EP0635075A1 - Method of coating substrates - Google Patents

Method of coating substrates

Info

Publication number
EP0635075A1
EP0635075A1 EP92921083A EP92921083A EP0635075A1 EP 0635075 A1 EP0635075 A1 EP 0635075A1 EP 92921083 A EP92921083 A EP 92921083A EP 92921083 A EP92921083 A EP 92921083A EP 0635075 A1 EP0635075 A1 EP 0635075A1
Authority
EP
European Patent Office
Prior art keywords
gases
gas
compounds
reaction
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP92921083A
Other languages
German (de)
French (fr)
Inventor
Holger JÜRGENSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of EP0635075A1 publication Critical patent/EP0635075A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Definitions

  • the invention relates to a method for coating substrates with a CVD process according to the preamble of claim 1, that is to a method for coating substrates by means of gas phase deposition, and to the use of such a method and a device to carry out the procedure.
  • WO 89/00335 describes a special MOCVD process for the production of III-V semiconductors, in which the elements of the 5th main group are used in particular as Hydrogen compounds and the elements of the 3rd main group are supplied as chlorine compounds formed in the reactor.
  • HC1 is introduced, from which the metal-chlorine compound is formed with the formation of hydrogen molecules.
  • a carrier gas is also used;
  • WO 89/00335 proposes as carrier gases, in addition to the hydrogen (H2) nitrogen (N2) or noble gases most commonly used in CVD processes, such as argon, helium or xenon.
  • reaction gases ie gases which contain the elements required for the coating and react during the coating process with the elimination of this element, are almost exclusively toxic, pyrophoric or explosive gases such as hydride (SiH4, AsH3 , PH3, SbH3, H2S, H2Se and others) or organometallic compounds.
  • the invention is based on the object of specifying a method for coating substrates using a CVD process using at least one reaction gas which is passed over the substrate to be coated by means of at least one carrier gas, in which the use of flammable, explosive and / or toxic compounds can be dispensed with, and in which no such compounds arise during the course of the process.
  • the solution according to the invention consists in that on the one hand an inert gas or a mixture of inert gases is used as the carrier gas, and on the other hand that only gases are used as reaction gases which consist of non-toxic and / or non-flammable compounds and which also form non-toxic or non-flammable compounds after the reaction.
  • the invention is therefore based on the idea of eliminating the hydrogen generally used up to now in CVD processes and, moreover, toxic gases such as hydrides and dangerous organometallic compounds or flammable or even explosive compounds and adding them by non-hazardous gases replace.
  • the method according to the invention thus has the advantage that it makes the security systems necessary in previous CVD methods superfluous.
  • the installation costs can thus be considerably reduced and the most diverse layer materials can thus be produced much more cost-effectively.
  • the system costs can be further reduced if the device constructed in a manner known per se has a gas cleaning unit for the carrier gas.
  • the carrier gas and optionally the reaction gases can thus be reused at least in part.
  • the requirements for the tightness of the device, including the reactor are lower, since the presence of air or atmospheric oxygen is no longer necessarily harmful due to the low level of leakage.
  • the inert carrier gases (claim 3).
  • the reaction gases which can be used are, for example, metallo-magnetic compounds and in particular the metallurgical compounds described in DE 36 31 469 AI or DE 37 26 485 AI. ganic compounds are used (claims 4 to 6).
  • ganic compounds are used (claims 4 to 6).
  • Nitrogen is particularly suitable as a carrier gas because it is the cheapest gas. Above all, however, the layer quality can be positively influenced by the use of nitrogen of appropriate purity and in particular of the quality 7.0 or 8.0.
  • the method according to the invention allows the production of a wide variety of layer materials which have amorphous, polycrystalline or monocrystalline structures.
  • ceramic or semiconducting layer materials and materials with special optical properties are produced, it being possible without further ado to apply the material layers to basic substrates adapted to the respective application, which lead to the respective electronic, chemical, optical or mechanical properties.
  • reaction gases consist not only of non-toxic and / or non-flammable compounds - preferably compounds with both properties - but also of non-explosive compounds.
  • the compounds used instead of the mostly used hydrides and organometallic compounds with high explosiveness or toxicity preferably have a vapor pressure and a thermal decomposition behavior which makes them suitable for use in corresponding coating processes without special measures.
  • non-explosive carrier gas only the combination of a non-explosive carrier gas and the use of non-pyrophoric element carriers or reaction gases makes the coating process considerably safer than conventional methods.
  • the requirements for the safety systems can be drastically reduced due to the elimination of the explosive hydrogen.
  • the requirements for safety systems and also for the device itself can be additionally reduced due to the absence of toxicity of the compounds in connection with the use of non-explosive gases.
  • Another advantage of the combination of non-explosive carrier gas and non-pyrophoric compounds is that the use of nitrogen of appropriate purity (quality 7.0 or 8.0) not only does not negatively, but even positively influences the layer qualities.
  • the invention therefore makes it possible to considerably reduce the costs for the process equipment with regard to safety, leak tightness and monitoring devices, to use other materials and components for the production of the systems, to carry out the processes in generally accessible laboratories or operating facilities, the outlay of personnel training and safety training and to enable the production of expensive materials (for example compound semiconductors, such as GaAs and other III-V or II-VI compounds etc.) in a substantially more cost-effective manner.
  • expensive materials for example compound semiconductors, such as GaAs and other III-V or II-VI compounds etc.

