EP0601451A1 - Process for hardness increasing and possibly for smoothing of work pieces and work pieces made by this process - Google Patents

Process for hardness increasing and possibly for smoothing of work pieces and work pieces made by this process Download PDF

Info

Publication number
EP0601451A1
EP0601451A1 EP93119338A EP93119338A EP0601451A1 EP 0601451 A1 EP0601451 A1 EP 0601451A1 EP 93119338 A EP93119338 A EP 93119338A EP 93119338 A EP93119338 A EP 93119338A EP 0601451 A1 EP0601451 A1 EP 0601451A1
Authority
EP
European Patent Office
Prior art keywords
treatment
cementite
laser
temperature
power density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93119338A
Other languages
German (de)
French (fr)
Other versions
EP0601451B1 (en
Inventor
Georg Dr.-Ing. Barton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adam Opel GmbH
Opel Espana SLU
Original Assignee
Adam Opel GmbH
General Motors Espana SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adam Opel GmbH, General Motors Espana SL filed Critical Adam Opel GmbH
Publication of EP0601451A1 publication Critical patent/EP0601451A1/en
Application granted granted Critical
Publication of EP0601451B1 publication Critical patent/EP0601451B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/007Ledeburite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts

Definitions

  • the present invention relates to a method for hardening and possibly smoothing machine components by means of a beam causing surface heating of the respective component, such as. B. a laser beam, an electron beam or the beam of an arc lamp.
  • the present invention further relates to machine components which are produced or treated by the method.
  • so-called laser transformation hardening is known. Basically, a laser is used as a high-energy heat source for martensite hardening without melting the surface of the treated components. In other words, an operation similar to induction hardening is carried out. Examples of such processes can be found in US Pat. Nos. 4,304,978, 4,093,842 and 4,686,349 and German Patent 33 43 783.
  • Another category of processes includes laser layer melting.
  • a graphite layer applied to a substrate is melted into the layer.
  • carbides form.
  • carbon is introduced into the layer, which dissolves in the molten state, forms a mixed crystal and forms carbides on cooling with atoms of the substrate Cr, W, V, Mn, Fe, which in the form of granular or dendritic precipitates are present, for example TiC (if the substrate is a Ti material) from the dissolved graphite.
  • An example of this procedure can be found in DE-OS 35 45 128.
  • a high-power laser often a CO2 laser, is used.
  • DE-OS 39 32 328 a method for processing surfaces subjected to friction in internal combustion engines, in particular the cylinder surfaces of piston engines, is known, the surface being honed and additionally subjected to a laser beam treatment.
  • This laser beam treatment after prior honing is preferably carried out by a pulsed excimer laser, this treatment causing a surface evaporation of micro-grooves while maintaining the macro-grooves (oil-promoting honing grooves) without deliberate remelting.
  • DE-OS 39 32 398 mentions a non-deliberately produced "skin" in the nanometer range ( ⁇ 1 ⁇ m), ie in the order of 0.001 ⁇ m. Due to the extreme quenching rates, it is usually oversaturated or already amorphous and therefore possibly hard.
  • the object of the present invention is to provide a method of the type mentioned at the outset which enables the hardening and preferably also the simultaneous micro-smoothing of machine components, which either in the form of a hard cast part with a leather-buried structure or in the form of a steel part with pearlitic structure, the method being carried out in such a way that a new structure is achieved on the surface of the component, which not only offers a hard and preferably also a micro-smooth surface, but also does not require any reworking, but does not require any reworking for special purposes is excluded.
  • the invention provides that the respective component, which is either in the form of a part, such as a hard cast part with a leather-buritic structure or in the form of a steel part with a pearlitic structure, is treated with a high energy density, the surface layer extending into Near the melting temperature is briefly heated either continuously or by repeated pulses, so that a diffusion of the carbon from the cementite lamellae of ledeburite or pearlite into the soft interlamellar ferrite areas takes place in an edge layer.
  • the substrate surface with ledeburitic or pearlitic structure is therefore heated up to the vicinity of the melting point, although the surface can become doughy, but the surface geometry does not change due to melting of the surface.
  • the keeping at this temperature is chosen according to the invention in such a way that there is no complete dissolution of existing phase components or the formation of a homogeneous mixed crystal.
  • the invention produces an almost closed cementite surface instead of the pearlite in steel and pearlite areas in chilled cast iron through targeted selection of the power density and the duration of the local heating.
  • the choice of the power density and duration of the treatment is further made such that after the local warming up of the surface, the surface layer is self-quenched by the ambient temperature and the temperatures prevailing within the component, with a regression to the original phase state either not or only incompletely. This means that with a pearlitic or ledeburitic structure on the surface or on the surface layer, the cementite substance is mixed at the expense of the stoichiometric structure.
  • the structural component that locally becomes dough or melts is usually the areas between the large cementite lamellae and the pearlite.
  • the iron-carbon state diagram plays a crucial role, taking into account the imbalance conditions.
  • the treatment should be carried out in this way, that is, it should last so short that no homogeneities, e.g. austenitic mixed crystals, can form in the surface layer, whereby sufficient cementite germs must always be present in the surface layer and in the substrate, so that during quenching (self-quenching or possibly with the help of a cold jet) cementite and not residual austenite is always formed.
  • no homogeneities e.g. austenitic mixed crystals
  • the treatment can be carried out in this way, for example with a pulsed radiation source of high energy density, e.g. with an excimer laser that a pronounced evaporation (sublimation) and melting of a thin surface skin takes place, which leads to a pronounced micro-smoothing of the surface.
  • a pulsed radiation source of high energy density e.g. with an excimer laser that a pronounced evaporation (sublimation) and melting of a thin surface skin takes place, which leads to a pronounced micro-smoothing of the surface.
  • Typical values for the energy density used are in the range from 2 x 103 to 5 x 105 W / cm2.
  • the invention creates machine components which are either in the form of a hard cast part with a leather-buried structure or in the form of a steel part with a pearlitic structure, with the special characteristic that an almost closed cementite surface is present, the component having a surface hardness above 900 HV, preferably approximately 1100 HV and the cementite precipitation density in the interlamellar areas decreases continuously from the surface towards the matrix.
  • the component can be, for example, a camshaft or a rocker arm, but of course there are also many other conceivable machine components that can be treated according to the invention.
  • the treatment can basically be carried out in the air, at least with a laser beam or with an arc lamp, since there is little or no fear of oxidation processes. It may be useful to carry out the treatment with the selected jet type in a selected gas atmosphere in order to achieve special effects.
  • the treatment could be nitrogenous or CO2-containing atmosphere can be carried out when nitriding or carburizing the surface of the workpiece is additionally desired.
  • the invention is concerned with the surface treatment of machine components with a heterogeneous (over-, under- or -eutectic) cast structure, as shown in FIG. 1, or with over-, under- or -eutectoidal steel structure, so as shown in Fig. 3.
  • FIG. 1 shows a TIG-remelted tread of a cast iron camshaft with a hypoeutectic structure made of cementite flakes and fine pearlite.
  • the TIG remelting process represents a possible, but not absolutely necessary, pretreatment.
  • the cementite lamellae are the large-area islands, while the pearlite areas have the filigree structure.
  • a hard shell casting also provides a qualitatively similar structure.
  • a surface structure according to FIG. 2 is formed. From the structural components as in FIG. 1, ie from the cementite flakes and fine pearlite an almost closed layer of non-stoichiometric cementite has formed in the surface layer. It is characteristic of this treatment that the surface layer is briefly heated up to the vicinity of the melting temperature (continuously or by repeated pulses), so that the diffusion of the carbon from the cementite lamellae of ledeburite into the soft, interlamellar ferrite areas takes place in the surface layer.
  • the holding time at this temperature is chosen so that there is no complete dissolution of existing phase components and formation of a homogeneous mixed crystal.
  • a regression to the original phase state cannot take place or can only take place incompletely.
  • the cementite substance "blends", as can clearly be seen in FIG. 2, at the expense of the stoichiometric structure, combined with the effect of hardening the surface layer down to 1100 HV.
  • FIG. 3 shows a scanning electron micrograph of a eutectoidal structure of a steel with approximately 0.8% C.
  • ferrite as dark parts of the matrix
  • cementite as light parts of the matrix in a lamellar arrangement.
  • FIG. 4 After treatment with the excimer laser, as for the cast iron sample of FIG. 1, a microstructure builds up in the surface layer, as shown in FIG. 4.
  • the original cementite lamellae which are still visible as lighter cores, have "mingled" in a surface layer approximately 2 ⁇ m deep. Almost the entire surface layer consists of a cementite which is presumably not balanced and partly granular.
  • the brief heating of the surface layer up to the vicinity of the melting temperature (continuously or by repeated pulses of the laser) in a peripheral layer caused the carbon to diffuse from the cementite lamellae of pearlite into the soft, interlamellar ferrite areas.
  • the temperature reached in the vicinity of the melting temperature must be chosen so that there is no complete dissolution of existing phase components and formation of a homogeneous mixed crystal.
  • the self-quenching of the surface layer following the heat treatment prevents a regression in the original phase state.
  • an imbalance cementite with a higher volume than the original one arises.
  • Both the pearlitic and the ledeburitic structure therefore result in a "blending" of the cementite substance at the expense of the stoichiometric structure, combined with the effect of hardening the surface layer up to 1100 HV.
  • it is treated with both types of metal on the Surface to form an even closed non-stoichiometric cementite layer, which has a considerable improvement in the abrasive and especially the adhesive wear resistance in the run-in phase and in subsequent operation.
  • the invention therefore describes a method for the contactless production of thin wear layers, mainly by "blending" the cementite surface. This also improves the resistance to pitting and fatigue.
  • the invention includes at the same time smoothing the surface. This treatment can successfully replace mechanical microfinishing. Inlet wear is greatly reduced by smoothing.
  • the method also has the particular advantage that it can be easily integrated into existing production lines without great effort.
  • the ground ledeburitic cam surface of a camshaft is treated with a CO2 laser in CW operation (continuous, non-pulsed laser beam) with a rectangular beam cross-section of size 2 x 10 or 1 x 20 mm2 by rotating the camshaft under the laser beam.
  • the width of approx. 10 or 20 mm corresponds to the cam width of an NW with 4 or 2 valve technology.
  • the surface temperature in the area of liquidus solidus from 1150 to 1250 ° C (pasty state of the surface layer) is monitored with known "on line" temperature measuring systems.
  • the power density is 5 x 103 to 105 W / cm2. With the beam cross-section size mentioned, a laser power of 5 to 8 kW is required.
  • the speed of rotation of the camshaft is determined from the dwell time of the laser beam on the cam surface.
  • a dwell time (exposure time) of 0.3 to 10 s is required for a carbide layer thickness of 3 to 10 ⁇ m. If the treatment in pulse mode is carried out with a CO2 or Nd: YAG laser, at least 20% lower average power densities are required.
  • the ledeburitic cam tread of a die cast shell or edge layer remelted (TIG; laser, electron beam) rocker arm is treated with the electron beam to form a thin, but almost dense carbide wear layer.
  • TOG die cast shell or edge layer remelted
  • the e-beam with a beam diameter of 0.1 to 0.5 mm scans the entire cam running surface one or more times in a known manner. If the surface is scanned several times, an almost constant, average temperature of the surface, which does not exceed the liquidus, will also be maintained.
  • a deflection frequency of the e-beam of 100 to 500 Hz in the y-axis and a feed speed of the rocker arm in the x-axis of 5 to 60 mm / s are used, depending on whether preheating of the rocker arm has taken place beforehand or not.
  • the power of the electron beam gun required in the example was 3 kW (60 V, 50 A).
  • the advantage of the electron beam in this case is the high level of guidance and deflectability as well as the local repeatability of the treatment.
  • carbide layers of different thicknesses can be produced on a surface as required (customized layer thicknesses) without any special effort.
  • the laser power density is in the range 2 x 104 to 5 x 105 W / cm2 and in pulse operation with an average power density is at least 20% lower.
  • the radiation exposure time is comparable to that required for a ledeburitic structure (example 1). Although the liquidus solidus temperature is higher here, the diffusion rate is also higher depending on the temperature.
  • the carbide layer of the present invention It is characteristic of the carbide layer of the present invention that it is produced on existing wear-resistant ledeburite or pearlite, the wear resistance is improved and that the cementite precipitation density in the interlamellar regions always decreases from the surface in the direction of the matrix.
  • the exposure times of 0.017 to 0.026 S mentioned in the US patent are also not comparable with the values of 0.1 to 10 s mentioned in the present application.
  • the average power density for example in the case of an Nd: YAG laser with a beam cross section of 0.5 x 0.5 cm2 and an average power of 500 W, is of the order of 20,000 W / cm2 and therefore in a completely different range than in U.S. Patent No. 4,304,978.

