EP0644376A1 - Method for controlling a burner - Google Patents

Method for controlling a burner Download PDF

Info

Publication number
EP0644376A1
EP0644376A1 EP94111935A EP94111935A EP0644376A1 EP 0644376 A1 EP0644376 A1 EP 0644376A1 EP 94111935 A EP94111935 A EP 94111935A EP 94111935 A EP94111935 A EP 94111935A EP 0644376 A1 EP0644376 A1 EP 0644376A1
Authority
EP
European Patent Office
Prior art keywords
power
output
burner
independent
manipulated variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94111935A
Other languages
German (de)
French (fr)
Other versions
EP0644376B1 (en
Inventor
Josef Wüest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrowatt Technology Innovation AG
Original Assignee
Landis and Gyr Bussiness Support AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Bussiness Support AG filed Critical Landis and Gyr Bussiness Support AG
Publication of EP0644376A1 publication Critical patent/EP0644376A1/en
Application granted granted Critical
Publication of EP0644376B1 publication Critical patent/EP0644376B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/36PID signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/48Learning / Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake

Definitions

  • the invention relates to a method for regulating a burner for a burner-operated furnace, which can be switched in stages or in a modulating manner in accordance with the preamble of claim 1.
  • the O2 control can also significantly reduce the pollutant emissions of a combustion system and be kept within prescribed limits.
  • Firing systems with burners which are often operated at different power levels, pose the problem of non-optimal combustion and Limitation of pollutant emissions when switching from a first power level to a second power level.
  • pollutant emissions during the switchover phase can be considerably above the normal values that occur during operation at a fixed power level. The reason for such deviations is that the control processes cannot be fully controlled during the transitions.
  • control parameters of the control device are generally determined individually for each of the existing power levels using a separate method.
  • the control parameters of the control device must be switched over, which causes discontinuities during the transition and ultimately means non-optimal combustion during the transitions.
  • the data sheet 7851D from September 1990 by Landis & Gyr describes an oxygen controller of the type RWF61.190 with signal-dependent control parameters for modulatable burners. It is a PI controller with signal-adaptive behavior for O2 controls in burner systems. Modular means that the burner can be switched continuously in terms of output. Of course, different power levels are also effective with modulating control.
  • the control parameters for this controller are determined individually from measurements of step responses on the open control circuit at two power levels, namely at maximum burner output and at minimum burner output. The control parameters determined in this way are then set on corresponding potentiometers of the controller.
  • the control parameters for a PI controller are the control gain K R and the reset time T N.
  • control gain K R and the reset time T N are used for a PI controlled system with dead time adjusted according to the method of Ziegler and Nichols (see, for example, in the Handbook for High Frequency and Electrical Engineers, Volume IV, page 596, Formula 134; by the Verlag für Radio-Foto-Kinotechnik GmbH, Berlin-Bosigwalde).
  • control variable is calculated from the control deviation, which represents the difference between the O2 target value and the O2 actual value, which contains a proportional component, an integral component and a power-dependent gain factor.
  • the actuating variable controls the actuator, for example an air flap that regulates the ratio of air to fuel.
  • a PI control of this type has the disadvantage that in the case of step-by-step switching from a first power level to a second power level in the transition stage, the manipulated variable, which in the adjusted state essentially corresponds to the integral part of the PI controller, initially in the new operating state on the second Power level is taken over.
  • the integral part of the PI controller contains a part proportional to the respective power level, its size has not yet been adjusted to the new operating conditions of the second power level, so it initially has an incorrect value. Although this incorrect value is subsequently corrected, it causes more pollutants to be emitted in the transition stage due to non-optimal combustion.
  • the object is to provide a method for regulating a burner for a burner-operated combustion system which can be switched in stages or modulating in terms of output, and which has a more favorable course of combustion during the transition between the output stages.
  • the solution is based on the fact that a performance-independent manipulated variable is calculated.
  • the advantage of the invention is that when switching between different burner outputs, fewer pollutants are generated and energy losses are reduced.
  • FIG. 1 shows a burner system with O2 control in a schematic representation, with a boiler 1, a burner 2, which can be switched between several power levels, and an exhaust gas duct 3.
  • the burner 2 has a fuel supply 4 and an air supply 5, the air supply 5 there is an actuator, for example an air flap 6 or a fan, for adapting the quantity of air supplied to the quantity of fuel supplied.
  • Exhaust gases 7 from the combustion are passed on via the exhaust duct 3.
  • the exhaust duct 3 there is an O2 probe 8, which measures the residual oxygen content (O2) in the exhaust gas 7.
  • the O2 actual values measured by the O2 probe 8 O 2I are fed to a control device 9, where they have an O2 setpoint O 2S are compared, whereupon the air flap 6 is controlled by the control device 9 on the basis of the performance of the burner 2 and the difference determined.
  • the optimal air supply or the optimal excess air for combustion is performance-dependent.
  • the control device 9 serves the purpose of controlling the amount of air supplied to the burner 2 so that the residual oxygen content (O2) measured in the exhaust gas 7 reaches the set O2 setpoint O 2S . In the ideal case, an almost stoichiometric combustion of the fuel is achieved, which also means that the pollutant content in the exhaust gas 7 with respect to the gases CO and NO x is minimal.
  • the O2 control loop and its dependence on the power P B of the burner 2 is shown schematically.
  • a comparator 10 the O2 setpoint O 2S which is dependent on the power P B of the burner is compared with the actual O2 value O 2I , ie a control deviation 11 results from the difference between the two values.
  • the control deviation 11 becomes a PID controller 12 supplied, which first calculates a performance-independent manipulated variable Y R from the control deviation 11.
  • the PID controller 12 also receives control information 14, such as the power P B of the burner 2 and the type of fuel.
  • the power-independent manipulated variable Y R is converted by a correction element 12a into a manipulated variable 13 dependent on the power P B of the burner.
  • the manipulated variable 13 is fed to the actuator, in this case the air flap 6, the setting value of which, namely an air flap position 15, influences a controlled system 16.
  • a controlled system 16 the entirety of air supply 5, fuel supply 6, burner 2, boiler 1 and exhaust duct 3 is to be understood up to the O2 probe 8.
  • the result of the chain of action of PID controller 12, correction element 12a, air flap 6 and controlled system 16 is a certain O2 value which represents the controlled variable O2 and measured by the O2 probe as O2 actual value O 2I and fed back to comparator 10.
  • the PID controller 12 is used because both permanent and temporary deviations from the O2 setpoint can be kept to a minimum.
  • ⁇ O 2IST difference in the O2 value in the exhaust gas
  • ⁇ POS difference in air damper position
  • K S line reinforcement
  • TU, TG, ⁇ O 2IST and ⁇ POS are obtained from measurements of step responses on the open control loop according to FIG. 3.
  • the open control loop ie when the burner is running at a certain power level, but with the O2 control switched off, it is initially necessary to wait until the O2 value measured by the O2 probe 8 is stable. Then the position of the air flap 6 is abruptly changed by the value ⁇ POS and maintained until the O2 value measured by the O2 probe 8 is stable again and has set itself to a sufficiently different value from the starting position. This is the starting position for measuring the step response.
  • control parameters determined in this way for the PID controller must be determined and stored for each fuel used and for each output level of the burner 2.
  • the current control parameters to be used are communicated to the PID controller via the control information 14 (see FIG. 2).
  • control deviation 11 is smaller than the O2 difference that results for the smallest possible actuation step, no correction is made, since otherwise the control system tends to oscillate.
  • the power-independent integral part Y IR of the power-independent manipulated variable Y R is used as the initial value for the power-independent manipulated variable Y R at the second power level.
  • K Sa distance reinforcement for performance level
  • the control deviation 11 is zero. Only the integral component Y IR makes a contribution to maintaining this state.
  • Actuating variable 13 immediately after switching the power level: in which Y b output-dependent manipulated variable 13 in the regulated state when operating at output level B.
  • K Sb line reinforcement for performance level B
  • Y IR integral part independent of power

