EP0638824A1 - Electrooptical targeting device for tracking airborne targets - Google Patents

Electrooptical targeting device for tracking airborne targets Download PDF

Info

Publication number
EP0638824A1
EP0638824A1 EP94111196A EP94111196A EP0638824A1 EP 0638824 A1 EP0638824 A1 EP 0638824A1 EP 94111196 A EP94111196 A EP 94111196A EP 94111196 A EP94111196 A EP 94111196A EP 0638824 A1 EP0638824 A1 EP 0638824A1
Authority
EP
European Patent Office
Prior art keywords
target
laser
image sensor
tracker
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94111196A
Other languages
German (de)
French (fr)
Other versions
EP0638824B1 (en
Inventor
Luitjen Dipl.-Ing. Ennenga
Walter Dipl.-Ing. Weiland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
STN Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STN Atlas Elektronik GmbH filed Critical STN Atlas Elektronik GmbH
Publication of EP0638824A1 publication Critical patent/EP0638824A1/en
Application granted granted Critical
Publication of EP0638824B1 publication Critical patent/EP0638824B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/06Aiming or laying means with rangefinder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems

Definitions

  • the invention relates to an electro-optical target detection device for measuring flight targets of the type defined in the preamble of claim 1.
  • the invention is based on the object To create target acquisition device of the type mentioned, which, without using high-power lasers and using inexpensive laser transmitters with comparatively low laser energy, delivers sufficiently reliable distance measurements from large ranges, even for small-area flight destinations.
  • the object is achieved according to the invention in a target acquisition device of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.
  • the aiming device has the advantage that the laser beam of the laser transmitter can be bundled very strongly, so that the significantly lower power of the inexpensive laser transmitter used is completely sufficient so that sufficient energy is still reflected from the target at a great distance.
  • the small cross-section of the laser beam associated with the strong bundling does not result in a deterioration in the handling of the device by the operator, since the much more precise alignment of the laser rangefinder to the target required by the smaller laser cross-section is carried out automatically by the target tracking unit used according to the invention.
  • the comparison unit in conjunction with the specified tolerance window, which is adapted to the small cross-section of the laser beam, ensures that if the image sensor axis deviates momentarily from the target, it would be sufficient for the small cross-sectional laser beam not to hit the target but to pass it and thus pass it no distance measurement value is obtained, a so-called blind shot is reliably prevented and, as a result, laser energy is not unnecessarily consumed. It is with it ensures that every triggering of the laser rangefinder by the operator leads to a usable distance measurement, so that the regeneration time required for the laser transmitter of lower power between successive laser shots does not lead to a "thinning" of the distance measurement, i.e. fewer distance measurement values are available within a measurement period than in the conventional use of high-power lasers.
  • the structure and mode of operation of the target tracking unit used according to the invention also called the tracker, is known.
  • An example of such a tracker that is used for tracking i.e. Tracking the optical axis of the image sensor along the path of the flight target, determining the center of gravity of the target and thus determining the target position and delivering corresponding storage signals to the tracking unit is shown and described in EP 0 217 871 B1.
  • Such a tracker can easily be used in the target acquisition device according to the invention, its second track mode, namely determination of the target position by correlation, remaining unused.
  • the electro-optical target detection device for measuring flight targets shown in FIG. 1 has an image sensor 10 and a laser range finder 13 with laser transmitter and optical receiver, which are arranged together on a stabilization platform 14.
  • the platform 14 is adjusted in azimuth and elevation by a drive unit 15.
  • the image sensor 10 consists of a day vision or video camera 11 and a night vision or infrared camera 12, also called a thermal imaging camera, which can be used as an image sensor 10, depending on the ambient conditions.
  • Downstream of the image sensor 10 is an image processing unit 16, which has a circuit stage for automatic target acquisition and a circuit stage for image display, to which a monitor 17 of an operating and display device 21 is connected.
  • the circuit stage for automatic target acquisition objects contained in the recorded image of the image sensor 10 are automatically searched for, their image position is determined and the pivoting process of the stabilization platform 14 is interrupted by the drive unit 15 after a successful object search.
  • the object found can be visually identified on the screen of the monitor 17, for which purpose the circuit stage for image display also has a field of view switch, also called a field of view switch, by means of which a switch Magnifying-like image enlargement can be effected on the monitor 17.
  • the video camera 11 or the infrared camera 12 can be used as an image sensor 10 by means of a selector switch 18.
  • the receiver of the laser range finder 13 is followed by a distance calculator 19 which, after triggering a laser shot in the laser transmitter, calculates the distance to the target from the transit time of the laser pulse reflected by the target and displays it in the monitor 17.
  • An automatic target tracking unit hereinafter referred to as tracker 20, is connected to the image sensor 10 or to the output of the selector switch 18, the outputs of which are connected to the drive unit 15.
  • the tracker 20 permanently measures the position of the target relative to the optical axis of the image sensor 10 and, at its outputs, supplies the correction signals corresponding to the placement of the target from the image sensor axis.
  • the tracker 20 used here determines the coordinates of the center of gravity of the target surface within an orthogonal coordinate system, the origin of which coincides with the image sensor axis, so that at its outputs 201 and 202 a respective one corresponding to the horizontal coordinate ⁇ x of the target surface center of gravity and one corresponding to the vertical coordinate ⁇ y Correction signal is present.
  • the structure and mode of operation of the tracker 20 are known per se and are described, for example, in EP 0 217 871 B1. Of the two modes of the "dual mode tracker" described there, only the so-called “centroid mode” would be used here.
  • the search for an object-recorded image which is displayed on the monitor 17 of the operating and display device 21 after the field of view changeover in the circuit stage for image display in the image processing unit 16, illustrates the function of the tracker 20 described.
  • the target area shown is designated by 22 and its center of gravity by 23.
  • the optical axis of the image sensor 10, with which the optical axis of the laser transmitter and receiver of the laser range finder 13 is aligned, is identified by 24, and the orthogonal coordinate system with its y- and x-axes is identified by the reference symbol 25.
  • the tracker 20 continuously determines the storage coordinates ⁇ x and ⁇ y of the center of gravity 23 from the optical axis 24 of the image sensor 10, i.e. the coordinates of the center of gravity 23 in the coordinate system 25, and applies an x-correction signal corresponding to the horizontal storage ⁇ x to its output 201 and at its output 202 a y-correction signal corresponding to the vertical offset ⁇ y.
  • the two outputs 201 and 202 are connected to the drive unit 15 which, in accordance with the correction signals, pivots the stabilization platform 15 by such an azimuth angle ⁇ and elevation angle ⁇ that the target offset is compensated and the image sensor axis 24 is guided to the center of gravity 23 of the target surface 22.
  • the target detection device can also use the laser range finder 13 to measure the distance to the target.
  • the operator has a trigger button 27 provided on the operating and display device 21, which, via a signal line 28, has a measurement trigger input 131 of the laser range finder 13 is connected to trigger the distance measuring process.
  • the trigger signal activates the laser transmitter, which emits a narrowly focused measuring beam, ie a measuring beam with a relatively small cross-sectional area, along the optical axis of the laser range finder 13.
  • the measuring beam consists of a single laser pulse or a plurality of successive laser pulses.
  • the laser pulse is reflected by the target and received by the optical receiver of the laser range finder 13.
  • the time between the transmission of the laser pulse and the reception of the laser pulse is measured by the distance calculator 19 and the distance from the target is determined therefrom.
  • a laser transmitter with a relatively low power is used in the laser range finder 13 for economic reasons. So that a target at a great distance still reflects the laser pulse with sufficient energy for reception by the optical receiver, the measuring beam is bundled extremely strongly, for example with a beam divergence of ⁇ 0.5 mrad.
  • the laser pulse which is along the optical axis 24 of the image sensor 10 is emitted, does not hit the target, but passes it. This means that the laser pulse is not reflected and a distance measurement is not possible.
  • a tolerance field 29 (FIG. 2) with a field area that is smaller than the cross-section of the measuring beam at the maximum distant target location or at most the same size is symmetrical about the image sensor axis 24 clamped and a comparison unit 30 (FIG. 1) is provided which compares the relative target position with the tolerance field 29 and generates a blocking signal when the target is outside the tolerance field 29, which blocks the triggering of the laser range finder 13 by the operator.
  • the comparison unit 30 has two comparators 31, 32, each with two inputs 311 and 312 or 321 and 322 and an output 313 and 323.
  • the input 311 of the comparator 31 is connected to the output 201 of the tracker 20 and the input 321 of the comparator 32 to the output 202 of the tracker 20.
  • the two other inputs 312 and 322 of the comparators 31, 32 are each assigned a threshold value.
  • the tolerance field 29 is predetermined by these two threshold values, which is defined by two field coordinates x 1 and y 1 in the orthogonal coordinate system 25.
  • the threshold value at the input 312 of the comparator 31 corresponds to the field coordinate x 1 of the tolerance field 29 and the threshold value at the input 322 of the comparator 32 corresponds to the vertical field coordinate y 1 of the tolerance field 29.
  • the gate circuit 33 consists of an AND gate 35, one input of which is connected to the signal line 28 and the other input of which is connected via an OR gate 35 to the outputs 313 and 323 of the two comparators 31, 32.
  • the output of the AND gate 35 is connected to the measurement trigger input 131 of the laser range finder 13.
  • the comparison unit 30 and the gate circuit 33 ensure that at the moment the laser range finder 13 is triggered to measure the target, the deposit of the target from the image sensor axis 24 and thus from the laser measuring beam is so small that the laser measuring beam hits the target with sufficient certainty and reflects on it becomes. If, during the track process, the target deposit is temporarily too large, so that the laser pulse would pass the target, the triggering of a distance measuring process is blocked until the stabilization platform 14 is tracked so far that the target center of gravity 23 is again within the tolerance window 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