Abstract

Described is a method of coating substrates by means of a chemical vapour deposition process using at least one reagent gas which is passed over the substrate in at least one carrier gas. The method is characterized by the combination of the following elements: the carrier gas is an inert gas or a mixture of inert gases; the reagent gas or gases consist of compounds which are non-toxic and/or present no fire risk and which, after the reaction, form no compounds which are toxic or present a fire risk.

Description

Verfahren zum Beschichten von Substraten Process for coating substrates
B e s c h r e i b u n gDescription
Technisches GebietTechnical field
Die Erfindung bezieht sich auf ein Verfahren zum Be¬ schichten von Substraten mit einem CVD-Prozeß gemäß dem Oberbegriff des Patentanspruchs 1, also auf ein Verfah¬ ren zum Beschichten von Substraten mittels Gasphasen- Abscheidung, sowie auf die Verwendung eines derartigen Verfahrens und eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for coating substrates with a CVD process according to the preamble of claim 1, that is to a method for coating substrates by means of gas phase deposition, and to the use of such a method and a device to carry out the procedure.
Stand der TechnikState of the art
Es ist allgemein bekannt, die verschiedensten Materia¬ lien, beispielsweise Metalle, Keramiken, Halbleiter¬ substrate bzw -wafer und insbesondere III-V- oder II- VI-Halbleitersubstrate, sowie oxydische Substrate mit¬ tels Gasphasen-Abscheidung, d.h. mittels eines CVD- Prozesses zu beschichten. Dabei können sowohl amorphe als auch polykristalline und monokristalline Schichten hergestellt werden. Nur exemplarisch wird hierzu auf die WO 89/00335 sowie die in dieser Druckschrift ge¬ nannte Literatur verwiesen; auf diese Druckschriften wird im übrigen zur Erläuterung aller hier nicht näher erläuterten Einzelheiten und die apparative Ausbildung ausdrücklich verwiesen.It is generally known that a wide variety of materials, for example metals, ceramics, semiconductor substrates or wafers and in particular III-V or II-VI semiconductor substrates, as well as oxidic substrates by means of gas phase deposition, i.e. to be coated using a CVD process. Both amorphous and polycrystalline and monocrystalline layers can be produced. Reference is made to WO 89/00335 and the literature cited in this publication only by way of example; reference is expressly made to these publications for the explanation of all details not explained here and the apparatus training.
In der WO 89/00335 ist ein spezielles MOCVD-Verfahren zur Herstellung von III-V-Halbleitern beschrieben, bei dem die Elemente der V. Hauptgruppe insbesondere als WasserstoffVerbindungen und die Elemente der III.Haupt¬ gruppe als im Reaktor gebildete Chlor-Verbindungen zugeführt werden. Hierzu wird HC1 als eingeleitet, aus dem unter Bildung von Wasserstoff-Molekülen die Metall- Chlor-Verbindung gebildet wird. Weiterhin wird ein Trägergas verwendet; als Trägergase werden in der WO 89/00335 neben dem bei CVD-Prozessen am häufigsten verwendeten Wasserstoff (H2 ) Stickstoff (N2 ) oder Edel¬ gase, wie Argon, Helium oder Xenon vorgeschlagen.WO 89/00335 describes a special MOCVD process for the production of III-V semiconductors, in which the elements of the 5th main group are used in particular as Hydrogen compounds and the elements of the 3rd main group are supplied as chlorine compounds formed in the reactor. For this purpose, HC1 is introduced, from which the metal-chlorine compound is formed with the formation of hydrogen molecules. A carrier gas is also used; WO 89/00335 proposes as carrier gases, in addition to the hydrogen (H2) nitrogen (N2) or noble gases most commonly used in CVD processes, such as argon, helium or xenon.
