EP0641982B1 - Procédé et installation de production d'au moins un gaz de l'air sous pression - Google Patents

Procédé et installation de production d'au moins un gaz de l'air sous pression Download PDF

Info

Publication number
EP0641982B1
EP0641982B1 EP94401838A EP94401838A EP0641982B1 EP 0641982 B1 EP0641982 B1 EP 0641982B1 EP 94401838 A EP94401838 A EP 94401838A EP 94401838 A EP94401838 A EP 94401838A EP 0641982 B1 EP0641982 B1 EP 0641982B1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
column
heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401838A
Other languages
German (de)
English (en)
Other versions
EP0641982A1 (fr
Inventor
Norbert Rieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0641982A1 publication Critical patent/EP0641982A1/fr
Application granted granted Critical
Publication of EP0641982B1 publication Critical patent/EP0641982B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop

Definitions

  • EP-A-0 552 747 describes a process in which the waste gas from the low pressure column is withdrawn from the exchange line at a temperature intermediate and relaxed in a turbine which ensures the cold resistance of the installation.
  • the invention aims to allow a reduction in the production of liquid for a given oxygen and / or nitrogen production capacity gas under pressure, economically from the point of view of energy performance.
  • the invention also relates to an installation intended for setting using such a method.
  • This installation of the type comprising a double distillation column comprising a low pressure column operating under a pressure known as low pressure and producing a waste gas at the top, and a medium pressure column operating under pressure so-called medium pressure; compression means for bring all of the air to be distilled to at least one high pressure significantly higher than medium pressure, these means comprising a main compressor; of means for withdrawing from the double column and pumping at least one liquid product resulting from the distillation; a heat exchange line connecting heat exchange air and said liquid product; and an expansion turbine for part of this air, the intake of this turbine being connected to an intermediate point of the heat exchange line and its exhaust being connected to the medium pressure column, is characterized in that it includes a second expansion turbine whose admission is linked to the exit of passages from heating of the waste gas from the exchange line thermal, at the hot end of it.
  • the installation shown in Figure 1 is intended to produce gaseous oxygen under high pressure from about 10 to 100 bar, liquid oxygen and liquid nitrogen.
  • This installation essentially includes: a main air compressor 1 itself comprising at minus a medium pressure stage 1A and a high stage pressure 1B; an adsorption purification device 2; a blower-turbine assembly comprising a blower 3 and a turbine 4 whose wheels are set on the same tree; an atmospheric or water cooler 5 for the blower; a heat exchange line 6; a first auxiliary heat exchanger 7 and a second exchanger auxiliary heat 8; a second expansion turbine 9 braked by an alternator 10; a double column of distillation 11 comprising a medium pressure column 12 and a low pressure column 13 coupled by a vaporizer-condenser 14 which puts in exchange relation thermal nitrogen at the top of column 12 and oxygen column 13 tank liquid; an oxygen pump liquid 15; a storage 16 of liquid oxygen at the atmospheric pressure; a storage 17 of liquid nitrogen at atmospheric pressure; a separator pot 18; and one subcooler 19.
  • column 13 is under a pressure from about 1.7 to 5 bar, and column 11 under the corresponding pressure from 6.5 to 16 bars approximately.