An electrooptic target detection apparatus for acquiring and measuring airborne targets has an imaging sensor (10), for example a video and/or infrared camera (11, 12), and a laser rangefinder (13) which emits a laser measurement beam for range measurement. The imaging sensor (10) and laser rangefinder (13) are arranged together on a stabilisation platform (14) which is driven by a drive unit (15) in order to pivot it in elevation ( epsilon ) and azimuth ( alpha ). In order to dispense with high-power lasers and to use cost-effective laser transmitters having comparatively low laser energy in the laser rangefinder (13), which is nevertheless intended to provide reliable range measurements from long ranges even for airborne targets having a small area, an automatic target tracking unit (tracker 20) is connected to the imaging sensor (10), which unit permanently supplies correction signals (x,y) corresponding to the offset of the target from the imaging sensor axis (24), which correction signals (x, y) are used to track the stabilisation platform (14) by means of the drive unit (15). There is a tolerance field (29) around the axis (24) of the imaging sensor (10), and a comparator unit (30) compares the relative target position with the tolerance area (29) and, if the target position is outside the tolerance area (29), generates an inhibit signal to prevent triggering of the laser rangefinder (13). <IMAGE>

Description

Die Erfindung betrifft ein elektrooptisches Zielerfassungsgerät zum Vermessen von Flugzielen der im Oberbegriff des Anspruchs 1 definierten Gattung.The invention relates to an electro-optical target detection device for measuring flight targets of the type defined in the preamble of claim 1.

Bei solchen elektrooptischen Zielerfassungsgeräten, wie sie beispielsweise aus der DE 34 32 892 C2 bekannt sind, besteht die Forderung nach zuverlässiger Zielvermessung in großen Reichweiten, die meist immer mehr als 8 km betragen. Um bei dieser großen Reichweite auch Ziele mit kleinen Flächenabmessungen zuverlässig in ihrer Entfernung zu vermessen, muß der Lasersender des Laserentfernungsmessers eine möglichst große Strahldivergenz besitzen, damit der Bediener das Gerät nicht hochgenau ausrichten muß, um bei Auslösung des Laserschusses zur Entfernungsmessung das Ziel auch zuverlässig mit dem Laserstrahl zu treffen. Die große Strahldivergenz bedingt eine sehr hohe Energie des Lasersenders, damit vom Ziel noch genügend Energie zum Empfangen durch den optischen Empfänger des Laserentfernungsmessers reflektiert wird. Es werden daher bei solchen Zielerfassungsgeräten ausnahmslos Hochenergielaser eingesetzt, die äußerst kostspielig sind und das Zielerfassungsgerät in seinen Herstellungskosten erheblich verteuern.In such electro-optical target detection devices, as are known for example from DE 34 32 892 C2, there is a need for reliable target measurement in large ranges, which are usually always more than 8 km. In order to reliably measure the distance of targets with small area dimensions with this large range, the laser transmitter of the laser range finder must have the greatest possible beam divergence so that the operator does not have to align the device with high precision in order to reliably measure the target when triggering the laser shot to measure the distance to hit the laser beam. The large beam divergence requires a very high energy from the laser transmitter so that enough energy is still reflected from the target for reception by the optical receiver of the laser rangefinder. Therefore, high-energy lasers are used with such target acquisition devices without exception, which are extremely expensive and make the target acquisition device considerably more expensive in terms of its production costs.