Das in der WO 89/00335 beschriebene MOCVD-Verfahren hat jedoch den Nachteil, daß trotz der alternativ vorge¬ schlagenen Verwendung von N2 oder von Edelgasen als Trägergas die eingesetzten Metallverbindungen bzw. die während des Verfahrens gebildeten Gase giftig und/oder zumindest feuergefährlich, wenn nicht sogar explosiv sind. Damit ist es beim Betrieb eines mit diesem Ver¬ fahren betriebenen MOCVD-Reaktors erforderlich, einen vergleichsweise hohen Sicherheitsstandard einzuhalten, der die Vorrichtung aufwendig und damit teuer sowie den Betrieb umständlich macht. Darüberhinaus ist besonders auf die Dichtigkeit der Vorrichtung zu achten.The MOCVD process described in WO 89/00335, however, has the disadvantage that, despite the alternative use of N2 or noble gases as the carrier gas, the metal compounds used or the gases formed during the process are toxic and / or at least flammable, if are not even explosive. Thus, when operating a MOCVD reactor operated with this method, it is necessary to maintain a comparatively high safety standard, which makes the device complex and thus expensive and makes operation cumbersome. In addition, special attention must be paid to the tightness of the device.
Auch die anderen derzeit industriell angewandten CVD- Verfahren arbeiten im Gegensatz zu thermischen Auf¬ dampfverfahren mit explosiven und/oder toxischen Trä¬ gergasen bzw. Reaktionsgasen resp. Reaktionsprodukten, so daß zum sicheren Betrieb entsprechender Vorrichtun¬ gen geeignete SchutzVorkehrungen und überwachungsein- richtungen im Prozeßequipment und den übergeordneten Einrichtungen erforderlich sind:In contrast to thermal evaporation processes, the other CVD processes currently used industrially also work with explosive and / or toxic carrier gases or reaction gases or. Reaction products, so that suitable protective measures and monitoring devices in the process equipment and the higher-level devices are required for the safe operation of appropriate devices:
Dabei ist insbesondere zu berücksichtigen, daß - im Gegensatz zu den in der Patentliteratur beschriebenen Verfahren - in der Praxis aus Kostengründen zumeist Wasserstoff als Träger- und Transportgas in den Reakto¬ ren im Überschuß verwendet wird. Als Reaktionsgase, d.h. Gase, die die jeweiligen für die Beschichtung erforderlichen Elemente enthalten und während des Be- schichtungspro-zesses unter Abspaltung dieses Elementes reagieren, werden in der Praxis fast ausschließlich toxische, pyrophore oder explosive Gase wie z.B. Hydri¬ de (SiH4, AsH3 , PH3 , SbH3 , H2S, H2Se und andere) oder metallorganische Verbindungen verwendet.It should be noted in particular that - in contrast to those described in the patent literature Process - in practice, for reasons of cost, hydrogen is used in excess as a carrier and transport gas in the reactors. In practice, the reaction gases, ie gases which contain the elements required for the coating and react during the coating process with the elimination of this element, are almost exclusively toxic, pyrophoric or explosive gases such as hydride (SiH4, AsH3 , PH3, SbH3, H2S, H2Se and others) or organometallic compounds.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Beschichten von Substraten mit einem CVD-Prozeß unter Verwendung wenigstens eines Reaktionsgases, das mittels wenigstens eines Trägergases über das zu be¬ schichtende Substrat geleitet wird, anzugeben, bei dem auf den Einsatz von feuergefählichen, explosiven und/ oder toxischen Verbindungen verzichtet werden kann, und bei dem auch keine derartige Verbindungen während der Verfahrensführung entstehen.The invention is based on the object of specifying a method for coating substrates using a CVD process using at least one reaction gas which is passed over the substrate to be coated by means of at least one carrier gas, in which the use of flammable, explosive and / or toxic compounds can be dispensed with, and in which no such compounds arise during the course of the process.
Eine erfindungsgemäße Lösung dieser Aufgabe ist im Anspruch 1 angegeben. Weiterbildungen der Erfindung sind Gegenstand der ünteransprüche.An inventive solution to this problem is specified in claim 1. Developments of the invention are the subject of the dependent claims.