Abstract

A process for increasing the hardness and, if desired, smoothing of machine components by means of a beam such as, for example, a laser beam, an electron beam or an electric arc, which effects surface heating of the particular component, is characterised in that the particular component, which is present in the form of a chilled casting having a ledeburite microstructure or in the form of a steel component having a perlite microstructure, is treated at a high energy density, the surface layer being briefly heated either continuously or by repeated pulses up to the vicinity of the melting point, so that, in an edge layer, a diffusion of the carbon from the cementite lamellae of the ledeburite or of the perlite into the soft, interlamellar ferrite regions takes place. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein verfahren zum Aufhärten und ggf. Glätten von Maschinenbauteilen mittels eines eine Oberflächenaufwärmung des jeweiligen Bauteils bewirkenden Strahls, wie z. B. eines Laserstrahls, eines Elektronenstrahls oder des Strahles einer Lichtbogenlampe. Weiterhin betrifft die vorliegende Erfindung Maschinenbauteile, welche nach dem Verfahren hergestellt bzw. behandelt werden.The present invention relates to a method for hardening and possibly smoothing machine components by means of a beam causing surface heating of the respective component, such as. B. a laser beam, an electron beam or the beam of an arc lamp. The present invention further relates to machine components which are produced or treated by the method.

Es sind im Stand der Technik verschiedene Verfahren mit Maschinenbauteilen, die mit Laserstrahlen oder Elektronenstrahlen behandelt werden, bekannt, um bestimmte Eigenschaften an den Oberflächen der Bauteile zu erreichen.Various methods with machine components, which are treated with laser beams or electron beams, are known in the prior art in order to achieve certain properties on the surfaces of the components.

Beispielsweise ist das sogenannte Laserumwandlungshärten bekannt. Hier wird im Grunde genommen ein Laser als energiereiche Wärmequelle zum Martensithärten verwendet, ohne dabei die Oberfläche der behandelten Bauteile zu schmelzen. Mit anderen Worten wird ein dem Induktionshärten ähnlicher Vorgang durchgeführt. Beispiele für solche Verfahren sind den US-PS'en 4 304 978, 4 093 842 und 4 686 349 sowie der deutschen Patentschrift 33 43 783 zu entnehmen.For example, so-called laser transformation hardening is known. Basically, a laser is used as a high-energy heat source for martensite hardening without melting the surface of the treated components. In other words, an operation similar to induction hardening is carried out. Examples of such processes can be found in US Pat. Nos. 4,304,978, 4,093,842 and 4,686,349 and German Patent 33 43 783.

Weiterhin gibt es das Verfahren des sogenannten Laserumschmelzhärtens. Hier wird mittels des Laserstrahls eine geschmolzene Schicht an der Oberfläche des Bauteils erzeugt, welche durch rasche Erstarrung zu einem harten leduburitischen Gefüge führt. Beispiele für diese Verfahrensweise sind aus den deutschen Patentschriften 34 18 555 und 36 29 799 bekannt.There is also the process of laser remelt hardening. Here, a molten layer is generated on the surface of the component by means of the laser beam, which leads to a hard leduburitic structure through rapid solidification. Examples of this procedure are known from German patents 34 18 555 and 36 29 799.

Eine weitere Verfahrenskategorie umfaßt das Laserschichteinschmelzen. Bei diesem Verfahren wird eine auf einem Substrat aufgetragene Graphitschicht in die Schicht eingeschmolzen. Beim Erstarren bzw. Abkühlen des Substrats bilden sich Karbide. Mit anderen Worten wird durch Einschmelzen des Graphits Kohlenstoff in die Schicht eingebracht, der im schmelzflüssigen Zustand sich auflöst, ein Mischkristall bildet und beim Abkühlen mit Atomen des Substrats Cr, W, V, Mn, Fe Karbide bildet, die in Form von körniger bzw. dendritischer Ausscheidungen vorliegen, beispielsweise TiC (wenn das Substrat ein Ti-Werkstoff ist) aus dem gelösten Graphit. Ein Beispiel für diese Verfahrensweise ist der DE-OS 35 45 128 zu entnehmen.Another category of processes includes laser layer melting. In this method, a graphite layer applied to a substrate is melted into the layer. When the substrate solidifies or cools, carbides form. In other words, by melting the graphite, carbon is introduced into the layer, which dissolves in the molten state, forms a mixed crystal and forms carbides on cooling with atoms of the substrate Cr, W, V, Mn, Fe, which in the form of granular or dendritic precipitates are present, for example TiC (if the substrate is a Ti material) from the dissolved graphite. An example of this procedure can be found in DE-OS 35 45 128.

In allen diesen Fällen wird ein Hochleistungslaser, häufig ein CO₂-Laser benutzt.In all of these cases, a high-power laser, often a CO₂ laser, is used.

Aus der DE-OS 39 32 328 ist im übrigen ein Verfahren zur Bearbeitung von durch Reibung beanspruchten Flächen in Brennkraftmaschinen, insbesondere der Zylinderlaufflächen von Kolbenmotoren bekannt, wobei die Fläche gehont und zusätzlich einer Laserstrahlbehandlung unterzogen wird. Diese Laserstrahlbehandlung nach vorherigem Honen wird vorzugsweise durch einen gepulsten sogenannten Excimer-Laser durchgeführt, wobei diese Behandlung eine Oberflächenabdampfung von Mikroriefen bei Erhaltung der Makroriefen (ölfördernde Honriefen) ohne gewollte Umschmelzerscheinungen verursacht. Die DE-OS 39 32 398 erwähnt eine nicht gezielt erzeugte "Haut" im Nanometerbereich (< 1µm), d.h. in der Größenordnung von 0,001µm. Durch die extremen Abschreckraten ist sie meist übersättigt oder bereits schon amorph und deshalb eventuell hart.From DE-OS 39 32 328 a method for processing surfaces subjected to friction in internal combustion engines, in particular the cylinder surfaces of piston engines, is known, the surface being honed and additionally subjected to a laser beam treatment. This laser beam treatment after prior honing is preferably carried out by a pulsed excimer laser, this treatment causing a surface evaporation of micro-grooves while maintaining the macro-grooves (oil-promoting honing grooves) without deliberate remelting. DE-OS 39 32 398 mentions a non-deliberately produced "skin" in the nanometer range (<1 µm), ie in the order of 0.001 µm. Due to the extreme quenching rates, it is usually oversaturated or already amorphous and therefore possibly hard.

Im Vergleich zu den bekannten Verfahren liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art vorzusehen, das das Aufhärten und vorzugsweise auch das gleichzeitige Mikroglätten von Maschinenbauteilen, ermöglicht, welche entweder in Form eines Hartgußteils mit ledeburitischem Gefüge oder in Form eines Stahlteils mit perlitischem Gefüge vorliegen, wobei das Verfahren so durchgeführt wird, daß eine neuartige Gefügestruktur an der Oberfläche des Bauteiles erreicht wird, das nicht nur eine harte und vorzugsweise auch mikroglatte Oberfläche bietet, sondern auch keinerlei Nachbearbeitung erfordert, wobei aber eine eventuelle Nachbearbeitung für Sonderzwecke nicht ausgeschlossen ist.In comparison to the known methods, the object of the present invention is to provide a method of the type mentioned at the outset which enables the hardening and preferably also the simultaneous micro-smoothing of machine components, which either in the form of a hard cast part with a leather-buried structure or in the form of a steel part with pearlitic structure, the method being carried out in such a way that a new structure is achieved on the surface of the component, which not only offers a hard and preferably also a micro-smooth surface, but also does not require any reworking, but does not require any reworking for special purposes is excluded.

