW BOILING POINT GAS
FR2471567B1 (en) * 1979-12-12 1986-11-28 Technip Cie METHOD AND SYSTEM FOR COOLING A LOW TEMPERATURE COOLING FLUID
FR2471566B1 (en) * 1979-12-12 1986-09-05 Technip Cie METHOD AND SYSTEM FOR LIQUEFACTION OF A LOW-BOILING GAS
FR2540612A1 (en) * 1983-02-08 1984-08-10 Air Liquide METHOD AND INSTALLATION FOR COOLING A FLUID, IN PARTICULAR A LIQUEFACTION OF NATURAL GAS
US4809154A (en) * 1986-07-10 1989-02-28 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system
GB9103622D0 (en) * 1991-02-21 1991-04-10 Ugland Eng Unprocessed petroleum gas transport

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408676B2 (en) 2015-07-08 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Also Published As

Publication number Publication date
EP0644996A1 (en) 1995-03-29
JPH07507864A (en) 1995-08-31
DZ1768A1 (en) 2002-02-17
JP3559283B2 (en) 2004-08-25
NO944701L (en) 1994-12-06
CA2136755A1 (en) 1994-10-27
HK1012700A1 (en) 1999-08-06
AU6540494A (en) 1994-11-08
DE69415454T2 (en) 1999-05-06
FR2703762B1 (en) 1995-05-24
ES2125448T3 (en) 1999-03-01
ATE175019T1 (en) 1999-01-15
RU94046343A (en) 1996-11-10
DE69415454D1 (en) 1999-02-04
RU2121637C1 (en) 1998-11-10
AU669628B2 (en) 1996-06-13
US5613373A (en) 1997-03-25
WO1994024500A1 (en) 1994-10-27
NO308969B1 (en) 2000-11-20
CA2136755C (en) 2005-06-14
FR2703762A1 (en) 1994-10-14
NO944701D0 (en) 1994-12-06
US5535594A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
EP0644996B1 (en) Gas cooling process and plant, especially for natural gas liquefaction
EP1639062B1 (en) Method and plant for simultaneous production of a natural gas for liquefaction and a liquid cut from natural gas
EP1352203B1 (en) Method for refrigerating liquefied gas and installation therefor
CA2255167C (en) Gas liquefaction process and method, especially for natural gas or air, comprising average pressure bleed
EP0687353B1 (en) Method and apparatus for liquefying natural gas
EP0818661B1 (en) Improved process and apparatus for cooling and liquefaction of natural gas
EP0572590B1 (en) Method of denitrogenating a charge of a hydrocarbon mixture consisting mainly of methane and containing at least 2 % mol nitrogen
EP2344821B1 (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
EP1454104B1 (en) Method and installation for separating a gas mixture containing methane by distillation
EP0768502B1 (en) Process and apparatus for the liquefaction and the treatment of natural gas
EP1118827B1 (en) Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas
EP1946026B1 (en) Method for treating a liquefied natural gas stream obtained by cooling using a first refrigerating cycle and related installation
FR2571129A1 (en) METHOD AND INSTALLATION OF CRYOGENIC FRACTIONATION OF GASEOUS LOADS
FR2675890A1 (en) METHOD FOR THE REFRIGERATION TRANSFER OF NATURAL GAS LIQUEFIED TO A CRYOGENIC AIR SEPARATION UNIT USING THE HIGH PRESSURE NITROGEN CURRENT.
FR2675891A1 (en) PROCESS FOR PRODUCING LIQUID NITROGEN USING LIQUEFIED NATURAL GAS AS THE ONLY REFRIGERANT.
EP2205920B1 (en) Method for liquefying natural gas with high pressure fractioning
FR2681859A1 (en) PROCESS FOR THE LIQUEFACTION OF NATURAL GAS
EP0117793B1 (en) Fluid cooling process and plant, in particular for liquefying natural gas
FR2764972A1 (en) Liquefaction of natural gas using two stages and monophase refrigerant
FR2829401A1 (en) Fractionating a gas produced by pyrolysis of hydrocarbons, including hydrogen and hydrocarbons, in particular 1-4C hydrocarbons, water and CO2
EP1711765A1 (en) Cryogenic distillation method and installation for air separation
FR2479846A1 (en) REFRIGERATION PROCESS FOR THE RECOVERY OR FRACTIONATION OF A MIXTURE CONSISTING OF MAINLY BUTANE AND PROPANE, CONTENT IN RAW GAS, USING AN EXTERNAL MECHANICAL CYCLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19960321

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981223

REF Corresponds to:

Ref document number: 175019

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69415454

Country of ref document: DE

Date of ref document: 19990204

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2125448

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: ING. C. CORRADINI & C. S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: GDF SUEZ

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GDF SUEZ

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69415454

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFTSGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69415454

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 69415454

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNER: GAZ DE FRANCE, PARIS, FR

Effective date: 20111028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120317

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120410

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130326

Year of fee payment: 20

Ref country code: LU

Payment date: 20130326

Year of fee payment: 20

Ref country code: IE

Payment date: 20130328

Year of fee payment: 20

Ref country code: GB

Payment date: 20130326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130322

Year of fee payment: 20

Ref country code: BE

Payment date: 20130322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130322

Year of fee payment: 20

Ref country code: PT

Payment date: 20130401

Year of fee payment: 20

Ref country code: FR

Payment date: 20130603

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69415454

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20140405

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140405

BE20 Be: patent expired

Owner name: S.A.*GDF SUEZ

Effective date: 20140405

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140404

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 980403040

Country of ref document: GR

Effective date: 20140406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140404

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140415

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140406