Die erfindungsgemäße Lösung besteht darin, daß zum einen ein inertes Gases oder ein Gemisch inerter Gase als Trägergas verwendet wird, und zum anderen, daß als Reaktionsgase ausschließlich Gase eingesetzt werden, die aus nicht-toxischen und/oder nicht-feuergefährli¬ chen Verbindungen bestehen und die nach der Reaktion ebenfalls nicht-toxische bzw. nicht-feuergefährliche Verbindungen bilden. Der Erfindung liegt also die Idee zugrunde, den allge¬ mein in CVD-Verfahren bisher verwendeten Wasserstoff und darüber hinaus toxische Gase wie Hydride und ge¬ fährliche metallorganische Verbindungen bzw. feuerge¬ fährliche oder sogar explosive Verbindungen zu elimi¬ nieren und durch ungefährlich Gase zu ersetzen.The solution according to the invention consists in that on the one hand an inert gas or a mixture of inert gases is used as the carrier gas, and on the other hand that only gases are used as reaction gases which consist of non-toxic and / or non-flammable compounds and which also form non-toxic or non-flammable compounds after the reaction. The invention is therefore based on the idea of eliminating the hydrogen generally used up to now in CVD processes and, moreover, toxic gases such as hydrides and dangerous organometallic compounds or flammable or even explosive compounds and adding them by non-hazardous gases replace.
Das erfindungsgemäße Verfahren hat damit den Vorteil, daß es die bei bisherigen CVD-Verfahren notwendigen Sicherheitssysteme überflüssig macht. Damit können durch die erfindungsgemäß vorgeschlagenen Kombination von bestimmten Reaktionsgasen und Trägergasen die Anla¬ gekosten erheblich reduziert und somit die verschieden¬ sten Schichtmaterialien wesentlich kostengünstiger hergestellt werden. Dabei können die Anlagekosten wei¬ ter reduziert werden, wenn die in an sich bekannter Weise aufgebaute Vorrichtung eine Gasreinigungseinheit für das Trägergas aufweist. Damit können das Trägergas und gegebenenfalls die Reaktionsgase zumindest teilwei¬ se wiederverwendet werden. Darüberhinaus entfallen kostspielige Systeme für die Entsorgung von "Gasgemi¬ schen". Letzlich sind die Anforderungen an die Dich¬ tigkeit der Vorrichtung einschließlich des Reaktors geringer, da die Anwesenheit von Luft oder Luftsauer¬ stoff aufgrund geringer Lecks nicht mehr unbedingt schädlich ist.The method according to the invention thus has the advantage that it makes the security systems necessary in previous CVD methods superfluous. With the combination of certain reaction gases and carrier gases proposed according to the invention, the installation costs can thus be considerably reduced and the most diverse layer materials can thus be produced much more cost-effectively. The system costs can be further reduced if the device constructed in a manner known per se has a gas cleaning unit for the carrier gas. The carrier gas and optionally the reaction gases can thus be reused at least in part. In addition, there are no expensive systems for the disposal of "gas mixtures". Ultimately, the requirements for the tightness of the device, including the reactor, are lower, since the presence of air or atmospheric oxygen is no longer necessarily harmful due to the low level of leakage.
Erfindungsgemäß ist es dabei besonders bevorzugt, wenn als inerte Trägergase Stickstoff oder ein Edelgas, wie Argon oder ein Gemisch derartiger Gase (Anspruch 3). Als Reaktionsgase können beispielsweise metalloigani¬ sche Verbindungen und insbesondere die in der DE 36 31 469 AI oder der DE 37 26 485 AI beschriebenen metallor- ganischen Verbindungen verwendet werden (Ansprüche 4 bis 6). Neben den dort aufgeführten Verbindungen können jedoch alle Verbindungen verwendet werden, die das entsprechende chemische Element enthalten, einen in der Praxis brauchbaren Dampfdruck sowie ein entsprechendes thermisches Zerlegungsverhalten aufweisen.According to the invention, it is particularly preferred if nitrogen or a noble gas such as argon or a mixture of such gases is used as the inert carrier gases (claim 3). The reaction gases which can be used are, for example, metallo-magnetic compounds and in particular the metallurgical compounds described in DE 36 31 469 AI or DE 37 26 485 AI. ganic compounds are used (claims 4 to 6). In addition to the compounds listed there, however, it is possible to use all compounds which contain the corresponding chemical element, have a vapor pressure which can be used in practice, and have a corresponding thermal decomposition behavior.
