EP0638910A2 - Sintered ceramic for stable high temperature-thermistors and their method of manufacture - Google Patents

Sintered ceramic for stable high temperature-thermistors and their method of manufacture Download PDF

Info

Publication number
EP0638910A2
EP0638910A2 EP94110754A EP94110754A EP0638910A2 EP 0638910 A2 EP0638910 A2 EP 0638910A2 EP 94110754 A EP94110754 A EP 94110754A EP 94110754 A EP94110754 A EP 94110754A EP 0638910 A2 EP0638910 A2 EP 0638910A2
Authority
EP
European Patent Office
Prior art keywords
sintered ceramic
ceramic according
dopant
temperature
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94110754A
Other languages
German (de)
French (fr)
Other versions
EP0638910B1 (en
EP0638910A3 (en
Inventor
Adalbert Prof. Dr. Habil. Feltz
Ralph Dr. Rer. Nat. Kriegel
Franz Dr. Dipl.-Ing. Schrank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Siemens Matsushita Components GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Matsushita Components GmbH and Co KG filed Critical Siemens Matsushita Components GmbH and Co KG
Publication of EP0638910A2 publication Critical patent/EP0638910A2/en
Publication of EP0638910A3 publication Critical patent/EP0638910A3/en
Application granted granted Critical
Publication of EP0638910B1 publication Critical patent/EP0638910B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds

Definitions

  • the present invention relates to a sintered ceramic for stable high-temperature thermistors according to the preamble of patent claim 1 and a method for producing such a sintered ceramic according to the preamble of patent claims 1 and 10.
  • This procedure closes generally a considerable spread of the data of the individual specimens and in particular from batch to batch, since the electrical parameters characterizing the thermistor assume different values depending on the sintered structure of the ceramic. In such realized systems, the equilibrium composition of the phases is generally temperature-dependent, which has negative effects on the temporal stability of the electrical parameters.
  • the pure phase spinel MgNi II Mn IV O4 is characterized by a relatively high B constant of about 4,600 K due to an energetically stable assignment of the transition metal cations to the lattice sites, while the nominal resistance is not too low.
  • the use of a ceramic on the basis of this semiconducting compound as a high-temperature thermistor is described in the older German patent application P 42 13 631.8.
  • the change in the equilibrium composition of phases present next to one another is not necessary in this system when heating up to about 700 ° C., so that a high temporal stability and reproducibility of the electrical parameters is achieved.
  • the invention has for its object to provide a sintered ceramic with a large B constant with high uniformity and phase stability as well as a method for its production in order to be able to manufacture thermistors with high stability and sensitivity for a temperature range up to 1200 ° C on such a basis.
  • the essence of the invention is to stabilize the oxidation level +4 of the manganese in the compound Sr7Mn4O15 due to the increased content of basic oxide by the incorporation of a basic oxide, in particular strontium oxide in strontium manganate, thereby raising the temperature of the elimination of oxygen to 1200 ° C and making temperatures up to 1,200 ° C sensitive by resistance measurements.
  • it is a sintered ceramic based on Sr 7-x M x Mn4O15 or Sr7M x Mn 4-x O15, in which H denotes a dopant which in the first-mentioned system yttrium (Y), lanthanum (La) or can be an element of the rare earths and in the second-mentioned system scandium (Sc), titanium (Ti), zircon (Zr), niobium (Nb) or tantalum (Ta).
  • H denotes a dopant which in the first-mentioned system yttrium (Y), lanthanum (La) or can be an element of the rare earths and in the second-mentioned system scandium (Sc), titanium (Ti), zircon (Zr), niobium (Nb) or tantalum (Ta).
  • the parameter x is basically greater than zero. If necessary, it can also be zero, in the latter case the dopant is omitted.
  • the process according to the invention for producing a sintered ceramic it is provided to mix SrCO3 and Mn2O3 or Mn3O4 in a molar ratio of the compound Sr7Mn4O15 in an aqueous slip and, after filtering and drying, react by heating to 1,000 ° C. for 12 hours.
  • the contact is made by brushing on a platinum (Pt) conductive paste.
  • the sinter densification is expediently carried out by heating to 1,350 ° C., holding for several hours at 1,550 ° C. and tempering at 1,200 ° C.
  • the uniform structure of which, according to an X-ray structure analysis, is a two-dimensional infinite combination of manganese (IV) oxygen double octahedra [ O 1/2 O2Mn IV O3Mn IV OO 2/2 ] 7 ⁇ can be described ⁇ see Z. anorg. general Chem. 617 (1992) 99 ⁇ .
  • the leads are then fixed to the electrodes by bonding thin Pt wires.
  • the semiconducting ceramic is formed in the form of beads between thin platinum wires that are sintered in.
  • the electrical parameters of the Sr7Mn KeramikO15 ceramic by targeted doping in the rows to be modified in order to be able to adjust the electrical conductivity and the B constant to certain value ranges.
  • the starting mixture consisting of SrCO3 and Mn2O3 or Mn3O4 is first prepared according to the composition given for a specific x value without the addition of the doping component by mixing in an aqueous slip and, after filtering, calcined by heating to 1,000 ° C.
  • the reaction product is suspended in water and the composition is completed by adding the doping component in the form of a suspension of freshly precipitated lanthanum, yttrium, scandium, niobium or titanium oxide hydroxide.
  • the further processing is as described for the undoped Sr7Mn4O15 ceramics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Sintered ceramic for stable high-temperature thermistors in the form of a mixture containing manganese(IV) and a basic oxide. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Sinterkeramik für stabile Hochtemperatur-Thermistoren nach dem Oberbegriff des Patentanspruchs 1 sowie ein Verfahren zur Herstellung einer derartigen Sinterkeramik nach dem Oberbegriff des Patentanspruchs 1 bzw. 10.10. The present invention relates to a sintered ceramic for stable high-temperature thermistors according to the preamble of patent claim 1 and a method for producing such a sintered ceramic according to the preamble of patent claims 1 and 10.