  • Liquid oxygen is drawn off in a tank column 13. A fraction goes directly, after sub-cooling in 19 and expansion to atmospheric pressure in an expansion valve 24, in the storage 16, while the rest is brought by pump 15 to the high desired production pressure, then vaporized and reheated at room temperature in the exchange line thermal before being recovered via a pipe 25.
  • liquid nitrogen under the medium pressure withdrawn at the head of column 12, is sub-cooled in 19, expanded to atmospheric pressure in an expansion valve 26, and introduced into the pot separator 18.
  • the liquid phase is sent to the storage 17, while the vapor phase is combined at the impure nitrogen at the top of column 13, then the mixture is reheated in 19 then in 6.
  • the waste gas thus heated at the room temperature is overheated in 7 then relaxed to roughly at atmospheric pressure in 9 and then the gas relaxed is warmed up to 8. It can then, before being evacuated from the installation, serve to regenerate the absorbent device 2.
  • the invention also applies to the production of nitrogen gas under high pressure, carried by a pump (not shown) at the desired high pressure then vaporized in the heat exchange line, and / or to the production of oxygen and / or nitrogen under several pressures, using multiple high air pressures.
  • the vaporization of the liquid (s) can be carried out not concomitantly with air liquefaction, with a knee liquefying air below the oxygen vaporization temperature, or so concomitant with this liquefaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé de production d'oxygène gazeux et/ou d'azote gazeux sous pression, du type dans lequel :
  • on distille de l'air dans une installation comprenant un compresseur principal d'air, une double colonne de distillation comprenant une colonne basse pression fonctionnant sous une pression dite basse pression, et une colonne moyenne pression fonctionnant sous une pression dite moyenne pression, et une ligne d'échange thermique servant à refroidir l'air traité;
  • on comprime la totalité de l'air à distiller jusqu'à au moins une haute pression d'air nettement supérieure à la moyenne pression;
  • on refroidit l'air comprimé jusqu'à une température intermédiaire, et on en détend une partie dans une turbine jusqu'à la moyenne pression, avant de l'introduire dans la colonne moyenne pression;
  • on liquéfie l'air non turbiné, puis on l'introduit, après détente, dans la double colonne;
  • on amène au moins un produit liquide soutiré de la double colonne à la pression de production, et on vaporise ce produit liquide par échange de chaleur avec l'air et
  • on réchauffe le gaz résiduaire de tête de la colonne basse pression jusqu'au bout chaud de la ligne d'échange thermique.
Les pressions dont il est question dans le présent mémoire sont des pressions absolues. De plus, l'expression « liquéfaction » doit être entendue au sens large, c'est-à-dire incluant la pseudo-liquéfaction dans le cas de pressions supercritiques.
Un procédé du type ci-dessus est décrit dans le FR-A-2 674 011. Dans ce procédé, la production gazeuse sous pression s'accompagne inévitablement d'une production de liquide, laquelle n'est pas souhaitable dans toutes les applications industrielles.
EP-A-0 552 747 décrit un procédé dans lequel le gaz résiduaire de la colonne basse pression est soutiré de la ligne d'échange à une température intermédiaire et détendu dans une turbine qui assure la tenue en froid de l'installation.
L'invention a pour but de permettre une réduction de la production de liquide pour une capacité de production donnée d'oxygène et/ou d'azote gazeux sous pression, ce de manière économique du point de vue des performances énergétiques.