Stickstoff als Trägergas bietet sich insbesondere an, da es das kostengünstigste Gas ist. Vor allem aber kann durch die Verwendung von Stickstoff entsprechender Reinheit und insbesondere der Qualität 7,0 oder 8,0 die Schichtqualität positiv beeinflußt werden.Nitrogen is particularly suitable as a carrier gas because it is the cheapest gas. Above all, however, the layer quality can be positively influenced by the use of nitrogen of appropriate purity and in particular of the quality 7.0 or 8.0.
In den genannten Offenlegungsschriften ist zwar die Verwendung der dort genannten metallorganischen Verbin¬ dungen für die Gasphasenabscheidung (CVD-Prozeß) be¬ schrieben, in diesen Druckschriften findet sich jedoch kein Hinweis auf die erfindungsgemäß erkannte Nicht- Toxität sowie die Eigenschaft, bei der Reaktion eben¬ falls nicht-toxische Verbindungen zu bilden. Vor allem aber ist in diesen Druckschriften die Verwendung eines Trägergases nur allgemein angesprochen, so daß diese Druckschriften keinen Hinweis auf die erfindungsgemäße Kombination an und für sich bekannter Maßnahmen, näm¬ lich die Verwendung inerter Trägergas zusammen mit nicht-toxischen Reaktionsgasen geben können.Although the use of the organometallic compounds mentioned for gas phase deposition (CVD process) is described in the cited publications, there is no indication in these documents of the non-toxicity recognized according to the invention and the property in the reaction ¬ if to form non-toxic compounds. Above all, however, the use of a carrier gas is only mentioned in general in these publications, so that these publications cannot give any indication of the combination of measures according to the invention which are known per se, namely the use of inert carrier gas together with non-toxic reaction gases.
In jedem Falle erlaubt das erfindungsgemäße Verfahren die Herstellung der verschiedensten Schichtmaterialien, die amorphe, polykristalline oder monokristalline Strukturen aufweisen.In any case, the method according to the invention allows the production of a wide variety of layer materials which have amorphous, polycrystalline or monocrystalline structures.
Insbesondere können keramische oder halbleitende Schichtmaterialien sowie Materialien mit speziellen optischen Eigenschaften hergestellt werden, wobei es ohne weiteres möglich ist, auf an den jeweiligen Ein¬ satzfall angepaßte Grundsubstrate die Materialschichten aufzubringen, die zu den jeweiligen elektronischen, chemischen, optischen oder mechanischen Eigenschaften führen.In particular, ceramic or semiconducting layer materials and materials with special optical properties are produced, it being possible without further ado to apply the material layers to basic substrates adapted to the respective application, which lead to the respective electronic, chemical, optical or mechanical properties.
Gemäß Anspruch 2 ist es bevorzugt, wenn die Reaktions¬ gase nicht nur aus nicht-toxischen und/oder nicht¬ feuergefährlichen - bevorzugt beide Eigenschaften auf¬ weisende Verbindungen - , sondern auch aus nicht-explo¬ siven Verbindungen bestehen.According to claim 2, it is preferred if the reaction gases consist not only of non-toxic and / or non-flammable compounds - preferably compounds with both properties - but also of non-explosive compounds.
Die anstelle der bisher zumeist verwendeten Hydride und metallorganischen Verbindungen mit hoher Explosivität oder Toxizität verwendeten Verbindungen haben bevorzugt einen Dampfdruck und ein thermisches Zerlegungsverhal¬ ten, das sie für den Einsatz in entsprechenden Be- schichtungsverfahren ohne besondere Maßnahmen geeignet macht.The compounds used instead of the mostly used hydrides and organometallic compounds with high explosiveness or toxicity preferably have a vapor pressure and a thermal decomposition behavior which makes them suitable for use in corresponding coating processes without special measures.