Beispielsweise aus dem National Technical Report Vol. 34 (4) 24 - 34 (1988) bekannte technische Lösungen gehen von halbleitenden Oxiden der Übergangselemente und deren Kombinationen aus, die sich auf Patentanmeldungen stützen, z. B. im Fall des Systems Mn-Ni-Cr-Zn-Zr-Si-Oxid gemäß der EP-PS 0 149 681 und der US-PS 4 729 852 und 4 891 158 oder im Fall des Systems Mn-Ni-Cu-Fe-Dr-Oxid gemäß der US-PS 4 324 702. Zur Anwendung gelangen Mehrphasensysteme, ohne daß der Vorteil der Bildung einer einheitlichen Phase angestrebt wird. Der Nennwiderstand R₂₅ oder R₁₀₀ eines Thermistors, d. h. der elektrische Widerstand bei der Temperatur T = 25°C bzw. 100°C und die für die Empfindlichkeit der Temperaturmessung maßgebliche Materialkonstante B eines Thermistors gemäß der Beziehung

Figure imgb0001

wird auf der Basis derartiger mehrphasiger Systeme durch eine entsprechende Reaktionsführung im Sinterprozeß auf variable Werte eingestellt, so daß bei einem gegebenen Versatz die Produktion eines bestimmten Sortiments von Thermistoren möglich ist. Diese Verfahrensweise schließt im allgemeinen eine beträchtliche Streubreite der Daten der Einzelexemplare und insbesondere von Charge zu Charge ein, da die den Thermistor kennzeichnenden elektrischen Parameter je nach dem erreichten Sintergefüge der Keramik verschiedene Werte annehmen. In derartigen realisierten Systemen ist die Gleichgewichtszusammensetzung der Phasen im allgemeinen temperaturabhängig, woraus sich negative Wirkungen auf die zeitliche Stabilität der elektrischen Parameter ergeben.For example, technical solutions known from the National Technical Report Vol. 34 (4) 24-34 (1988) assume semiconducting oxides of the transition elements and their combinations, which are based on patent applications, e.g. B. in the case of the system Mn-Ni-Cr-Zn-Zr-Si oxide according to EP-PS 0 149 681 and US Pat. Nos. 4,729,852 and 4,891,158 or in the case of the system Mn-Ni-Cu Fe-Dr oxide according to US Pat. No. 4,324,702. Multi-phase systems are used without striving for the advantage of forming a uniform phase. The nominal resistance R₂₅ or R₁₀₀ of a thermistor, ie the electrical resistance at the temperature T = 25 ° C or 100 ° C and the material constant B of a thermistor relevant for the sensitivity of the temperature measurement according to the relationship
Figure imgb0001

is set on the basis of such multi-phase systems by appropriate reaction control in the sintering process to variable values, so that the production of a certain range of thermistors is possible with a given offset. This procedure closes generally a considerable spread of the data of the individual specimens and in particular from batch to batch, since the electrical parameters characterizing the thermistor assume different values depending on the sintered structure of the ceramic. In such realized systems, the equilibrium composition of the phases is generally temperature-dependent, which has negative effects on the temporal stability of the electrical parameters.