A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que :
  • on fait fonctionner la colonne basse pression sous 1,7 à 5 bars environ, et la colonne moyenne pression sous une pression correspondante de 6,5 à 16 bars environ; et
  • on détend dans une seconde turbine le gaz résiduaire de tête de la colonne basse pression, après l'avoir réchauffé jusqu'au bout chaud de la ligne d'échange thermique.
Suivant des modes particuliers de réalisation de l'invention :
  • le gaz résiduaire est surchauffé, avant sa détente, par échange de chaleur avec de l'air issu d'un étage intermédiaire du compresseur principal;
  • le gaz résiduaire détendu est utilisé pour refroidir l'air issu du dernier étage du compresseur principal, avant l'épuration en eau et en anhydride carbonique de cet air;
  • le produit liquide est de l'oxygène impur, et on produit en outre de l'oxygène liquide plus pur, que l'on envoie à un stockage.
L'invention a également pour objet une installation destinée à la mise en oeuvre d'un tel procédé. Cette installation, du type comprenant une double colonne de distillation comprenant une colonne basse pression fonctionnant sous une pression dite basse pression et produisant en tête un gaz résiduaire, et une colonne moyenne pression fonctionnant sous une pression dite moyenne pression; des moyens de compression pour amener la totalité de l'air à distiller à au moins une haute pression nettement supérieure à la moyenne pression, ces moyens comprenant un compresseur principal; des moyens de soutirage de la double colonne et de pompage d'au moins un produit liquide résultant de la distillation; une ligne d'échange thermique mettant en relation d'échange thermique l'air et ledit produit liquide; et une turbine de détente d'une partie de cet air, l'admission de cette turbine étant reliée à un point intermédiaire de la ligne d'échange thermique et son échappement étant relié à la colonne moyenne pression, est caractérisée en ce qu'elle comprend une seconde turbine de détente dont l'admission est reliée à la sortie de passages de réchauffement du gaz résiduaire de la ligne d'échange thermique, au bout chaud de celle-ci.
Un exemple de mise en oeuvre de l'invention va maintenant être décrit en regard du dessin annexé, sur lequel la Figure unique représente schématiquement une installation conforme à l'invention.
L'installation représentée à la Figure 1 est destinée à produire de l'oxygène gazeux sous une haute pression de 10 à 100 bars environ, de l'oxygène liquide et de l'azote liquide.
Cette installation comprend essentiellement: un compresseur principal d'air 1 comprenant lui-même au moins un étage moyenne pression 1A et un étage haute pression 1B; un appareil 2 d'épuration par adsorption; un ensemble soufflante-turbine comprenant une soufflante 3 et une turbine 4 dont les roues sont calées sur le même arbre; un réfrigérant atmosphérique ou à eau 5 pour la soufflante; une ligne d'échange thermique 6; un premier échangeur de chaleur auxiliaire 7 et un second échangeur de chaleur auxiliaire 8 ; une seconde turbine de détente 9 freinée par un alternateur 10; une double colonne de distillation 11 comprenant une colonne moyenne pression 12 et une colonne basse pression 13 couplées par un vaporiseur-condenseur 14 qui met en relation d'échange thermique l'azote de tête de la colonne 12 et l'oxygène liquide de cuve de la colonne 13; une pompe d'oxygène liquide 15; un stockage 16 d'oxygène liquide à la pression atmosphérique; un stockage 17 d'azote liquide à la pression atmosphérique; un pot séparateur 18; et un sous-refroidisseur 19.