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)

Abstract

In a method for controlling a burner (2) for a burner-operated furnace installation, which burner can be switched over in a stepped or modulating manner with regard to output, for controlling the residual oxygen content by means of an O2 probe (8) in the outgoing gas (7), a control device (9) with a PID control is used. The control parameters for the PID control are calculated individually for the existing output steps of the burner (2) from measurements of step responses on the open control circuit. From the control deviation, the PID control calculates an output-independent manipulated variable which contains an output-independent integral part. The output-independent manipulated variable is subsequently multiplied by an output-dependent system gain. An actuator, for example an air flap (6), is controlled from output-independent manipulated variable and output-dependent system gain according to the product. In switching over from a first output step to a second output step, the output-independent integral part of the output-independent manipulated variable is used as the starting value for the output-independent manipulated variable during operation of the burner (2) on the second output stage. By means of the use of the PID control and the introduction of the output-independent manipulated variable, a reduction in the harmful substances produced is achieved and energy losses are decreased on switching over of the burner (2) between the output steps. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Brenners für eine brennerbetriebene Feuerungsanlage, der hinsichtlich der Leistung stufig oder modulierend umschaltbar ist, gemäss dem Oberbegriff des Anspruches 1.The invention relates to a method for regulating a burner for a burner-operated furnace, which can be switched in stages or in a modulating manner in accordance with the preamble of claim 1.

Energieeinsparungen und Umweltschutz kommt heute bei brennerbetriebenen Feuerungsanlagen eine zentrale Bedeutung zu, da selbst bei einmal optimal eingestellten Gas-, Oel- oder anderen Brenneranlagen nie ganz verhindert werden kann, dass während der Betriebsdauer Schadstoffe entstehen und wertvolle Energie verloren geht. Da bekannt ist, dass der Restsauerstoff- bzw. O₂-Gehalt in den Abgasen ein Mass für die Qualität und den Wirkungsgrad der Verbrennung darstellt, werden immer häufiger Feuerungsanlagen mit O₂-Regelungen ausgerüstet. Dabei wird mittels einer O₂-Messonde im Abgaskanal und einer Regelungsvorrichtung das Verhältnis der zugeführten Luftmenge zum zugeführten Brennstoff derart geregelt, dass die Konzentration des Restsauerstoffes in den Abgasen den eingestellten Sollwert erreicht. Damit wird im Idealfall eine fast stöchiometrische Verbrennung des Brennstoffes erreicht.Energy savings and environmental protection are of central importance for burner-operated combustion plants today, since even with optimally set gas, oil or other burner plants, it can never be completely prevented that pollutants are generated and valuable energy is lost during the operating period. Since it is known that the residual oxygen or O₂ content in the exhaust gases is a measure of the quality and efficiency of the combustion, more and more combustion plants are equipped with O₂ controls. The ratio of the amount of air supplied to the amount of fuel supplied is controlled by means of an O₂ measuring probe in the exhaust duct and a control device such that the concentration of the residual oxygen in the exhaust gases reaches the setpoint. In the ideal case, an almost stoichiometric combustion of the fuel is achieved.

Da weiterhin bekannt ist, dass die Summe der Schadstoffe (CO, NOx) in den Abgasen im wesentlichen etwa dort ein Minimum erreicht, wo auch die annähernd vollständige Verbrennung des Brennstoffes stattfindet, kann mit einer O₂-Regelung auch der Schadstoffausstoss einer Feuerungsanlage beträchtlich reduziert und innerhalb vorgeschriebener Grenzwerte gehalten werden.Since it is also known that the sum of the pollutants (CO, NO x ) in the exhaust gases essentially reaches a minimum where the almost complete combustion of the fuel takes place, the O₂ control can also significantly reduce the pollutant emissions of a combustion system and be kept within prescribed limits.

Bei Feuerungsanlagen mit Brennern, die häufig auf verschiedenen Leistungsstufen betrieben werden, stellt sich das Problem der nicht-optimalen Verbrennung und der Begrenzung des Schadstoffausstosses bei der Umschaltung von einer ersten Leistungsstufe auf eine zweite Leistungsstufe. Insbesondere bei Grossanlagen kann der Schadstoffausstoss während der Umschaltphase beträchtlich über den Normalwerten liegen, die während des Betriebs auf einer festen Leistungsstufe auftreten. Der Grund für solche Abweichungen liegt darin, dass die Regelungsvorgänge während der Uebergänge nicht vollständig beherrschbar sind.Firing systems with burners, which are often operated at different power levels, pose the problem of non-optimal combustion and Limitation of pollutant emissions when switching from a first power level to a second power level. In large plants in particular, pollutant emissions during the switchover phase can be considerably above the normal values that occur during operation at a fixed power level. The reason for such deviations is that the control processes cannot be fully controlled during the transitions.

Werden O₂-Regelungen verwendet, so erfordert dies, dass im allgemeinen die Regelungsparameter der Regelungseinrichtung für jede der vorhandenen Leistungsstufen individuell mit einem gesonderten Verfahren ermittelt werden. Bei der Umschaltung von einer ersten Leistungsstufe auf eine zweite Leistungsstufe müssen jeweils die Regelungsparameter der Regelungseinrichtung umgeschaltet werden, was Unstetigkeiten während des Ueberganges bewirkt und letztlich nicht-optimale Verbrennung während der Uebergänge bedeutet.If O₂ controls are used, this requires that the control parameters of the control device are generally determined individually for each of the existing power levels using a separate method. When switching from a first power level to a second power level, the control parameters of the control device must be switched over, which causes discontinuities during the transition and ultimately means non-optimal combustion during the transitions.