Zur Lösung dieser Aufgabe wird erfindungsgemäß vorgesehen, daß das jeweilige Bauteil, das entweder in Form eines Teils, wie z.B. ein Hartgußteil mit ledeburitischem Gefüge oder in Form eines Stahlteils mit perlitischem Gefüge vorliegt, mit einer hohen Energiedichte behandelt wird, wobei die Oberflächenschicht bis in die Nähe der Schmelztemperatur kurzzeitig entweder kontinuierlich oder durch mehrmalige Pulse erwärmt wird, so daß in einer Randschicht eine Diffusion des Kohlenstoffs aus den Zementitlamellen des Ledeburits bzw. des Perlits in die weichen zwischenlamellaren Ferritbereiche stattfindet. Es erfolgt daher eine Erwärmung der Substratoberfläche mit ledeburitischem bzw. perlitischem Gefüge bis in die Nähe des Schmelzpunktes, wobei die Oberfläche zwar teigig werden kann, eine Veränderung der Oberflächengeometrie durch Schmelzen der Oberfläche jedoch nicht eintritt. Das Halten auf dieser Temperatur wird erfindungsgemäß so gewählt, daß es nicht zu einer vollständigen Auflösung vorhandener Phasenbestandteile bzw. zur Bildung eines homogenen Mischkristalls kommt.To achieve this object, the invention provides that the respective component, which is either in the form of a part, such as a hard cast part with a leather-buritic structure or in the form of a steel part with a pearlitic structure, is treated with a high energy density, the surface layer extending into Near the melting temperature is briefly heated either continuously or by repeated pulses, so that a diffusion of the carbon from the cementite lamellae of ledeburite or pearlite into the soft interlamellar ferrite areas takes place in an edge layer. The substrate surface with ledeburitic or pearlitic structure is therefore heated up to the vicinity of the melting point, although the surface can become doughy, but the surface geometry does not change due to melting of the surface. The keeping at this temperature is chosen according to the invention in such a way that there is no complete dissolution of existing phase components or the formation of a homogeneous mixed crystal.

Im Gegensatz zu den bekannten Laserumwandlungshärten, das eine martensitische Struktur an der Oberfläche des Maschinenbauteils erzeugt, wird durch die Erfindung durch gezielte Wahl der Leistungsdichte sowie der Zeitdauer der lokalen Aufwärmung eine nahezu geschlossene Zementitoberfläche anstelle des Perlits in Stahl und Perlitbereiche im Hartguß erzeugt. Die Wahl der Leistungsdichte und Zeitdauer der Behandlung wird weiterhin so getroffen, daß nach der lokalen Aufwärmung der Oberfläche eine Selbstabschreckung der Oberflächenschicht durch die Umgebungstemperatur und die innerhalb des Bauteils herrschenden Temperaturen eintritt, wobei eine Rückbildung in den ursprünglichen Phasenzustand nicht oder nur unvollständig erfolgt. Dies bedeutet, daß es bei einem perlitischen oder ledeburitischem Gefüge an der Oberfläche bzw. an der Oberflächenschicht zu einem Vermengen der Zementitsubstanz auf Kosten des stöchiometrischen Gefügeaufbaus kommt. Durch die Behandlung mit dem jeweiligen Arbeitsstrahl (Laser, Elektronenstrahl bzw. Lichtbogenlampe) wird das eine Gefügebestandteil lokal teigig bzw. es schmilzt, während die anderen Gefügebestandteile im festen Zustand verbleiben. Üblicherweise handelt es sich bei dem Gefügebestandteil, der lokal teigig wird bzw. schmilzt, um die Bereiche zwischen den großen Zementitlamellen und dem Perlit. Hier spielt das Eisen-Kohlenstoffzustandsdiagramm unter Berücksichtigung der Ungleichgewichtsverhältnisse eine entscheidende Rolle.In contrast to the known laser transformation hardness, which creates a martensitic structure on the surface of the machine component, the invention produces an almost closed cementite surface instead of the pearlite in steel and pearlite areas in chilled cast iron through targeted selection of the power density and the duration of the local heating. The choice of the power density and duration of the treatment is further made such that after the local warming up of the surface, the surface layer is self-quenched by the ambient temperature and the temperatures prevailing within the component, with a regression to the original phase state either not or only incompletely. This means that with a pearlitic or ledeburitic structure on the surface or on the surface layer, the cementite substance is mixed at the expense of the stoichiometric structure. Treatment with the respective working beam (laser, electron beam or arc lamp) makes one structural component locally doughy or it melts, while the other structural components remain in the solid state. The structural component that locally becomes dough or melts is usually the areas between the large cementite lamellae and the pearlite. Here, the iron-carbon state diagram plays a crucial role, taking into account the imbalance conditions.

Die Behandlung soll so durchgeführt werden, d.h. vor allem so kurz dauern, daß sich in der Randschicht keine Homogene, z.B. austenitische Mischkristalle ausbilden können, wobei stets genügend Zementitkeime in der Randschicht und im Substrat vorhanden sein müssen, so daß beim Abschrecken (Selbstabschreckung oder evtl. mit Hilfe eines Kältestrahls) stets Zementit und nicht Restaustenit gebildet wird.The treatment should be carried out in this way, that is, it should last so short that no homogeneities, e.g. austenitic mixed crystals, can form in the surface layer, whereby sufficient cementite germs must always be present in the surface layer and in the substrate, so that during quenching (self-quenching or possibly with the help of a cold jet) cementite and not residual austenite is always formed.

Die Behandlung läßt sich so durchführen, beispielsweise mit einer gepulsten Strahlenquelle hoher Energiedichte, wie z.B. mit einem Excimer-Laser, daß ein ausgeprägtes Abdampfen (Sublimation) und Schmelzen einer dünnen Oberflächenhaut erfolgt, was zu einem ausgeprägten Mikroglätten der Oberfläche führt.The treatment can be carried out in this way, for example with a pulsed radiation source of high energy density, e.g. with an excimer laser that a pronounced evaporation (sublimation) and melting of a thin surface skin takes place, which leads to a pronounced micro-smoothing of the surface.

Im allgemeinen ist es sinnvoll, vor der Behandlung mit dem Strahl hoher Energiedichte, das jeweilige Bauteil wenigstens an der zu behandelnden Oberfläche zu schleifen, wobei aber auch schalenhart gegossene Oberflächen mit dem erfindungsgemäßen Verfahren behandelt werden können. Typische Anwendungsbeispiele für das vorliegende Verfahren sind die Erzeugung von harten und ggf. mikroglatten Oberflächen an Nockenwellen oder Schlepphebel von Verbrennungsmotoren.In general, it is sensible to grind the respective component at least on the surface to be treated before treatment with the beam of high energy density, but it is also possible to treat hard-cast surfaces with the method according to the invention. Typical application examples for the present method are the generation of hard and possibly micro-smooth surfaces on camshafts or rocker arms of internal combustion engines.

Typische Werte für die verwendete Energiedichte liegen im Bereich von 2 x 10³ bis 5 x 10⁵ W/cm².Typical values for the energy density used are in the range from 2 x 10³ to 5 x 10⁵ W / cm².

Angaben zu typischen Belichtungszeiten bzw. Behandlungszeiten für die einzelnen Stellen der Oberfläche sind den weiteren Unteransprüchen bzw. den Beispielen zu entnehmen. Die Erfindung schafft daher eine berührungslose, sehr schnelle Methode zum gleichzeitigen Glätten und Aufhärten von heterogenen Verschleißoberflächen metallischer Werkstoffe. Weiterhin ermöglicht es die Erfindung das Mikroglätten geschliffener Verschleißoberflächen mit dem Aufhärten durch Zementitvermengung an gegossenen Hartgußteilen mit ledeburitischem bzw. Stahl mit perlitischem Gefüge in einer Operation zu vereinigen. Durch die Bildung von nahezu kompakten geschlossenen Zementitoberflächen anstelle des Perlits im Stahl und Perlitbereichen im Hartguß, wird besonders die adhäsive Verschleißbeständigkeit stark verbessert. Die Erfindung weist auch folgende Vorteile auf:

  • sie ersetzt das mechanische Mikroglätten (Mikrofinishen) von Verschleißoberflächen auf Nockenwellen und Schlepphebeln,
  • sie verringert den Einlaufverschleiß,
  • die Behandlung dauert sehr kurz, typischerweise bis zu einer halben Minute pro Nockenwelle,
  • die Methode läßt sich sehr gut in die Produktionslinie einfügen.
Information on typical exposure times or treatment times for the individual points on the surface can be found in the further subclaims or the examples. The invention therefore creates a non-contact, very fast method for simultaneously smoothing and hardening heterogeneous wear surfaces of metallic materials. Furthermore, the invention makes it possible to combine the micro-smoothing of ground wear surfaces with the hardening by cementite mixing on cast chilled castings with ledeburitic or steel with pearlitic structure in one operation. The formation of almost compact, closed cementite surfaces instead of pearlite in steel and pearlite areas in chilled cast iron, in particular greatly improves the adhesive wear resistance. The invention also has the following advantages:
  • it replaces mechanical micro-smoothing (microfinishing) of wear surfaces on camshafts and rocker arms,
  • it reduces run-in wear,
  • the treatment takes a very short time, typically up to half a minute per camshaft,
  • the method can be inserted very well into the production line.

Durch die Erfindung werden Maschinenbauteile, die entweder in Form eines Hartgußteils mit ledeburitischem Gefüge oder in Form eines Stahlteils mit perlitischem Gefüge vorliegen, geschaffen mit dem besonderen Kennzeichen, daß eine nahezu geschlossene Zementitoberfläche vorliegt, wobei das Bauteil eine Oberflächenhärte oberhalb von 900 HV, vorzugsweise etwa 1100 HV aufweist und die Zementitausscheidungsdichte in den zwischenlamellaren Bereichen von der Oberfläche in Richtung Matrix kontinuierlich abnimmt. Das Bauteil kann beispielsweise eine Nockenwelle oder ein Schlepphebel sein, es sind aber natürlich auch viele andere denkbare Maschinenbauteile, welche erfindungsgemäß behandelt werden können.The invention creates machine components which are either in the form of a hard cast part with a leather-buried structure or in the form of a steel part with a pearlitic structure, with the special characteristic that an almost closed cementite surface is present, the component having a surface hardness above 900 HV, preferably approximately 1100 HV and the cementite precipitation density in the interlamellar areas decreases continuously from the surface towards the matrix. The component can be, for example, a camshaft or a rocker arm, but of course there are also many other conceivable machine components that can be treated according to the invention.

Schließlich soll zum Ausdruck gebracht werden, daß die Behandlung grundsätzlich in der Luft durchführbar ist, wenigstens mit einem Laserstrahl oder mit einer Lichtbogenlampe, da Oxidationsvorgänge nicht oder nicht im ausgeprägten Maße zu befürchten sind. Es kann unter Umständen nützlich sein, die Behandlung mit der gewählten Strahlart in einer ausgewählten Gasatmosphäre durchzuführen, um spezielle Effekte zu erreichen. Beispielsweise könnte die Behandlung in einer stickstoffhaltigen oder CO₂-haltigen Atmosphäre durchgeführt werden, wenn ein Nitrieren oder Aufkohlen der Oberfläche des Werkstücks zusätzlich erwünscht ist.Finally, it should be expressed that the treatment can basically be carried out in the air, at least with a laser beam or with an arc lamp, since there is little or no fear of oxidation processes. It may be useful to carry out the treatment with the selected jet type in a selected gas atmosphere in order to achieve special effects. For example, the treatment could be nitrogenous or CO₂-containing atmosphere can be carried out when nitriding or carburizing the surface of the workpiece is additionally desired.

Die Erfindung wird nachfolgend näher erläutert, anhand von vier elektronenmikroskopischen Abbildungen und drei Ausführungsbeispielen.The invention is explained in more detail below on the basis of four electron microscopic images and three exemplary embodiments.

Die rasterelektronenmikroskopischen Abbildungen zeigen:

Fig. 1
eine Draufsicht auf eine umgeschmolzene Lauffläche einer Gußeisennockenwelle vor Anwendung der erfindungsgemäßen Behandlung (2580 mal vergrößert),
Fig. 2
die Oberfläche nach Fig. 1, jedoch nach zusätzlicher erfindungsgemäßer Behandlung mit einem Excimer-Laser (2040 mal vergrößert),
Fig. 3
eine Draufsicht auf ein eutektoidales Gefüge eines unbehandelten Stahls mit 0,8%C (1010 mal vergrößert und geätzt),
Fig. 4
das Gefüge aus Fig. 3 nach erfindungsgemäßer Laserbehandlung mit Schliff senkrecht zur behandelten Oberfläche bei 40000-facher Vergrößerung und geätzt.
The scanning electron microscopic images show:
Fig. 1
a plan view of a remelted tread of a cast iron camshaft before applying the treatment according to the invention (enlarged 2580 times),
Fig. 2
1, but after additional treatment according to the invention with an excimer laser (magnified 2040 times),
Fig. 3
a plan view of a eutectoidal structure of an untreated steel with 0.8% C (1010 times enlarged and etched),
Fig. 4
the structure of Fig. 3 after laser treatment according to the invention with grinding perpendicular to the treated surface at 40,000 times magnification and etched.

Wie bereits oben erläutert, befaßt sich die Erfindung mit der Oberflächenbehandlung von Maschinenbauteilen mit heterogenem (über-, unter- oder -eutektischem) Gußgefüge, so wie in Fig. 1 dargestellt, bzw. mit über-, unter- oder -eutektoidalem Stahlgefüge, so wie in Fig. 3 dargestellt.As already explained above, the invention is concerned with the surface treatment of machine components with a heterogeneous (over-, under- or -eutectic) cast structure, as shown in FIG. 1, or with over-, under- or -eutectoidal steel structure, so as shown in Fig. 3.

Die rasterelektronenmikroskopische Draufsicht der Fig. 1 zeigt eine WIG-umgeschmolzene Lauffläche einer Gußeisennockenwelle mit einem untereutektischem Gefüge aus Zementitlamellen und feinem Perlit. Das WIG-Umschmelzverfahren stellt eine mögliche, jedoch nicht zwingend erforderliche Vorbehandlung dar. In Fig. 1 sind die Zementitlamellen die großflächigen Inseln, während die Perlitbereiche die filigrane Struktur aufweisen. Ein qualitativ ähnliches Gefüge liefert auch Schalenhartguß.The scanning electron microscopic top view of FIG. 1 shows a TIG-remelted tread of a cast iron camshaft with a hypoeutectic structure made of cementite flakes and fine pearlite. The TIG remelting process represents a possible, but not absolutely necessary, pretreatment. In FIG. 1, the cementite lamellae are the large-area islands, while the pearlite areas have the filigree structure. A hard shell casting also provides a qualitatively similar structure.

Nach zusätzlicher Behandlung der Oberfläche mit einem Excimer-Laser mit einer Pulsleistungsdichte von beispielsweise 40 mJ/mm², 2 Pulse, Pulsdauer 40 ns entsteht eine Oberflächenstruktur nach Fig. 2. Aus den Gefügebestandteilen wie im Fig. 1, d.h. aus den Zementitlamellen und feinem Perlit hat sich eine nahezu geschlossene Schicht eines nichtstöchiometrischen Zementits in der Randschicht gebildet. Charakteristisch für diese Behandlung ist, daß die Oberflächenschicht bis in die Nähe der Schmelztemperatur kurzzeitig (kontinuierlich oder durch mehrmalige Pulse) erwärmt wird, so daß in der Randschicht eine Diffusion des Kohlenstoffs aus den Zementitlamellen des Ledeburits in die weichen zwischenlamellaren Ferritbereiche stattfindet. Die Haltezeit auf dieser Temperatur wird so gewählt, daß es nicht zu einer vollständigen Auflösung vorhandener Phasenbestandteile und Bildung eines homogenen Mischkristalls kommt. Durch die darauffolgende Selbstabschreckung der Oberflächenschicht kann eine Rückbildung in den ursprünglichen Phasenzustand nicht oder nur unvollständig erfolgen. Es entsteht daher ein Ungleichgewichtzementit mit einem höheren Volumen als das ursprüngliche. Bei einem perlitischen Gefüge kommt es zu einem "Vermengen" der Zementitsubstanz, wie aus Fig. 2 klar ersichtlich, auf Kosten des stöchiometrischen Gefügeaufbaus, verbunden mit dem Effekt einer Aufhärtung der Oberflächenschicht bis auf 1100 HV.After additional treatment of the surface with an excimer laser with a pulse power density of, for example, 40 mJ / mm², 2 pulses, pulse duration 40 ns, a surface structure according to FIG. 2 is formed. From the structural components as in FIG. 1, ie from the cementite flakes and fine pearlite an almost closed layer of non-stoichiometric cementite has formed in the surface layer. It is characteristic of this treatment that the surface layer is briefly heated up to the vicinity of the melting temperature (continuously or by repeated pulses), so that the diffusion of the carbon from the cementite lamellae of ledeburite into the soft, interlamellar ferrite areas takes place in the surface layer. The holding time at this temperature is chosen so that there is no complete dissolution of existing phase components and formation of a homogeneous mixed crystal. As a result of the subsequent self-quenching of the surface layer, a regression to the original phase state cannot take place or can only take place incompletely. This creates an imbalance cementite with a higher volume than the original one. In the case of a pearlitic structure, the cementite substance "blends", as can clearly be seen in FIG. 2, at the expense of the stoichiometric structure, combined with the effect of hardening the surface layer down to 1100 HV.

Die Fig. 3 zeigt eine rasterelektronenmikroskopische Aufnahme eines eutektoidalen Gefüges eines Stahls mit ungefähr 0,8%C. Man sieht Ferrit als dunkle Teile der Matrix und Zementit als helle Teile der Matrix in lamellarer Anordnung. Nach Behandlung mit dem Excimer-Laser, wie für die Gußeisenprobe der Fig. 1, entsteht ein Gefügeaufbau in der Randschicht, wie in Fig. 4 dargestellt. Die ursprünglichen Zementitlamellen, welche als hellere Kerne weiterhin sichtbar sind, haben sich in einer Randschicht von ungefähr 2 µm Tiefe "vermengt". Nahezu die ganze Randschicht besteht aus einem vermutlich nicht gleichgewichtigen, teils körnig ausgeschiedenem Zementit. Auch hier hat die kurzzeitige Erwärmung der Oberflächenschicht bis in die Nähe der Schmelztemperatur (kontinuierlich oder durch mehrmalige Pulse des Lasers) in einer Randschicht eine Diffusion des Kohlenstoffs aus den Zementitlamellen des Perlits in die weichen zwischenlamellaren Ferritbereiche bewirkt.3 shows a scanning electron micrograph of a eutectoidal structure of a steel with approximately 0.8% C. One sees ferrite as dark parts of the matrix and cementite as light parts of the matrix in a lamellar arrangement. After treatment with the excimer laser, as for the cast iron sample of FIG. 1, a microstructure builds up in the surface layer, as shown in FIG. 4. The original cementite lamellae, which are still visible as lighter cores, have "mingled" in a surface layer approximately 2 µm deep. Almost the entire surface layer consists of a cementite which is presumably not balanced and partly granular. Here, too, the brief heating of the surface layer up to the vicinity of the melting temperature (continuously or by repeated pulses of the laser) in a peripheral layer caused the carbon to diffuse from the cementite lamellae of pearlite into the soft, interlamellar ferrite areas.

Die erreichte Temperatur in der Nähe der Schmelztemperatur muß so gewählt werden, daß es nicht zu einer vollständigen Auflösung vorhandener Phasenbestandteile und Bildung eines homogenen Mischkristalls kommt. Auch hier verhindert die der Wärmebehandlung folgende Selbstabschreckung der Oberflächenschicht eine Rückbildung in den ursprünglichen Phasenzustand. Ebenso entsteht in diesem Beispiel ein Ungleichgewicht Zementit mit einem höheren Volumen als das ursprüngliche.The temperature reached in the vicinity of the melting temperature must be chosen so that there is no complete dissolution of existing phase components and formation of a homogeneous mixed crystal. Here, too, the self-quenching of the surface layer following the heat treatment prevents a regression in the original phase state. Likewise, in this example, an imbalance cementite with a higher volume than the original one arises.

Sowohl bei dem perlitischen als auch bei dem ledeburitischem Gefüge kommt es daher zu einem "Vermengen" der Zementitsubstanz auf Kosten des stöchiometrischen Gefügeaufbaus, verbunden mit dem Effekt einer Aufhärtung der Oberflächenschicht bis auf 1100 HV. Im günstigsten Fall wird es bei beiden Metallsorten auf der behandelten Oberfläche zur Ausbildung einer sogar geschlossenen nichtstöchiometrischen Zementitschicht kommen, die eine erhebliche Verbesserung der abrasiven und besonders der adhäsiven Verschleißbeständigkeit in der Einlaufphase und im weiteren Betrieb zur Folge hat.Both the pearlitic and the ledeburitic structure therefore result in a "blending" of the cementite substance at the expense of the stoichiometric structure, combined with the effect of hardening the surface layer up to 1100 HV. In the best case, it is treated with both types of metal on the Surface to form an even closed non-stoichiometric cementite layer, which has a considerable improvement in the abrasive and especially the adhesive wear resistance in the run-in phase and in subsequent operation.

Von Bedeutung bei beiden Metallsorten ist auch, daß das lokale Teigigwerden bzw. Schmelzen der einen, bei gleichzeitigem Verbleiben der anderen Gefügebestandteile im festen Zustand möglich ist, so daß die primären Werkstückoberflächen auch nach der Behandlung formtreu erhalten bleiben, wenn von geringer Oberflächenglättung infolge Abdampfen einer Oberflächenschicht abgesehen wird. Da die Behandlung nur so kurz dauert, daß sich in der Randschicht kein homogener, z.B. austenitischer Mischkristall ausbilden kann, sind stets genügend Zementitkeime in der Randschicht und im Substrat vorhanden, das beim Abschrecken abermals stets Zementit und nicht Restaustenit gebildet wird. Wird die Randschicht mit einer gepulsten Strahlenquelle, vorzugsweise mit einem Excimer-Laser behandelt, so wird zusätzlich ein starkes Abdampfen (Sublimation) und Schmelzen einer dünnen Oberflächenhaut stattfinden. Infolge des Verdampfens sowie der Oberflächenspannung der geschmolzenen Oberflächenhaut wird in diesem Fall ein zusätzliches Mikroglätten (Entfernen der Schleifriefen, Verschuppungen und des Blechmantels) stattfinden. Bei entsprechender Einstellung der Laserparameter wird ein gleichzeitiges Glätten der Oberfläche und "Vermengen" des Zementits bis zur Ausbildung einer geschlossenen Schicht stattfinden.It is also important for both types of metal that local doughing or melting of one is possible, while the other structural components remain in the solid state, so that the primary workpiece surfaces are retained true to form even after the treatment, if there is little surface smoothing due to evaporation Surface layer is disregarded. Since the treatment only takes so short that there is no homogeneous, e.g. austenitic mixed crystal, there are always sufficient cementite nuclei in the surface layer and in the substrate, which is again formed during quenching and not residual austenite. If the surface layer is treated with a pulsed radiation source, preferably with an excimer laser, then a strong evaporation (sublimation) and melting of a thin surface skin will also take place. As a result of the evaporation and the surface tension of the melted surface skin, an additional micro-smoothing (removal of the grinding grooves, scaling and the sheet metal jacket) will take place in this case. With the appropriate setting of the laser parameters, a simultaneous smoothing of the surface and "blending" of the cementite will take place until a closed layer is formed.

Die Erfindung beschreibt daher eine Methode der berührungslosen Erzeugung von dünnen Verschleißschichten, hauptsächlich durch "Vermengung" der Zementitoberfläche. Dabei wird auch eine Verbesserung der Pitting- und Ermündungsbeständigkeit erreicht. Die Erfindung beinhaltet gleichzeitig eine Glättung der Oberfläche. Diese Behandlung kann das mechanische Mikrofinishen erfolgreich ersetzen. Der Einlaufverschleiß wird durch das Glätten stark reduziert. Das Verfahren hat auch den besonderen Vorteil, daß es sich ohne weiteres in bestehenden Produktionslinien ohne großen Aufwand integrieren läßt.The invention therefore describes a method for the contactless production of thin wear layers, mainly by "blending" the cementite surface. This also improves the resistance to pitting and fatigue. The invention includes at the same time smoothing the surface. This treatment can successfully replace mechanical microfinishing. Inlet wear is greatly reduced by smoothing. The method also has the particular advantage that it can be easily integrated into existing production lines without great effort.

Um die praktische Ausübung der Erfindung näher darzustellen, werden nun einige konkrete Ausführungsbeispiele beschrieben:In order to illustrate the practical practice of the invention in more detail, a few specific exemplary embodiments are now described:

Beispiel 1example 1

Die geschliffene ledeburitische Nockenoberfläche einer Nockenwelle (NW) wird mit einem CO₂-Laser im CW-Betrieb (Kontinuierlicher, nicht gepulster Laserstrahl) mit einem rechteckigen Strahlquerschnitt der Größe 2 x 10 bzw. 1 x 20 mm² durch Rotation der Nockenwelle unter dem Laserstrahl behandelt. Die Breite von ca. 10 bzw. 20 mm entspricht der Nockenbreite einer NW mit 4- bzw. 2-Ventiltechnik. Die Oberflächentemperatur im Bereich Liquidus-Solidus von 1150 bis 1250°C (teigiger Zustand der Oberflächenschicht) wird mit bekannten "on line" Temperaturmeßsystemen überwacht.The ground ledeburitic cam surface of a camshaft (NW) is treated with a CO₂ laser in CW operation (continuous, non-pulsed laser beam) with a rectangular beam cross-section of size 2 x 10 or 1 x 20 mm² by rotating the camshaft under the laser beam. The width of approx. 10 or 20 mm corresponds to the cam width of an NW with 4 or 2 valve technology. The surface temperature in the area of liquidus solidus from 1150 to 1250 ° C (pasty state of the surface layer) is monitored with known "on line" temperature measuring systems.

Die Leistungsdichte beträgt 5 x 10³ bis 10⁵ W/cm². Bei genannter Strahlquerschnittgröße wird eine Laserleistung von 5 bis 8 kW benötigt. Die Rotationsgeschwindigkeit der Nockenwelle wird aus der Verweilzeit des Laserstrahls auf der Nockenoberfläche bestimmt. Für eine Karbidschichtdicke von 3 bis 10 µm wird eine Verweilzeit (Belichtungszeit) von 0,3 bis 10 s benötigt. Wird die Behandlung im Pulsbetrieb mit einem CO₂- bzw. Nd: YAG-Laser durchgeführt, so werden mindestens um 20% geringere mittlere Leistungsdichten benötigt.The power density is 5 x 10³ to 10⁵ W / cm². With the beam cross-section size mentioned, a laser power of 5 to 8 kW is required. The speed of rotation of the camshaft is determined from the dwell time of the laser beam on the cam surface. A dwell time (exposure time) of 0.3 to 10 s is required for a carbide layer thickness of 3 to 10 µm. If the treatment in pulse mode is carried out with a CO₂ or Nd: YAG laser, at least 20% lower average power densities are required.

Beispiel 2Example 2

Die ledeburitische Nockenlauffläche eines schalenhartguß- bzw. randschichtumschmolzenen (WIG; Laser, Elektronenstrahl) Schlepphebels wird zwecks Ausbildung einer dünnen, jedoch nahezu dichten karbidischen Verschleißschicht mit dem Elektronenstrahl behandelt. Der E-Strahl mit 0,1 bis 0,5 mm Strahldurchmesser rastert die gesamte Nockenlauffläche auf bekannter Weise ein oder mehrmals ab. Bei mehrmaligen Abrastern der Oberfläche wird ebenfalls eine nahezu konstante, mittlere Temperatur der Oberfläche, die über den Liquidus nicht hinaussteigt, erhalten bleiben. Beispielsweise wird eine Ablenkungsfrequenz des E-Strahles von 100 bis 500 Hz in der Y-Achse und eine Vorschubgeschwindigkeit des Schlepphebels in X-Achse von 5 bis 60 mm/s angewandt, abhängig davon, ob eine Vorwärmung des Schlepphebels vorher stattgefunden hat oder nicht. Die im Beispiel benötigte Leistung der Elektronenstrahlkanone betrug 3 kW (60 V, 50 A).The ledeburitic cam tread of a die cast shell or edge layer remelted (TIG; laser, electron beam) rocker arm is treated with the electron beam to form a thin, but almost dense carbide wear layer. The e-beam with a beam diameter of 0.1 to 0.5 mm scans the entire cam running surface one or more times in a known manner. If the surface is scanned several times, an almost constant, average temperature of the surface, which does not exceed the liquidus, will also be maintained. For example, a deflection frequency of the e-beam of 100 to 500 Hz in the y-axis and a feed speed of the rocker arm in the x-axis of 5 to 60 mm / s are used, depending on whether preheating of the rocker arm has taken place beforehand or not. The power of the electron beam gun required in the example was 3 kW (60 V, 50 A).

Der Vorteil des Elektronenstrahls liegt in diesem Fall in der hohen Führungsgenauigkeit und Ablenkbarkeit sowie in der lokalen Wiederholbarkeit der Behandlung. Dadurch können ohne speziellen Aufwand je nach Bedarf auf einer Oberfläche Karbidschichten unterschiedlicher Dicke erzeugt werden (maßgeschneiderte Schichtdicken).The advantage of the electron beam in this case is the high level of guidance and deflectability as well as the local repeatability of the treatment. As a result, carbide layers of different thicknesses can be produced on a surface as required (customized layer thicknesses) without any special effort.

Beispiel 3Example 3

Zur Erzeugung einer dünnen Karbidschicht auf Stahloberflächen mit perlitisch bzw. perlitisch-ferritischem Gefüge werden Oberflächentemperaturen von 1250 bis 1450°C benötigt. Bei einem CO₂-Laser im CW-Betrieb (Kontinuierlicher Strahl) wird mit einer Laserleistungsdichte im Bereich 2 x 10⁴ bis 5 x 10⁵ W/cm² und im Pulsbetrieb mit einer mittleren Leistungsdichte die mindestens 20% geringer ist, gearbeitet.Surface temperatures of 1250 to 1450 ° C are required to produce a thin carbide layer on steel surfaces with pearlitic or pearlitic-ferritic structure. With a CO₂ laser in CW operation (continuous beam), the laser power density is in the range 2 x 10⁴ to 5 x 10⁵ W / cm² and in pulse operation with an average power density is at least 20% lower.

Die Strahleinwirkungszeit ist vergleichbar mit der, die für ein ledeburitisches Gefüge benötigt wird (Beispiel 1). Zwar liegt hier die Liquidus-Solidus-Temperatur höher, jedoch ist auch die Diffusionsgeschwindigkeit entsprechend der Temperatur höher.The radiation exposure time is comparable to that required for a ledeburitic structure (example 1). Although the liquidus solidus temperature is higher here, the diffusion rate is also higher depending on the temperature.

Charakteristisch für die Karbidschicht der vorliegenden Erfindung ist, daß diese auf vorhandenen verschleißfesten Ledeburit bzw. Perlit erzeugt wird, die Verschleißbeständigkeit verbessert wird und daß die Zementitausscheidungsdichte in den zwischenlamellaren Bereichen stets von der Oberfläche in Richtung Matrix abnimmt.It is characteristic of the carbide layer of the present invention that it is produced on existing wear-resistant ledeburite or pearlite, the wear resistance is improved and that the cementite precipitation density in the interlamellar regions always decreases from the surface in the direction of the matrix.

Durch die oben gemachten Beispiele und die dort genannten Parameterwerte werden die Unterschiede zu den in der US-PS 4 304 978 verwendeten Parameterwerten klar, d.h. es liegt nicht nur ein unterschiedliches Bestreben vor (wie eingangs genannt, befaßt sich die US-PS mit Umwandlungshärten, das durch Martensitbildung erreicht werden), sondern führen auch die in der US-PS 4 304 978 genannten Parameterwerte nicht zufällig zu der in der vorliegenden Anmeldung angestrebten Zementitvermengung.The examples given above and the parameter values mentioned therein make the differences to the parameter values used in US Pat. No. 4,304,978 clear. not only is there a different endeavor (as mentioned at the beginning, the US patent deals with transformation hardnesses which are achieved by martensite formation), but also the parameter values mentioned in US Pat. No. 4,304,978 do not accidentally lead to the present one Registration of the desired cementite mixture.

Die in der US-PS 4 304 978 beschriebene Leistungsdichte von 1550 bis 2480 W/cm² steht dem Wert von 5000 bis 500 000 W/cm² nach der vorliegenden Erfindung gegenüber. Auch die in der US-PS genannten Belichtungszeiten von 0,017 bis 0,026 S sind mit den in der vorliegenden Anmeldung genannten Werten von 0,1 bis 10 s nicht vergleichbar.The power density of 1550 to 2480 W / cm² described in U.S. Patent No. 4,304,978 contrasts with the value of 5,000 to 500,000 W / cm² in accordance with the present invention. The exposure times of 0.017 to 0.026 S mentioned in the US patent are also not comparable with the values of 0.1 to 10 s mentioned in the present application.

Werden die Parameter des gepulsten Excimer-Lasers in Betracht gezogen, liegen bei der vorliegenden Erfindung wesentlich kürzere Belichtungszeiten von

4 Pulse x 40ns = 160 ns = 0,00000016 s

Figure imgb0001


vor. Auch die mittlere Leistungsdichte, beispielsweise bei einem Nd:YAG-Laser liegt bei einem Strahlquerschnitt von 0,5 x 0,5 cm² und einer mittleren Leistung von 500 W in der Größenordnung von 20000 W/cm² und daher in einem gänzlich anderen Bereich als in der US-PS 4 304 978 angegeben.If the parameters of the pulsed excimer laser are taken into account, the present invention has much shorter exposure times of

4 pulses x 40ns = 160 ns = 0.00000016 s
Figure imgb0001


in front. The average power density, for example in the case of an Nd: YAG laser with a beam cross section of 0.5 x 0.5 cm² and an average power of 500 W, is of the order of 20,000 W / cm² and therefore in a completely different range than in U.S. Patent No. 4,304,978.

Claims (25)

