EP0637477A2 - Einlaufsystem für eine Aluminiumstranggussanlage - Google Patents

Einlaufsystem für eine Aluminiumstranggussanlage Download PDF

Info

Publication number
EP0637477A2
EP0637477A2 EP94108061A EP94108061A EP0637477A2 EP 0637477 A2 EP0637477 A2 EP 0637477A2 EP 94108061 A EP94108061 A EP 94108061A EP 94108061 A EP94108061 A EP 94108061A EP 0637477 A2 EP0637477 A2 EP 0637477A2
Authority
EP
European Patent Office
Prior art keywords
nozzle
inlet
stopper
plug
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94108061A
Other languages
English (en)
French (fr)
Other versions
EP0637477B1 (de
EP0637477A3 (de
Inventor
C.J. Dipl.-Ing. Moritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Original Assignee
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Aluminium Werke AG, Vaw Aluminium AG filed Critical Vereinigte Aluminium Werke AG
Publication of EP0637477A2 publication Critical patent/EP0637477A2/de
Publication of EP0637477A3 publication Critical patent/EP0637477A3/de
Application granted granted Critical
Publication of EP0637477B1 publication Critical patent/EP0637477B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/16Closures stopper-rod type, i.e. a stopper-rod being positioned downwardly through the vessel and the metal therein, for selective registry with the pouring opening