In jedem Falle macht erst die Kombination eines nicht¬ explosiven Trägergases und der Verwendung von nicht- pyrophoren Elementträgern bzw. Reaktionsgasen den Be- schichtungsprozeß wesentlich sicherer als herkömmliche Verfahren. Die Anforderungen an die Sicherheitssysteme können aufgrund des Wegfalls des explosiven Wasser¬ stoffs drastisch verringert werden. Zudem können auch die Anforderungen an Sicherheitssysteme und auch an die Vorrichtung selbst aufgrund nichtvorhandener Toxizität der Verbindungen in Zusammenhang mit der Verwendung nicht-explosiver Gase zusätzlich verringert werden. Ein weiterer Vorteil der Kombination aus nichtexplosi¬ vem Trägergas und nichtpyrophoren Verbindungen besteht darin, daß durch die Verwendung von Stickstoff entspre¬ chender Reinheit (der Qualität 7.0 oder 8.0) die Schichtqualitäten nicht nur nicht negativ, sondern sogar positiv beeinflußt werden.In any case, only the combination of a non-explosive carrier gas and the use of non-pyrophoric element carriers or reaction gases makes the coating process considerably safer than conventional methods. The requirements for the safety systems can be drastically reduced due to the elimination of the explosive hydrogen. In addition, the requirements for safety systems and also for the device itself can be additionally reduced due to the absence of toxicity of the compounds in connection with the use of non-explosive gases. Another advantage of the combination of non-explosive carrier gas and non-pyrophoric compounds is that the use of nitrogen of appropriate purity (quality 7.0 or 8.0) not only does not negatively, but even positively influences the layer qualities.
Die Erfindung ermöglicht daher die Kosten für das Pro- zeßequipment in Hinblick auf Sicherheit, Leckdichtig¬ keit und Überwachungseinrichtungen erheblich zu senken, andere Materialien und Komponenten zur Herstellung der Anlagen zu verwenden, die Prozesse in allgemein zugäng¬ lichen Laboratorien oder Betriebsstätten durchzuführen, den Aufwand von Personalschulung und Sicherheitstrai¬ ning zu verringern und die Herstellung von teuren Mate¬ rialien (z.B. zusammengesetzte Halbleiter, wie GaAs und andere III-V- oder II-VI-Verbindungen etc. ) wesentlich kostengünstiger zu ermöglichen. Hierdurch erst wird es möglich, daß gewisse Beschichtungen oder Halbleiterbau¬ elemente einem großtechnischen und volkswirtschaftlich sinnvollen Einsatz zugeführt werden können.The invention therefore makes it possible to considerably reduce the costs for the process equipment with regard to safety, leak tightness and monitoring devices, to use other materials and components for the production of the systems, to carry out the processes in generally accessible laboratories or operating facilities, the outlay of personnel training and safety training and to enable the production of expensive materials (for example compound semiconductors, such as GaAs and other III-V or II-VI compounds etc.) in a substantially more cost-effective manner. This makes it possible for certain coatings or semiconductor components to be used for large-scale and economically sensible use.
Da die Erfindung aufgrund der vorstehenden Beschreibung mit vorhandenen - oder wie beschrieben gegenüber dem Stand der Technik vereinfachten - Anlagen realisiert werden kann, wird auf die Beschreibung eines speziellen Ausführungsbeispiels verzichtet. Since the invention can be implemented on the basis of the above description using existing systems or systems that are simplified as described in relation to the prior art, the description of a special exemplary embodiment is omitted.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zum Beschichten von Substraten mit einem CVD-Prozeß unter Verwendung wenigstens eines Reaktions¬ gases, das mittels wenigstens eines Trägergases über das zu beschichtende Substrat geleitet wird, gekennzeichnet durch die Kombination folgender Merkmale: das Trägergas ist ein inertes Gas oder ein Gemisch inerter Gase, das oder die Reaktionsgase bestehen aus nicht-toxi¬ schen und/oder nicht-brennbaren bzw. nicht-feuergefähr¬ lichen Verbindungen und bilden nach der Reaktion eben¬ falls nicht-toxische bzw. nicht-brennbare Verbindungen.1. A method for coating substrates using a CVD process using at least one reaction gas which is passed over the substrate to be coated by means of at least one carrier gas, characterized by the combination of the following features: the carrier gas is an inert gas or a mixture of inert Gases, the reaction gas or gases consist of non-toxic and / or non-flammable or non-flammable compounds and also form non-toxic or non-flammable compounds after the reaction.