Es ist gezeigt worden, daß der reinphasige Spinell MgNiIIMnIVO₄ aufgrund einer energetisch stabilen Zuordnung der Übergangsmetallkationen zu den Gitterplätzen durch eine relativ hohe B-Konstante von etwa 4.600 K bei zugleich nicht zu geringem Nennwiderstand gekennzeichnet ist. Die Anwendung einer Keramik auf der Basis dieser halbleitenden Verbindung als Hochtemperatur-Thermistor ist in der älteren deutschen Patentanmeldung P 42 13 631.8 beschrieben. Die Änderung der Gleichgewichtszusammensetzung nebeneinander vorliegender Phasen entfällt in diesem System beim Aufheizen bis auf etwa 700°C, so daß eine hohe zeitliche Stabilität und Reproduzierbarkeit der elektrischen Parameter erreicht wird. Oberhalb 720°C tritt aufgrund der starken Polarisation der Oxidionen durch die MnIV-Kationen Zersetzung unter Sauerstoffabspaltung ein, so daß der Temperaturbereich der Anwendung der halbleitenden Keramik auf der Basis von MgNiMnO₄ begrenzt ist.It has been shown that the pure phase spinel MgNi II Mn IV O₄ is characterized by a relatively high B constant of about 4,600 K due to an energetically stable assignment of the transition metal cations to the lattice sites, while the nominal resistance is not too low. The use of a ceramic on the basis of this semiconducting compound as a high-temperature thermistor is described in the older German patent application P 42 13 631.8. The change in the equilibrium composition of phases present next to one another is not necessary in this system when heating up to about 700 ° C., so that a high temporal stability and reproducibility of the electrical parameters is achieved. Above 720 ° C, due to the strong polarization of the oxide ions by the Mn IV cations, decomposition occurs with the elimination of oxygen, so that the temperature range of the application of the semiconducting ceramic based on MgNiMnO₄ is limited.

Der Erfindung liegt die Aufgabe zugrunde, eine Sinterkeramik mit großer B-Konstante bei zugleich hoher Einheitlichkeit und Phasenstabilität sowie ein Verfahren zu deren Herstellung anzugeben, um auf einer solchen Basis Thermistoren mit hoher Stabilität und Empfindlichkeit für einen Temperaturbereich bis 1.200°C herstellen zu können.The invention has for its object to provide a sintered ceramic with a large B constant with high uniformity and phase stability as well as a method for its production in order to be able to manufacture thermistors with high stability and sensitivity for a temperature range up to 1200 ° C on such a basis.

Die Aufgabe wird bei einer Sinterkeramik sowie einem Verfahren der eingangs genannten Art erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 bzw. 10 gelöst.The object is achieved according to the invention in a sintered ceramic and a method of the type mentioned at the outset by the features of the characterizing part of patent claims 1 and 10.

Weiterbildungen der Erfindung sind Gegenstand entsprechender Unteransprüche.Further developments of the invention are the subject of corresponding subclaims.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen in Verbindung mit den Figuren der Zeichnung näher erläutert. Es zeigen:

Figur 1
ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Sr₇Mn₄O₁₅-Keramik;
Figur 2
ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Keramik der Zusammensetzung Sr6.99Y0.01Mn₄O₁₅;
Figur 3
ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Keramik der Zusammensetzung Sr6.99La0.01Mn₄O₁₅; und
Figur 4
ein Diagramm der spezifischen Leitfähigkeit als Funktion der Temperatur einer Keramik der Zusammensetzung Sr₇Mn3.99Nb0.01O₁₅.
The invention is explained in more detail below on the basis of exemplary embodiments in conjunction with the figures of the drawing. Show it:
Figure 1
a graph of specific conductivity as a function of temperature of a Sr₇Mn₄O₁₅ ceramic;
Figure 2
a diagram of the specific conductivity as a function of the temperature of a ceramic of the composition Sr 6.99 Y 0.01 Mn₄O₁₅;
Figure 3
a diagram of the specific conductivity as a function of the temperature of a ceramic of the composition Sr 6.99 La 0.01 Mn₄O₁₅; and
Figure 4
a diagram of the specific conductivity as a function of the temperature of a ceramic of the composition Sr₇Mn 3.99 Nb 0.01 O₁₅.