Definitions

  • the invention relates to inlet systems for continuous aluminum casting systems, consisting of a channel, an inlet nozzle inserted into the channel, into which a stopper for regulating the melt inlet is inserted, and optionally a control system with which the immersion depth of the stopper can be controlled within predetermined limits.
  • the static pressure also changes.
  • oxide and dirt particles are sucked into the melt from the metal surface of the trough or the ingot in the case of the negative pressures which then occur at the nozzle inlet or outlet, which has a disadvantageous effect on the ingot quality produced.
  • the object of the invention is therefore to optimize the inlet system in continuous aluminum casting systems in such a way that the negative pressure at the nozzle inlet and at the nozzle outlet is minimized while maintaining the essential installations and the flow conditions in the inlet nozzle are optimized.
  • a method for operating the inlet system is intended to reduce the vortex formation in the melt, so that no vortex formation occurs either on the melt surface in the channel or on the melt surface in the mold.
  • the nozzle contour according to the invention provides that the narrowest cross-section is present in the center of the inlet nozzle and thus the highest speed is generated in the center of the nozzle.
  • the shape of the nozzle avoids stalling, which could reduce the cross-section through which flow passes. The nozzle is thus flowed through uniformly over the entire cross-section, whereby an optimal volume flow can be set.
  • the inlet system consists of an inlet nozzle 2 inserted into the channel 1, into which a stopper 3 is inserted to regulate the melt inlet 4.
  • the melt reaches the mold 5 via the pouring nozzle, where it is formed into an ingot 6 which is held on the sprue 7.
  • the ingot 6 is pulled down out of the mold 5.
  • nozzles 2 and plugs 3 can be seen in FIG. 2. It can be seen that the cross sections X and Y at the nozzle inlet and nozzle outlet are large in relation to the other cross sections of the inlet nozzle, so that low flow velocities occur there.
  • FIG. 2 It can also be seen from FIG. 2 how the plug 3 dips into the nozzle 2.
  • the space remaining between the nozzle 2 and the plug 3 is to be regarded as an annular gap C and is designed such that the flow fills the entire cross section uniformly. Seen from the inlet side X, the annular gap C tapers, so that a dynamic pressure builds up in the flowing metal, which counteracts a reduction in the static pressure in the melt.
  • the cross section widens behind the narrowest point, for example in the middle of the nozzle, so that the flow is braked again without tearing.
  • the latter is drawn out at the tip to a radius of 11.5 mm in the example.
  • the pressure conditions are hardly changed by an increased level difference - in the example 26 cm and 34 cm.
  • the closely spaced curves for different level differences show that the flow conditions are very stable and the flow in the nozzle does not stop even at high negative pressures. It follows that the available cross section is flowed through relatively evenly and there are no speed peaks.
  • FIGS. 6a, b and 5a, b exemplarily show the pressure profiles of known inlet systems.
  • the negative pressure at the nozzle outlet can no longer be reduced, since the available cross section at the nozzle outlet is greatly reduced by the flow stall under the stopper. This creates high negative pressures at the nozzle outlet, which can no longer be compensated for by increasing the immersion depth of the nozzle (see FIG. 5a).
  • FIG. 4b shows a known inlet system that closes at the top.
  • the vacuum rises sharply with increasing level difference (see Figure 5b).
  • the consequence of this is that the metal column above the nozzle inlet in the channel and the associated static pressure are not sufficient to compensate for the negative pressure which arises at the nozzle inlet.
  • a stall occurs under the stopper, which reduces the available cross section. With a larger level difference, this stall can have an effect right up to the nozzle outlet, so that there an intensification of the vacuum occurs with the disadvantageous consequences mentioned at the beginning.
  • the pressure profiles used for the above considerations depend on the respective position of the measuring points.
  • the representations in FIGS. 5a, b are to be regarded as two-dimensional representations and therefore say nothing about the uniformity of the flow over the circumference of the inlet nozzle. As shown at the beginning, however, in the case of conventional inlet systems, irregularities can occur over the circumference of the inlet nozzle, resulting in speed peaks which in turn increase the negative pressure.
  • the volume flow can be metered in much more precisely and the occurrence of instabilities can be avoided.
  • the glass model showed that an optimized nozzle is also flowed through relatively evenly over the circumference.
  • the known inlet system tends to form turbulence. This is illustrated in FIG. 7 and is explained in more detail below.
  • the melt 4 arrives in the direction of the arrow through the channel 1 to the feed nozzle 2.
  • the negative pressure which arises at the nozzle inlet and outlet causes the melt surface to be dented by the air pressure, as a result of which the oxide layer can tear open and oxide or dirt particles can be sucked into the melt.
  • the non-deformable impurities are built into the solidification front. During the later rolling process, they come to the surface and lead to the tearing of the rolled strip or damage to the rolls.
  • a mechanical control of the mold casting system for aluminum ingots is shown schematically in FIG. Via a float 14, which is positioned on the metal surface of the ingot, the stopper 3 is moved up or down by means of a push rod 16 via a mechanical deflection 15.
  • the term "float” stands for a piece of refractory material that floats on the metal surface and reports the metal level using a lever.
  • the annular gap between the nozzle and the stopper is increased or decreased, depending on the direction in which the melt level deviates from the target value. The feed quantity of the molten metal is thus regulated by different plug heights.
  • the metal level in the mold 5 can fluctuate for various reasons. For example, the inclination of the melting furnace is not continuous, so that gushing occurs in the channel 1.
  • the metal level in the channel is also usually controlled with a float, so that two control systems are normally coupled to one another. This leads to a dynamic control behavior, which requires constant correction of the respective plug height during the casting phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Die Erfindung betrifft ein Einlaufsystem für Aluminiumstranggußanlagen, bestehend aus einer Rinne, einer in die Rinne (1) eingesetzten Zulaufdüse (2), in die ein Stopfen (3) zur Regulierung des Schmelzezulaufs (4) eingesetzt ist, wobei der Stopfen (3) am engsten Querschnitt der Zulaufdüse (2) den Schmelzezulauf verschließt, und gegebenenfalls einem Regelsystem, mit dem die Eintauchtiefe des Stopfens innerhalb vorgegebener Grenzen steuerbar ist. Vom engsten Querschnitt der Düse zum Düsenein- und Düsenaustritt soll ein Abstand A von mindestens 7 cm eingehalten werden, wobei am Düseneintritt der Raum zwischen Düse (2) und Stopfen (3) auf einer Länge B verengt und wobei von der Stopfenspitze S bis zum Düsenaustritt Y im Betriebszustand ein Mindestabstand von 2 cm verbleibt. <IMAGE>