Das Datenblatt 7851D vom September 1990 der Firma Landis & Gyr beschreibt einen Sauerstoff-Regler vom Typ RWF61.190 mit signalabhängigen Regelparametern für modulierbare Brenner. Es handelt sich um einen PI-Regler mit signaladaptivem Verhalten für O₂-Regelungen bei Brenneranlagen. Modulierbar heisst, dass der Brenner hinsichtlich der Leistung stufenlos umschaltbar ist. Natürlich sind auch bei modulierender Steuerung unterschiedliche Leistungsstufen wirksam. Die Regelparameter für diesen Regler werden individuell aus Messungen von Sprungantworten am offenen Regelkreis bei zwei Leistungsstufen, nämlich bei maximaler Brennerleistung und bei minimaler Brennerleistung, ermittelt. Die so ermittelten Regelparameter werden anschliessend an entsprechenden Potentiometern des Reglers eingestellt. Die Regelparameter für einen PI-Regler sind die Regelverstärkung KR und die Nachstellzeit TN . Die Regelverstärkung KR und die Nachstellzeit TN werden für eine PI-Regelstrecke mit Totzeit nach der Methode von Ziegler und Nichols eingestellt (siehe dazu beispielsweise im Handbuch für Hochfrequenz- und Elektrotechniker, IV.Band, Seite 596, Formel 134; vom Verlag für Radio-Foto-Kinotechnik GmbH, Berlin-Bosigwalde).The data sheet 7851D from September 1990 by Landis & Gyr describes an oxygen controller of the type RWF61.190 with signal-dependent control parameters for modulatable burners. It is a PI controller with signal-adaptive behavior for O₂ controls in burner systems. Modular means that the burner can be switched continuously in terms of output. Of course, different power levels are also effective with modulating control. The control parameters for this controller are determined individually from measurements of step responses on the open control circuit at two power levels, namely at maximum burner output and at minimum burner output. The control parameters determined in this way are then set on corresponding potentiometers of the controller. The control parameters for a PI controller are the control gain K R and the reset time T N. The control gain K R and the reset time T N are used for a PI controlled system with dead time adjusted according to the method of Ziegler and Nichols (see, for example, in the Handbook for High Frequency and Electrical Engineers, Volume IV, page 596, Formula 134; by the Verlag für Radio-Foto-Kinotechnik GmbH, Berlin-Bosigwalde).

Die Funktionsweise dieses PI-Reglers ist so, dass aus der Regelabweichung, die die Differenz zwischen O₂-Sollwert und O₂-Istwert darstellt, eine Stellgrösse berechnet wird, die einen Proportionalanteil, einen Integralanteil und einen leistungsabhängigen Verstärkungsfaktor enthält. Mit der Stellgrösse wird das Stellglied, beispielsweise eine Luftklappe, die das Verhältnis von Luft zu Brennstoff reguliert, gesteuert.The operation of this PI controller is such that a control variable is calculated from the control deviation, which represents the difference between the O₂ target value and the O₂ actual value, which contains a proportional component, an integral component and a power-dependent gain factor. The actuating variable controls the actuator, for example an air flap that regulates the ratio of air to fuel.

Eine PI-Regelung dieser Art hat den Nachteil, dass im Fall der stufenweisen Umschaltung von einer ersten Leistungsstufe auf eine zweite Leistungsstufe im Uebergangsstadium die Stellgrösse, die im ausgeregelten Zustand im wesentlichen dem Integralanteil des PI-Reglers entspricht, zunächst im neuen Betriebszustand auf der zweiten Leistungsstufe übernommen wird. Da der Integralanteil des PI-Reglers jedoch einen zur jeweiligen Leistungsstufe proportionalen Anteil enthält, ist dessen Grösse noch gar nicht auf die neuen Betriebsverhältnisse der zweiten Leistungsstufe abgestimmt, hat also zunächst einen falschen Wert. Dieser falsche Wert wird zwar in der Folge ausgeregelt, bewirkt aber, dass im Uebergangsstadium wegen nicht-optimaler Verbrennung vermehrt Schadstoffe ausgestossen werden.A PI control of this type has the disadvantage that in the case of step-by-step switching from a first power level to a second power level in the transition stage, the manipulated variable, which in the adjusted state essentially corresponds to the integral part of the PI controller, initially in the new operating state on the second Power level is taken over. However, since the integral part of the PI controller contains a part proportional to the respective power level, its size has not yet been adjusted to the new operating conditions of the second power level, so it initially has an incorrect value. Although this incorrect value is subsequently corrected, it causes more pollutants to be emitted in the transition stage due to non-optimal combustion.

Die Aufgabe besteht darin, ein Verfahren zur Regelung eines hinsichtlich der Leistung stufig oder modulierend umschaltbaren Brenners für eine brennerbetriebene Feuerungsanlage anzugeben, das einen günstigeren Verlauf der Verbrennung beim Uebergang zwischen den Leistungsstufen aufweist.The object is to provide a method for regulating a burner for a burner-operated combustion system which can be switched in stages or modulating in terms of output, and which has a more favorable course of combustion during the transition between the output stages.

Diese Aufgabe wird durch die im Kennzeichen des Patentanspruches 1 gegebene Lehre gelöst.This object is achieved by the teaching given in the characterizing part of patent claim 1.

Die Lösung beruht darauf, dass eine leistungsunabhängige Stellgrösse berechnet wird.The solution is based on the fact that a performance-independent manipulated variable is calculated.

Der Vorteil der Erfindung besteht darin, dass bei der Umschaltung zwischen verschiedenen Leistungen des Brenners weniger Schadstoffe entstehen und Energieverluste vermindert werden.The advantage of the invention is that when switching between different burner outputs, fewer pollutants are generated and energy losses are reduced.

Im folgenden wird das neue Verfahren unter Beizug von Figuren näher erläutert. Es zeigen

Fig. 1
eine Brenneranlage mit O₂-Regelung in schematischer Darstellung,
Fig. 2
den O₂-Regelkreis in schematischer Darstellung, und
Fig. 3
die Messung der Sprungantwort am offenen O₂-Regelkreis.
The new method is explained in more detail below with the aid of figures. Show it
Fig. 1
a burner system with O₂ control in a schematic representation,
Fig. 2
the O₂ control circuit in a schematic representation, and
Fig. 3
the measurement of the step response on the open O₂ control loop.