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das oder die Reaktionsgase nicht-explosiv sind.2. The method according to claim 1, characterized in that the reaction gas or gases are non-explosive.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Trägergas Stickstoff oder ein Edelgas oder ein Gemisch derartiger Gase ist.3. The method according to claim 1 or 2, characterized in that the carrier gas is nitrogen or a noble gas or a mixture of such gases.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das oder die Reaktionsgase aus metallorganischen Verbindungen besteht.4. The method according to any one of claims 1 to 3, characterized in that the reaction gas or gases consists of organometallic compounds.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das oder die Reaktionsgase aus metallorganischen Verbindungen der Formel5. The method according to claim 4, characterized in that the reaction gas or gases from organometallic compounds of the formula
M - X - Y bestehen, wobei die Bestandteile R1 , R2 , M, X, Y die in der DE 36 31 469 AI angegebene Bedeutung haben.M - X - Y exist, the components R 1 , R 2 , M, X, Y have the meaning given in DE 36 31 469 AI.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das oder die Reaktionsgase aus metallorganischen Verbindungen der Formel ^ (CH2 )> ^6. The method according to claim 4 or 5, characterized in that the reaction gas or gases from organometallic compounds of the formula ^ (CH2)> ^
(Rl)n " Y" [(CH2 )m]o - M - (R )n ^ (CH2 )m ^ bestehen, wobei die Bestandteil R1 , R2 , Y, M die in der DE 37 26 485 AI angegebene Bedeutung haben.(R l ) n "Y" [(CH 2 ) m] o - M - (R) n ^ (CH2) m ^, where the constituents R 1 , R 2 , Y, M are those in DE 37 26 485 AI have meaning given.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das oder die Reaktionsgase einen für Beschichtungsverfahren bei niedriger Temperatur geeigneten Dampfdruck aufweisen.7. The method according to any one of claims 1 to 6, characterized in that the reaction gas or gases have a vapor pressure suitable for coating processes at low temperature.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Dissoziatiόnsverhalten des oder der Reaktionsgase dem herkömmlicher Reaktionsgase entspricht.8. The method according to any one of claims 1 to 7, characterized in that the dissociation behavior of the reaction gas or gases corresponds to that of conventional reaction gases.
9. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 8 zur Herstellung von III-V- oder II-VI-Halbleitern.9. Use of a method according to one of claims 1 to 8 for the production of III-V or II-VI semiconductors.
10. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 8 zur Herstellung von Supraleitern, keramischen Oxyden und Mehrkomponenten-Systemen geeignet ist.10. Use of a method according to one of claims 1 to 8 for the production of superconductors, ceramic oxides and multi-component systems is suitable.
11. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 8 zur Silizium-Beschichtung mit CVD-Verfahren bei hohen und niedrigen Temperaturen und Drücken zwischen 10 und 1000 hPa einsetzbar ist. 11. Use of a method according to one of claims 1 to 8 for silicon coating with CVD processes at high and low temperatures and pressures between 10 and 1000 hPa can be used.
12. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die in an sich bekannter Weise aufgebaute Vorrichtung eine Gasreinigungseinheit für das Trägergas aufweist. 12. Device for performing the method according to one of claims 1 to 8, characterized in that the device constructed in a conventional manner has a gas cleaning unit for the carrier gas.
EP92921083A 1991-10-09 1992-10-09 Method of coating substrates Ceased EP0635075A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4133497 1991-10-09
DE4133497 1991-10-09
PCT/DE1992/000853 WO1993007312A1 (en) 1991-10-09 1992-10-09 Method of coating substrates