Der Erfindung liegt die Aufgabe zugrunde, ein Zielerfassungsgerät der eingangs genannten Art zu schaffen, das unter Verzicht auf Hochleistungslaser und unter Verwendung von preiswerten Lasersendern mit vergleichsweise geringer Laserenergie hinreichend zuverlässige Entfernungsmeßwerte aus großen Reichweiten auch für kleinflächige Flugziele liefert.The invention is based on the object To create target acquisition device of the type mentioned, which, without using high-power lasers and using inexpensive laser transmitters with comparatively low laser energy, delivers sufficiently reliable distance measurements from large ranges, even for small-area flight destinations.

Die Aufgabe ist bei einem Zielerfassungsgerät der im Oberbegriff des Anspruchs 1 angegebenen Gattung erfindungsgemäß durch die Merkmale im Kennzeichenteil des Anspruchs 1 gelöst.The object is achieved according to the invention in a target acquisition device of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.

Das erfindungsgemäße Zielerfassungsgerät hat den Vorteil, daß der Laserstrahl des Lasersenders sehr stark gebündelt werden kann, so daß die deutlich niedrigere Leistung des verwendeten preiswerten Lasersenders völlig ausreichend ist, damit vom Ziel in großer Entfernung noch genügend Energie reflektiert wird. Der mit der starken Bündelung einhergehende kleine Querschnitt des Laserstrahls hat trotzdem keine Verschlechterung der Gerätehandhabung durch den Bediener zur Folge, da die durch den kleineren Laserquerschnitt erforderliche wesentlich genauere Ausrichtung des Laserentfernungsmessers auf das Ziel von der erfindungsgemäß eingesetzten Zielverfolgungseinheit automatisch durchgeführt wird. Die Vergleichseinheit sorgt in Verbindung mit dem vorgegebenen Toleranzfenster, das an den kleinen Querschnitt des Laserstrahls angepaßt ist, dafür, daß bei einer momentanen Abweichung der Bildsensorachse vom Ziel, die ausreichen würde, daß der querschnittskleine Laserstrahl das Ziel nicht trifft sondern an diesem vorbeigeht und damit kein Entfernungsmeßwert erhalten wird, ein sog. Blindschuß zuverlässig unterbunden wird und dadurch nicht unnötigerweise Laserenergie verbraucht wird. Es ist damit sichergestellt, daß jede Auslösung des Laserentfernungsmessers durch den Bediener zu einem brauchbaren Entfernungsmeßwert führt, so daß die für den Lasersender kleinerer Leistung erforderliche Regenerationszeit zwischen aufeinanderfolgenden Laserschüssen nicht zu einer "Ausdünnung" der Entfernungsmessung führt, also weniger Entfernungsmeßwerte innerhalb einer Meßperiode zur Verfüung stehen als bei dem herkömmlichen Einsatz von Hochleistungslasern.The aiming device according to the invention has the advantage that the laser beam of the laser transmitter can be bundled very strongly, so that the significantly lower power of the inexpensive laser transmitter used is completely sufficient so that sufficient energy is still reflected from the target at a great distance. The small cross-section of the laser beam associated with the strong bundling does not result in a deterioration in the handling of the device by the operator, since the much more precise alignment of the laser rangefinder to the target required by the smaller laser cross-section is carried out automatically by the target tracking unit used according to the invention. The comparison unit, in conjunction with the specified tolerance window, which is adapted to the small cross-section of the laser beam, ensures that if the image sensor axis deviates momentarily from the target, it would be sufficient for the small cross-sectional laser beam not to hit the target but to pass it and thus pass it no distance measurement value is obtained, a so-called blind shot is reliably prevented and, as a result, laser energy is not unnecessarily consumed. It is with it ensures that every triggering of the laser rangefinder by the operator leads to a usable distance measurement, so that the regeneration time required for the laser transmitter of lower power between successive laser shots does not lead to a "thinning" of the distance measurement, i.e. fewer distance measurement values are available within a measurement period than in the conventional use of high-power lasers.

Die erfindungsgemäß eingesetzte Zielverfolgungseinheit, auch Tracker genannt, ist in Aufbau und Funktionsweise bekannt. Ein Beispiel für einen solchen Tracker, der zum Tracken, d.h. Nachführen der optischen Achse des Bildsensors entlang der Bahn des Flugziels, den Flächenschwerpunkt des Ziels und damit die Ziellage bestimmt und entsprechende Ablagesignale an die Nachführeinheit liefert, ist in der EP 0 217 871 B1 dargestellt und beschrieben. Ein solcher Tracker kann ohne weiteres in dem erfindungsgemäßen Zielerfassungsgerät eingesetzt werden, wobei dessen zweiter Trackmodus, nämlich Ziellagebestimmung durch Korrelation, ungenutzt bleibt.The structure and mode of operation of the target tracking unit used according to the invention, also called the tracker, is known. An example of such a tracker that is used for tracking, i.e. Tracking the optical axis of the image sensor along the path of the flight target, determining the center of gravity of the target and thus determining the target position and delivering corresponding storage signals to the tracking unit is shown and described in EP 0 217 871 B1. Such a tracker can easily be used in the target acquisition device according to the invention, its second track mode, namely determination of the target position by correlation, remaining unused.

Vorteilhafte Ausführungsformen des erfindungsgemäßen Zielerfassungsgeräts mit zweckmäßigen Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen.Advantageous embodiments of the target detection device according to the invention with expedient developments and refinements of the invention result from the further claims.

Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im nachfolgenden näher beschrieben. Es zeigen:

Fig. 1
ein Blockschaltbild eines elektrooptischen Zielerfassungsgeräts zum Vermessen von Flugzielen,
Fig. 2
ausschnittsweise eine vergrößerte Darstellung des Zielgebiets auf dem Monitor des Zielerfassungsgeräts in Fig. 1.
The invention is described below with reference to an embodiment shown in the drawing. Show it:
Fig. 1
1 shows a block diagram of an electro-optical target acquisition device for measuring flight targets,
Fig. 2
Detail of an enlarged representation of the target area on the monitor of the target acquisition device in FIG. 1.