Figur 1 zeigt eine Brenneranlage mit O₂-Regelung in schematischer Darstellung, mit einem Heizkessel 1, einem Brenner 2, der zwischen mehreren Leistungsstufen umschaltbar ist, und einem Abgaskanal 3. Der Brenner 2 hat eine Brennstoffzufuhr 4 und eine Luftzufuhr 5, wobei in der Luftzufuhr 5 ein Stellglied, beispielsweise eine Luftklappe 6 oder ein Ventilator, zur Anpassung der zugeführten Luftmenge an die zugeführte Brennstoffmenge vorhanden ist. Abgase 7 aus der Verbrennung werden über den Abgaskanal 3 fortgeleitet. Im Abgaskanal 3 befindet sich eine O₂-Sonde 8, die den Restsauerstoffgehalt (O₂) im Abgas 7 misst. Die von der O₂-Sonde 8 gemessenen O₂-Istwerte O2I werden einer Regelungsvorrichtung 9 zugeführt, wo sie mit einem O₂-Sollwert O2S verglichen werden, worauf aufgrund der Leistung des Brenners 2 und der ermittelten Differenz die Luftklappe 6 von der Regelungsvorrichtung 9 gesteuert wird. Die optimale Luftzufuhr bzw. der optimale Luftüberschuss für die Verbrennung ist leistungsabhängig. Die Regelungsvorrichtung 9 dient dem Zweck, die dem Brenner 2 zugeführte Luftmenge so zu steuern, dass der im Abgas 7 gemessene Restsauerstoffgehalt (O₂) den eingestellten O₂-Sollwert O2S erreicht. Damit wird im Idealfall eine fast stöchiometrische Verbrennung des Brennstoffes erreicht, was auch bedeutet, dass der Schadstoffgehalt im Abgas 7 bezüglich der Gase CO und NOX minimal wird.Figure 1 shows a burner system with O₂ control in a schematic representation, with a boiler 1, a burner 2, which can be switched between several power levels, and an exhaust gas duct 3. The burner 2 has a fuel supply 4 and an air supply 5, the air supply 5 there is an actuator, for example an air flap 6 or a fan, for adapting the quantity of air supplied to the quantity of fuel supplied. Exhaust gases 7 from the combustion are passed on via the exhaust duct 3. In the exhaust duct 3 there is an O₂ probe 8, which measures the residual oxygen content (O₂) in the exhaust gas 7. The O₂ actual values measured by the O₂ probe 8 O 2I are fed to a control device 9, where they have an O₂ setpoint O 2S are compared, whereupon the air flap 6 is controlled by the control device 9 on the basis of the performance of the burner 2 and the difference determined. The optimal air supply or the optimal excess air for combustion is performance-dependent. The control device 9 serves the purpose of controlling the amount of air supplied to the burner 2 so that the residual oxygen content (O₂) measured in the exhaust gas 7 reaches the set O₂ setpoint O 2S . In the ideal case, an almost stoichiometric combustion of the fuel is achieved, which also means that the pollutant content in the exhaust gas 7 with respect to the gases CO and NO x is minimal.

In der Figur 2 ist der O₂-Regelkreis und dessen Abhängigkeit von der Leistung PB des Brenners 2 schematisch dargestellt. In einem Vergleicher 10 wird der von der Leistung PB des Brenners abhängige O₂-Sollwert O2S mit dem O₂-Istwert O2I verglichen, d.h. aus der Differenz der beiden Werte ergibt sich eine Regelabweichung 11. Die Regelabweichung 11 wird einem PID-Regler 12 zugeführt, der aus der Regelabweichung 11 zunächst eine leistungsunabhängige Stellgrösse YR berechnet. Der PID-Regler 12 erhält ausserdem Steuerungsinformationen 14, wie beispielsweise die Leistung PB des Brenners 2 und die Art des Brennstoffes. Die leistungsunabhängige Stellgrösse YR wird von einem Korrekturglied 12a in eine von der Leistung PB des Brenners abhängige Stellgrösse 13 umgesetzt. Die Stellgrösse 13 wird dem Stellglied, in diesem Fall der Luftklappe 6, zugeführt, deren Einstellwert, nämlich eine Luftklappenstellung 15, eine Regelstrecke 16 beeinflusst. Als Regelstrecke 16 ist die Gesamtheit von Luftzufuhr 5, Brennstoffzufuhr 6, Brenner 2, Heizkessel 1 und Abgaskanal 3 bis zu der O₂-Sonde 8 zu verstehen. An dem Punkt im Abgaskanal 3, an dem sich die O₂-Sonde 8 befindet, ergibt sich als Resultat der Wirkungskette von PID-Regler 12, Korrekturglied 12a, Luftklappe 6 und Regelstrecke 16 ein bestimmter O2-Wert, der die Regelgrösse O₂ darstellt und der von der O₂-Sonde als O₂-Istwert O2I gemessen und zum Vergleicher 10 zurückgeführt wird.In Figure 2, the O₂ control loop and its dependence on the power P B of the burner 2 is shown schematically. In a comparator 10, the O₂ setpoint O 2S which is dependent on the power P B of the burner is compared with the actual O₂ value O 2I , ie a control deviation 11 results from the difference between the two values. The control deviation 11 becomes a PID controller 12 supplied, which first calculates a performance-independent manipulated variable Y R from the control deviation 11. The PID controller 12 also receives control information 14, such as the power P B of the burner 2 and the type of fuel. The power-independent manipulated variable Y R is converted by a correction element 12a into a manipulated variable 13 dependent on the power P B of the burner. The manipulated variable 13 is fed to the actuator, in this case the air flap 6, the setting value of which, namely an air flap position 15, influences a controlled system 16. As a controlled system 16, the entirety of air supply 5, fuel supply 6, burner 2, boiler 1 and exhaust duct 3 is to be understood up to the O₂ probe 8. At the point in the exhaust duct 3 at which the O₂ probe 8 is located, the result of the chain of action of PID controller 12, correction element 12a, air flap 6 and controlled system 16 is a certain O2 value which represents the controlled variable O₂ and measured by the O₂ probe as O₂ actual value O 2I and fed back to comparator 10.

Der PID-Regler 12 wird deshalb eingesetzt, weil damit sowohl bleibende wie auch vorübergehende Abweichungen vom O₂-Sollwert am kleinsten gehalten werden können.The PID controller 12 is used because both permanent and temporary deviations from the O₂ setpoint can be kept to a minimum.