Der Kern der Erfindung besteht darin, durch den Einbau eines basischen Oxides, insbesondere von Strontiumoxid in Strontiummanganat die Oxidationsstufe +4 des Mangans in der Verbindung Sr₇Mn₄O₁₅ aufgrund des erhöhten Gehalts an basischem Oxid zu stabilisieren, die Temperatur der Sauerstoffabspaltung dadurch auf 1.200°C heraufzusetzen und dabei zugleich Temperaturen bis 1.200°C durch Widerstandsmessungen empfindlich bestimmbar zu machen.The essence of the invention is to stabilize the oxidation level +4 of the manganese in the compound Sr₇Mn₄O₁₅ due to the increased content of basic oxide by the incorporation of a basic oxide, in particular strontium oxide in strontium manganate, thereby raising the temperature of the elimination of oxygen to 1200 ° C and making temperatures up to 1,200 ° C sensitive by resistance measurements.

Gemäß besonderer Ausführungsformen der Erfindung handelt es sich um eine Sinterkeramik auf der Basis Sr7-xMxMn₄O₁₅ oder Sr₇MxMn4-xO₁₅, worin H einen Dotierungsstoff bedeutet, der im erstgenannten System Yttrium (Y), Lanthan (La) oder ein Element der seltenen Erden und im zweitgenannten System Scandium (Sc), Titan (Ti), Zirkon (Zr), Niob (Nb) oder Tantal (Ta) sein kann.According to particular embodiments of the invention, it is a sintered ceramic based on Sr 7-x M x Mn₄O₁₅ or Sr₇M x Mn 4-x O₁₅, in which H denotes a dopant which in the first-mentioned system yttrium (Y), lanthanum (La) or can be an element of the rare earths and in the second-mentioned system scandium (Sc), titanium (Ti), zircon (Zr), niobium (Nb) or tantalum (Ta).

Der Parameter x ist im Grundsatz größer als Null. Er kann ggf. auch gleich Null sein, wobei im letzteren Fall der Dotierungsstoff entfällt.The parameter x is basically greater than zero. If necessary, it can also be zero, in the latter case the dopant is omitted.

Beim erfindungsgemäßen Verfahren zur Herstellung einer Sinterkeramik ist vorgesehen, SrCO₃ und Mn₂O₃ oder Mn₃O₄ im Molverhältnis der Verbindung Sr₇Mn₄O₁₅ in einem wäßrigen Schlicker zu mischen und nach dem Abfiltrieren und Trocknen durch 12-stündiges Erhitzen auf 1.000°C umzusetzen. Nach der Aufbereitung der keramischen Pulvermischung zu einem rieselfähigen Granulat durch Verreiben mit einer 8%-igen Polyvinylalkohol-Lösung und Preßformgebung zu Tabletten, erfolgt die Kontaktierung durch Aufstreichen einer Platin(Pt)-Leitpaste. Die Sinterverdichtung wird zweckmäßig durch Erhitzen auf 1.350°C, mehrstündiges Halten bei 1.550°C und Temperung bei 1.200°C unter Bildung der erfindungsgemäßen Keramik ausgeführt, deren einheitliche Struktur nach einer Röntgenstrukturanalyse durch eine zweidimensional-unendliche Verknüpfung von Mangan(IV)-Sauerstoffdoppeloktaedern [O1/2O₂MnIVO₃MnIVOO2/2]⁷⁻ beschrieben werden kann {siehe dazu Z. anorg. allg. Chem. 617 (1992) 99}. Die Zuleitungen werden abschließend durch Bonden dünner Pt-Drähte auf den Elektroden fixiert. In einer anderen Ausführungsform gelingt die Bildung der halbleitenden Keramik in der Form von Perlen zwischen dünnen Platindrähten, die eingesintert werden.In the process according to the invention for producing a sintered ceramic, it is provided to mix SrCO₃ and Mn₂O₃ or Mn₃O₄ in a molar ratio of the compound Sr₇Mn₄O₁₅ in an aqueous slip and, after filtering and drying, react by heating to 1,000 ° C. for 12 hours. After the preparation of the ceramic powder mixture into a free-flowing granulate by trituration with an 8% polyvinyl alcohol solution and compression molding into tablets, the contact is made by brushing on a platinum (Pt) conductive paste. The sinter densification is expediently carried out by heating to 1,350 ° C., holding for several hours at 1,550 ° C. and tempering at 1,200 ° C. to form the ceramic according to the invention, the uniform structure of which, according to an X-ray structure analysis, is a two-dimensional infinite combination of manganese (IV) oxygen double octahedra [ O 1/2 O₂Mn IV O₃Mn IV OO 2/2 ] ⁷⁻ can be described {see Z. anorg. general Chem. 617 (1992) 99}. The leads are then fixed to the electrodes by bonding thin Pt wires. In another embodiment, the semiconducting ceramic is formed in the form of beads between thin platinum wires that are sintered in.