Description

  • Die Erfindung betrifft Einlaufsysteme für Aluminiumstranggußanlagen, bestehend aus einer Rinne, einer in die Rinne eingesetzten Zulaufdüse, in die ein Stopfen zur Regulierung des Schmelzezulaufs eingesetzt ist und gegebenenfalls einem Regelsystem, mit dem die Eintauchtiefe des Stopfens innerhalb vorgegebener Grenzen steuerbar ist.
  • Die Regelung des Schmelzezulaufs mit Hilfe von Düse und Stopfen ist aus verschiedenen Veröffentlichungen bekannt. So ist beispielsweise von der Deutschen Gesellschaft für Metallkunde e.V. ein Symposium unter dem Titel "Stranggießen - Schmelzen - Gießen - Überwachen" veranstaltet worden, bei dem das Prinzip der Gießspiegelregelung nach dem Wirbelstromprinzip erläutert wurde. Bei den 1986 herausgegebenen Vortragstexten findet sich auf Seite 331 die Abbildung eines Regelsystems unter Verwendung von Düsen und Stopfen. Die Düse ist am Boden einer Rinne befestigt und ragt mit ihrem unteren Ende in die Kokille hinein.
  • Ändert sich unter bestimmten Voraussetzungen die Geschwindigkeit der Aluminiumschmelze in der Einlaufdüse, so verändert sich auch der statische Druck. Bei sehr hohen Geschwindigkeiten der Aluminiumschmelze werden bei den dann auftretenden Unterdrucken am Düseneintritt oder Düsenaustritt Oxyd- und Schmutzteilchen von der Metalloberfläche der Rinne oder des Barrens in die Schmelze eingesogen, was sich nachteilig bei der erzeugten Barrenqualität bemerkbar macht.
  • Aufgabe der Erfindung ist es daher, das Einlaufsystem bei Aluminiumstranggußanlagen derart zu optimieren, daß unter Beibehaltung der wesentlichen Installationen der Unterdruck am Düseneintritt und am Düsenaustritt minimiert wird und die Strömungsverhältnisse in der Zulaufdüse optimiert werden. Ein Verfahren zum Betrieb des Einlaufsystems soll die Wirbelbildung in der Schmelze herabsetzen, so daß sowohl an der Schmelzeoberfläche in der Rinne als auch an der Schmelzeoberfläche in der Kokille keine Wirbelbildungen auftreten.
  • Diese Aufgabe wird erfindungsgemäß durch die in den Ansprüchen angegebenen Merkmale gelöst. Es hat sich gezeigt, daß durch eine besondere Formgebung der Innenkontur der Düse sowie durch die Einhaltung bestimmter Eintauchtiefen in die oberhalb des Sumpfes sich ausbildende Schmelzzone das Mitreißen von Oxyd- und anderen Schmutzteilchen von der Metalloberfläche vermieden werden kann. Ferner muß für einen ausreichenden Metallstand in der Rinne gesorgt werden.lm ersten Schritt wird der am Düsenaustritt herrschende Unterdruck minimiert und dann die Eintauchtiefe so gemessen, daß eine Metallsäule von mindestens 2 cm den verbleibenden Unterdruck kompensiert.
  • Die erfindungsgemäße Düsenkontur sieht vor, daß in der Mitte der Zulaufdüse der engste Querschnitt vorliegt und damit die höchste Geschwindigkeit in der Mitte der Düse erzeugt wird. Durch die Düsenform werden Strömungsabrisse, die den durchströmten Querschnitt verringern könnten, vermieden. Die Düse wird somit gleichmäßig über den gesamten Querschnitt durchströmt, wodurch sich ein optimaler Volumenstrom einstellen läßt.
  • Bei den herkömmlichen Rinnenanordnungen ergeben sich am Einlaufsystem unterschiedliche Strömungsverhältnisse, je nachdem, welche Düsenseite von der in der Rinne fließenden Schmelze zuerst angeströmt wird. Unter bestimmmten Voraussetzungen führt dies bei herkömmlichen Einlaufsystemen zu einer ungleichmäßigen Verteilung der Flüssigkeitsströmung an der Düseninnenwand, mit der Folge, daß an bestimmten Düsenquerschnitten sehr große Strömungsgeschwindigkeiten und an anderen Stellen ein Strömungsschatten entsteht. Diese Zustände störten bisher die Gleichmäßigkeit der Strömung und wirkten sich auch auf die Einlauf- und Auslaufverhältnisse an der Zufuhrdüse aus.
  • Zusammenfassend lassen sich die erfindungsgemäßen Merkmale wie folgt darstellen:
    • 1. Ausbildung der Düse derart, daß am Düseneintritt und am Düsenaustritt nur geringe Unterdrucke entstehen.
    • 2. Ausbildung der Düsenkonfiguration derart, daß die Düse über den Querschnitt gleichmäßig durchströmt wird und die Strömung an keiner Stelle abreißt.
    • 3. Drosselung der Strömung im mittleren Bereich der Düse, sodaß die vorhandene Strömungsenergie vermindert wird und an den Ein-und Austrittsenden der Düse praktisch keine Turbulenz auftritt.
  • Im folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