Die Regelparameter werden für den PID-Regler für jede Leistungsstufe individuell bestimmt. Die Regelparameter des PID-Reglers 12 sind:

  • Die Regelverstärkung KR (P-Anteil)
  • Die Nachstellzeit TN (I-Anteil)
  • Die Vorhaltzeit TV (D-Anteil)
The control parameters are determined individually for the PID controller for each power level. The control parameters of the PID controller 12 are:
  • The control gain K R (P component)
  • The reset time T N (I component)
  • The lead time T V (D component)

Die Regelverstärkung KR und die Nachstellzeit TN und die Vorhaltezeit TV werden für die PID-Regelstrecke mit Totzeit im wesentlichen nach der Methode von Ziegler und Nichols eingestellt (siehe dazu beispielsweise im Handbuch für Hochfrequenz- und Elektrotechniker, IV.Band, Seite 596, Formel 136; vom Verlag für Radio-Foto-Kinotechnik GmbH, Berlin-Bosigwalde). Da die Regelung mikroprozessorgesteuert ist und somit eine Abtastregelung darstellt, beinhalten die Formeln auch eine Abtastzeit TS.
dabei wird:

Figure imgb0001

mit
Figure imgb0002

worin:
   TU= Verzugszeit
   TG= Ausgleichszeit
   TS = Abtastzeit (beispielsweise 0.2 s)
   ΔO2IST = Differenz des O2-Wertes im Abgas
   ΔPOS = Differenz der Luftklappenposition
   KS = Streckenverstärkung
Dabei werden die Werte für TU, TG, ΔO2IST und ΔPOS aus Messungen von Sprungantworten am offenen Regelkreis gemäss Figur 3 gewonnen. Am offenen Regelkreis, d.h. bei laufendem Brenner auf einer bestimmten Leistungsstufe, aber bei ausgeschalteter O₂-Regelung, wird vorerst abgewartet, bis der von der O₂-Sonde 8 gemessene O₂-Wert stabil ist. Dann wird die Stellung der Luftklappe 6 sprunghaft um den Wert ΔPOS geändert und solange beibehalten, bis der von der O₂-Sonde 8 gemessene O₂-Wert wieder stabil ist und sich auf einem gegenüber der Ausgangsstellung genügend verschiedenen Wert eingestellt hat. Dies ist die Ausgangsstellung für die Messung der Sprungantwort.The control gain K R and the reset time T N and the lead time T V are set for the PID controlled system with dead time essentially according to the method of Ziegler and Nichols (see, for example, in the Handbook for High Frequency and Electrical Engineers, Volume IV, page 596 , Formula 136; by the Verlag für Radio-Foto-Kinotechnik GmbH, Berlin-Bosigwalde). Since the regulation is microprocessor-controlled and thus represents a sampling regulation, the formulas also include a sampling time T S.
thereby:
Figure imgb0001

With
Figure imgb0002

wherein:
T U = delay time
T G = equalization time
T S = sampling time (e.g. 0.2 s)
ΔO 2IST = difference in the O2 value in the exhaust gas
Δ POS = difference in air damper position
K S = line reinforcement
The values for TU, TG, ΔO 2IST and Δ POS are obtained from measurements of step responses on the open control loop according to FIG. 3. On the open control loop, ie when the burner is running at a certain power level, but with the O₂ control switched off, it is initially necessary to wait until the O₂ value measured by the O₂ probe 8 is stable. Then the position of the air flap 6 is abruptly changed by the value Δ POS and maintained until the O₂ value measured by the O₂ probe 8 is stable again and has set itself to a sufficiently different value from the starting position. This is the starting position for measuring the step response.

Sodann wird die Stellung der Luftklappe 6 erneut sprunghaft um den Wert ΔPOS, aber in entgegengesetzter Richtung, geändert und wieder solange beibehalten, bis der von der O₂-Sonde 8 gemessene O₂-Wert stabil ist. Die Differenz zwischen dem gemessenen O₂-Wert vor der sprunghaften Aenderung der Stellung der Luftklappe 6 und dem gemessenen O₂-Wert nach der sprunghaften Aenderung derselben ist ΔO2IST. Aus dem Verlauf der O₂-Messkurve werden die Zeitpunkte bestimmt, an denen die gemessene Aenderung des O₂-Wertes 10% bzw. 63% des Endwertes von ΔO2IST erreicht haben. Dies ergibt die Verzugszeit TU und die Ausgleichszeit TG, wobei TU im wesentlichen die Reaktionszeit bzw. Totzeit der Regelstrecke 16 darstellt. Für grosse Brenneranlagen ergeben sich für TU Werte von 5 bis 10s.Then the position of the air flap 6 is again abruptly changed by the value Δ POS , but in the opposite direction, and maintained again until the O₂ value measured by the O₂ probe 8 is stable. The difference between the measured O₂ value before the sudden change in the position of the air flap 6 and the measured O₂ value after the sudden change in the same is ΔO 2IST . From the course of the O₂ measurement curve, the points in time are determined at which the measured change in the O₂ value has reached 10% or 63% of the final value of ΔO 2IST . This gives the delay time T U and the compensation time T G , where T U essentially the Response time or dead time of the controlled system 16 represents. For large burner systems, values of 5 to 10s result for T U.

Selbstverständlich müssen die so ermittelten Regelparameter für den PID-Regler für jeden verwendeten Brennstoff und für jede Leistungsstufe des Brenners 2 ermittelt und gespeichert werden. Die aktuellen zu verwendenden Regelparameter werden dem PID-Regler über die Steuerungsinformationen 14 mitgeteilt (siehe Figur 2).Of course, the control parameters determined in this way for the PID controller must be determined and stored for each fuel used and for each output level of the burner 2. The current control parameters to be used are communicated to the PID controller via the control information 14 (see FIG. 2).

Das Verfahren zur Regelung des Brenners 2 unter Beizug des PID-Regelalgorithmus läuft wie folgt ab:The process for controlling burner 2 using the PID control algorithm is as follows:

Der PID-Regler 12 errechnet eine leistungsunabhängige Stellgrösse YR aus der Regelabweichung 11 (siehe auch Figur 2).

Y R = Y PR + Y IR + Y DR

Figure imgb0003


wobei:

YPR =
leistungsunabhängiger Proportionalteil
YIR =
leistungsunabhängiger Integralanteil
YDR =
leistungsunabhängiger Differentialanteil
Der leistungsunabhängige Proportionalteil YPR errechnet sich dabei wie folgt:
Figure imgb0004

   wobei
   e(n) = Regelabweichung 11 zum Zeitpunkt (n)
   TG= Ausgleichszeit
   TU = Verzugszeit
Die Regelabweichung 11 wird in dieser und in den folgenden Formeln mit dem Buchstaben e bezeichnet. Da die Regelung mikroprozessorgesteuert ist, sind die Formeln in der für die Berechnung mit Mikroprozessoren geeigneten diskreten Darstellungsform, nämlich mit Bezug auf die berechneten oder gemessenen Werte zu einem jeweiligen diskreten Abtastzeitpunkt (n) aufgeführt.The PID controller 12 calculates a power-independent manipulated variable Y R from the control deviation 11 (see also FIG. 2).

Y R = Y PR + Y IR + Y DR
Figure imgb0003


in which:
Y PR =
performance-independent proportional part
Y IR =
performance-independent integral part
Y DR =
performance-independent differential component
The performance-independent proportional part Y PR is calculated as follows:
Figure imgb0004

in which
e (n) = control deviation 11 at time (n)
T G = equalization time
T U = delay time
The control deviation 11 is designated in this and in the following formulas with the letter e. Because the scheme is microprocessor-controlled, the formulas are listed in the discrete form of representation suitable for the calculation with microprocessors, namely with reference to the calculated or measured values at a respective discrete sampling time (s).