Es ist erfindungsgemäß insbesondere vorgesehen, die elektrischen Parameter der Sr₇Mn₄O₁₅-Keramik durch gezielte Dotierung in den Reihen

Figure imgb0002

zu modifizieren, um die elektrische Leitfähigkeit und die B-Konstante auf bestimmte Wertebereiche einstellen zu können. Dazu wird die aus SrCO₃ und Mn₂O₃ bzw. Mn₃O₄ bestehende Ausgangsmischung entsprechend der für einen bestimmten x-Wert gegebenen Zusammensetzung zunächst ohne den Zusatz der Dotierkomponente durch Mischung in einem wäßrigen Schlicker zubereitet und nach dem Abfiltrieren durch Erhitzen auf 1.000°C kalziniert. Man suspendiert das Umsetzungsprodukt in Wasser und komplettiert die Zusammensetzung durch den Zusatz der Dotierkomponente in Form einer Suspension von frisch gefälltem Lanthan-, Yttrium-, Scandium-, Niob- bzw. Titan-oxidhydroxid. Die weitere Verarbeitung erfolgt wie für die undotierte Sr₇Mn₄O₁₅-Keramik beschrieben.It is particularly provided according to the invention, the electrical parameters of the Sr₇Mn KeramikO₁₅ ceramic by targeted doping in the rows
Figure imgb0002

to be modified in order to be able to adjust the electrical conductivity and the B constant to certain value ranges. For this purpose, the starting mixture consisting of SrCO₃ and Mn₂O₃ or Mn₃O₄ is first prepared according to the composition given for a specific x value without the addition of the doping component by mixing in an aqueous slip and, after filtering, calcined by heating to 1,000 ° C. The reaction product is suspended in water and the composition is completed by adding the doping component in the form of a suspension of freshly precipitated lanthanum, yttrium, scandium, niobium or titanium oxide hydroxide. The further processing is as described for the undoped Sr₇Mn₄O₁₅ ceramics.

Die Erfindung wird an folgenden Ausführungsbeispielen weiter erläutert:

  • Figur 1 zeigt ein Diagramm der spezifischen Leitfähigkeit σ als Funktion der Temperatur T für eine undotierte Sr₇Mn₄O₁₅-Keramik. Die Eignung für Thermistor-Anwendungen im Bereich hoher Temperatur wird durch die mehrfache Wiederholung der Messung, die Reproduzierbarkeit durch die Vermessung mehrerer Exemplare belegt. Eine Drift der elektrischen Parameter ist nicht erkennbar. Die Linearität über den Temperaturbereich 600 bis 1.200°C kann als Eigenleitfähigkeit der Verbindung interpretiert, der flachere Verlauf im Temperaturbereich 25 bis 600°C auf Defekte zurückgeführt werden.
  • Figur 2 zeigt ein Diagramm der spezifischen Leitfähigkeit O als Funktion der Temperatur T für eine mit YIII-Kationen dotierte Keramik der Zusammensetzung
    Figure imgb0003

    Erwartungsgemäß wird hier ein für die vorgenommene Dotierung typischer geringer Anstieg festgestellt. Der im Bereich 25°C bis 600°C etwas flachere Verlauf ist auch hier auf Defekte zurückzuführen, die aus dem Herstellungsprozeß resultieren.
  • Figur 3 zeigt den zu Figur 2 analogen Kurvenverlauf für eine Keramik der homogenen Zusammensetzung
    Figure imgb0004
  • Figur 4 zeigt ein Diagramm der spezifischen Leitfähigkeit σ als Funktion der Temperatur T für eine mit Niob dotierte Keramik der Zusammensetzung
    Figure imgb0005
    Die elektrische Leitfähigkeit einer Thermistor-Keramik dieser Zusammensetzung ist im Bereich der Nenntemperatur von 25°C bzw. 100°C signifikant erhöht und die B-Konstante entsprechend herabgemindert. Deren Wert ist für Anwendungen hinreichend, um Temperaturmessungen im gesamten Temperaturbereich von Raumtemperatur bis 1.200°C ausführen zu können.
The invention is further explained using the following exemplary embodiments:
  • Figure 1 shows a diagram of the specific conductivity σ as a function of temperature T for an undoped Sr₇Mn₄O₁₅ ceramic. The suitability for thermistor applications in the high temperature range is due to the multiple repetition the measurement, which demonstrates reproducibility by measuring several specimens. There is no discernible drift in the electrical parameters. The linearity over the temperature range 600 to 1,200 ° C can be interpreted as the intrinsic conductivity of the connection, the flatter course in the temperature range 25 to 600 ° C can be attributed to defects.
  • FIG. 2 shows a diagram of the specific conductivity O as a function of the temperature T for a ceramic of the composition doped with Y III cations
    Figure imgb0003