Das in Fig. 1 im Blockschaltbild dargestellte elektrooptische Zielerfassungsgerät zum Vermessen von Flugzielen weist einen Bildsensor 10 und einen Laserentfernungsmesser 13 mit Lasersender und optischem Empfänger auf, die gemeinsam auf einer Stabilisierungsplattform 14 angeordnet sind. Die Plattform 14 wird von einer Antriebseinheit 15 in Azimut und Elevation verstellt. Der Bildsensor 10 besteht aus einer Tagsicht- oder Videokamera 11 und einer Nachtsicht- oder Infrarotkamera 12, auch Wärmebildkamera genannt, die wahlweise, je nach Umgebungsbedingungen, als Bildsensor 10 eingesetzt werden. Dem Bildsensor 10 ist eine Bildverarbeitungseinheit 16 nachgeordnet, die eine Schaltungsstufe zur automatischen Zielauffassung und eine Schaltungsstufe zur Bilddarstellung aufweist, an die ein Monitor 17 einer Bedien- und Anzeigevorrichtung 21 angeschlossen ist. In der Schaltungsstufe zur automatischen Zielauffassung werden im aufgenommenen Bild des Bildsensors 10 enthaltene Objekte automatisch gesucht, deren Bildposition bestimmt und der Schwenkvorgang der Stabilisierungsplattform 14 durch die Antriebseinheit 15 nach erfolgreicher Objektsuche unterbrochen. Über den Bildschirm des Monitors 17 läßt sich das gefundene Objekt visuell identifizieren, wozu die Schaltungsstufe zur Bilddarstellung noch eine Sehfeldumschaltung, auch Gesichtsfeldumschaltung genannt, besitzt, durch welche eine lupenähnliche Bildvergrößerung auf dem Monitor 17 bewirkt werden kann. Dabei kann mittels eines Wahlschalters 18 die Videokamera 11 oder die Infrarotkamera 12 als Bildsensor 10 eingesetzt werden. Dem Empfänger des Laserentfernungsmessers 13 ist ein Entfernungsrechner 19 nachgeschaltet, der nach Auslösen eines Laserschusses im Lasersender aus der Laufzeit des vom Ziel reflektierten Laserimpulses die Entfernung zum Ziel berechnet und im Monitor 17 zur Anzeige bringt.The electro-optical target detection device for measuring flight targets shown in FIG. 1 has an image sensor 10 and a laser range finder 13 with laser transmitter and optical receiver, which are arranged together on a stabilization platform 14. The platform 14 is adjusted in azimuth and elevation by a drive unit 15. The image sensor 10 consists of a day vision or video camera 11 and a night vision or infrared camera 12, also called a thermal imaging camera, which can be used as an image sensor 10, depending on the ambient conditions. Downstream of the image sensor 10 is an image processing unit 16, which has a circuit stage for automatic target acquisition and a circuit stage for image display, to which a monitor 17 of an operating and display device 21 is connected. In the circuit stage for automatic target acquisition, objects contained in the recorded image of the image sensor 10 are automatically searched for, their image position is determined and the pivoting process of the stabilization platform 14 is interrupted by the drive unit 15 after a successful object search. The object found can be visually identified on the screen of the monitor 17, for which purpose the circuit stage for image display also has a field of view switch, also called a field of view switch, by means of which a switch Magnifying-like image enlargement can be effected on the monitor 17. The video camera 11 or the infrared camera 12 can be used as an image sensor 10 by means of a selector switch 18. The receiver of the laser range finder 13 is followed by a distance calculator 19 which, after triggering a laser shot in the laser transmitter, calculates the distance to the target from the transit time of the laser pulse reflected by the target and displays it in the monitor 17.

An dem Bildsensor 10 bzw. an dem Ausgang des Wahlschalters 18 ist weiterhin eine automatische Zielverfolgungseinheit, im folgenden kurz Tracker 20 genannt, angeschlossen, deren Ausgänge mit der Antriebseinheit 15 verbunden sind. Der Tracker 20 vermißt in bekannter Weise permanent die Lage des Ziels relativ zur optischen Achse des Bildsensors 10 und liefert an seinen Ausgängen der Ablage des Ziels von der Bildsensorachse entsprechende Korrektursignale. Der hier verwendete Tracker 20 bestimmt dabei als relative Ziellage die Koordinaten des Schwerpunkts der Zielfläche innerhalb eines orthogonalen Koordinatensystems, dessen Ursprung mit der Bildsensorachse zusammenfällt, so daß an seinen Ausgängen 201 und 202 jeweils ein der Horizontalkoordinate Δx des Zielflächenschwerpunkts entsprechendes und ein der Vertikalkoordinate Δy entsprechendes Korrektursignal ansteht. Der Aufbau und die Wirkungsweise des Trackers 20 sind an sich bekannt und beispielsweise in der EP 0 217 871 B1 beschrieben. Von den beiden Modi des dort beschriebenen "Dual Mode Trackers" würde hier lediglich der sog. "centroid mode" genutzt.An automatic target tracking unit, hereinafter referred to as tracker 20, is connected to the image sensor 10 or to the output of the selector switch 18, the outputs of which are connected to the drive unit 15. In a known manner, the tracker 20 permanently measures the position of the target relative to the optical axis of the image sensor 10 and, at its outputs, supplies the correction signals corresponding to the placement of the target from the image sensor axis. The tracker 20 used here determines the coordinates of the center of gravity of the target surface within an orthogonal coordinate system, the origin of which coincides with the image sensor axis, so that at its outputs 201 and 202 a respective one corresponding to the horizontal coordinate Δx of the target surface center of gravity and one corresponding to the vertical coordinate Δy Correction signal is present. The structure and mode of operation of the tracker 20 are known per se and are described, for example, in EP 0 217 871 B1. Of the two modes of the "dual mode tracker" described there, only the so-called "centroid mode" would be used here.