Der leistungsunabhängige Integralanteil YIR zum Zeitpunkt (n) errechnet sich wie folgt:

Figure imgb0005

   wobei
   YIR(n-1) = leistungsunabhängige Integralanteil YIR zum Zeitpunkt (n-1)
   e(n) = Regelabweichung 11 zum Zeitpunkt (n)
   TG= Ausgleichszeit
   TU = Verzugszeit
   TS = Abtastzeit
   TN = Nachstellzeit
Der leistungsunabhängige Differentialanteil YDR berechnet sich wie folgt:
Figure imgb0006

   wobei
   e(n) = Regelabweichung 11 zum Zeitpunkt (n)
   e(n-1) = Regelabweichung 11 zum Zeitpunkt (n-1)
   TG= Ausgleichszeit
   TU = Verzugszeit
   TV = Vorhaltezeit
   TS = Abtastzeit
Für die Erfindung ist es von Bedeutung, dass der Proportionalanteil YPR, der Integralanteil YIR und der Differentialanteil YDR in den vorstehend dargelegten Formen als leistungsunabhängige Komponenten ermittelt werden. Bei der Umschaltung von einer ersten Leistungsstufe auf eine zweite Leistungsstufe muss der Integralanteil in leistungsunabhängiger Form zur Verfügung stehen.The power-independent integral component Y IR at time (n) is calculated as follows:
Figure imgb0005

in which
Y IR (n-1) = power-independent integral component Y IR at time (n-1)
e (n) = control deviation 11 at time (n)
T G = equalization time
T U = delay time
T S = sampling time
T N = reset time
The power-independent differential component Y DR is calculated as follows:
Figure imgb0006

in which
e (n) = control deviation 11 at time (n)
e (n-1) = control deviation 11 at time (n-1)
T G = equalization time
T U = delay time
T V = lead time
T S = sampling time
It is important for the invention that the proportional component Y PR , the integral component Y IR and the differential component Y DR in the forms set out above are determined as performance-independent components. When switching from a first power level to a second power level, the integral component must be available in a power-independent form.

Erst anschliessend wird die leistungsunabhängige Stellgrösse YR mit 1/KS multipliziert. KS ist die Streckenverstärkung und leistungsabhängig. Da KS in vielen Fällen im wesentlichen umgekehrt proportional zur Leistung des Brenners 2 auf der gewählten Leistungsstufe ist, ist in diesen Fällen die Stellgrösse 13 im wesentlichen proportional zur Leistung des Brenners 2 auf der gewählten Leistungsstufe.

Figure imgb0007

   wobei:

Y =
Stellgrösse 13
YR =
leistungsunabhängige Stellgrösse
KS =
Streckenverstärkung
Die Stellgrösse 13 wird der Luftklappe 6 zugeführt und bewirkt eine Veränderung der Luftklappenstellung. Dadurch verändert sich die Luftzufuhr zum Brenner 2, was sich letzlich mit einer Verzögerung, der Reaktionszeit der Regelstrecke 16, als Aenderung des O₂-Gehaltes im Abgas 7 bei der O₂-Sonde 8 bemerkbar macht.Only then is the output-independent manipulated variable Y R multiplied by 1 / K S. K S is the route reinforcement and performance-dependent. Since K S is in many cases essentially inversely proportional to the power of the burner 2 at the selected power level, the manipulated variable 13 is essentially proportional to the power of the burner 2 at the selected power level in these cases.
Figure imgb0007

in which:
Y =
Manipulated variable 13
Y R =
output-independent control variable
K S =
Line reinforcement
The manipulated variable 13 is fed to the air flap 6 and causes a change in the air flap position. This changes the air supply to the burner 2, which ultimately makes itself felt with a delay, the response time of the controlled system 16, as a change in the O₂ content in the exhaust gas 7 in the O₂ probe 8.

Im ausgeregelten Zustand sind die Verhältnisse stabil, das heisst der von der O₂-Sonde 8 gemessene O₂-Gehalt im Abgas 7 bleibt konstant. Da der Istwert der Regelung dem Sollwert der Regelung entspricht (O2S = O2I, siehe auch Figur 2), ist die Regelabweichung 11 gleich Null. Lediglich der Integralanteil YIR liefert einen Beitrag zur Aufrechterhaltung dieses Zustandes.In the adjusted state, the conditions are stable, that is, the O₂ content in the exhaust gas 7 measured by the O₂ probe 8 remains constant. Since the actual value of the control corresponds to the setpoint of the control (O 2S = O 2I , see also FIG. 2), the control deviation 11 is zero. Only the integral part Y IR contributes to the maintenance of this state.

Ist die Regelabweichung 11 kleiner als die O2-Differenz die sich pro kleinstmöglichem Stellschritt ergibt, so wird nicht korrigiert, da sonst die Regelung zum Schrittpendeln neigt.
   wenn |e(n)|<NZO₂/2

Figure imgb0008
dann wird e(n)=0 gesetzt
   wobei
   |e(n)| = Regelabweichung 11 zum Zeitpunkt (n)
   NZO₂ = Neutralbereich
Die in die Berechnung eingehende Regelabweichung 11 ist unterschiedlich, je nachdem, ob Luftmangel oder Luftüberschuss vorhanden ist:
   bei Luftmangel:
   wenn e(n) < 0 dann e(n) = e(n)
   bei Luftüberschuss:
   wenn e(n) > 0 dann e(n) = e(n)/2
   wobei
   e(n) = Regelabweichung 11 zum Zeitpunkt (n)
Damit wird dem Wunsch entsprochen, die Regelung bei Luftüberschuss langsamer zu machen um Unterschwinger in den CO-Bereich möglichst zu vermeiden.If the control deviation 11 is smaller than the O2 difference that results for the smallest possible actuation step, no correction is made, since otherwise the control system tends to oscillate.
if | e (n) | <NZO₂ / 2
Figure imgb0008
then e (n) = 0 is set
in which
| e (n) | = Control deviation 11 at time (s)
NZO₂ = neutral range
The control deviation 11 included in the calculation differs depending on whether there is a lack of air or excess air:
in case of lack of air:
if e (n) <0 then e (n) = e (n)
with excess air:
if e (n)> 0 then e (n) = e (n) / 2
in which
e (n) = control deviation 11 at time (n)
This fulfills the wish to slow down the control in case of excess air in order to avoid undershoots in the CO range as far as possible.