    As expected, a small increase typical for the doping is found. The somewhat flatter course in the range of 25 ° C to 600 ° C is also due to defects that result from the manufacturing process.
  • FIG. 3 shows the curve shape analogous to FIG. 2 for a ceramic of the homogeneous composition
    Figure imgb0004
  • FIG. 4 shows a diagram of the specific conductivity σ as a function of the temperature T for a niobium-doped ceramic of the composition
    Figure imgb0005
    The electrical conductivity of a thermistor ceramic of this composition is significantly increased in the range of the nominal temperature of 25 ° C or 100 ° C and the B constant is reduced accordingly. Their value is sufficient for applications to be able to carry out temperature measurements in the entire temperature range from room temperature to 1,200 ° C.

Die Eigenschaften von Thermistorproben auf der Basis einer reinen bzw. durch die genannten Dotierkomponenten modifizierten Sr₇Mn₄O₁₅-Keramik sind in der nachfolgenden Tabelle angegeben.

Figure imgb0006
The properties of thermistor samples based on a pure or modified by the mentioned doping components Sr₇Mn₄O₁₅ ceramics are given in the table below.
Figure imgb0006

Claims (11)

Sinterkeramik für stabile Hochtemperatur-Thermistoren in Form eines Mangan (IV) enthaltenden Stoffsystems, gekennzeichnet durch einen Gehalt an basischem Oxid.Sintered ceramic for stable high-temperature thermistors in the form of a material system containing manganese (IV), characterized by a content of basic oxide. Sinterkeramik nach Anspruch 1, dadurch gekennzeichnet, daß als basisches Oxid Strontiumoxid vorgesehen ist.Sintered ceramic according to claim 1, characterized in that strontium oxide is provided as the basic oxide. Sinterkeramik nach Anspruch 1 und 2, gekennzeichnet durch das Stoffsystem
Sr7-xMxMn₄O₁₅
worin M einen Dotierungsstoff bedeutet.
Sintered ceramic according to claim 1 and 2, characterized by the material system
Sr 7-x M x Mn₄O₁₅
where M represents a dopant.
Sinterkeramik nach Anspruch 3, dadurch gekennzeichnet, daß als Dotierungsstoff Yttrium oder Lanthan vorgesehen ist.Sintered ceramic according to claim 3, characterized in that yttrium or lanthanum is provided as the dopant. Sinterkeramik nach Anspruch 3, dadurch gekennzeichnet, daß als Dotierungsstoff ein Element der seltenen Erden vorgesehen ist.Sintered ceramic according to claim 3, characterized in that an element of rare earths is provided as the dopant. Sinterkeramik nach Anspruch 1 und 2, gekennzeichnet durch das Stoffsystem
Sr₇MxMn4-xO₁₅, worin M einen Dotierungsstoff bedeutet.
Sintered ceramic according to claim 1 and 2, characterized by the material system
Sr₇M x Mn 4-x O₁₅, where M is a dopant.
Sinterkeramik nach Anspruch 6, dadurch gekennzeichnet, daß als Dotierungsstoff Scandium, Titan, Zircon, Niob oder Tantal vorgesehen ist.Sintered ceramic according to claim 6, characterized in that scandium, titanium, zircon, niobium or tantalum is provided as the dopant. Sinterkeramik nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß x > 0 ist.Sintered ceramic according to one of claims 1 to 7, characterized in that x> 0. Sinterkeramik nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß x = 0 ist.Sintered ceramic according to one of claims 1 to 7, characterized in that x = 0. Verfahren zur Herstellung einer Sinterkeramik nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß eine Mischung aus SrCO₃ und Mn₂O₃ oder Mn₃O₄ kalziniert wird, einer wässrigen Suspension der kalzinierten Oxidmischung ein Oxidhydroxid eines Dotierungsstoffes in der Molmenge x zugesetzt wird und danach eine Preßverdichtung des Stoffsystems durchgeführt wird.A process for producing a sintered ceramic according to any one of claims 1 to 9, characterized in that a mixture of SrCO₃ and Mn₂O₃ or Mn₃O₄ is calcined, an oxide hydroxide of a dopant in the molar amount x is added to an aqueous suspension of the calcined oxide mixture and then a compression of the material system is carried out. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß aus dem Stoffsystem durch Preßformung Thermistor-Tabletten hergestellt und die Tabletten bei einer Temperatur im Bereich von 1.550 °C gesintert werden.A method according to claim 10, characterized in that thermistor tablets are produced from the material system by compression molding and the tablets are sintered at a temperature in the range of 1,550 ° C.
EP94110754A 1993-08-13 1994-07-11 Sintered ceramic for stable high temperature-thermistors and their method of manufacture Expired - Lifetime EP0638910B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4327285 1993-08-13
DE4327285 1993-08-13