In der in Fig. 2 ausschnittsweise dargestellten Bildvergrößerung des vom Bildsensor 10 nach beendeter Objektsuche aufgenommenen Bildes, die nach in der Schaltungsstufe zur Bilddarstellung in der Bildverarbeitungseinheit 16 vorgenommenen Gesichtsfeldumschaltung auf dem Monitor 17 der Bedien- und Anzeigevorrichtung 21 abgebildet wird, läßt sich die beschriebene Funktion des Trackers 20 verdeutlichen. Dort ist die abgebildete Zielfläche mit 22 und deren Schwerpunkt mit 23 bezeichnet. Die optische Achse des Bildsensors 10, mit der die optische Achse von Lasersender und -empfänger des Laserentfernungsmessers 13 fluchtet, ist mit 24 gekennzeichnet, und das orthogonale Koordinatensystem mit seiner y- und x-Achse ist mit dem Bezugszeichen 25 gekennzeichnet. Wie bereits ausgeführt, bestimmt der Tracker 20 fortlaufend die Ablagekoordinaten Δx und Δy des Schwerpunkts 23 von der optischen Achse 24 des Bildsensors 10, also die Koordinaten des Schwerpunktes 23 im Koordinatensystem 25, und legt an seinen Ausgang 201 ein der Horizontalablage Δx entsprechendes x-Korrektursignal und an seinen Ausgang 202 ein der Vertikalablage Δy entsprechendes y-Korrektursignal. Die beiden Ausgänge 201 und 202 sind an die Antriebseinheit 15 angeschlossen, welche entsprechend den Korrektursignalen die Stabilisierungsplattform 15 um einen solchen Azimutwinkel α und Elevationswinkel ε schwenkt, daß die Zielablage kompensiert wird und die Bildsensorachse 24 auf den Schwerpunkt 23 der Zielfläche 22 hingeführt wird.In the partial image enlargement shown in FIG. 2 of the image sensor 10 after it has ended The search for an object-recorded image, which is displayed on the monitor 17 of the operating and display device 21 after the field of view changeover in the circuit stage for image display in the image processing unit 16, illustrates the function of the tracker 20 described. There, the target area shown is designated by 22 and its center of gravity by 23. The optical axis of the image sensor 10, with which the optical axis of the laser transmitter and receiver of the laser range finder 13 is aligned, is identified by 24, and the orthogonal coordinate system with its y- and x-axes is identified by the reference symbol 25. As already stated, the tracker 20 continuously determines the storage coordinates Δx and Δy of the center of gravity 23 from the optical axis 24 of the image sensor 10, i.e. the coordinates of the center of gravity 23 in the coordinate system 25, and applies an x-correction signal corresponding to the horizontal storage Δx to its output 201 and at its output 202 a y-correction signal corresponding to the vertical offset Δy. The two outputs 201 and 202 are connected to the drive unit 15 which, in accordance with the correction signals, pivots the stabilization platform 15 by such an azimuth angle α and elevation angle ε that the target offset is compensated and the image sensor axis 24 is guided to the center of gravity 23 of the target surface 22.

Zusätzlich zur automatischen Zielpositionsbestimmung kann das Zielerfassungsgerät mit Hilfe des Laserentfernungsmessers 13 auch die Entfernung zum Ziel vermessen. Hierzu hat der Bediener mit Hilfe einer an der Bedien- und Anzeigevorrichtung 21 vorgesehenen Auslösetaste 27, die über eine Signalleitung 28 mit einem Meßauslöseeingang 131 des Laserentfernungsmessers 13 verbunden ist, den Entfernungsmeßvorgang auszulösen. Mit dem Auslösesignal wird der Lasersender aktiviert, der einen eng gebündelten Meßstrahl, d.h. einen Meßstrahl mit relativ kleiner Querschnittsfläche, längs der optischen Achse des Laserentfernungsmessers 13 aussendet. Der Meßstrahl besteht aus einem einzelnen Laserimpuls oder einer Mehrzahl von aufeinanderfolgenden Laserimpulsen. Der Laserimpuls wird vom Ziel reflektiert und von dem optischen Empfänger des Laserentfernungsmessers 13 empfangen. Die Zeit zwischen dem Aussenden des Laserimpulses und dem Empfangen des Laserimpulses wird von dem Entfernungsrechner 19 gemessen und daraus die Entfernung des Ziels bestimmt.In addition to the automatic determination of the target position, the target detection device can also use the laser range finder 13 to measure the distance to the target. For this purpose, the operator has a trigger button 27 provided on the operating and display device 21, which, via a signal line 28, has a measurement trigger input 131 of the laser range finder 13 is connected to trigger the distance measuring process. The trigger signal activates the laser transmitter, which emits a narrowly focused measuring beam, ie a measuring beam with a relatively small cross-sectional area, along the optical axis of the laser range finder 13. The measuring beam consists of a single laser pulse or a plurality of successive laser pulses. The laser pulse is reflected by the target and received by the optical receiver of the laser range finder 13. The time between the transmission of the laser pulse and the reception of the laser pulse is measured by the distance calculator 19 and the distance from the target is determined therefrom.

Bei dem Laserentfernungsmesser 13 wird aus wirtschaftlichen Gründen ein Lasersender mit relativ geringer Leistung eingesetzt. Damit ein Ziel in großer Entfernung den Laserimpuls noch mit für den Empfang durch den optischen Empfänger ausreichender Energie reflektiert, wird der Meßstrahl extrem stark gebündelt, weist beispielsweise eine Strahldivergenz von ≦0,5 mrad auf. Bei dem dadurch erhaltenen sehr kleinen Meßstrahlquerschnitt, der auch bei großer Zielentfernung wesentlich kleiner ist als die Zielfläche, ist es möglich, daß bei zu großer Ablage der optischen Achse 24 des Bildsensors 10 vom Ziel während des Trackvorgangs des Trackers 22 der Laserimpuls, der längs der optischen Achse 24 des Bildsensors 10 ausgesendet wird, das Ziel nicht trifft, sondern an diesem vorbeigeht. Damit wird der Laserimpuls nicht reflektiert und eine Entfernungsmessung ist nicht möglich. Wegen der geringen Leistung des Lasersenders ist bis zum Aussenden des nächsten Laserimpulses ein für die Regeneration des Lasersenders erforderliche Wartezeit einzuhalten. Damit durch den eingesetzten leistungsarmen Lasersender die Leistungsmerkmale des Zielerfassungsgeräts nicht beeinträchtigt werden und ein ausreichend häufiges Vermessen der Zielentfernung ermöglicht wird, ist ein Toleranzfeld 29 (Fig. 2) mit einer Feldfläche, die kleiner ist als der Querschnitt des Meßstrahls am in maximaler Entfernung liegenden Zielort oder höchstens gleich groß ist, symmetrisch um die Bildsensorachse 24 aufgespannt und eine Vergleichseinheit 30 (Fig. 1) vorgesehen, welche die relative Ziellage mit dem Toleranzfeld 29 vergleicht und bei einer Lage des Ziels außerhalb des Toleranzfeldes 29 ein Sperrsignal generiert, welches das Auslösen des Laserentfernungsmessers 13 durch den Bediener blockiert.A laser transmitter with a relatively low power is used in the laser range finder 13 for economic reasons. So that a target at a great distance still reflects the laser pulse with sufficient energy for reception by the optical receiver, the measuring beam is bundled extremely strongly, for example with a beam divergence of ≦ 0.5 mrad. In the resultant very small measuring beam cross-section, which is considerably smaller than the target area even when the target is far away, it is possible that if the optical axis 24 of the image sensor 10 is too far away from the target during the tracking process of the tracker 22, the laser pulse which is along the optical axis 24 of the image sensor 10 is emitted, does not hit the target, but passes it. This means that the laser pulse is not reflected and a distance measurement is not possible. Due to the low power of the laser transmitter, a waiting time for the regeneration of the laser transmitter has to be observed until the next laser pulse is sent. This means that the performance characteristics of the target acquisition device are not due to the low-power laser transmitter used are impaired and a sufficiently frequent measurement of the target distance is made possible, a tolerance field 29 (FIG. 2) with a field area that is smaller than the cross-section of the measuring beam at the maximum distant target location or at most the same size is symmetrical about the image sensor axis 24 clamped and a comparison unit 30 (FIG. 1) is provided which compares the relative target position with the tolerance field 29 and generates a blocking signal when the target is outside the tolerance field 29, which blocks the triggering of the laser range finder 13 by the operator.