    • Figur 1 Gesamtansicht eines erfindungsgemäßen Einlaufsystem
    • Figur 2 Erfindungsgemäße Zulaufdüse mit Stopfen im Querschnitt
    • Figur 3 Druckverlauf in einem erfindungusgemäßen Einlaufsystem (Wassermodell)
    • Figur 4 Düsen/Stopfensystem nach dem Stand der Technik
    • Figur 5 Druckverlauf bei einem herkömmlichen Einlaufsystem im Wassermodell
    • Figur 6 Schematische Darstellung einer elektronischen Gießspiegelregelung
    • Figur 7 Gesamtansicht eines Einlaufsystems nach dem Stand der Technik
    • Figur 8 Schematische Darstellung einer mechanischen Gießspiegelregelung
  • Nach Figur 1 besteht das Einlaufsystem aus einer in die Rinne 1 eingesetzten Zulaufdüse 2, in die ein Stopfen 3 zur Regulierung des Schmelzezulaufs 4 eingesetzt ist. Über die Gießdüse gelangt die Schmelze in die Kokille 5, wo sie zu einem Barren 6 geformt wird, der auf dem Angußstein 7 gehalten wird. Durch Absenken eines Gießtisches 8 mittels Absenkvorrichtung 9 wird der Barren 6 nach unten aus der Kokille 5 herausgezogen.
  • Die Formen von Düsen 2 und Stopfen 3 sind aus der Figur 2 zu entnehmen. Man erkennt, daß die Querschnitte X und Y am Düsenein- und Düsenaustritt im Verhältnis zu den übrigen Querschnitten der Einlaufdüse groß gewählt sind, damit dort geringe Strömungsgeschwindigkeiten auftreten.
  • Aus Figur 2 ist auch zu erkennen, wie der Stopfen 3 in die Düse 2 eintaucht. Der zwischen der Düse 2 und dem Stopfen 3 verbleibende Raum ist als Ringspalt C anzusehen und ist so ausgelegt, daß die Strömung den gesamten Querschnitt gleichmäßig ausfüllt. Von der Einlaufseite X aus gesehen verjüngt sich der Ringspalt C, sodaß sich im strömenden Metall ein Staudruck aufbaut, der einer Verringerung des statischen Drucks in der Schmelze entgegenwirkt.
  • Im fast parallelen Teil des Ringspaltes C wird die für die Drosselung nötige Reibung erzeugt. Der Ringspalt C erweitert sich sodann geringfügig zum Stopfen 3 hin, sodaß sich die Strömung hier besser an den Stopfen 3 anlegt. Bei abnehmendem Querschnitt tritt durch die sich verjüngende Düse 2 eine Vergleichmäßigung der Strömung über den Querschnitt auf.
  • Hinter der engsten Stelle, etwa in der Düsenmitte, erweitert sich der Querschnitt, sodaß die Strömung ohne Abriß wieder abgebremst wird. Um auch an dem Stopfen 2 einen Strömungsabriß zu vermeiden, ist dieser an der Spitze zu einem Radius von im Beispiel 11,5 mm ausgezogen.
  • Zur Überprüfung der tatsächlichen Strömungsverhältnisse in der erfindungsgemäßen Düse wurde ein Wassermodell des bei der Herstellung eines Walzbarrens herrschenden Zustandes geschaffen. In diesem Wassermodell konnten die Verhältnisse in der Rinne, in der Düse und im Walzbarren, bei verschiedenen Düsen-Stopfen-Systemen simuliert werden. Mit diesem Wassermodell wurden die Druckverläufe im optimierten Einlaufsystem untersucht. Das Ergebnis ist in Figur 3 dargestellt.
  • Man erkennt, daß am Düseneintritt (Düsenlänge = 0) ein positiver oder nur leicht negativer Druck herrscht. In der Düsenmitte werden durch die hohen Strömungsgeschwindigkeiten sehr hohe Unterdrucke erreicht. Am engsten Querschnitt werden hohe Unterdrucke gemessen, die zeigen, daß die Strömung nicht abreißt, sondern an den Wandungen anliegt. Danach erfolgt innerhalb kürzester Zeit ein Abbau der sehr hohen Unterdrucke, sodaß am Düsenaustritt bei etwa 17 cm Düsenlänge nur noch sehr geringe Unterdrucke verbleiben.
  • Die Druckverhältnisse werden auch durch einen vergrößerten Niveauunterschied - im Beispiel 26 cm und 34 cm - kaum verändert. Die dicht beieinander liegenden Kurven für verschiedene Niveauunterschiede zeigen, daß die Strömungszustände sehr stabil sind und auch bei hohen Unterdrucken die Strömung in der Düse nicht abreißt. Daraus folgt, daß der zur Verfügung stehende Querschnitt relativ gleichmäßig durchströmt wird und dabei keine Geschwindigkeitsspitzen auftreten.
  • In den Figuren 6a, b und 5a, b sind die Druckverläufe bekannter Einlaufsysteme exemplarisch dargestellt. Bei einem nach unten schließenden Einlaufsystem gemäß Figur 4a kann der Unterdruck am Düsenaustritt nicht mehr abgebaut werden, da der verfügbare Querschnitt am Düsenaustritt durch den Strömungsabriß unter dem Stopfen sehr stark verkleinert wird. Somit entstehen hohe Unterdrucke am Düsenaustritt, die nicht mehr durch eine Vergrößerung der Eintauchtiefe der Düse kompensiert werden können (siehe Figur 5a).