Publications (3)

Publication Number Publication Date
EP0638910A2 true EP0638910A2 (en) 1995-02-15
EP0638910A3 EP0638910A3 (en) 1997-01-08
EP0638910B1 EP0638910B1 (en) 2002-11-20

Family

ID=6495162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110754A Expired - Lifetime EP0638910B1 (en) 1993-08-13 1994-07-11 Sintered ceramic for stable high temperature-thermistors and their method of manufacture

Country Status (4)

Country Link
US (1) US5536449A (en)
EP (1) EP0638910B1 (en)
JP (1) JPH0766008A (en)
DE (1) DE59410207D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942176A1 (en) * 1999-09-03 2001-03-15 Epcos Ag Sintered ceramic for NTC high temperature thermistors is based on a one phase spinel compound of the iron-nickel-manganese oxide system
US7138901B2 (en) 2004-03-30 2006-11-21 General Electric Company Temperature measuring device and system and method incorporating the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854587A (en) * 1997-06-26 1998-12-29 The United States Of America As Represented By The Secretary Of The Navy REx M1-x Mny O.sub.δ films for microbolometer-based IR focal plane arrays
JP5773567B2 (en) * 2009-11-02 2015-09-02 石原産業株式会社 Infrared reflective material, method for producing the same, and paint and resin composition containing the same
CN110542488A (en) * 2019-09-23 2019-12-06 安徽晶格尔电子有限公司 Method for high-temperature measurement by using thermistor substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133778A (en) * 1976-04-19 1979-01-09 Olin Corporation Electrode with lanthanum-containing perovskite surface
US4324702A (en) * 1979-11-02 1982-04-13 Matsushita Electric Industrial Co., Ltd. Oxide thermistor compositions
EP0149681A1 (en) * 1983-07-18 1985-07-31 Matsushita Electric Industrial Co., Ltd. Oxide semiconductor for thermistor
US4891158A (en) * 1984-11-08 1990-01-02 Matsushita Electric Industrial Co., Ltd. Oxide semiconductor for thermistor and manufacturing method thereof
DD295941A5 (en) * 1990-06-26 1991-11-14 Friedrich-Schiller-Universitaet,De METHOD FOR PRODUCING SINTER CERAMICS FOR THERMISTORS INCREASED SENSITIVITY AND STABILITY
WO1993022255A1 (en) * 1992-04-24 1993-11-11 Siemens Matsushita Components Gmbh & Co. Kg Sintered-ceramic material for high-stability thermistors, and a method of producing the material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE63804C (en) * ELASTIC NUT COMPANY in Milwaukee, Wisconsin, V. St. A Machine for the production of nuts
US2703354A (en) * 1950-02-23 1955-03-01 Rca Corp Alkaline earth manganate ceramics
US4110260A (en) * 1975-09-25 1978-08-29 Tokyo Denki Kagaku Kogyo Kabushiki Kaisha (Tdk Electronics Co., Ltd.) Electroconductive composite ceramics
US5432024A (en) * 1992-10-14 1995-07-11 Ngk Insulators, Ltd. Porous lanthanum manganite sintered bodies and solid oxide fuel cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133778A (en) * 1976-04-19 1979-01-09 Olin Corporation Electrode with lanthanum-containing perovskite surface
US4324702A (en) * 1979-11-02 1982-04-13 Matsushita Electric Industrial Co., Ltd. Oxide thermistor compositions
EP0149681A1 (en) * 1983-07-18 1985-07-31 Matsushita Electric Industrial Co., Ltd. Oxide semiconductor for thermistor
US4891158A (en) * 1984-11-08 1990-01-02 Matsushita Electric Industrial Co., Ltd. Oxide semiconductor for thermistor and manufacturing method thereof
DD295941A5 (en) * 1990-06-26 1991-11-14 Friedrich-Schiller-Universitaet,De METHOD FOR PRODUCING SINTER CERAMICS FOR THERMISTORS INCREASED SENSITIVITY AND STABILITY
WO1993022255A1 (en) * 1992-04-24 1993-11-11 Siemens Matsushita Components Gmbh & Co. Kg Sintered-ceramic material for high-stability thermistors, and a method of producing the material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS, Bd. 40, Nr. 3, 1.M{rz 1969, Seiten 1243-1244, XP002017656 MACCHESNEY J B ET AL.: "CHEMICAL AND MAGNETIC STUDY OF LAYERED STRONTIUM LANTHANUM MANGANATE STRUCTURES" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942176A1 (en) * 1999-09-03 2001-03-15 Epcos Ag Sintered ceramic for NTC high temperature thermistors is based on a one phase spinel compound of the iron-nickel-manganese oxide system
DE19942176C2 (en) * 1999-09-03 2003-07-24 Epcos Ag Method for preventing thermistor drift in an NTC thermistor
US7138901B2 (en) 2004-03-30 2006-11-21 General Electric Company Temperature measuring device and system and method incorporating the same