Zur Realisierung dieses Toleranzfensters 29 und zur Generierung des Sperrsignals weist die Vergleichseinheit 30 zwei Komparatoren 31, 32 mit jeweils zwei Eingängen 311 und 312 bzw. 321 und 322 und einem Ausgang 313 bzw. 323 auf. Der Eingang 311 des Komparators 31 ist mit dem Ausgang 201 des Trackers 20 und der Eingang 321 des Komparators 32 mit dem Ausgang 202 des Trackers 20 verbunden. Die beiden anderen Eingänge 312 und 322 der Komparatoren 31, 32 sind jeweils mit einem Schwellwert belegt. Durch diese beiden Schwellwerte wird das Toleranzfeld 29 vorgegeben, das durch zwei Feldkoordinaten x₁ und y₁ im orthogonalen Koordinatensystem 25 festgelegt ist. Dabei entspricht der Schwellwert am Eingang 312 des Komparators 31 der Feldkoordinate x₁ des Toleranzfelds 29 und der Schwellwert am Eingang 322 des Komparators 32 der vertikalen Feldkoordinate y₁ des Toleranzfelds 29. Die Ausgänge 313 und 323 der beiden Komparatoren 31, 32, an denen jeweils ein Sperrsignal auftritt, wenn das Signal an dem Eingang 311 bzw. 321 größer ist als der Schwellwert am anderen Eingang 312 bzw. 322, sind mit einer Torschaltung 33 verbunden, welche die Signalleitung 28 sperrt, solange am Ausgang 313 oder am Ausgang 323 der beiden Komparatoren 31, 32 ein Sperrsignal vorhanden ist. In einfachster Weise besteht die Torschaltung 33 aus einem AND-Gatter 35, dessen einer Eingang mit der Signalleitung 28 und dessen anderer Eingang über ein OR-Gatter 35 mit den Ausgängen 313 und 323 der beiden Komparatoren 31, 32 verbunden ist. Der Ausgang des AND-Gatters 35 ist mit dem Meßauslöseeingang 131 des Laserentfernungsmessers 13 verbunden. Durch die Vergleichseinheit 30 und die Torschaltung 33 ist sichergestellt, daß im Moment des Auslösens des Laserentfernungsmessers 13 zur Zielentfernungsmessung die Ablage des Ziels von der Bildsensorachse 24 und damit vom Lasermeßstrahl so klein ist, daß der Lasermeßstrahl mit ausreichender Sicherheit das Ziel trifft und an diesem reflektiert wird. Ist während des Trackvorgangs die Zielablage vorübergehend zu groß, so daß der Laserimpuls am Ziel vorbeigehen würde, ist das Auslösen eines Entfernungsmeßvorgangs so lange blockiert, bis die Stabilisierungsplattform 14 soweit nachgeführt ist, daß der Zielschwerpunkt 23 wieder innerhalb des Toleranzfensters 29 liegt.To implement this tolerance window 29 and to generate the blocking signal, the comparison unit 30 has two comparators 31, 32, each with two inputs 311 and 312 or 321 and 322 and an output 313 and 323. The input 311 of the comparator 31 is connected to the output 201 of the tracker 20 and the input 321 of the comparator 32 to the output 202 of the tracker 20. The two other inputs 312 and 322 of the comparators 31, 32 are each assigned a threshold value. The tolerance field 29 is predetermined by these two threshold values, which is defined by two field coordinates x 1 and y 1 in the orthogonal coordinate system 25. The threshold value at the input 312 of the comparator 31 corresponds to the field coordinate x 1 of the tolerance field 29 and the threshold value at the input 322 of the comparator 32 corresponds to the vertical field coordinate y 1 of the tolerance field 29. The outputs 313 and 323 of the two comparators 31, 32, each with a blocking signal occurs when the signal at the input 311 or 321 is greater than the threshold value at the other input 312 or 322, are connected to a gate circuit 33 which blocks the signal line 28 as long as at the output 313 or at the output 323 of the two comparators 31 , 32 a lock signal is present. In the simplest way, the gate circuit 33 consists of an AND gate 35, one input of which is connected to the signal line 28 and the other input of which is connected via an OR gate 35 to the outputs 313 and 323 of the two comparators 31, 32. The output of the AND gate 35 is connected to the measurement trigger input 131 of the laser range finder 13. The comparison unit 30 and the gate circuit 33 ensure that at the moment the laser range finder 13 is triggered to measure the target, the deposit of the target from the image sensor axis 24 and thus from the laser measuring beam is so small that the laser measuring beam hits the target with sufficient certainty and reflects on it becomes. If, during the track process, the target deposit is temporarily too large, so that the laser pulse would pass the target, the triggering of a distance measuring process is blocked until the stabilization platform 14 is tracked so far that the target center of gravity 23 is again within the tolerance window 29.

Claims (5)