Bei der Umschaltung des Brenners 2 von einer ersten Leistungsstufe auf eine zweite Leistungsstufe wird der leistungsunabhängige Integralteil YIR der leistungsunabhängigen Stellgrösse YR als Anfangswert für die leistungsunabhängige Stellgrösse YR bei der zweiten Leistungsstufe verwendet. Dies wird im folgenden verdeutlicht durch Betrachtung der Stellgrösse 13 vor und nach der Leistungsstufen-Umschaltung:
Stellgrösse 13 vor der Leistungsstufen-Umschaltung:

Figure imgb0009

   wobei
   Ya = leistungsabhängige Stellgrösse 13 im ausgeregelten Zustand bei Betrieb auf der Leistungsstufe A
   KSa = Streckenverstärkung für die Leistungsstufe A
   YIR = leistungsunabhängiger Integralteil
Da die Regelung in ausgeregeltem Zustand ist, entspricht der Istwert der Regelgrösse dem Sollwert der Regelgrösse (O2S = O2I, siehe auch Figur 2). Die Regelabweichung 11 ist gleich Null. Lediglich der Integralanteil YIR liefert einen Beitrag zur Aufrechterhaltung dieses Zustandes.When the burner 2 is switched from a first power level to a second power level, the power-independent integral part Y IR of the power-independent manipulated variable Y R is used as the initial value for the power-independent manipulated variable Y R at the second power level. This is illustrated below by considering the manipulated variable 13 before and after the power level changeover:
Actuating variable 13 before switching the power level:
Figure imgb0009

in which
Y a = output-dependent manipulated variable 13 in the regulated state when operating at output level A.
K Sa = distance reinforcement for performance level A
Y IR = integral part independent of power
Since the control is in the regulated state, the actual value of the controlled variable corresponds to the setpoint of the controlled variable (O 2S = O 2I , see also FIG. 2). The control deviation 11 is zero. Only the integral component Y IR makes a contribution to maintaining this state.

Stellgrösse 13 unmittelbar nach der Leistungsstufen-Umschaltung:

Figure imgb0010

   wobei
   Yb = leistungsabhängige Stellgrösse 13 im ausgeregelten Zustand bei Betrieb auf der Leistungsstufe B
   KSb = Streckenverstärkung für die Leistungsstufe B
   YIR = leistungsunabhängiger Integralteil
Unter der Annahme, dass während der Umschaltung der O₂-Sollwert (O2S) für die Regelung nicht geändert wird, bleibt wegen der Reaktionszeit der Regelung die Regelabweichung 11 vorerst noch gleich Null. Lediglich der leistungsunabhängige Integralanteil YIR, der während des Ueberganges beibehalten wird, liefert einen Beitrag zur Aufrechterhaltung des Zustandes. Die für den Betrieb auf der neuen Leistungsstufe B massgebende Streckenverstärkung KSb wird gleich zu Beginn des Betriebs auf der neuen Leistungsstufe B angewendet. Mit dieser Massnahme wird erreicht, dass der beim Uebergang übernommene Integralanteil nicht von alten Regelparametereinflüssen verfälscht wird, die für den Betrieb auf der aktuellen Leistungsstufe gar keine Gültigkeit mehr haben und die andernfalls zuerst ausgeregelt werden müssten. Somit verbessert sich die Verbrennung während des Ueberganges beim Betrieb von einer Leistungsstufe auf die nächste und daraus ergibt sich auch ein geringerer Schadstoffausstoss.Actuating variable 13 immediately after switching the power level:
Figure imgb0010

in which
Y b = output-dependent manipulated variable 13 in the regulated state when operating at output level B.
K Sb = line reinforcement for performance level B
Y IR = integral part independent of power
Assuming that the O₂ setpoint (O 2S ) for the control is not changed during the switchover, the control deviation 11 remains initially zero because of the reaction time of the control. Only the power-independent integral component Y IR , which is retained during the transition provides a contribution to maintaining the state. The route gain K Sb , which is decisive for operation at the new performance level B, is applied at the beginning of operation at the new performance level B. This measure ensures that the integral part taken over during the transition is not distorted by old control parameter influences, which are no longer valid for operation at the current power level and which would otherwise have to be corrected first. This improves combustion during the transition from one power level to the next during operation, and this also results in lower pollutant emissions.

Claims (5)

Verfahren zur Regelung eines Brenners (2) für eine brennerbetriebene Feuerungsanlage, der hinsichtlich der Leistung stufig oder modulierend umschaltbar ist, mit - einer O₂-Sonde (8) zur Messung des Restsauerstoffgehaltes O₂ in den Abgasen, wobei der gemessene Restsauerstoffgehalt als O₂-Istwert O2I in einer O₂-Regelung verwendet wird, - einem Stellglied zur Regulierung des Luftüberschusses zum Brenner (2), - einem Regler zur Berechnung einer Stellgrösse (13) zur Steuerung des Stellglieds aufgrund einer Regelabweichung (11), die als Differenz zwischen einem leistungsabhängigen O₂-Sollwert O2S für den Restsauerstoffgehalt O₂ und dem O₂-Istwert O2I für den Restsauerstoffgehalt O₂ berechnet wird, wobei - Regelparameter für die vorhandenen Leistungsstufen des Brenners (2) individuell aus Messungen von Sprungantworten am offenen Regelkreis ermittelt werden und in Abhängigkeit von der Leistungsstufe, auf der der Brenner (2) betrieben wird, im Regler eingesetzt werden,
dadurch gekennzeichnet, dass
- ein PID-Regler (12) eingesetzt wird, - aus der Regelabweichung (11) vom PID-Regler (12) eine leistungsunabhängige Stellgrösse YR berechnet wird, die aus einem leistungsunabhängigen Proportionalanteil YPR, einem leistungsunabhängigen Differentialanteil YDR und einem leistungsunabhängigen Integralanteil YIR besteht, und dass - die leistungsunabhängige Stellgrösse YR anschliessend mit einer leistungsabhängigen Streckenverstärkung multipliziert wird, wobei das Stellglied von der Stellgrösse (13) nach dem Produkt aus leistungsunabhängiger Stellgrösse YR und leistungsabhängiger Streckenverstärkung gesteuert wird.
Method for controlling a burner (2) for a burner-operated furnace, which can be switched in stages or modulating in terms of output - An O₂ probe (8) for measuring the residual oxygen content O₂ in the exhaust gases, the measured residual oxygen content being used as the actual O₂ value O 2I in an O₂ control, - an actuator for regulating the excess air to the burner (2), - A controller for calculating a manipulated variable (13) for controlling the actuator based on a control deviation (11), which is calculated as the difference between a power-dependent O₂ setpoint O 2S for the residual oxygen content O₂ and the actual O₂ value O 2I for the residual oxygen content O₂, in which - Control parameters for the existing burner power levels (2) are determined individually from measurements of step responses on the open control loop and are used in the controller depending on the power level at which the burner (2) is operated,
characterized in that
- a PID controller (12) is used, - A power-independent manipulated variable Y R is calculated from the control deviation (11) by the PID controller (12), which consists of a power-independent proportional component Y PR , a power-independent differential component Y DR and a power-independent integral component Y IR , and that - The power-independent manipulated variable Y R is then multiplied by a power-dependent route gain, the actuator being controlled by the manipulated variable (13) according to the product of the performance-independent manipulated variable Y R and the power-dependent route gain.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die leistungsabhängige Streckenverstärkung im wesentlichen umgekehrt proportional zur Leistung des Brenners auf der gewählten Leistungsstufe ist.A method according to claim 1, characterized in that the power-dependent path gain is essentially inversely proportional to the power of the burner at the selected power level. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Regelung bei Luftüberschuss verlangsamt wird, indem bei Luftüberschuss die Regelabweichung (11) mit einem Faktor < 1 multipliziert und dann dem PID-Regler (12) zugeführt wird.A method according to claim 1, characterized in that the control is slowed down in the event of excess air by multiplying the control deviation (11) by a factor <1 in the event of excess air and then feeding it to the PID controller (12). Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass bei der Umschaltung des Brenners (2) von einer ersten Leistungsstufe auf eine zweite Leistungsstufe der leistungsunabhängige Integralteil YIR der leistungsunabhängigen Stellgrösse YR als Anfangswert für die leistungsunabhängige Stellgrösse YR bei der zweiten Leistungsstufe verwendet wird.Method according to one of claims 1 to 3, characterized in that when switching the burner (2) from a first power level to a second power level, the power-independent integral part Y IR of the power-independent manipulated variable Y R as the initial value for the power-independent manipulated variable Y R in the second Power level is used. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Stellglied eine Luftklappe (6) ist.Method according to one of claims 1 to 4, characterized in that the actuator is an air flap (6).
EP94111935A 1993-09-22 1994-07-30 Method and apparatus for controlling a burner Expired - Lifetime EP0644376B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2861/93 1993-09-22
CH286193 1993-09-22