En fonctionnement, la colonne 13 est sous une pression de 1,7 à 5 bars environ, et la colonne 11 sous la pression correspondante de 6,5 à 16 bars environ.
La totalité de l'air à distiller est comprimé en 1A, refroidi en 7, comprimé de nouveau en 1B, refroidi en 8 vers + 5 à 15°C, épuré en eau et en C02 en 2 et surpressé en 3 à la haute pression. Après pré-refroidissement en 5 puis refroidissement partiel en 6 jusqu'à une température intermédiaire T1, une partie de l'air sous la haute pression poursuit son refroidissement dans la ligne d'échange thermique, est liquéfié puis divisé en deux fractions. Chaque fraction est détendue dans une vanne de détente respective 20, 21 puis introduite dans la colonne 12, 13 respective.
A la température T1, le reste de l'air sous la haute pression est sorti de la ligne d'échange thermique, turbiné en 4 à la moyenne pression et introduit en cuve de la colonne 12.
De façon habituelle, du "liquide riche" (air enrichi en oxygène) soutiré en cuve de la colonne 12 et du "liquide pauvre" (azote à peu près pur) soutiré de la région supérieure de cette colonne sont, après sous-refroidissement en 19 et détente dans des vannes de détente respectives 22 et 23, introduits à un niveau intermédiaire et en tête, respectivement, de la colonne 13.
De l'oxygène liquide est soutiré en cuve de la colonne 13. Une fraction va directement, après sous-refroidissement en 19 et détente à la pression atmosphérique dans une vanne de détente 24, dans le stockage 16, tandis que le reste est amené par la pompe 15 à la haute pression de production désirée, puis vaporisé et réchauffé à la température ambiante dans la ligne d'échange thermique avant d'être récupéré via une conduite 25.
Par ailleurs, de l'azote liquide sous la moyenne pression, soutiré en tête de la colonne 12, est sous-refroidi en 19, détendu à la pression atmosphérique dans une vanne de détente 26, et introduit dans le pot séparateur 18. La phase liquide est envoyée dans le stockage 17, tandis que la phase vapeur est réunie à l'azote impur de tête de la colonne 13, puis le mélange est réchauffé en 19 puis en 6.
Le gaz résiduaire ainsi réchauffé à la température ambiante est surchauffé en 7 puis détendu à peu près à la pression atmosphérique en 9, puis le gaz détendu est réchauffé en 8. Il peut ensuite, avant d'être évacué de l'installation, servir à régénérer l'absorbant de l'appareil 2.
On peut ainsi produire de l'oxygène gazeux haute pression, ayant une pureté donnée, avec une énergie spécifique de production réduite, un ratio production de liquide/capacité de séparation en oxygène réduit, et un rendement d'extraction élevé.
Le fonctionnement sous pression de la colonne 13 a pour conséquence une baisse de pureté de l'oxygène produit. Ainsi, l'oxygène gazeux haute pression et l'oxygène liquide stocké en 16 ont typiquement une pureté de l'ordre de 95%. Cependant, il est possible de prévoir quelques plateaux de distillation entre les soutirages d'oxygène liquide destinés d'une part au stockage 16, d'autre part à la pompe 15, et de produire ainsi une fraction, par exemple 20% de l'oxygène, sous forme d'oxygène liquide à pureté élevée, typiquement à 99,5% de pureté.
L'invention s'applique également à la production d'azote gazeux sous haute pression, porté par une pompe (non représentée) à la haute pression désirée puis vaporisé dans la ligne d'échange thermique, et/ou à la production d'oxygène et/ou d'azote sous plusieurs pressions, en utilisant plusieurs hautes pressions d'air. De plus, la vaporisation du ou des liquides peut s'effectuer de façon non concomitante à la liquéfaction d'air, avec un genou de liquéfaction de l'air au-dessous de la température de vaporisation de l'oxygène, ou de façon concomitante à cette liquéfaction.