Elektrooptisches Zielerfassungsgerät zum Vermessen von Flugzielen, mit einem Bildsensor (10), z. B. Video- und/oder Infrarotkamera (11, 12), und mit einem einen Lasermeßstrahl aussendenden Laserentfernungsmesser (13), die gemeinsam auf einer Stabilisierungsplattform (14) angeordnet sind, und mit einer die Stabilisierungsplattform (14), zu deren Schwenkung in Elevation (ε ) und Azimut (α) antreibenden Antriebseinheit (15), dadurch gekennzeichnet, daß an dem Bildsensor (10) eine automatische Zielverfolgungseinheit (Tracker 20) angeschlossen ist, die permanent die Lage des Ziels relativ zur optischen Achse (24) des Bildsensors (10) vermißt und der Ablage des Ziels von der Bildsensorachse (24) entsprechende Korrektursignale (x, y) liefert, daß die Korrektursignale (x, y) zur Nachführung der Stabilisierungsplattform (14) in einer die Zielablage kompensierenden Weise der Antriebseinheit (15) zugeführt sind, daß um die Achse (24) des Bildsensors (10) ein Toleranzfeld (29) gelegt ist, dessen Feldfläche gleich oder kleiner ist als der Querschnitt des Lasermeßstrahls am Zielort, und daß eine Vergleichseinheit (30) die relative Ziellage mit dem Toleranzfeld (29) vergleicht und bei Lage des Ziels außerhalb des Toleranzfeldes (29) ein Sperrsignal zur Auslöseblockierung des Laserentfernungsmessers (13) generiert.Electro-optical target acquisition device for measuring flight targets, with an image sensor (10), e.g. B. video and / or infrared camera (11, 12), and with a laser rangefinder emitting laser rangefinder (13), which are arranged together on a stabilization platform (14), and with a stabilization platform (14), for pivoting in elevation (ε) and azimuth (α) driving drive unit (15), characterized in that an automatic target tracking unit (tracker 20) is connected to the image sensor (10), which permanently the position of the target relative to the optical axis (24) of the image sensor ( 10) and the correction of the target signals from the image sensor axis (24) corresponding correction signals (x, y) provides that the correction signals (x, y) for tracking the stabilization platform (14) in a manner that compensates for the target storage of the drive unit (15) are that a tolerance field (29) is placed around the axis (24) of the image sensor (10), the field area of which is equal to or smaller than the cross section of the laser measuring beam at the target location, and that a comparison unit (30) compares the relative target position with the tolerance field (29) and, when the target is outside the tolerance field (29), generates a blocking signal for blocking the triggering of the laser range finder (13). Zielerfassungsgerät nach Anspruch 1, dadurch gekennzeichnet, daß in einer Signalleitung (28) zum willkürlichen Auslösen einer Entfernungsmessung durch den Laserentfernungsmesser (13) eine Torschaltung (33) angeordnet ist und daß das Sperrsignal am Steuereingang der Torschaltung (33) anliegt.Target detection device according to claim 1, characterized in that a gate circuit (33) is arranged in a signal line (28) for the arbitrary triggering of a distance measurement by the laser range finder (13) and that the blocking signal is present at the control input of the gate circuit (33). Zielgerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zielverfolgungseinheit (Tracker 20) als relative Ziellage die Koordinaten (Δx, Δy) des Schwerpunktes (23) der Zielfläche (22) innerhalb eines orthogonalen Koordinatensystems (25) bestimmt, dessen Ursprung mit der optischen Achse (24) des Bildsensors (10) zusammenfällt, daß das Toleranzfeld (29) durch zwei Feldkoordinaten (x₁, y₁,) in dem orthogonalen Koordinatensystem (25) festgelegt ist und daß die Vergleichseinheit (30) jede Schwerpunktkoordinate (Δx, Δy) mit der zugeordneten Feldkoordinaten (x₁, y₁), vergleicht und bei deren Übersteigen das Sperrsignal generiert.Aiming device according to claim 1 or 2, characterized in that the target tracking unit (tracker 20) determines the coordinates (Δx, Δy) of the center of gravity (23) of the target surface (22) within an orthogonal coordinate system (25), the origin of which with the optical axis (24) of the image sensor (10) coincides that the tolerance field (29) is defined by two field coordinates (x₁, y₁,) in the orthogonal coordinate system (25) and that the comparison unit (30) each center of gravity coordinate (Δx, Δy) with the assigned field coordinates (x₁, y₁), compares and generates the lock signal when exceeded. Zielerfassungsgerät nach Anspruch 3, dadurch gekennzeichnet, daß an getrennten Ausgängen (201, 202) der Zielverfolgungseinheit (Tracker 20) jeweils ein der Horizontalkoordinate (Δx) des Zielflächenschwerpunkts (23) entsprechendes und ein der Vertikalkoordinate (Δy) des Zielflächenschwerpunkts (23) entsprechendes Korrektursignal (x, y) ansteht, daß die Vergleichseinheit (30) zwei Komparatoren (31, 32) mit jeweils zwei Eingängen (311, 312 bzw. 321, 322) und einem Ausgang (313 bzw. 323) aufweist, daß die Ausgänge (201, 202) der Zielverfolgungseinheit (Tracker 20) mit jeweils einem Eingang (311 bzw. 321) eines Komparators (31 bzw. 32) verbunden sind, dessen anderer Eingang (312 bzw. 322) mit einem der Feldkoordinaten (x₁, y₁) des Toleranzfelds (29) entsprechenden Schwellwert belegt ist, und daß die Ausgänge (313, 323) beider Komparatoren (31, 32) mit dem Steuereingang der Torschaltung (33) verbunden sind.Target acquisition device according to claim 3, characterized in that at separate outputs (201, 202) of the target tracking unit (tracker 20) in each case a correction signal corresponding to the horizontal coordinate (Δx) of the target surface center of gravity (23) and a correction signal corresponding to the vertical coordinate (Δy) of the target surface center of gravity (23) (x, y) that the comparison unit (30) has two comparators (31, 32) each with two inputs (311, 312 or 321, 322) and one output (313 or 323), that the outputs (201 , 202) of the target tracking unit (tracker 20) each with an input (311 or 321) a comparator (31 or 32) are connected, the other input (312 or 322) is assigned a threshold value corresponding to the field coordinates (x₁, y₁) of the tolerance field (29), and that the outputs (313, 323) of both comparators (31, 32) are connected to the control input of the gate circuit (33). Zielerfassungsgerät nach Anspruch 4, dadurch gekennzeichnet, daß die Torschaltung (33) ein AND-Gatter (35) aufweist, dessen Ausgang mit einem Meßauslöseeingang (131) des Laserentfernungsmessers (13) und dessen einer Eingang mit der Signalleitung (28) verbunden ist, und daß der andere, den Steuereingang der Torschaltung (33) bildende Eingang des AND-Gatters (35) über ein OR-Gatters (34) an jedem Ausgang (313, 323) der Komparatoren (31, 32) angeschlossen ist.Target detection device according to Claim 4, characterized in that the gate circuit (33) has an AND gate (35), the output of which is connected to a measurement trigger input (131) of the laser range finder (13) and one input of which is connected to the signal line (28), and that the other input of the AND gate (35) forming the control input of the gate circuit (33) is connected via an OR gate (34) to each output (313, 323) of the comparators (31, 32).
EP94111196A 1993-08-12 1994-07-19 Electrooptical targeting device for tracking airborne targets Expired - Lifetime EP0638824B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4327038A DE4327038A1 (en) 1993-08-12 1993-08-12 Electro-optical target acquisition device for measuring flight targets
DE4327038 1993-08-12

Publications (2)

Publication Number Publication Date
EP0638824A1 true EP0638824A1 (en) 1995-02-15
EP0638824B1 EP0638824B1 (en) 1998-04-22

Family

ID=6494995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94111196A Expired - Lifetime EP0638824B1 (en) 1993-08-12 1994-07-19 Electrooptical targeting device for tracking airborne targets

Country Status (3)