  • In Figur 4b ist ein bekanntes nach oben schließendes Einlaufsystem dargestellt. Hier steigt der Unterdruck bei zunehmendem Niveauunterschied stark an (siehe Figur 5b). Dies hat zur Folge, daß die über dem Düseneintritt in der Rinne stehende Metallsäule und der damit verbundene statische Druck nicht ausreicht, um den am Düseneintritt entstehenden Unterdruck zu kompensieren. Ferner entsteht unter dem Stopfen ein Strömungsabriß, der den zur Verfügung stehenden Querschnitt vermindert. Bei größerem Niveauunterschied kann sich dieser Strömungsabriß bis zum Düsenaustritt hin auswirken, sodaß dort eine Verstärkung des Unterdruckes mit den eingangs genannten nachteiligen Folgen auftritt.
  • Die zu den vorstehenden Betrachtungen herangezogenen Druckverläufe sind von der jeweiligen Lage der Meßpunkte abhängig. Die Darstellungen in Figur 5a, b sind als zweidimensionale Darstellungen anzusehen und sagen daher nichts über die Gleichmäßigkeit der Strömung über den Umfang der Einlaufdüse aus. Wie eingangs dargestellt, können aber bei üblichen Einlaufsystemen Ungleichmäßigkeiten über den Umfang der Zulaufdüse auftreten, wodurch Geschwindigkeitsspitzen entstehen, die wiederum den Unterdruck erhöhen.
  • Hinzu kommt, daß in der Praxis häufig schief stehende oder krumme Stopfen die Strömungsverhältnisse noch weiter beeinflussen, in der Weise, daß die Inhomogenitäten vergrößert werden. Bei den bekannten Systemen kommt es vor, daß nur eine Häfte des Düsenumfanges durchströmt wird. Somit ergeben sich auch Probleme bei der Regulierung des Volumenstroms, die sich insbesondere bei einer automatischen Niveauregelung nachteilig bemerkbar machen.
  • Bei der erfindungsgemäßen Veränderung der Querschnitte kann der Volumenstrom sehr viel genauer dosiert und das Auftreten von Instabilitäten vermieden werden. Es zeigte sich am Glasmodell, daß eine optimierte Düse auch über den Umfang relativ gleichmäßig durchströmt wird.
  • Im Gegensatz dazu neigt das bekannte Einlaufsystem zur Turbulenzbildung. Dies ist anhand der Figur 7 dargestellt und wird im folgenden näher erläutert. Die Schmelze 4 gelangt in Pfeilrichtung durch die Rinne 1 zur Zulaufdüse 2. Durch die an Düsenein- und austritt entstehenden Unterdrucke wird die Schmelzeoberfläche vom Luftdruck eingedellt, wodurch die Oxydschicht aufreißen kann und Oxyd- oder Schmutzteilchen in die Schmelze gesogen werden können. Die nicht verformbaren Verunreinigungen werden in die Erstarrungsfront eingebaut. Beim späteren Walzprozeß gelangen sie an die Oberfläche und führen zum Aufreißen des Walzbandes oder zu Beschädigungen der Walzen.
  • In Figur 8 ist eine mechanische Regelung des Kokillengießsystems für Aluminiumwalzbarren schematisch dargestellt. Über einen Schwimmer 14, der auf der Metalloberfläche des Barrens positioniert ist, wird über eine mechanische Umlenkung 15 der Stopfen 3 mittels einer Druckstange 16 nach oben oder unten bewegt. Der Begriff "Schwimmer" steht dabei für ein Stück Feuerfestmaterial, das auf der Metalloberfläche schwimmt und über einen Hebel den Metallstand meldet. Im vorliegenden Fall wird damit der Ringspalt zwischen Düse und Stopfen vergrößert oder verkleinert, je nachdem in welche Richtung das Schmelzeniveau vom Sollwert abweicht. Die Zulaufmenge der Metallschmelze wird somit durch unterschiedliche Stopfenhöhen geregelt.
  • Andere Methoden bestehen in der Laserabtastung des Metallstandes in der Kokille. Das entstehende Signal wird hier auf elektronischem Wege verarbeitet und zu einer Stellgröße für den Stopfen 3 umgebildet (siehe Figur 6).
  • Der Metallstand in der Kokille 5 kann aus verschiedenen Gründen schwanken. Beispielsweise erfolgt die Neigung des Schmelzeofens nicht kontinuierlich, sodaß eine Schwallbildung in der Rinne 1 auftritt. Auch der Metallstand in der Rinne wird üblicherweise mit einem Schwimmer geregelt, sodaß im Normalfall zwei Regelsysteme miteinander gekoppelt sind. Dies führt zu einem dynamischen Regelverhalten, das während der Gießphase einer ständigen Korrektur der jeweiligen Stopfenhöhe bedarf.
  • Schwankungen des Metallstands verändern die thermischen Bedingungen, was zu einer ungünstigen Ausbildung der Barrenoberfläche führt. Die Dicke der Randschale, die vor dem Walzen vollständig abgefräst werden muß, vergrößert sich.