Also Published As

Publication number Publication date
DE59410207D1 (en) 2003-01-02
EP0638910B1 (en) 2002-11-20
US5536449A (en) 1996-07-16
EP0638910A3 (en) 1997-01-08
JPH0766008A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
DE3150558C2 (en)
DE2605804A1 (en) HIGH TEMPERATURE THERMISTOR MASS
DE69411645T2 (en) Porous sintered bodies and their use in solid oxide fuel cells as air electrodes
EP3504169B1 (en) Ceramic material, component, and method for producing the component
DE2800495A1 (en) NONLINEAR RESISTANCE
EP0687656B1 (en) Sintered ceramic for highly stable thermistors and process for their manufacture
EP1337496A1 (en) Ceramic material and the production thereof
DE69021552T2 (en) ZINCOXIDE VARISTOR, ITS PRODUCTION AND COMPOSITION OF A CRYSTALLIZED GLASS FOR COATING.
DE112019002838T5 (en) ZINC OXIDE VARISTOR
DE3913596C2 (en)
DE4406276A1 (en) Electrically conductive ceramic material and fuel cell produced using it
DE2308073B2 (en) CERAMIC ELECTRIC RESISTANCE BODY WITH POSITIVE TEMPERATURE COEFFICIENT OF THE ELECTRIC RESISTANCE VALUE AND METHOD FOR ITS MANUFACTURING
DE68910640T2 (en) Voltage dependent nonlinear resistor and method for its manufacture.
EP0810611B1 (en) High temperature thermistor containing rare earth metals
DE19744316C2 (en) Oxygen sensitive resistance material
EP2326604B1 (en) Ceramic material, method for the manufacture of a ceramic material and electroceramic component comprising the ceramic material
WO2008110485A2 (en) Ceramic material and electroceramic component comprising said ceramic material
DE69021809T2 (en) METHOD FOR PRODUCING CERAMIC CAPACITORS WITH VARISTOR LABELS.
EP0638910B1 (en) Sintered ceramic for stable high temperature-thermistors and their method of manufacture
DE19909087B4 (en) Semiconducting ceramics and electronic components made from them
DE69018742T2 (en) Thermistor and gas sensor with this thermistor.
EP0066333B1 (en) Non-linear resistor and its manufacturing process
EP0065806B1 (en) Voltage-dependent resistor and its manufacturing process
EP2393761A2 (en) Varistor ceramic, multi-layer structural element comprising said varistor ceramic, production method for said varistor ceramic
EP0637292A1 (en) Sintered-ceramic material for high-stability thermistors, and a method of producing the material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19970130

R17P Request for examination filed (corrected)

Effective date: 19970121

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPCOS AG

17Q First examination report despatched

Effective date: 20010418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021120

REF Corresponds to:

Ref document number: 59410207

Country of ref document: DE

Date of ref document: 20030102

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030711

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EPCOS AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EPCOS AG

26N No opposition filed

Effective date: 20030821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST