EP0610131B1 - Liaison d'alimentation pour bobine supraconductrice - Google Patents

Liaison d'alimentation pour bobine supraconductrice Download PDF

Info

Publication number
EP0610131B1
EP0610131B1 EP94400211A EP94400211A EP0610131B1 EP 0610131 B1 EP0610131 B1 EP 0610131B1 EP 94400211 A EP94400211 A EP 94400211A EP 94400211 A EP94400211 A EP 94400211A EP 0610131 B1 EP0610131 B1 EP 0610131B1
Authority
EP
European Patent Office
Prior art keywords
conductors
cryostat
coil
superconductive
connection according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94400211A
Other languages
German (de)
English (en)
Other versions
EP0610131A1 (fr
Inventor
Christian Cottevieille
Gerard Bottini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
GEC Alsthom Electromecanique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEC Alsthom Electromecanique SA filed Critical GEC Alsthom Electromecanique SA
Publication of EP0610131A1 publication Critical patent/EP0610131A1/fr
Application granted granted Critical
Publication of EP0610131B1 publication Critical patent/EP0610131B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S336/00Inductor devices
    • Y10S336/01Superconductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/879Magnet or electromagnet

Definitions

  • the present invention relates to a connection intended for the electrical supply of a high-voltage superconductive coil, with a high nominal current, of several hundred amperes. It can for example be a current limiter of 63 kV and 1200 Amps; it must be able to withstand 2.2 times its nominal voltage, ie 139kV (IEC71 recommendation).
  • the connection makes it possible to electrically connect the superconductive coil placed in a cryostat within a cryogenic fluid at very low temperature, to a conductor placed outside and being at ambient temperature (300K).
  • the object of the present invention is to provide a connection making it possible to supply high current in a balanced manner to high-voltage superconductive coils.
  • the object of the present invention is a connection for the electrical supply of a transposed superconductive coil.
  • the coil is placed in a cryostat and comprises a plurality of identical superconducting conductors, the accessible ends of which are uniformly distributed in a cylindrical symmetry.
  • the connection is constituted by two current leads composed of a plurality of identical conductors between them comprising a first end and a second end.
  • connection is characterized in that the number of conductors is identical for the two leads and equal to the number of superconductive conductors of the coil; it is also characterized in that the conductors of the leads are arranged regularly and parallel in a cylindrical symmetry with respect to the axis of the coil; it is further characterized in that the feeds are arranged coaxially; and it is finally characterized in that the first end of the conductors of the leads is connected to the superconductive conductors.
  • connection according to the invention does not break the cylindrical symmetry of the coil and it guarantees the balance of the currents.
  • the present invention has the advantage of allowing a balanced supply of the coil, so each superconductive conductor can transport its critical current and be used under optimal conditions.
  • the section total of all the conductors of the input leads on the one hand and the output on the other hand is fixed according to the current to be transported.
  • connection between a conductor of a supply and a superconductive conductor of the coil is made by placing their ends side by side over a length of about 10cm. Then, the conductors of each current supply are connected to the superconductive conductors of the coil by lead-tin type welding, or by magnetoforming.
  • the second end of the conductors of each current supply is secured to a cylindrical conductive part.
  • This part is chosen in shape and size adapted to the voltage level and the current carried.
  • the cylindrical conductive part is made of copper.
  • each of the conductors of the current supply is placed individually inside an electrical insulating tube.
  • These insulating tubes can be made of epoxy glass or a similar material.
  • the tubes containing each conductor individually are arranged in a cylindrical symmetry.
  • a circulation of vapor of the cryogenic fluid ensuring the cooling of the conductors of the current leads is produced inside the insulating tube.
  • these tubes are filled with cryogenic fluid which is surmounted by its vapors.
  • the conductors of each of the feeds are placed inside the double wall of an electrical insulating tube, the two tubes being arranged coaxially.
  • a circulation of vapor of the cryogenic fluid ensuring the cooling of the conductors is carried out inside the double wall of the insulating tubes.
  • the present invention has the advantage that the overall structure of the installation makes it possible to avoid the use of polycarbonate tubes whose dimensions are too penalizing.
  • the conductors of the current leads are of the assembled type comprising several strands, consisting of copper filaments in a cupronickel matrix to reduce losses by induced current, the optimized losses of which are 1.2W / kA at rated current.
  • the conductors of the current leads are of the mixed type comprising, in their part at low temperature, a superconducting element at high critical temperature, as described in French patent n ° 91 07967.
  • connection according to the invention is intended to be applied to a device comprising a superconductive coil placed in a cryostat.
  • the cryostat has an outer wall and an inner metal wall brought to high voltage separated by a vacuum.
  • the outer wall of the cryostat consists of an electrical insulating material, such as a composite.
  • the outer wall of the cryostat carries fins made of insulating material, for example an elastomer loaded or not with glass or ceramic, intended to increase the line of flight.
  • the outer wall of the cryostat is metallic and grounded.
  • the walls are also isolated from each other by a piece of insulating material comprising anticoronas, that is to say toroidal profiles with conductive surface intended to avoid the "crown" effect.
  • This insulating material is for example a ceramic, a composite, or a similar material.
  • the piece of insulating material comprises fins of insulating material which may be identical to or different from that of the piece.
  • a solid electrical insulator is added between the conductors in the hot zone of the cryostat.
  • This insulator may be polycarbonate, polyethylene, epoxy resin, or any similar material, or else this insulator may consist of a chamber containing a liquid insulator of the transformer oil or silicone oil type, or a gaseous insulator such as nitrogen, sulfur hexafluoride, or another gas with better dielectric strength than helium.
  • the enclosure can advantageously be thermally isolated from the vapors of the cryogenic fluid by an appropriate thermal insulator such as vacuum or expanded polystyrene.
  • FIG. 1 a superconductive coil 1 and its two current leads placed in a cryostat 4 within a cryogenic fluid 5, which is liquid helium (4.2K), surmounted by its vapors 6.
  • a cryogenic fluid 5 which is liquid helium (4.2K), surmounted by its vapors 6.
  • Each current supply is made up of four conductors, only two of which are visible and two are hidden, marked 2 and 3 respectively for the current input and output.
  • the superconductive coil 1 is shown in an enlarged view in FIG. 2.
  • Four superconductive conductors 101 to 104 are wound side by side to form a superconductive coil.
  • the ends of the superconductive conductors are arranged on either side of the coil in a cylindrical symmetry along the axis 105 of the coil.
  • a first end 101 'to 104' of the superconductive conductors 101 to 104 is connected to the conductors 2 of the current input supply, and a second end 101 "to 104" of the superconductive conductors 101 to 104 is connected to the conductors 3 of the current output supply.
  • an electrical supply circuit 12 located outside (300K) of the cryostat 4, is connected to the coil 1 by the two leads current input and output.
  • the conductors, input 2 on the one hand and output 3 on the other hand, are regularly arranged parallel along the generator of a cylinder coaxial with the axis 105 of the coil.
  • the conductors 2 of the current input supply are secured to a conductive piece 17 preferably made of copper; similarly, the conductors 3 of the current output supply are secured to a conductive piece 18, preferably also made of copper.
  • a conductive piece 17 preferably made of copper similarly, the conductors 3 of the current output supply are secured to a conductive piece 18, preferably also made of copper.
  • These two parts 17 and 18 are connected, and electrically insulated from each other, by a part 20 correctly dimensioned in insulating material, such as a composite or any other similar material.
  • the conductors 2 of the current input supply are connected to the ends 101 'to 104' of the superconductive conductors of the coil 1.
  • This connection 19 is made by placing the end of a conductor 2 and the end 103 'of a superconductive conductor side by side over a length of about 10 cm and joining them by welding, for example of the lead-tin type, or by magnetoforming.
  • the conductors 3 of the current output supply are connected to the ends 101 "to 104" of the superconductive conductors of the coil 1.
  • This connection 19 ' is made in the same way as above between the end of a conductor 3 and the end 101 "of a superconductive conductor of the coil 1.
  • the conductors 2 and 3 of the current inlet and outlet leads are placed individually in an electrical insulating tube, respectively 13 and 14, perforated in its lower part and immersed in the cryogenic liquid 5 Inside these tubes circulate the vapors 6 of the cryogenic fluid 5 ensuring the cooling of the conductors 2 and 3. Passages are provided in the copper parts 17 and 18, and in the insulating part 20 to allow the escape of the vapors 6.
  • Thermal screens 15 regulate the heat exchange between the cryogenic fluid 5 and the hot zone of the cryostat 4.
  • the electrical insulation between the conductors 2 and 3 of the current inlet and outlet leads is improved by the presence a solid electrical insulator 16 which may consist of a solid material or an enclosure containing an insulating fluid (liquid or gaseous).
  • the cryostat 4 consists of an external wall 7 made of insulating material, such as for example a composite or any other similar material, and of a metallic internal wall 8 brought to high voltage. The two walls are separated by a vacuum 9.
  • the cryostat is provided at its upper part with toric profiles with conductive surface 10 intended to avoid the "crown" effect, and subsequently denoted "anticoronas". Fins 11 made of insulating material, such as for example an elastomer, intended to increase the creepage distance can be arranged on the outer wall, covering part or all of its height.
  • FIG. 4 a variant of Figure 1 is shown in which the outer wall 301 of the cryostat 302 is metallic and grounded.
  • the external wall 301 and the internal metal wall 8 carried at high voltage are electrically insulated on the one hand by the vacuum 9, and on the other hand by a part 303 made of insulating material such as a ceramic or a composite.
  • Room 303 must be fitted with anticoronas 304 adapted to the voltage level.
  • the part 303 can also be fitted with fins of insulating material, for example an elastomer, intended to increase the line of flight and similar in shape to those previously described and shown in FIG. 1.
  • FIG. 5 shows a variant of the connection according to the invention in which the external wall 7 of the cryostat 401 is insulating and provided with fins 11.
  • a metal flange 402 carrying anticoronas 10 electrically connects the internal wall 8 of the cryostat 401 to a cylindrical copper piece 403.
  • Each current supply consists of twelve conductors.
  • the conductors 2 of the input supply on the one hand and 3 of the current output supply on the other hand are regularly arranged parallel along the generatrix of a cylinder coaxial with the axis 404 of the coil 405.
  • the conductors 2 and 3 are respectively secured to a conductive part 403 and 18, preferably made of copper.
  • the parts 403 and 18 are electrically insulated by a part 409 correctly dimensioned in insulating material, such as a composite or similar material.
  • the second end of the conductors 2 and 3 is connected to the twelve superconductive conductors of the coil 405 according to the technique described above.
  • the detail of these connections 19 and 19 ' is given in FIG. 6, where we see the conductors 2 and 3 connected to the ends 216' and 216 "of the superconductive conductor 216 of the coil 405.
  • the conductors 2 of the current inlet are placed in the double wall of an electrical insulating tube 406, at the lower part of which there is cryogenic fluid 5 surmounted by its vapors 6.
  • the conductors 3 of the the current output leads are likewise arranged in the double wall of an electrical insulating tube 407.
  • the two tubes 406 and 407 are placed coaxially.
  • the walls of each of the tubes are perforated at their lower part to allow the cryogenic fluid 5 to be introduced into the double wall.
  • the conductors 2 and 3 are cooled by the vapors 6 of the cryogenic fluid 5 which go up along the conductors. Outside and in the space between the tubes, the vapors 6 of the cryogenic fluid 5 also circulate, which pass through the double wall of each tube through the passages 408.
  • the vapors 6 escape through passages made in the copper parts. 403 and 18, and the insulating part 409.
  • FIG. 7 A section of the cryostat 401 containing the tubes 406 and 407 is presented in FIG. 7. We see there the insulating outer wall 7 and the inner wall 8 of the cryostat separated by the vacuum 9. The double walls of the tubes 406 and 407 respectively surround the conductors 2 and 3. The vapors 6 of the cryogenic fluid are present in the double wall of the tubes 406 and 407, and also around and between the two tubes.
  • FIG. 8 shows a connection according to the invention between a superconductive coil 1 placed in a cryostat 4 (4.2K) and an electrical supply circuit 12 located outside (300K), in the case where the conductors 510 and 511 of each of the two current leads are of the mixed type described in French patent n ° 91 07967.
  • Each metallic conductor 510 or 511 is immersed in a bath of liquid nitrogen 501 surmounted by its vapors. It is connected to a superconducting element 502 at high critical temperature, for example the phase 2212 of an alloy based on bismuth, strontium, calcium and copper oxide, which provides the junction between 4.2K and the intermediate temperature 77K.
  • This element 502 is itself connected to the end 101 ′ of one of the superconductive conductors 101 to 104 of the coil 1 which is in the bath of liquid helium 5 at 4.2K.
  • An insulation vacuum 503 surrounding the nitrogen bath 501 and the superconductor 502 is separated from the helium vapors by a metal wall 504 of low electrical and thermal conductivity, such as 304L stainless steel.
  • the liquid nitrogen bath 501 is contained in a metal container 505, in material similar to the metal wall 504, which is extended in its upper part by an electrical insulating tube 509 made of epoxy glass or a similar material.
  • the contact between the two ends of the superconductive element 502 and the terminals 506 and 507 is made by the method described by GRIVON et al.
  • the upper terminal 506 is thermally insulated from the liquid nitrogen tank by an insulating ceramic 508.
  • This technology makes it possible to reduce the heat losses by a factor of between three and five depending on the nature of the metal conductors.
  • the electrical insulation between the conductors 510 and 511, when the winding passes, is ensured in the hot zone by the nitrogen vapors which have at this temperature a dielectric strength ten times greater than that of helium; this is advantageous with a view to developing towards high voltages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulators (AREA)
  • Connections Arranged To Contact A Plurality Of Conductors (AREA)
  • Linear Motors (AREA)
  • Particle Accelerators (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

  • La présente invention concerne une liaison destinée à l'alimentation électrique d'une bobine supraconductrice haute tension, avec un courant nominal élevé, de plusieurs centaines d'ampères. Il peut s'agir par exemple d'un limiteur de courant de 63 kV et 1200 Ampères; celui-ci doit être capable de supporter 2,2 fois sa tension nominale soit 139kV (recommandation CEI71). La liaison permet de relier électriquement la bobine supraconductrice disposée dans un cryostat au sein d'un fluide cryogénique à très basse température, à un conducteur disposé à l'extérieur et se trouvant à température ambiante (300K).
  • Lorsque le courant nominal de la bobine est élevé, on utilise plusieurs conducteurs supraconducteurs. Il se pose alors le problème de réaliser une distribution équilibrée des courants dans les différents conducteurs supraconducteurs. Une solution attrayante est l'utilisation d'une bobine supraconductrice transposée dans laquelle chaque conducteur est placé dans un environnement électromagnétique identique à celui de ses voisins. Dans une telle bobine, les conducteurs sont répartis avec une symétrie cylindrique parfaite. Ceci permet à chaque conducteur de transporter son courant critique, ce courant étant identique pour chacun. Ainsi se trouve réalisé l'équilibrage des courants dans la bobine.
  • L'alimentation classique se fait par deux amenées de courant espacées munies de gaines isolantes en polycarbonate, qui sont mal adaptées à l'alimentation d'une bobine composée de plusieurs conducteurs supraconducteurs. De plus, ce type d'alimentation est pénalisant au point de vue diélectrique. Cette technologie, décrite dans le brevet français n°2 637 728, ne permet pas de dépasser, même temporairement, des tensions de 100kV. Au-delà, il devient difficile de trouver des isolants électriques massifs utilisables à des températures aussi basses, et dont les dimensions permettent de tenir en continu le niveau de tension.
  • L'évolution vers les courants élevés et les hautes tensions des bobines supraconductrices, notamment les limiteurs de courants, impose la réalisation de liaisons d'alimentation répondant à ces exigences.
  • La présente invention a pour but de procurer une liaison permettant d'alimenter en courant élevé de manière équilibrée des bobines supraconductrices à haute tension.
  • L'objet de la présente invention est une liaison pour l'alimentation électrique d'une bobine supraconductrice transposée. La bobine est placée dans un cryostat et comprend une pluralité de conducteurs supraconducteurs identiques entre eux dont les extrémités accessibles sont uniformément réparties selon une symétrie cylindrique. La liaison est constituée par deux amenées de courant composées d'une pluralité de conducteurs identiques entre eux comprenant une première extrémité et une seconde extrémité. La liaison est caractérisée en ce que le nombre des conducteurs est identique pour les deux amenées et égal au nombre des conducteurs supraconducteurs de la bobine; elle est aussi caractérisée en ce que les conducteurs des amenées sont disposés régulièrement et parallèlement selon une symétrie cylindrique par rapport à l'axe de la bobine; elle est encore caractérisée en ce que les amenées sont disposées de manière coaxiale; et elle est enfin caractérisée en ce que la première extrémité des conducteurs des amenées est reliée aux conducteurs supraconducteurs.
  • Ainsi la liaison selon l'invention qui vient d'être définie ne rompt pas la symétrie cylindrique de la bobine et elle est garante de l'équilibre des courants. La présente invention a comme avantage de permettre une alimentation équilibrée de la bobine, ainsi chaque conducteur supraconducteur peut transporter son courant critique et être utilisé dans des conditions optimales. La section totale de l'ensemble des conducteurs des amenées d'entrée d'une part et de sortie d'autre part est fixée en fonction du courant à transporter.
  • La connexion entre un conducteur d'une amenée et un conducteur supraconducteur de la bobine se fait en plaçant leurs extrémités côte à côte sur une longueur d'environ 10cm. Ensuite, les conducteurs de chaque amenée de courant sont reliés aux conducteurs supraconducteurs de la bobine par soudage de type plomb-étain, ou par magnétoformage.
  • De préférence, la seconde extrémité des conducteurs de chaque amenée de courant est solidarisée à une pièce conductrice cylindrique. Cette pièce est choisie de forme et de dimension adaptées au niveau de tension et au courant transporté. De préférence, la pièce conductrice cylindrique est en cuivre.
  • Selon une première forme d'exécution, chacun des conducteurs des amenée de courant est placé individuellement à l'intérieur d'un tube isolant électrique. Ces tubes isolants peuvent être en verre époxy ou dans une matière analogue. Les tubes contenant individuellement chaque conducteur sont disposés suivant une symétrie cylindrique. Une circulation de vapeur du fluide cryogénique assurant le refroidissement des conducteurs des amenées de courant est réalisée à l'intérieur du tube isolant. Dans leur partie inférieure, ces tubes sont remplis par le fluide cryogénique qui est surmonté de ses vapeurs. Ces tubes assurent une perte de charge permettant d'obtenir le refroidissement optimum des conducteurs.
  • Selon une seconde forme d'exécution, les conducteurs de chacune des amenées sont placés à l'intérieur de la double paroi d'un tube isolant électrique, les deux tubes étant disposées de manière coaxiale.
  • Dans ce dernier cas, une circulation de vapeur du fluide cryogénique assurant le refroidissement des conducteurs est réalisée à l'intérieur de la double paroi des tubes isolants.
  • La présente invention a comme avantage que la structure globale de l'installation permet d'éviter la mise en oeuvre de tubes en polycarbonate dont les dimensions sont trop pénalisantes.
  • Selon une variante de réalisation, les conducteurs des amenées de courant sont de type assemblé comprenant plusieurs brins, constitués de filaments de cuivre dans une matrice de cupronickel pour diminuer les pertes par courant induit, dont les pertes optimisées sont de 1,2W/kA au courant nominal.
  • Selon une autre variante de réalisation, les conducteurs des amenées de courant sont de type mixte comportant, dans leur partie à basse température, un élément supraconducteur à haute température critique, tel que décrit dans le brevet français n°91 07967.
  • La liaison selon l'invention est destinée à être appliquée à un dispositif comportant une bobine supraconductrice placée dans un cryostat. Le cryostat comporte une paroi extérieure et une paroi intérieure métallique portée à la haute tension séparées par du vide.
  • Selon un premier mode de réalisation, la paroi extérieure du cryostat est constituée d'un matériau isolant électrique, comme un composite. De préférence, la paroi extérieure du cryostat porte des ailettes en matériau isolant, par exemple un élastomère chargé ou non de verre ou de céramique, destinées à augmenter la ligne de fuite.
  • Selon un second mode de réalisation, la paroi extérieure du cryostat est métallique et mise à la terre. Dans ce cas, les parois sont en outre isolées l'une de l'autre par une pièce en matériau isolant comportant des anticoronas, c'est à dire des profils toriques à surface conductrice destinés à éviter l'effet "couronne". Ce matériau isolant est par exemple une céramique, un composite, ou un matériau analogue.
  • Selon une variante de réalisation, la pièce en matériau isolant comporte des ailettes en matériau isolant qui peut être identique ou différent de celui de la pièce.
  • Selon un perfectionnement, un isolant électrique massif est ajouté entre les conducteurs dans la zone chaude du cryostat. Cet isolant peut être du polycarbonate, du polyéthylène, de le résine époxy, ou toute matière analogue, ou bien encore cet isolant peut être constitué d'une enceinte contenant un isolant liquide du type huile de transformateur ou huile silicone, ou un isolant gazeux comme de l'azote, de l'hexafluorure de soufre, ou un autre gaz ayant une meilleure rigidité diélectrique que l'hélium. Dans ce dernier cas, l'enceinte pourra avantageusement être isolée thermiquement des vapeurs du fluide cryogénique par un isolant thermique approprié comme le vide ou le polystyrène expansé.
  • L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre illustratif et non limitatif, accompagnée des dessins annexés parmi lesquels:
    • la figure 1 représente une liaison selon l'invention entre une bobine supraconductrice, placée dans un cryostat, et un circuit d'alimentation électrique situé à l'extérieur du cryostat, dans le cas où chacun des conducteurs est placé dans un tube isolant électrique,
    • la figure 2 est une vue agrandie de la bobine supraconductrice de la figure 1,
    • la figure 3 est une détail de la connexion conducteur supraconducteur/conducteur des amenées de courant de la figure 1,
    • la figure 4, analogue à la figure 1, montre une variante où l'enceinte externe du cryostat est constituée d'un matériau métallique,
    • la figure 5, analogue à la figure 1, montre une variante de la liaison selon l'invention où les conducteurs sont disposés dans la double paroi d'un tube isolant électrique,
    • la figure 6 est un détail de la connexion conducteur supraconducteur/conducteur des amenées de courant de la figure 5,
    • la figure 7 est une coupe de la liaison selon la ligne VII-VII de la figure 5
    • la figure 8, analogue à la figure 1, représente une liaison selon l'invention entre un élément supraconducteur placé dans un cryostat et un circuit d'alimentation électrique situé à l'extérieur du cryostat dans le cas où chacun des conducteurs est du type mixte décrit dans le brevet français n°91 07967.
  • Sur la figure 1 est représentée une bobine supraconductrice 1 et ses deux amenées de courant placées dans un cryostat 4 au sein d'un fluide cryogénique 5, qui est de l'hélium liquide (4,2K), surmonté de ses vapeurs 6. Chaque amenée de courant est composée de quatre conducteurs, dont deux seulement sont visibles et deux sont cachés, notés 2 et 3 respectivement pour l'entrée et la sortie du courant.
  • La bobine supraconductrice 1 est représentée en vue agrandie sur la figure 2. Quatre conducteurs supraconducteurs 101 à 104 s'enroulent côte à côte pour constituer un bobinage supraconducteur. Les extrémités des conducteurs supraconducteurs sont disposées de part et d'autre de la bobine selon une symétrie cylindrique suivant l'axe 105 de la bobine. Une première extrémité 101' à 104' des conducteurs supraconducteurs 101 à 104 est reliée aux conducteurs 2 de l'amenée d'entrée du courant, et une seconde extrémité 101" à 104" des conducteurs supraconducteurs 101 à 104 est reliée aux conducteurs 3 de l'amenée de sortie du courant.
  • Sur la figure 1, on peut voir qu'un circuit d'alimentation électrique 12, situé à l'extérieur (300K) du cryostat 4, est raccordé à la bobine 1 par les deux amenées d'entrée et de sortie du courant. Les conducteurs, d'entrée 2 d'une part et de sortie 3 d'autre part, sont régulièrement disposés parallèlement suivant la génératrice d'un cylindre coaxial avec l'axe 105 de la bobine.
  • A une première extrémité, les conducteurs 2 de l'amenée d'entrée de courant sont solidarisés avec une pièce conductrice 17 de préférence en cuivre; de même les conducteurs 3 de l'amenée de sortie de courant sont solidarisées avec une pièce conductrice 18, de préférence également en cuivre. Ces deux pièces 17 et 18 sont reliées, et isolées électriquement l'une de l'autre, par une pièce 20 correctement dimensionnée en matériau isolant, comme un composite ou tout autre matériau analogue.
  • Comme le montre de manière plus détaillée la figure 3, à une seconde extrémité, les conducteurs 2 de l'amenée d'entrée de courant sont connectés aux extrémités 101' à 104' des conducteurs supraconducteurs de la bobine 1. Cette connexion 19 est réalisée en plaçant l'extrémité d'un conducteur 2 et l'extrémité 103' d'un conducteur supraconducteur côte à côte sur une longueur d'environ 10cm et en les solidarisant par soudage, par exemple de type plomb-étain, ou par magnétoformage. De même à une seconde extrémité, les conducteurs 3 de l'amenée de sortie de courant sont connectés aux extrémités 101" à 104" des conducteurs supraconducteurs de la bobine 1. Cette connexion 19' est réalisée de la même manière que précédemment entre l'extrémité d'un conducteur 3 et l'extrémité 101" d'un conducteur supraconducteur de la bobine 1.
  • Dans le cas représenté par la figure 1, les conducteurs 2 et 3 des amenées d'entrée et de sortie du courant sont placés individuellement dans un tube isolant électrique, respectivement 13 et 14, perforé dans sa partie basse et plongeant dans le liquide cryogénique 5. A l'intérieur de ces tubes circulent les vapeurs 6 du fluide cryogénique 5 assurant le refroidissement des conducteurs 2 et 3. Des passages sont ménagés dans les pièces en cuivre 17 et 18, et dans la pièce isolante 20 pour permettre l'échappement des vapeurs 6.
  • L'isolement électrique entre les conducteurs 2 et 3 des amenées d'entrée et de sortie du courant, lorsque le bobinage transite, est assuré dans la zone chaude par de l'hélium gazeux. Des écrans thermiques 15 régularisent l'échange thermique entre le fluide cryogénique 5 et la zone chaude du cryostat 4. De plus, l'isolement électrique entre les conducteurs 2 et 3 des amenées d'entrée et de sortie du courant est amélioré par la présence d'un isolant électrique 16 massif qui peut être constitué d'un matériau massif ou d'une enceinte contenant un fluide isolant (liquide ou gazeux).
  • Le cryostat 4 est constitué d'une paroi externe 7 en matériau isolant, comme par exemple un composite ou tout autre matériau analogue, et d'une paroi interne métallique 8 portée à la haute tension. Les deux parois sont séparées par le vide 9. Le cryostat est muni à sa partie supérieure de profils toriques à surface conductrice 10 destinés à éviter l'effet "couronne", et notés par la suite "anticoronas". Des ailettes 11 en matériau isolant, comme par exemple un élastomère, destinées à augmenter la ligne de fuite peuvent être disposées sur la paroi extérieure, couvrant une partie ou la totalité de sa hauteur.
  • Sur la figure 4, on a représenté une variante de la figure 1 dans laquelle la paroi extérieure 301 du cryostat 302 est métallique et mise à la terre. Dans ce cas, la paroi externe 301 et la paroi interne métallique 8 portée à haute tension sont électriquement isolées d'une part par le vide 9, et d'autre part par une pièce 303 en matériau isolant comme une céramique ou un composite. La pièce 303 doit être équipée d'anticoronas 304 adaptés au niveau de tension. La pièce 303 peut en outre être équipée d'ailettes en matériau isolant, par exemple un élastomère, destinées à augmenter la ligne de fuite et de forme similaire à celles précédemment décrites et représentées sur la figure 1.
  • La figure 5 montre une variante de la liaison selon l'invention dans laquelle la paroi externe 7 du cryostat 401 est isolante et munie d'ailettes 11. Une bride métallique 402 portant des anticoronas 10 relie électriquement la paroi interne 8 du cryostat 401 à une pièce de cuivre cylindrique 403. Chaque amenée de courant se compose de douze conducteurs. Les conducteurs 2 de l'amenée d'entrée d'une part et 3 de l'amenée de sortie du courant d'autre part sont régulièrement disposés parallèlement suivant la génératrice d'un cylindre coaxial à l'axe 404 de la bobine 405. A une première extrémité, les conducteurs 2 et 3 sont respectivement solidarisés avec une pièce conductrice 403 et 18, de préférence en cuivre. Les pièces 403 et 18 sont isolées électriquement par une pièce 409 correctement dimensionnée en matériau isolant, tel qu'un composite ou un matériau analogue.
  • La seconde extrémité des conducteurs 2 et 3 est connectée aux douze conducteurs supraconducteurs de la bobine 405 suivant la technique décrite ci-dessus. Le détail de ces connexions 19 et 19' est donné par la figure 6, où on voit les conducteurs 2 et 3 reliés aux extrémités 216' et 216" du conducteur supraconducteur 216 de la bobine 405.
  • Les conducteurs 2 de l'amenée d'entrée du courant sont placés dans la double paroi d'un tube isolant électrique 406, à la partie inférieure de laquelle se trouve du fluide cryogénique 5 surmonté de ses vapeurs 6. Les conducteurs 3 de l'amenée de sortie du courant sont de la même façon disposés dans la double paroi d'un tube isolant électrique 407. Les deux tubes 406 et 407 sont placés de manière coaxiale. Les parois de chacun des tubes sont perforées à leur partie inférieure pour permettre au fluide cryogénique 5 de s'introduire dans la double paroi. Le refroidissement des conducteurs 2 et 3 est assuré par les vapeurs 6 du fluide cryogénique 5 qui remontent le long des conducteurs. A l'extérieur et dans l'intervalle existant entre les tubes circulent également les vapeurs 6 du fluide cryogénique 5 qui traversent la double paroi de chaque tube par les passages 408. Les vapeurs 6 s'échappent par des passages ménagés dans les pièces en cuivre 403 et 18, et la pièce isolante 409.
  • Une coupe du cryostat 401 contenant les tubes 406 et 407 est présentée sur la figure 7. On y voit la paroi extérieure isolante 7 et la paroi intérieure 8 du cryostat séparées par le vide 9. Les doubles parois des tubes 406 et 407 entourent respectivement les conducteurs 2 et 3. Les vapeurs 6 du fluide cryogénique sont présentes dans la double paroi des tubes 406 et 407, et également autour et entre les deux tubes.
  • Enfin la figure 8 montre une liaison selon l'invention entre une bobine supraconductrice 1 placée dans un cryostat 4 (4,2K) et un circuit d'alimentation électrique 12 situé à l'extérieur (300K), dans le cas où les conducteurs 510 et 511 de chacune des deux amenées de courant sont du type mixte décrit dans le brevet français n°91 07967. Chaque conducteur métallique 510 ou 511 est plongé dans un bain d'azote liquide 501 surmonté de ses vapeurs. Il est connecté à un élément supraconducteur 502 à haute température critique, par exemple la phase 2212 d'un alliage à base de bismuth, strontium, calcium et oxyde de cuivre, qui assure la jonction entre 4,2K et la température intermédiaire 77K. Cet élément 502 est lui-même connecté à l'extrémité 101' de l'un des conducteurs supraconducteurs 101 à 104 de la bobine 1 qui se trouve dans le bain d'hélium liquide 5 à 4,2K. Un vide d'isolation 503 entourant le bain d'azote 501 et le supraconducteur 502 est séparé des vapeurs d'hélium 6 par une paroi métallique 504 de faibles conductivité électrique et thermique, comme l'acier inoxydable 304L. Le bain d'azote liquide 501 est contenu dans un récipient métallique 505, en matière similaire à la paroi métallique 504, qui est prolongé dans sa partie haute par un tube isolant électrique 509 en verre époxy ou dans une matière analogue. Le contact entre les deux extrémités de l'élément supraconducteur 502 et les bornes 506 et 507 est réalisé par la méthode décrite par GRIVON et al. dans "YBaCuO current lead for liquid hélium temperature applications" 1990 Applied Superconductivity Conference. La borne supérieure 506 est isolée thermiquement du réservoir d'azote liquide par une céramique isolante 508. Cette technologie permet de diminuer les pertes thermiques d'un facteur compris entre trois et cinq suivant la nature des conducteurs métalliques. En outre l'isolation électrique entre les conducteurs 510 et 511, lorsque le bobinage transite, est assurée dans la zone chaude par les vapeurs d'azote qui possèdent à cette température une rigidité diélectrique dix fois supérieure à celle de l'hélium; ceci est avantageux en vue d'une évolution vers les hautes tensions.

Claims (17)

  1. Liaison pour l'alimentation électrique d'une bobine supraconductrice (1) transposée, ladite bobine (1) étant placée dans un cryostat (4) et comprenant une pluralité de conducteurs supraconducteurs (101...,104) identiques entre eux dont les extrémités accessibles sont uniformément réparties selon une symétrie cylindrique, ladite liaison étant constituée par deux amenées de courant composées d'une pluralité de conducteurs (2, 3) identiques entre eux comprenant une première extrémité et une seconde extrémité, et étant caractérisée en ce que le nombre desdits conducteurs (2,3) est identique pour les deux amenées et égal au nombre desdits conducteurs supraconducteurs (101..., 104) de ladite bobine, en ce que lesdits conducteurs (2, 3) desdites amenées sont disposés régulièrement et parallèlement selon ladite symétrie cylindrique par rapport à l'axe (105) de ladite bobine (1), en ce que lesdites amenées sont disposées de manière coaxiale, et en ce que ladite première extrémité desdits conducteurs desdites amenées est reliée auxdits conducteurs supraconducteurs 101...,104).
  2. Liaison selon la revendication 1, caractérisée par le fait que lesdits conducteurs (2,3) de chaque amenée de courant sont reliés auxdits conducteurs supraconducteurs (101...104)de ladite bobine (1) par soudage ou par magnétoformage.
  3. Liaison selon l'une des revendications précédentes, caractérisée par le fait que ladite seconde extrémité desdits conducteurs (2, 3) de chaque amenée de courant est solidarisée à une pièce conductrice cylindrique (17, 18).
  4. Liaison selon la revendication 3, caractérisée par le fait que ladite pièce conductrice cylindrique (17, 18) est en cuivre.
  5. Liaison selon l'une des revendications précédentes, caractérisée par le fait que chacun desdits conducteurs (2, 3) desdites amenées de courant est placé individuellement à l'intérieur d'un tube isolant électrique (13, 14).
  6. Liaison selon la revendication 5, caractérisée par le fait qu'une circulation de vapeur (6) du fluide cryogénique (5) assurant le refroidissement desdits conducteurs (2, 3) desdites amenées de courant est réalisée à l'intérieur dudit tube isolant (13, 14).
  7. Liaison selon l'une des revendications 1 à 4, caractérisée par le fait que lesdits conducteurs (2, 3) composant chacune desdites amenées sont placés à l'intérieur de la double paroi d'un tube isolant électrique (406, 407), les deux tubes étant disposés de manière coaxiale.
  8. Liaison selon la revendication 7, caractérisée par le fait qu'une circulation de vapeur (6) du fluide cryogénique (5) assurant le refroidissement desdits conducteurs (2, 3) desdites amenées de courant est réalisée à l'intérieur de la double paroi desdits tubes isolants (406, 407).
  9. Liaison selon l'une des revendications précédentes, caractérisée par le fait que lesdits conducteurs (2, 3) desdites amenées de courant sont de type assemblé comprenant plusieurs brins constitués de filaments de cuivre dans une matrice de cupronickel.
  10. Liaison selon l'une des revendications 5 et 6, caractérisée par le fait que lesdits conducteurs (2, 3) sont de type mixte comportant, dans leur partie à basse température, un élément supraconducteur à haute température critique.
  11. Application de la liaison selon l'une des revendications précédentes à un dispositif comportant une bobine supraconductrice (1,) placée dans un cryostat (4), caractérisée par le fait que ledit cryostat (4) comporte une paroi extérieure (7) et une paroi intérieure (8) métallique portée à la haute tension, lesdites parois (7, 8) étant séparées par du vide (9).
  12. Application selon la revendication 11, caractérisée par le fait que ladite paroi extérieure (7) dudit cryostat (4) est constituée d'un matériau isolant électrique.
  13. Application selon la revendication 12, caractérisée par le fait que ladite paroi extérieure (7) porte des ailettes (11) en matériau isolant.
  14. Application selon la revendication 11, caractérisée par le fait que ladite paroi extérieure (30) du cryostat (302) est métallique.
  15. Application selon la revendication 14, caractérisée par le fait que lesdites parois dudit cryostat sont en outre isolées l'une de l'autre par une pièce en matériau isolant (303) comportant des anticoronas.
  16. Application selon la revendication 15, caractérisée par le fait que ladite pièce en matériau isolant (303) comporte en outre des ailettes en matériau isolant.
  17. Application selon la revendication 11, caractérisée par le fait qu'un isolant électrique massif est ajouté entre les conducteurs dans la zone chaude dudit cryostat.
EP94400211A 1993-02-04 1994-02-01 Liaison d'alimentation pour bobine supraconductrice Expired - Lifetime EP0610131B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9301213 1993-02-04
FR9301213A FR2701157B1 (fr) 1993-02-04 1993-02-04 Liaison d'alimentation pour bobine supraconductrice.

Publications (2)

Publication Number Publication Date
EP0610131A1 EP0610131A1 (fr) 1994-08-10
EP0610131B1 true EP0610131B1 (fr) 1997-07-16

Family

ID=9443713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400211A Expired - Lifetime EP0610131B1 (fr) 1993-02-04 1994-02-01 Liaison d'alimentation pour bobine supraconductrice

Country Status (6)

Country Link
US (1) US5436606A (fr)
EP (1) EP0610131B1 (fr)
AT (1) ATE155607T1 (fr)
DE (1) DE69404178T2 (fr)
ES (1) ES2104293T3 (fr)
FR (1) FR2701157B1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2725827B1 (fr) * 1994-10-12 1996-12-20 Gec Alsthom T & D Sa Bobinage supraconducteur a haute tension et courant eleve, et limiteur de courant muni d'un tel bobinage
FR2729501A1 (fr) * 1995-01-17 1996-07-19 Gec Alsthom Electromec Amenee de courant haute tension entre une installation supraconductrice btc et une extremite de connexion a temperature ambiante d'un cable haute tension
DE19704485C2 (de) * 1997-02-07 1998-11-19 Siemens Ag Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
US6005461A (en) * 1998-06-18 1999-12-21 Intermagnetics General Corporation Method and apparatus for connecting high current ramping leads to a superconducting magnet
US6324851B1 (en) 1999-12-09 2001-12-04 Abb Power T&D Company Inc. Cryostat for use with a superconducting transformer
DK1865516T3 (da) * 2006-06-07 2013-04-29 Nexans System med et kabel med superledningsevne
DE102007013350B4 (de) * 2007-03-16 2013-01-31 Bruker Biospin Ag Stromzuführung mit Hochtemperatursupraleitern für supraleitende Magnete in einem Kryostaten
JP4790752B2 (ja) * 2008-04-28 2011-10-12 株式会社日立製作所 超電導マグネット
US8467158B2 (en) * 2009-06-26 2013-06-18 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
DE102010007087A1 (de) * 2010-02-06 2011-08-11 Karlsruher Institut für Technologie, 76131 Vorrichtung zur Strombegrenzung mit einer veränderbaren Spulenimpedanz
US8739396B2 (en) * 2010-06-17 2014-06-03 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
EP3121860B1 (fr) * 2015-07-21 2020-11-25 Nexans Systeme de limitation de courant dans un reseau servant a l'alimentation electrique

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670614A (en) * 1979-11-15 1981-06-12 Toshiba Corp Current supply device
US4438367A (en) * 1981-12-30 1984-03-20 The United States Of America As Represented By The United States Department Of Energy High power radio frequency attenuation device
US4509030A (en) * 1984-07-05 1985-04-02 General Electric Company Correction coil assembly for NMR magnets
JP2515813B2 (ja) * 1987-08-14 1996-07-10 株式会社日立製作所 超電導機器用電流リ−ド
JPH01286729A (ja) * 1988-05-12 1989-11-17 Toshiba Corp 超電導機器
FR2637728A1 (fr) * 1988-10-11 1990-04-13 Alsthom Gec Amenee de courant cryogenique a faibles pertes
JPH02280304A (ja) * 1989-04-21 1990-11-16 Sumitomo Heavy Ind Ltd 超電導装置
EP0401420A1 (fr) * 1989-06-05 1990-12-12 Siemens Aktiengesellschaft Dispositif de protection haute fréquence dans un vase de Dewar pour un appareil de mesure magnétométrique supraconducteur
JP2767927B2 (ja) * 1989-10-04 1998-06-25 住友電気工業株式会社 超電導マグネット装置
FR2657728B1 (fr) * 1990-01-29 1996-12-13 Alsthom Gec Conducteur supraconducteur protege des transitions partielles.
JP2971176B2 (ja) * 1991-05-20 1999-11-02 三菱重工業株式会社 超伝導コイルの接続方法
FR2678420B1 (fr) * 1991-06-27 1996-02-02 Alsthom Gec Structure pour amenee de courant destinee a une installation fonctionnant a tres basse temperature.

Also Published As

Publication number Publication date
US5436606A (en) 1995-07-25
FR2701157A1 (fr) 1994-08-05
DE69404178D1 (de) 1997-08-21
FR2701157B1 (fr) 1995-03-31
ES2104293T3 (es) 1997-10-01
ATE155607T1 (de) 1997-08-15
DE69404178T2 (de) 1997-10-30
EP0610131A1 (fr) 1994-08-10

Similar Documents

Publication Publication Date Title
EP0610131B1 (fr) Liaison d'alimentation pour bobine supraconductrice
JP3278446B2 (ja) クライオスタットの蒸気冷却電力リード
EP1681743B1 (fr) Agencement de connexion des écrans de câbles supraconducteurs
JPH08185726A (ja) セラミック超伝導リード線アセンブリ
FR2629956A1 (fr) Limiteur de courant
US8271061B2 (en) Connection arrangement for two superconductor cables
US9000295B1 (en) Termination for gas cooled cryogenic power cables
EP2523291A1 (fr) Elément de dérivation destiné à une unité de câble supraconducteur
FR2666912A1 (fr) Dispositif limiteur de courant a supraconducteur.
EP0629006B1 (fr) Interrupteur supraconducteur et application à un chargeur de bobine supraconductrice
CH694878A5 (fr) Cryostat pour transformateur supraconducteur.
EP1770841B1 (fr) Dispositif d'alimentation en courant électrique d'un appareil supraconducteur sous moyenne ou haute tension
FR2568051A1 (fr) Interrupteur
FR2691591A1 (fr) Limiteur de courant hybride supraconducteur pour réseau alternatif haute tension.
FR2622427A1 (fr) Appareil compact d'imagerie par resonance magnetique nucleaire
EP0791998A1 (fr) Amenée de courant haute tension mixte
EP0250685B1 (fr) Machine statique supraconductrice à circuit magnétique
FR2659805A1 (fr) Limiteur de courant a bobine supraconductrice.
JPH0955545A (ja) 超電導装置用電流リード
US5600095A (en) Splice for a superconducting cable-in-conduit conductor
EP0723278A1 (fr) Amenée de courant haute tension entre une application supraconductrice à basse température critique et une extrémité de connexion à température ambiante d'un câble d'énergie haute tension
EP0520374B1 (fr) Structure pour amenée de courant destinée à une installation fonctionnant à très basse température
FR2725827A1 (fr) Bobinage supraconducteur a haute tension et courant eleve, et limiteur de courant muni d'un tel bobinage
FR2730103A1 (fr) Limiteur de courant supraconducteur
EP3996223A1 (fr) Boîtier cryostat pour circuit câblé supraconducteur, et circuits câblés supraconducteurs associés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IE IT LI LU NL SE

17P Request for examination filed

Effective date: 19941212

17Q First examination report despatched

Effective date: 19960611

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IE IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970716

Ref country code: GB

Effective date: 19970716

REF Corresponds to:

Ref document number: 155607

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEC ALSTHOM SALES NETWORK SA

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69404178

Country of ref document: DE

Date of ref document: 19970821

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2104293

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980116

Year of fee payment: 5

Ref country code: BE

Payment date: 19980116

Year of fee payment: 5

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19980121

Year of fee payment: 5

Ref country code: AT

Payment date: 19980121

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980126

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980127

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980203

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980216

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980330

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 75110

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990202

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

BERE Be: lapsed

Owner name: S.A. GEC ALSTHOM ELECTROMECANIQUE

Effective date: 19990228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

EUG Se: european patent has lapsed

Ref document number: 94400211.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050201