Verfahren zum Aufhärten und ggf. Glätten von Maschinenbauteilen mittels eines eine Oberflächenaufwärmung des jeweiligen Bauteils bewirkenden Strahls wie z.B. eines Laserstrahls, eines Elektronenstrahls oder eines Lichtbogens, dadurch gekennzeichnet, daß das jeweilige Bauteil, welches entweder in Form eines Hartgußteils mit ledeburitischem Gefüge oder in Form eines Stahlteils mit perlitischem Gefüge vorliegt mit einer hohen Energiedichte behandelt wird, wobei die Oberflächenschicht bis in die Nähe der Schmelztemperatur kurzzeitig entweder kontinuierlich oder durch mehrmalige Pulse erwärmt wird, so daß in einer Randschicht eine Diffusion des Kohlenstoffs aus den Zementitlamellen des Ledeburits bzw. des Perlits in die weichen zwischenlamellaren Ferritbereiche stattfindet.Method for hardening and, if necessary, smoothing machine components by means of a jet which heats up the surface of the respective component, e.g. a laser beam, an electron beam or an arc, characterized in that the respective component, which is either in the form of a hard cast part with a leather-bureau structure or in the form of a steel part with a pearlitic structure, is treated with a high energy density, the surface layer being close to the surface The melting temperature is briefly heated either continuously or by repeated pulses, so that a diffusion of the carbon from the cementite lamellae of ledeburite or pearlite into the soft interlamellar ferrite areas takes place in an edge layer. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Haltezeit auf der Temperatur in der Nähe der Schmelztemperatur so gewählt wird, daß es nicht zu einer vollständigen Auflösung vorhandener Phasenbestandteile bzw. zur Bildung eines homogenen Mischkristalls kommt.A method according to claim 1, characterized in that the holding time at the temperature in the vicinity of the melting temperature is chosen so that there is no complete dissolution of existing phase components or the formation of a homogeneous mixed crystal. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Leistungsdichte sowie die Zeitdauer der lokalen Aufwärmung so gewählt wird, daß eine nahezu geschlossene Zementitoberfläche anstelle des Perlits im Stahl und Perlitbereiche im Hartguß entsteht.Method according to one of the preceding claims, characterized in that the power density and the duration of the local heating is selected so that an almost closed cementite surface is created instead of pearlite in steel and pearlite areas in chilled cast iron. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Leistungsdichte und Zeitdauer der Behandlung so gewählt sind, daß nach der lokalen Aufwärmung der Oberfläche durch die Umgebungstemperatur und die innerhalb des Bauteils herrschende Temperatur eine Selbstabschreckung der Oberflächenschicht eintritt, wobei eine Rückbildung in den ursprünglichen Phasenzustand nicht oder nur unvollständig erfolgt.Method according to one of the preceding claims, characterized in that the power density and duration of the treatment are selected such that according to The local warming up of the surface by the ambient temperature and the temperature prevailing within the component leads to self-quenching of the surface layer, with a regression to the original phase state either not or only incompletely. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Leistungsdichte und Zeitdauer der Behandlung so gewählt wird, daß es bei perlitischen und ledeburitischen Gefügen an der Oberfläche bzw. in der oberflächennahen Schicht zu einem Vermengen der Zementitsubstanz auf Kosten des stöchiometrischen Gefügeaufbaus kommt.Method according to one of the preceding claims, characterized in that the power density and duration of the treatment is selected so that in the case of pearlitic and ledeburitic structures on the surface or in the layer near the surface, the cementite substance is mixed at the expense of the stoichiometric structure. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei der Behandlung das eine Gefügebestandteil lokal teigig wird bzw. schmilzt, während die anderen Gefügebestandteile im festen Zustand verbleiben.Method according to one of the preceding claims, characterized in that during the treatment one structural component locally becomes dough or melts, while the other structural components remain in the solid state. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dauer der Behandlung so kurz gewählt wird, daß in der Randschicht kein homogener, z.B. austenitischer Mischkristall ausgebildet werden kann, wobei stets genügend Zementitkeime in der Randschicht und im Substrat vorhanden sind, so daß beim Abschrecken abermals stets Zementit und nicht Restaustenit gebildet wird.Method according to one of the preceding claims, characterized in that the duration of the treatment is chosen to be so short that there is no homogeneous, e.g. austenitic mixed crystal can be formed, with sufficient cementite nuclei always being present in the surface layer and in the substrate, so that cementite and not residual austenite is always formed during quenching. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Behandlung mit einer gepulsten Strahlenquelle hoher Energiedichte wie z.B. mit einem Excimerlaser erfolgt, um zusätzlich ein ausgeprägtes Abdampfen (Sublimation) und Schmelzen einer dünnen Oberflächenhaut zu verursachen.Method according to one of the preceding claims, characterized in that the treatment is carried out with a pulsed radiation source of high energy density, such as, for example, an excimer laser, in order to additionally cause pronounced evaporation (sublimation) and melting of a thin surface skin. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor der Behandlung mit dem Strahl hoher Leistungsdichte das jeweilige Bauteil wenigstens an der zu behandelnden Oberfläche geschliffen oder schalenhart gegossen wird.Method according to one of the preceding claims, characterized in that prior to the treatment with the jet of high power density, the respective component is ground or cast at least on the surface to be treated. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es an Nockenwellen oder Schlepphebeln durchgeführt wird.Method according to one of the preceding claims, characterized in that it is carried out on camshafts or rocker arms. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Leistungsdichte vorzugsweise im Bereich 5 x 10³ bis 5 x 10⁵ W/cm² liegt.Method according to one of the preceding claims, characterized in that the power density is preferably in the range 5 x 10³ to 5 x 10⁵ W / cm². Verfahren nach einem der vorhergehenden Ansprüche zur Behandlung einer Nockenwelle mit einer ledeburitischen Nockenoberfläche, dadurch gekennzeichnet, daß die Behandlung mit einem CO₂-Laser im CW-Betrieb (kontinuierlicher, nicht gepulster Laserstrahl) mit einem rechteckigen Strahlquerschnitt mit einer Größe im Bereich 3 mm x 5 mm bis 25 mm x 10 mm, vorzugsweise 2 mm x 10 mm bis 1 mm x 20 mm durchgeführt wird, wobei die Nockenwelle während der Behandlung gedreht wird, wobei die Verweilzeit (Belichtungszeit) an jeder Stelle der behandelten Oberfläche im Bereich zwischen 0,3 bis 10 Sek. liegt, um eine Karbidschichtdicke von 3 bis 10 µm zu erreichen.Method according to one of the preceding claims for the treatment of a camshaft with a ledeburitic cam surface, characterized in that the treatment with a CO₂ laser in CW operation (continuous, non-pulsed laser beam) with a rectangular beam cross section with a size in the range 3 mm x 5 mm to 25 mm x 10 mm, preferably 2 mm x 10 mm to 1 mm x 20 mm, wherein the camshaft is rotated during the treatment, the dwell time (exposure time) at each point on the treated surface in the range between 0.3 up to 10 seconds to achieve a carbide layer thickness of 3 to 10 µm. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Laserleistung im Bereich von 4 bis 12 kW liegt.A method according to claim 12, characterized in that the laser power is in the range of 4 to 12 kW. Verfahren nach einem der vorhergehenden Ansprüche, insbesondere nach dem Anspruch 12, dadurch gekennzeichnet, daß die Oberflächentemperatur im Bereich des Liquidus-Solidus von 1150 bis 1250°C (teilweise teigiger Zustand der Oberflächenstruktur) gehalten und vorzugsweise mittels eines Temperaturmeßsystems überwacht wird.Method according to one of the preceding claims, in particular according to claim 12, characterized in that the surface temperature in the region of the liquidus solidus is maintained at from 1150 to 1250 ° C (partially pasty state of the surface structure) and is preferably monitored by means of a temperature measuring system. Verfahren nach Anspruch 13 bzw. nach Anspruch 14, dadurch gekennzeichnet, daß die Behandlung anstatt im CW-Betrieb im Pulsbetrieb durchgeführt wird, wobei entweder ein CO₂-Laser oder ein Nd:YAG-Laser verwendet wird, wobei die mittlere Leistungsdichte um mindestens 20% niedriger liegt als beim CW-Betrieb.A method according to claim 13 or claim 14, characterized in that the treatment is carried out in pulsed mode instead of in CW mode, using either a CO₂ laser or an Nd: YAG laser, the average power density being at least 20% is lower than in CW operation. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 11 zur Behandlung einer ledeburitischen Nockenlauffläche eines schalenhartguß- bzw. randschichtumschmolzenen Schlepphebels mittels eines Elektronenstrahls, wobei der Elektronenstrahl einen kreisförmigen Querschnitt mit einem Durchmesser von 0,1 bis 0,8 mm aufweist, der die gesamte Nockenlauffläche rasterförmig einmal oder mehrmals abtastet und eine nahezu konstante mittlere Temperatur der Oberfläche erzeugt, die nicht über den Liquidus hinaussteigt.Method according to one of the preceding claims 1 to 11 for the treatment of a ledeburitic cam tread of a rocker arm cast or edge layer remelted rocker arm by means of an electron beam, the electron beam having a circular cross section with a diameter of 0.1 to 0.8 mm, which has the entire cam tread in a grid pattern scanned one or more times and produced an almost constant mean surface temperature that did not rise above the liquidus. Verfahren nach einem der Ansprüche 1 bis 11 zur Behandlung einer ledeburitischen Nockenlauffläche eines schalenhartguß- bzw. eines randschichtumschmolzenen Schlepphebels mittels eines Elektronenstrahls, wobei der Elektronenstrahl einen nahezu rechteckigen Querschnitt aufweist, der die gesamte Nockenlaufflächenbreite bzw. Gleitlagerflächenbreite umfaßt und in Umfangsrichtung die Oberfläche kontinuierlich bzw. mehrfach schwenkend belichtet und so eine nahezu konstante mittlere Temperatur der Oberfläche erzeugt, die nicht über den Liquidus hinausgeht bzw. ihn nur in Teilbereichen örtlich begrenzt oder unwesentlich übersteigt.Method according to one of claims 1 to 11 for the treatment of a ledeburitic cam tread of a rocker cast iron or a surface layer remelted rocker arm by means of an electron beam, the electron beam having an almost rectangular cross section which comprises the entire cam tread width or plain bearing surface width and the surface in the circumferential direction continuously or exposed several times by swinging and thus generates an almost constant mean temperature of the surface, which does not go beyond the liquidus or only locally limited or slightly exceeds it in some areas. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß die Elektronenstrahlkanone eine Leistung von etwa 3 kW aufweist, beispielsweise 50 A bei 60 V.Method according to claim 16 or 17, characterized in that the electron beam gun has a power of approximately 3 kW, for example 50 A at 60 V. Verfahren nach Anspruch 16, 17 oder 18, dadurch gekennzeichnet, daß bei Ausrichtung des Elektronenstrahls in der Z-Achse der Strahl in einer hierzu im wesentlichen senkrechten Richtung, bspw. in Richtung der Y- oder X-Achse mit einer Ablenkungsfrequenz von 100 bis 500 Hz über die Breite oder Länge der Nockenlauffläche des Schlepphebels abgelenkt wird, wobei die Nockenlaufrichtung in der jeweils anderen X- oder Y-Achsrichtung oder schräg hierzu mit einer Vorschubgeschwindigkeit von 5 bis 60 mm/sec vorgeschoben wird, je nachdem, ob eine Vorwärmung des Schlepphebels vorher stattgefunden hat.Method according to Claim 16, 17 or 18, characterized in that when the electron beam is aligned in the Z-axis, the beam in a direction substantially perpendicular thereto, for example in the direction of the Y or X-axis, with a deflection frequency of 100 to 500 Hz is deflected across the width or length of the cam surface of the rocker arm, the cam direction being advanced in the other X or Y axis direction or at an angle to it at a feed rate of 5 to 60 mm / sec, depending on whether the rocker arm is preheating has previously taken place. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß zur Erzeugung von dünnen Karbidschichten auf Stahloberflächen mit perlitisch bzw. perlitisch-ferritischem Gefüge die Oberfläche zu einer Temperatur im Bereich von 1250° bis 1450°C erwärmt wird, welche bei einem Co₂-Laser im CW-Betrieb (kontinuierlicher Strahl) eine Laserleistungsdichte im Bereich von 5 x 10³ bis 5 x 10⁵ W/cm² und im Pulsbetrieb eine mittlere Leistungsdichte, die um etwa 20% geringer ist, erzeugt wird, wobei die Strahleinwirkungszeit, d.h. Verweilzeit jeder Stelle der behandelten Oberfläche 0,1 bis 10 s beträgt.Method according to one of claims 1 to 11, characterized in that for the production of thin carbide layers on steel surfaces with pearlitic or pearlitic-ferritic structure, the surface is heated to a temperature in the range from 1250 ° to 1450 ° C, which at a Co₂- Laser in CW mode (continuous beam) a laser power density in the range of 5 x 10³ to 5 x 10⁵ W / cm² and in pulse mode an average power density, which is about 20% lower, is generated, with the beam exposure time, ie dwell time of each point the treated surface is 0.1 to 10 s. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zementitausscheidungsdichte in den zwischenlamellaren Bereichen kontinuierlich von der Oberfläche in Richtung Matrix abnimmt.Method according to one of the preceding claims, characterized in that the cementite precipitation density in the interlamellar regions decreases continuously from the surface in the direction of the matrix. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Behandlung mit dem Strahl in einer Gasatmosphäre durchgeführt wird, bspw. in einer Gasatmosphäre, welche Stickstoff oder CO₂ enthält.Method according to one of the preceding claims, characterized in that the treatment with the jet is carried out in a gas atmosphere, for example in a gas atmosphere which contains nitrogen or CO₂. Maschinenbauteil, das entweder in Form eines Hartgußteils mit ledeburitischem Gefüge oder in Form eines Stahlteils mit perlitischem Gefüge vorliegt, insbesondere nach einem der vorgehenden Verfahren behandelt wird, dadurch gekennzeichnet, daß an wenigstens einem Oberflächenbereich eine nahezu geschlossene Zementitoberfläche, anstelle des Perlits im Stahl und Perlitbereiche im Hartguß vorliegt und eine Oberflächenhärte oberhalb von 900 HV, vorzugsweise etwa 1100 HV aufweist, wobei die Zementitausscheidungsdichte in den zwischenlamellaren Bereichen von der Oberfläche in Richtung Matrix vorzugsweise kontinuierlich abnimmt.Machine component that is either in the form of a hard cast part with a leather buritic structure or in the form of a steel part with a pearlitic structure, in particular treated according to one of the preceding methods, characterized in that an almost closed cementite surface on at least one surface area, instead of the pearlite in the steel and pearlite areas is present in chilled cast iron and has a surface hardness above 900 HV, preferably approximately 1100 HV, the cementite precipitation density in the interlamellar regions preferably decreasing continuously from the surface in the direction of the matrix. Maschinenbauteil nach Anspruch 23 in Form einer Nockenwelle.Machine component according to claim 23 in the form of a camshaft. Maschinenbauteil nach Anspruch 23 in Form eines Schlepphebels.Machine component according to claim 23 in the form of a rocker arm.
EP93119338A 1992-12-10 1993-12-01 Process for hardness increasing and possibly for smoothing of work pieces and work pieces made by this process Expired - Lifetime EP0601451B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4241527A DE4241527A1 (en) 1992-12-10 1992-12-10 Process for hardening and possibly smoothing machine components as well as machine components manufactured according to this process
DE4241527 1992-12-10

Publications (2)

Publication Number Publication Date
EP0601451A1 true EP0601451A1 (en) 1994-06-15
EP0601451B1 EP0601451B1 (en) 2000-08-23