Country Link
EP (1) EP0638824B1 (en)
DE (2) DE4327038A1 (en)
ES (1) ES2115109T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742873A1 (en) * 1995-12-23 1997-06-27 Stn Atlas Elektronik Gmbh DEVICE FOR REALIZING THE TRACKING AND MEASUREMENT OF MOBILE OBJECTS
GB2439744A (en) * 2006-07-04 2008-01-09 Christopher Bee Shot pattern and target display
WO2012045802A1 (en) * 2010-10-06 2012-04-12 Sagem Defense Securite Optoelectronic device for observing and/or aiming at a scene, comprising a rangefinder, and related range-finding method
WO2016108981A3 (en) * 2014-10-27 2016-09-09 Laser Technology, Inc. Pseudo-stabilization technique for laser based speed and rangefinding instruments
CN106546959A (en) * 2015-09-18 2017-03-29 古野电气株式会社 Radar installations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005033782A1 (en) * 2005-07-20 2007-03-29 Eads Deutschland Gmbh Threat existence detecting and determining method for use in e.g. aircraft, involves detecting aerosel cloud and differentiating existence of threat by three different combat agents at respective preset temperatures
WO2013028649A1 (en) 2011-08-23 2013-02-28 Bae Systems Information And Electronic Systems Integration Inc. Fiber optically coupled laser rangefinder for use in a gimbal system
CN105549060B (en) * 2015-12-15 2017-12-29 大连海事大学 Object locating system based on airborne photoelectric gondola position and posture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650138A1 (en) * 1976-10-30 1978-05-03 Eltro Gmbh Altitude measuring and tracking system for ground stations - uses TV camera and laser rangefinder on gimbal platform
GB2226466A (en) * 1988-12-21 1990-06-27 Messerschmitt Boelkow Blohm Means for the detection and identification of individual targets
DE4122623A1 (en) * 1991-07-09 1993-01-14 Diehl Gmbh & Co Controller for laser beam tracking system with two control loops - has additional infrared camera for faulty signal detection and laser distance meter for focussing during target tracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650138A1 (en) * 1976-10-30 1978-05-03 Eltro Gmbh Altitude measuring and tracking system for ground stations - uses TV camera and laser rangefinder on gimbal platform
GB2226466A (en) * 1988-12-21 1990-06-27 Messerschmitt Boelkow Blohm Means for the detection and identification of individual targets
DE4122623A1 (en) * 1991-07-09 1993-01-14 Diehl Gmbh & Co Controller for laser beam tracking system with two control loops - has additional infrared camera for faulty signal detection and laser distance meter for focussing during target tracking

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742873A1 (en) * 1995-12-23 1997-06-27 Stn Atlas Elektronik Gmbh DEVICE FOR REALIZING THE TRACKING AND MEASUREMENT OF MOBILE OBJECTS
GB2439744A (en) * 2006-07-04 2008-01-09 Christopher Bee Shot pattern and target display
WO2012045802A1 (en) * 2010-10-06 2012-04-12 Sagem Defense Securite Optoelectronic device for observing and/or aiming at a scene, comprising a rangefinder, and related range-finding method
FR2965935A1 (en) * 2010-10-06 2012-04-13 Sagem Defense Securite OPTRONIC OBSERVATION AND / OR VIEWING DEVICE OF A SCENE COMPRISING A TELEMETRE, AND ASSOCIATED TELEMETRY METHOD
US8988659B2 (en) 2010-10-06 2015-03-24 Sagem Defense Securite Optoelectronic device for observing and/or aiming at a scene, comprising a rangefinder, and related range-finding method
WO2016108981A3 (en) * 2014-10-27 2016-09-09 Laser Technology, Inc. Pseudo-stabilization technique for laser based speed and rangefinding instruments
US9784824B2 (en) 2014-10-27 2017-10-10 Laser Technology, Inc. Pseudo-stabilization technique for laser-based speed and rangefinding instruments utilizing a rate gyroscope to track pitch and yaw deviations from the aiming point
CN106546959A (en) * 2015-09-18 2017-03-29 古野电气株式会社 Radar installations

Also Published As

Publication number Publication date
DE59405765D1 (en) 1998-05-28
EP0638824B1 (en) 1998-04-22
DE4327038A1 (en) 1995-02-16
ES2115109T3 (en) 1998-06-16

Similar Documents

Publication Publication Date Title
EP1308693B1 (en) Optoelectronic distance measurement device
EP1188087B1 (en) Combined telescope and telemeter device
DE2826468C2 (en)
DE19846655A1 (en) Method for directing gunfire
EP1325281A1 (en) Method and device for simulating firing
DE2710904A1 (en) DEVICE FOR COMPENSATION OF TARGET ERRORS IN PROTECTED
EP0396865A2 (en) Optical radar
EP0638824B1 (en) Electrooptical targeting device for tracking airborne targets
DE3044554A1 (en) METHOD AND ARRANGEMENT FOR CHECKING THE MATCHING OF SIGHTING AND TARGET LINES
DE102008056953B3 (en) Laser rangefinder with two laser radiation sources
DE4207251A1 (en) Fire control installation with laser ranging for armoured vehicle - has alternative cameras for tracking, clarification and recognition of targets using light pen or touch sensitive screen
DE60205462T2 (en) LASER-OPERATING SYSTEM WITH VISOR LASER REMOVAL METER
EP0878719B1 (en) Target detection means
EP1160536B1 (en) Laser radar proximity fuze with mask discrimination
EP1153259B1 (en) Target detection method and device
DE3119773C2 (en) Warning procedure for opposing laser radiation and device for this
DE60030671T2 (en) Tastjustierung
DE69029631T2 (en) Leading visor
DE3545831C2 (en)
EP4012441A1 (en) Device for laser measuring an environment
EP1805531A1 (en) Apparatus and method for recognizing and locating optical two-way observation systems
DE19922412B4 (en) Target detection method and apparatus
DE3504198A1 (en) Method for monitoring the achievement of hits by tank gunners in firing training
DE2751086A1 (en) Laser distance meter optical alignment - includes counter tester and uses three echo transmitters spaced equally about receiver axis
DE3812984C1 (en) Continuously locating and guiding missile or aircraft - measuring laser radiation returned from on-board reflector using transceiver goniometer unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FR GB GR IT LI NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970806

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK ES FR GB GR IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980422

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980422

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980422

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980423

REF Corresponds to:

Ref document number: 59405765

Country of ref document: DE

Date of ref document: 19980528

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2115109

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110725

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20120117

REG Reference to a national code

Ref country code: ES

Ref legal event code: GC2A

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59405765

Country of ref document: DE

Effective date: 20111219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120719

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120726

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120719

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130722

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130719

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59405765

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720