Claims (7)

1. Einlaufsystem für Aluminiumstranggußanlagen, bestehend aus einer Rinne, einer in die Rinne (1) eingesetzten Zulaufdüse (2), in die ein Stopfen (3) zur Regulierung des Schmelzezulaufs (4) eingesetzt ist, wobei der Stopfen (3) am engsten Querschnitt der Zulaufdüse (2) den Schmelzezulauf verschließt,
und gegebenenfalls einem Regelsystem, mit dem die Eintauchtiefe des Stopfens innerhalb vorgegebener Grenzen steuerbar ist, dadurch gekennzeichnet,
daß vom engsten Querschnitt der Düse zum Düsenein- und Düsenaustritt ein Abstand A von mindestens 7 cm eingehalten ist, daß am Düseneintritt der Raum zwischen Düse (2) und Stopfen (3) auf einer Länge B verengt wird, die zwischen 0 bis 10 cm liegt.
2. Einlaufsystem nach Anspruch 1,
dadurch gekennzeichnet,
daß die Verengung über eine Länge von 1 - 10 cm erfolgt.
3. Einlaufsystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß sich oberhalb des engsten Düsenquerschnittes zwischen Düse (2) und Stopfen (3) ein sich verengender Ringraum D ausbildet, während unterhalb des engsten Düsenquerschnittes der Raum zwischen Düse (2) und Stopfen (3) mit einem Öffnungswinkel von mindestens 4 erweitert wird, wobei die Stopfenspitze S mit einem Radius von 10 - 14 mm abgerundet ist.
4. Einlaufsystem nach einem der vorhergehenden
Ansprüche,
dadurch gekennzeichnet, daß die Kanten am Ein- und Auslauf mit einem Radius von 5 - 25 mm gerundet sind.
5. Einlaufsystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Ringraum D von einem Ringspalt zwischen Düse (2) und Stopfen (3) gebildet wird, wobei die den Ringspalt bildenden Seitenwände nahezu parallel verlaufen.
6. Einlaufsystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die nahezu parallel verlaufenden Seitenwände des Ringraumes D sich mit einer Winkeldifferenz von ca. 1 ° in Strömungsrichtung verengen.
7. Einlaufsystem nach einem der vorhergehenden
Ansprüche,
dadurch gekennzeichnet,
daß ein Metallstand H in der Rinne (1) von mindestens 5 cm über dem Düseneintritt X und eine Eintauchtiefe T der Düse (2) von mindestens 2 cm vorgesehen ist.
EP94108061A 1993-07-05 1994-05-26 Einlaufsystem für eine Aluminiumstranggussanlage Expired - Lifetime EP0637477B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4322316A DE4322316C1 (de) 1993-07-05 1993-07-05 Einlaufsystem für eine Aluminiumstranggußanlage
DE4322316 1993-07-05

Publications (3)

Publication Number Publication Date
EP0637477A2 true EP0637477A2 (de) 1995-02-08
EP0637477A3 EP0637477A3 (de) 1996-04-03
EP0637477B1 EP0637477B1 (de) 1999-03-24

Family

ID=6491984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94108061A Expired - Lifetime EP0637477B1 (de) 1993-07-05 1994-05-26 Einlaufsystem für eine Aluminiumstranggussanlage

Country Status (16)