Claims (8)

  1. Procédé de production d'oxygène gazeux et/ou d'azote gazeux sous pression, du type dans lequel :
    on distille de l'air dans une installation comprenant un compresseur principal d'air (1), une double colonne de distillation (11) comprenant une colonne basse pression (13) fonctionnant sous une pression dite basse pression, et une colonne moyenne pression (12) fonctionnant sous une pression dite moyenne pression, et une ligne d'échange thermique (6) servant à refroidir l'air traité;
    on comprime (en 1, 3) la totalité de l'air à distiller jusqu'à au moins une haute pression d'air nettement supérieure à la moyenne pression;
    on refroidit l'air comprimé jusqu'à une température intermédiaire, et on en détend une partie dans une turbine (4) jusqu'à la moyenne pression, avant de l'introduire dans la colonne moyenne pression (12);
    on liquéfie l'air non turbiné, puis on l'introduit, après détente (en 20, 21), dans la double colonne;
    on amène (en 15) au moins un produit liquide soutiré de la double colonne à la pression de production, et on vaporise ce produit liquide par échange de chaleur avec l'air, et
    on réchauffe le gaz résiduaire de tête de la colonne basse pression jusqu'au bout chaud de la ligne d'échange thermique,
    caractérisé en ce que :
    on fait fonctionner la colonne basse pression (13) sous 1,7 à 5 bars environ, et la colonne moyenne pression (11) sous une pression correspondante de 6,5 à 16 bars environ; et
    on détend dans une seconde turbine (9) le gaz résiduaire de tête de la colonne basse pression, après l'avoir réchauffé jusqu'au bout chaud de la ligne d'échange thermique (6).
  2. Procédé suivant la revendication 1, caractérisé en ce que le gaz résiduaire est surchauffé, avant sa détente, par échange de chaleur (en 7) avec de l'air issu d'un étage intermédiaire (1A) du compresseur principal (1).
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que le gaz résiduaire détendu est utilisé pour refroidir (en 8) l'air issu du dernier étage (1B) du compresseur principal (1), avant l'épuration en eau et en anhydride carbonique de cet air.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit produit liquide est de l'oxygène impur, et en ce qu'on produit en outre de l'oxygène liquide plus pur, que l'on envoie à un stockage (16).
  5. Installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression, du type comprenant une double colonne de distillation (11) comprenant une colonne basse pression (13) fonctionnant sous une pression dite basse pression et produisant en tête un gaz résiduaire, et une colonne moyenne pression (12) fonctionnant sous une pression dite moyenne pression; des moyens de compression (1, 3) pour amener la totalité de l'air à distiller à au moins une haute pression nettement supérieure à la moyenne pression, ces moyens comprenant un compresseur principal (1); des moyens (15) de soutirage de la double colonne et de pompage d'au moins un produit liquide résultant de la distillation; une ligne d'échange thermique (6) mettant en relation d'échange thermique l'air et ledit produit liquide; et une turbine (4) de détente d'une partie de cet air, l'admission de cette turbine étant reliée à un point intermédiaire de la ligne d'échange thermique et son échappement étant relié à la colonne moyenne pression (12), caractérisée en ce qu'elle comprend une seconde turbine de détente (9) dont l'admission est reliée à la sortie de passages de réchauffement du gaz résiduaire de la ligne d'échange thermique (6), au bout chaud de celle-ci.
  6. Installation suivant la revendication 5, caractérisée en ce qu'elle comprend un échangeur de chaleur (7) mettant en relation d'échange thermique le gaz circulant entre ladite sortie et la seconde turbine (9) et l'air issu d'un étage intermédiaire (1A) du compresseur principal (1).
  7. Installation suivant la revendication 5 ou 6, caractérisée en ce qu'elle comprend un second échangeur de chaleur (8) mettant en relation d'échange thermique le gaz issu de la seconde turbine (9) et l'air issu du dernier étage (1B) du compresseur principal (1).
  8. Installation suivant l'une quelconque des revendications 5 à 7, caractérisée en ce que la colonne basse pression (13) comporte un tronçon de distillation entre un soutirage inférieur d'oxygène liquide destiné à être stocké et un soutirage d'oxygène liquide relié à l'aspiration de la pompe (15).
EP94401838A 1993-09-01 1994-08-10 Procédé et installation de production d'au moins un gaz de l'air sous pression Expired - Lifetime EP0641982B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9310418 1993-09-01
FR9310418A FR2709538B1 (fr) 1993-09-01 1993-09-01 Procédé et installation de production d'au moins un gaz de l'air sous pression.