Publications (2)

Publication Number Publication Date
EP0644376A1 true EP0644376A1 (en) 1995-03-22
EP0644376B1 EP0644376B1 (en) 1997-10-29

Family

ID=4243235

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94111935A Expired - Lifetime EP0644376B1 (en) 1993-09-22 1994-07-30 Method and apparatus for controlling a burner

Country Status (2)

Country Link
EP (1) EP0644376B1 (en)
DE (1) DE59404465D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070954A1 (en) 2001-03-06 2002-09-12 Siemens Building Technologies Ag Array for an automatic firing device for a gas or oil burner
EP1510758A1 (en) * 2003-08-29 2005-03-02 Siemens Building Technologies AG Method for regulating and/or controlling a burner
CN101949549A (en) * 2010-10-18 2011-01-19 攀钢集团钢铁钒钛股份有限公司 Flow control method of combustion system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194749A1 (en) 2021-12-13 2023-06-14 Siemens Aktiengesellschaft Control and/or regulation of a combustion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174618A (en) * 1981-04-22 1982-10-27 Fuji Electric Co Ltd Control system for variable spped fan in combustion equipment
US4408569A (en) * 1981-11-18 1983-10-11 Phillips Petroleum Company Control of a furnace
JPS6071849A (en) * 1983-09-28 1985-04-23 Omron Tateisi Electronics Co Burning control device of water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174618A (en) * 1981-04-22 1982-10-27 Fuji Electric Co Ltd Control system for variable spped fan in combustion equipment
US4408569A (en) * 1981-11-18 1983-10-11 Phillips Petroleum Company Control of a furnace
JPS6071849A (en) * 1983-09-28 1985-04-23 Omron Tateisi Electronics Co Burning control device of water heater

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 7, no. 20 (M - 188) 26 January 1983 (1983-01-26) *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 213 (M - 408) 30 August 1985 (1985-08-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070954A1 (en) 2001-03-06 2002-09-12 Siemens Building Technologies Ag Array for an automatic firing device for a gas or oil burner
US6955535B2 (en) 2001-03-06 2005-10-18 Siemens Building Technologies Ag Array for an automatic firing device for a gas or oil burner
EP1510758A1 (en) * 2003-08-29 2005-03-02 Siemens Building Technologies AG Method for regulating and/or controlling a burner
US7335015B2 (en) 2003-08-29 2008-02-26 Siemens Building Technologies Ag Method for controlling or regulating a burner
CN101949549A (en) * 2010-10-18 2011-01-19 攀钢集团钢铁钒钛股份有限公司 Flow control method of combustion system

Also Published As

Publication number Publication date
EP0644376B1 (en) 1997-10-29
DE59404465D1 (en) 1997-12-04

Similar Documents

Publication Publication Date Title
EP0259382B1 (en) Device for regulating the proportion of combustion air to gaz
DE3208567C2 (en) Method for controlling a steam boiler
DE3888327T2 (en) Fuel burner device and a control method.
EP1906092B1 (en) Method for controlling a combustion process
DE3638410C2 (en)
DE10129141A1 (en) Control and regulating methods and regulating device for starting or stopping a procedural component of a technical process
EP1331444B1 (en) Method for regulating a gas burner
DE69910126T2 (en) Combustion process of a fuel with an oxygen-rich oxidant
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
EP3824366B1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
EP0209771A1 (en) Method and circuit for the fine fuel volume flow regulation of burner-activated combustion devices by the measurement of the partial oxygen and the carbon monoxide content in the exhaust gases
DE2509344C3 (en) Method and arrangement for the automatic control of a boiler-turbine unit
EP0644376B1 (en) Method and apparatus for controlling a burner
DE3215073A1 (en) Control arrangement for furnace systems in steam or heating boilers
DE19854824C1 (en) Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
AT413738B (en) METHOD FOR REGULATING A COMBUSTION ENGINE
EP0339135A1 (en) Composite controlling apparatus for a burner
EP1510758A1 (en) Method for regulating and/or controlling a burner
EP0182073B1 (en) Process for controlling the reduction of noxious emissions from gas engines
EP1923634B1 (en) Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device
EP2730842B1 (en) Heating device and method for optimised combustion of biomass
DE2753520C2 (en) Device for optimizing the air / fuel ratio in combustion systems operated with gaseous or liquid fuels
EP1011037B1 (en) Apparatus and method for controlling the water temperature in a boiler
DE102010004826A1 (en) Method for operating a gas burner
EP0657390A2 (en) Method and disposition for controlling the burning process in a glass tank furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950626

17Q First examination report despatched

Effective date: 19960422

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971031

REF Corresponds to:

Ref document number: 59404465

Country of ref document: DE

Date of ref document: 19971204

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: LANDIS & GYR BUSINESS SUPPORT AG TRANSFER- SIEMENS BUILDING TECHNOLOGIES AG C-IPR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010705

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010717

Year of fee payment: 8

Ref country code: NL

Payment date: 20010717

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011018

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050730