Country Link
US (1) US5490554A (de)
EP (1) EP0637477B1 (de)
KR (1) KR970005376B1 (de)
AU (1) AU674749B2 (de)
BR (1) BR9402624A (de)
CA (1) CA2127321C (de)
CZ (1) CZ285017B6 (de)
DE (2) DE4322316C1 (de)
ES (1) ES2133443T3 (de)
HU (1) HU216124B (de)
NO (1) NO300034B1 (de)
PL (1) PL177723B1 (de)
RU (1) RU2091193C1 (de)
SK (1) SK78394A3 (de)
TW (1) TW289002B (de)
YU (1) YU41294A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726113A1 (de) * 1995-02-08 1996-08-14 VAW Aluminium AG Einlaufsystem für eine Aluminiumstranggussanlage

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706151C2 (de) * 1997-02-18 2000-12-07 Sms Demag Ag Verfahren und Tauchrohr zum Metallstranggießen
KR100330352B1 (ko) * 1999-07-02 2002-04-01 유현식 내충격성이 우수한 신디오탁틱 폴리스티렌 수지 조성물
NL1014024C2 (nl) * 2000-01-06 2001-07-09 Corus Technology Bv Inrichting en werkwijze voor het continu of semi-continu gieten van aluminium.
US7270711B2 (en) * 2004-06-07 2007-09-18 Kastalon, Inc. Nozzle for use in rotational casting apparatus
US7041171B2 (en) * 2003-09-10 2006-05-09 Kastalon, Inc. Nozzle for use in rotational casting apparatus
US6989061B2 (en) * 2003-08-22 2006-01-24 Kastalon, Inc. Nozzle for use in rotational casting apparatus
JP5621737B2 (ja) * 2011-09-15 2014-11-12 新日鐵住金株式会社 連続鋳造における流量調整方法
CA2896729C (en) 2013-03-12 2017-10-17 Novelis Inc. Intermittent molten metal delivery
WO2017048523A1 (en) * 2015-09-15 2017-03-23 Retech Systems Llc Laser sensor for melt control of hearth furnaces and the like
HUE062146T2 (hu) 2017-11-15 2023-09-28 Novelis Inc Fémszinttõl való elmaradás vagy e szint túllépésének mérséklése az áramlási igény átmeneténél

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB917565A (en) * 1960-05-13 1963-02-06 Didier Werke Ag Improvements relating to pouring nozzles for liquid metal
DE2000963A1 (de) * 1970-01-10 1971-07-22 Kreidler S Metall U Drahtwerke Verfahren und Einrichtung zum automatischen schrittweisen Regeln des Schmelzenausflusses aus einer Stopfenpfanne od.dgl. zur Speisung einer Stranggiesskokille
EP0370934A1 (de) * 1988-11-23 1990-05-30 Institut De Recherches De La Siderurgie Francaise (Irsid) Verfahren und Einrichtung zum Versorgen einer Kokille mit geschmolzenem Metall in einer Stranggiesseinrichtung für dünne Vorblöcke

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523624A (en) * 1981-10-22 1985-06-18 International Telephone And Telegraph Corporation Cast ingot position control process and apparatus
US5205343A (en) * 1989-06-03 1993-04-27 Sms Schloemann-Siemag Aktiengesellschaft Pouring tube for feeding molten steel into a continuous casting mold
US5339885A (en) * 1993-05-07 1994-08-23 Wagstaff Inc. Integrated non-contact molten metal level sensor and controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB917565A (en) * 1960-05-13 1963-02-06 Didier Werke Ag Improvements relating to pouring nozzles for liquid metal
DE2000963A1 (de) * 1970-01-10 1971-07-22 Kreidler S Metall U Drahtwerke Verfahren und Einrichtung zum automatischen schrittweisen Regeln des Schmelzenausflusses aus einer Stopfenpfanne od.dgl. zur Speisung einer Stranggiesskokille
EP0370934A1 (de) * 1988-11-23 1990-05-30 Institut De Recherches De La Siderurgie Francaise (Irsid) Verfahren und Einrichtung zum Versorgen einer Kokille mit geschmolzenem Metall in einer Stranggiesseinrichtung für dünne Vorblöcke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726113A1 (de) * 1995-02-08 1996-08-14 VAW Aluminium AG Einlaufsystem für eine Aluminiumstranggussanlage