Publications (2)

Publication Number Publication Date
EP0641982A1 EP0641982A1 (fr) 1995-03-08
EP0641982B1 true EP0641982B1 (fr) 1998-05-06

Family

ID=9450479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401838A Expired - Lifetime EP0641982B1 (fr) 1993-09-01 1994-08-10 Procédé et installation de production d'au moins un gaz de l'air sous pression

Country Status (8)

Country Link
US (1) US5463870A (fr)
EP (1) EP0641982B1 (fr)
JP (1) JPH07151459A (fr)
CN (1) CN1102700A (fr)
CA (1) CA2131121A1 (fr)
DE (1) DE69410040T2 (fr)
ES (1) ES2118342T3 (fr)
FR (1) FR2709538B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355682A (en) 1993-09-15 1994-10-18 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
FR2730172B1 (fr) * 1995-02-07 1997-03-21 Air Liquide Methode et appareil de surveillance de fonctionnement d'une installation de separation d'air
US20060000358A1 (en) * 2004-06-29 2006-01-05 Rajat Agrawal Purification and delivery of high-pressure fluids in processing applications
CN100443838C (zh) * 2005-04-20 2008-12-17 苏州市兴鲁空分设备科技发展有限公司 一种返流膨胀空气分离的方法和装置
US20070095100A1 (en) * 2005-11-03 2007-05-03 Rankin Peter J Cryogenic air separation process with excess turbine refrigeration
PL2873938T3 (pl) 2013-11-14 2021-11-02 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Sposób i urządzenie do oddzielania powietrza przez destylację kriogeniczną
CN104034123B (zh) * 2014-06-27 2016-05-18 莱芜钢铁集团有限公司 一种空气分离装置积液调纯一体化作业方法
IT202100032876A1 (it) * 2021-12-29 2023-06-29 Rita S R L Impianto e processo per la produzione di ossigeno e azoto gassosi mediante separazione criogenica di una miscela di gas contenente ossigeno ed azoto

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461906A1 (fr) * 1979-07-20 1981-02-06 Air Liquide Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression
FR2652409A1 (fr) * 1989-09-25 1991-03-29 Air Liquide Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air.
FR2674011B1 (fr) * 1991-03-11 1996-12-20 Maurice Grenier Procede et installation de production d'oxygene gazeux sous pression.
US5197296A (en) * 1992-01-21 1993-03-30 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure product
US5222365A (en) * 1992-02-24 1993-06-29 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen product

Also Published As

Publication number Publication date
DE69410040D1 (de) 1998-06-10
US5463870A (en) 1995-11-07
ES2118342T3 (es) 1998-09-16
CA2131121A1 (fr) 1995-03-02
CN1102700A (zh) 1995-05-17
DE69410040T2 (de) 1999-01-28
EP0641982A1 (fr) 1995-03-08
FR2709538A1 (fr) 1995-03-10
FR2709538B1 (fr) 1995-10-06
JPH07151459A (ja) 1995-06-16

Similar Documents

Publication Publication Date Title
EP0420725B1 (fr) Procédé de production frigorifique, cycle frigorifique correspondant et leur application à la distillation d'air
EP0576314B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
US4133662A (en) Production of high pressure oxygen
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0562893B2 (fr) Procédé de production d'azote sous haute pression et d'oxygène
EP0618415B1 (fr) Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation d'air
FR2664263A1 (fr) Procede et installation de production simultanee de methane et monoxyde de carbone.
JPH06117753A (ja) 空気の高圧低温蒸留方法
JPH0735471A (ja) 酸素と加圧窒素を製造するための低温空気分離方法
EP0605262B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0606027B1 (fr) Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air
EP0641983B1 (fr) Procédé et installation de production d'oxygène et/ou d'azote gazeux sous pression
EP0641982B1 (fr) Procédé et installation de production d'au moins un gaz de l'air sous pression
US6305191B1 (en) Separation of air
KR100207890B1 (ko) 공기 분리 방법 및 장치
EP0612967B1 (fr) Procédé de production d'oxygène et/ou d'azote sous pression
FR2832213A1 (fr) Procede et installation de production d'helium
EP0611218B2 (fr) Procédé et installation de production d'oxygene sous pression
CA2109148A1 (fr) Procede et installation de production d'azote et d'oxygene
FR2837564A1 (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur
FR2761762A1 (fr) Procede et installation de separation d'air par distillation cryogenique
US4473385A (en) Lower pressure fractionation of waste gas from ammonia synthesis
FR2861841A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3128776A3 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
FR2864213A1 (fr) Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19960321

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 69410040

Country of ref document: DE

Date of ref document: 19980610

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2118342

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010705

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070718

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070808

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070717

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070718

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080810

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080811