Publications (1)

Publication Number Publication Date
EP0635075A1 true EP0635075A1 (en) 1995-01-25

Family

ID=6442374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92921083A Ceased EP0635075A1 (en) 1991-10-09 1992-10-09 Method of coating substrates

Country Status (3)

Country Link
EP (1) EP0635075A1 (en)
DE (1) DE4293092D2 (en)
WO (1) WO1993007312A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740606A (en) * 1986-07-01 1988-04-26 Morton Thiokol, Inc. Gallium hydride/trialkylamine adducts, and their use in deposition of III-V compound films
DE3631469A1 (en) * 1986-09-16 1988-03-17 Merck Patent Gmbh METAL ORGANIC COMPOUNDS
DE3726485A1 (en) * 1987-08-08 1989-02-16 Merck Patent Gmbh METAL ORGANIC COMPOUNDS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9307312A1 *

Also Published As

Publication number Publication date
WO1993007312A1 (en) 1993-04-15
DE4293092D2 (en) 1994-10-20

Similar Documents

Publication Publication Date Title
EP2044143B1 (en) Polysilane processing and use
DE60315850T2 (en) METHOD FOR THE PRODUCTION OF SILICON-NITRIDE FILMS AND SILICON-OXINITRIDE FILMS BY THERMAL CHEMICAL EVAPORATION
EP2989053B1 (en) Process for the preparation of hexachlorodisilane by cleavage of higher polychlorosilanes such as octachlorotrisilane
DE102013104105A1 (en) MOCVD layer growth process with subsequent multi-stage purification step
DE2647088A1 (en) METHOD AND DEVICE FOR CLEANING SURFACES
EP0248224B1 (en) Mass for removing by chemisorption homogeneous dissolved mixtures, particularly oxygen, from gases or liquids
EP0741196B1 (en) Method for depositing a silicium oxide layer
DE1957952A1 (en) Silicon nitride coating on quartz walls for diffusion and oxidation reactors
DE102006043929A1 (en) Solid polysilane mixtures
DE112007001558T5 (en) Organometallic compounds with sterically hindered amides
EP0635075A1 (en) Method of coating substrates
EP1339638A1 (en) Method for producing high-purity, granular silicon
DE602004010894T2 (en) METHOD OF CVD DEPOSITION OF A SILVER FILM ON A SUBSTRATE
DE1544287A1 (en) Method for producing a protective layer from a silicon or germanium nitrogen compound on the surface of a semiconductor crystal
EP2473649B1 (en) Method for applying layers
DE3441056A1 (en) Process for reducing wear of quartz parts used in the gas-phase deposition of silicon
EP1261755A1 (en) Device and method for carrying out plasma enhanced surface treatment of substrates in a vacuum
EP1210468B1 (en) Method for cleaning a pvd or cvd reactor and waste-gas lines of the same
DE102010055564A1 (en) Method and apparatus for depositing silicon on a substrate
DE102005011095B4 (en) Process for the disposal of silane surpluses
DE2723501C2 (en) Method and device for depositing silicon nitride layers on semiconductor arrangements
Barnabas et al. Radical cations of quadricyclane and norbornadiene in polar ZSM-5 matrices: thermal retro Diels–Alder reaction
WO1997022992A1 (en) Method of forming dielectric films with reduced metal contamination
DE102014203810A1 (en) Process for the preparation of pure octachlorotrisilanes and decachlorotetrasilanes
DE19506579C2 (en) Process for the production of TiN layers and the layer produced by this process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

17Q First examination report despatched

Effective date: 19951103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19961205