Also Published As

Publication number Publication date
PL303861A1 (en) 1995-01-09
NO300034B1 (no) 1997-03-24
CA2127321C (en) 1999-05-11
US5490554A (en) 1996-02-13
TW289002B (de) 1996-10-21
AU6613294A (en) 1995-01-12
PL177723B1 (pl) 2000-01-31
RU2091193C1 (ru) 1997-09-27
NO941868D0 (no) 1994-05-19
CZ160694A3 (en) 1997-05-14
DE59407993D1 (de) 1999-04-29
EP0637477B1 (de) 1999-03-24
HU216124B (hu) 1999-04-28
EP0637477A3 (de) 1996-04-03
KR950002888A (ko) 1995-02-16
CZ285017B6 (cs) 1999-05-12
NO941868L (no) 1995-01-06
CA2127321A1 (en) 1995-01-06
DE4322316C1 (de) 1995-03-16
HU9401732D0 (en) 1994-09-28
KR970005376B1 (ko) 1997-04-15
RU94024564A (ru) 1996-04-20
HUT67850A (en) 1995-05-29
YU41294A (sh) 1996-10-09
ES2133443T3 (es) 1999-09-16
SK78394A3 (en) 1995-09-13
BR9402624A (pt) 1995-04-04
AU674749B2 (en) 1997-01-09

Similar Documents

Publication Publication Date Title
AT394817B (de) Verfahren zum erweitern der formhohlraumbreite einer verstellbaren plattenkokille in einer stranggiessanlage
DE4322316C1 (de) Einlaufsystem für eine Aluminiumstranggußanlage
DE2631015C3 (de) Automatische MetallschmelzengieSanlage
EP0907103B1 (de) Verfahren und Apparatur zur Vorhangbeschichtung eines bewegten Trägers
AT519390B1 (de) Verfahren und Vorrichtung zum Regeln einer Stranggießanlage
EP0534174A1 (de) Verfahren und Vorrichtung zur Herstellung eines endabmessungsnahen Metallbandes
EP2376243B1 (de) Vorrichtung zur detektion des durchflusses und verfahren hierfür
EP0694359A1 (de) Tauchgiessrohr
EP0726113B1 (de) Einlaufsystem für eine Aluminiumstranggussanlage
EP0560024B1 (de) Verfahren zum Stranggiessen von Metallen
EP0906789A1 (de) Verfahren und Vorrichtung zur Vorhangbeschichtung eines bewegten Trägers
DE3537508A1 (de) Duesenverteilerkopf zur erzeugung einer flachen laminaren stroemung
EP0558739B1 (de) Verfahren und vorrichtung zur herstellung dünner schichten aus flüssigkeiten als beschichtung oder folie
EP1678333B1 (de) Abstichrohr
EP0920936B1 (de) Kokille zum Stranggiessen
DE4132189C1 (en) Metal strip prodn. - by feeding molten metal from tundish via casting nozzle onto cooled conveyor belt
DE19606291C5 (de) Kokillenrohr
WO2009068232A1 (de) Verfahren und vorrichtung zum vergleichmässigen des erstarrungsvorganges eines insbesondere beim strang- oder bandgiessen erzeugten schmelzflüssigen metalles
AT408854B (de) Verfahren und einrichtung zum giessen eines stranges aus flüssigem metall
AT373515B (de) Verfahren zum erzeugen von brammen mit verbesserter oberflaechenqualitaet sowie einrichtung zur durchfuehrung des verfahrens
DE3915619A1 (de) Verfahren zum erzielen einer temperatur einer metallschmelze
DE4410511A1 (de) Verfahren und Vorrichtung zum endabmessungsnahen Vergießen von Schmelzen
DE10130354C1 (de) Tauchrohr und Verfahren zum optimierten Vergießen einer Stahlschmelze in einer Kokille
WO2001087518A1 (de) VERFAHREN UND ANLAGE ZUM STRANGGIEssEN VON BRAMMEN, INSBESONDERE VON DÜNNBRAMMEN MIT VERGLEICHSWEISE HOHEN GIEssGESCHWINDIGKEITEN
DE1596421C (de) Verfahren zur Herstellung von Flach glas nach dem Floatprozeß 4nm Erste Deutsche Floatglas GmbH &amp; Co oHG, 5050 Porz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB GR IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE ES FR GB GR IT LI

17P Request for examination filed

Effective date: 19960304

17Q First examination report despatched

Effective date: 19980227

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB GR IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19990324

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59407993

Country of ref document: DE

Date of ref document: 19990429

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: URS WEGMANN DIPL.-ING.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2133443

Country of ref document: ES

Kind code of ref document: T3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990324

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050524

Year of fee payment: 12

Ref country code: CH

Payment date: 20050524

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050531

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050609

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050629

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060527

BERE Be: lapsed

Owner name: *VAW ALUMINIUM A.G.

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531