Family

ID=6474825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93119338A Expired - Lifetime EP0601451B1 (en) 1992-12-10 1993-12-01 Process for hardness increasing and possibly for smoothing of work pieces and work pieces made by this process

Country Status (3)

Country Link
EP (1) EP0601451B1 (en)
DE (2) DE4241527A1 (en)
ES (1) ES2151496T3 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789084A1 (en) * 1996-02-06 1997-08-13 Aisin Aw Co., Ltd. Surface finishing method for a metal member and metal member gained by that method
GB2316097A (en) * 1996-08-13 1998-02-18 Tochigi Fuji Sangyo Kk Hardened structural steel containing cementite
WO1998011262A1 (en) * 1996-09-13 1998-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wear-resistant camshaft and method of producing the same
WO2000063890A1 (en) * 1999-04-16 2000-10-26 International Business Machines Corporation Load/unload lift tab for disk drive
WO2004003239A1 (en) * 2002-06-27 2004-01-08 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method for smoothing and polishing surfaces by treating them with energetic radiation
DE102007059299A1 (en) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Device for processing products to be degassed
DE102009009775A1 (en) 2008-02-22 2010-01-28 Entex Rust & Mitschke Gmbh Planetary-gear extruder, has divided planetary-gear shafts including planetary-gear pieces that are tangentially arranged behind one another, where each shaft is slid to spacer disk in conveying direction of materials via extruder
DE102009013839A1 (en) 2009-02-20 2010-09-23 Entex Rust & Mitschke Gmbh Planetary-gear extruder for producing mixtures of e.g. plastics utilized for pipe, has planetary gear spindle extending over extruder section housing, where length of piece of spindle is five times of pitch diameter of tooth system of piece
EP2335898A2 (en) 2009-12-20 2011-06-22 Entex Rust & Mitschke GmbH Planetary-gear extruder and process of its manufacturing
CN104736290A (en) * 2012-08-24 2015-06-24 山特维克材料科技山特维克表面解决方案部德国有限公司 Method for producing gloss effects on pressing tools
US11414718B2 (en) * 2017-06-01 2022-08-16 Andritz Ag Method for the surface treatment of a steel Yankee

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19959608B4 (en) * 1999-12-10 2008-07-03 Volkswagen Ag Device for the laser treatment of cylindrical inner surfaces, preferably of cylinder running surfaces for internal combustion engines
DE10257165B4 (en) * 2002-12-02 2004-09-23 Cis Solartechnik Gmbh Process for the production of thin-film solar cells with a CuInSe2 layer on a metallic, band-shaped substrate
DE102018108145A1 (en) 2018-04-06 2019-10-10 Volkswagen Ag Method for processing surfaces of components produced by means of 3D printing, and such a machined component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093842A (en) * 1976-01-19 1978-06-06 General Motors Corporation Ported engine cylinder with selectively hardened bore
DE2940127A1 (en) * 1978-10-05 1980-04-17 Coherent Inc METHOD AND DEVICE FOR HEAT TREATMENT
DE3343783C1 (en) * 1983-12-03 1984-07-05 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Process for the production of wear-resistant cylinder running surfaces of internal combustion engines
DE3418555C1 (en) * 1984-05-18 1985-07-25 Audi AG, 8070 Ingolstadt Process for remelting the surface of cylinders made of carbon-containing cast iron
DE3545128A1 (en) * 1985-01-04 1986-07-10 Rolls-Royce Ltd., London METHOD FOR HARDENING A METAL SURFACE
DE3635751A1 (en) * 1985-10-21 1987-04-23 Honda Motor Co Ltd ABRASION-RESISTANT SLIDING ELEMENT
US4686349A (en) * 1984-06-22 1987-08-11 Mitsubishi Denki Kabushiki Kaisha Apparatus for improving surface quality of rotary machine parts
DD204106B1 (en) * 1982-03-31 1988-02-03 Adw Ddr PROCESS FOR SURFACE HARDENING IRON-CARBON ALLOYS
DE3932328A1 (en) * 1989-09-28 1991-04-11 Opel Adam Ag METHOD FOR MACHINING SURFACES HIGHLY STRESSED BY FRICTION IN INTERNAL COMBUSTION ENGINES, AND DEVICE FOR CARRYING OUT THE METHOD
DE3626799C2 (en) * 1985-08-08 1992-01-09 Toyota Jidosha K.K., Toyota, Aichi, Jp
WO1992018653A1 (en) * 1991-04-12 1992-10-29 Mli Lasers Process for remelting metal surfaces by laser

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093842A (en) * 1976-01-19 1978-06-06 General Motors Corporation Ported engine cylinder with selectively hardened bore
DE2940127A1 (en) * 1978-10-05 1980-04-17 Coherent Inc METHOD AND DEVICE FOR HEAT TREATMENT
US4304978A (en) * 1978-10-05 1981-12-08 Coherent, Inc. Heat treating using a laser
DD204106B1 (en) * 1982-03-31 1988-02-03 Adw Ddr PROCESS FOR SURFACE HARDENING IRON-CARBON ALLOYS
DE3343783C1 (en) * 1983-12-03 1984-07-05 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Process for the production of wear-resistant cylinder running surfaces of internal combustion engines
DE3418555C1 (en) * 1984-05-18 1985-07-25 Audi AG, 8070 Ingolstadt Process for remelting the surface of cylinders made of carbon-containing cast iron
US4686349A (en) * 1984-06-22 1987-08-11 Mitsubishi Denki Kabushiki Kaisha Apparatus for improving surface quality of rotary machine parts
DE3545128A1 (en) * 1985-01-04 1986-07-10 Rolls-Royce Ltd., London METHOD FOR HARDENING A METAL SURFACE
DE3626799C2 (en) * 1985-08-08 1992-01-09 Toyota Jidosha K.K., Toyota, Aichi, Jp
DE3635751A1 (en) * 1985-10-21 1987-04-23 Honda Motor Co Ltd ABRASION-RESISTANT SLIDING ELEMENT
DE3932328A1 (en) * 1989-09-28 1991-04-11 Opel Adam Ag METHOD FOR MACHINING SURFACES HIGHLY STRESSED BY FRICTION IN INTERNAL COMBUSTION ENGINES, AND DEVICE FOR CARRYING OUT THE METHOD
WO1992018653A1 (en) * 1991-04-12 1992-10-29 Mli Lasers Process for remelting metal surfaces by laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. M. LONCHIN ET AL.: "Effect of Electron Irradiation .........", METAL SCIENCE AND HEAT TREATMENT, vol. 20, no. 7/8, 1978, NEW YORK US, pages 544 - 546 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789084A1 (en) * 1996-02-06 1997-08-13 Aisin Aw Co., Ltd. Surface finishing method for a metal member and metal member gained by that method
GB2316097A (en) * 1996-08-13 1998-02-18 Tochigi Fuji Sangyo Kk Hardened structural steel containing cementite
GB2316097B (en) * 1996-08-13 1999-06-23 Tochigi Fuji Sangyo Kk Structural steel and structural steel member used under high surface pressure
WO1998011262A1 (en) * 1996-09-13 1998-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wear-resistant camshaft and method of producing the same
US6398881B1 (en) 1996-09-13 2002-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wear-resistant camshaft and method of producing the same
WO2000063890A1 (en) * 1999-04-16 2000-10-26 International Business Machines Corporation Load/unload lift tab for disk drive
WO2004003239A1 (en) * 2002-06-27 2004-01-08 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method for smoothing and polishing surfaces by treating them with energetic radiation
US7592563B2 (en) 2002-06-27 2009-09-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for smoothing and polishing surfaces by treating them with energetic radiation
DE102007059299A1 (en) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Device for processing products to be degassed
DE102009009775A1 (en) 2008-02-22 2010-01-28 Entex Rust & Mitschke Gmbh Planetary-gear extruder, has divided planetary-gear shafts including planetary-gear pieces that are tangentially arranged behind one another, where each shaft is slid to spacer disk in conveying direction of materials via extruder
DE102009013839A1 (en) 2009-02-20 2010-09-23 Entex Rust & Mitschke Gmbh Planetary-gear extruder for producing mixtures of e.g. plastics utilized for pipe, has planetary gear spindle extending over extruder section housing, where length of piece of spindle is five times of pitch diameter of tooth system of piece
EP2335898A2 (en) 2009-12-20 2011-06-22 Entex Rust & Mitschke GmbH Planetary-gear extruder and process of its manufacturing
CN104736290A (en) * 2012-08-24 2015-06-24 山特维克材料科技山特维克表面解决方案部德国有限公司 Method for producing gloss effects on pressing tools
US11414718B2 (en) * 2017-06-01 2022-08-16 Andritz Ag Method for the surface treatment of a steel Yankee

Also Published As

Publication number Publication date
EP0601451B1 (en) 2000-08-23
DE4241527A1 (en) 1994-06-16
ES2151496T3 (en) 2001-01-01
DE59310090D1 (en) 2000-09-28

Similar Documents

Publication Publication Date Title
EP0601451B1 (en) Process for hardness increasing and possibly for smoothing of work pieces and work pieces made by this process
EP0419999B1 (en) Method for working friction stressed surfaces in internal combustion engines
EP1041173B1 (en) Light metal cylinder block, method for making it and apparatus for carrying out the process
WO2006005527A1 (en) Method for producing wear-resistant and fatigue-resistant edge layers from titanium alloys, and correspondingly produced components
DE2940127A1 (en) METHOD AND DEVICE FOR HEAT TREATMENT
DE2458856C2 (en) Process for surface alloying of metal such as steel or cast iron
EP2160267B1 (en) Melt-treated rim of a piston combustion bowl
DE19637464C1 (en) Wear resistant camshaft
DE2651946A1 (en) METHOD OF APPLYING AN ABRASION-RESISTANT COMPOSITE COATING TO AN OBJECT
DE3635751A1 (en) ABRASION-RESISTANT SLIDING ELEMENT
WO2006013055A1 (en) Method for the heat treatment of workpieces made from steel
DE19611929C1 (en) Heavy duty steel-backed bearing
DE2263174A1 (en) PROCESS FOR THE FORMATION OF A HARDENED LAYER ON A CARBON-CONTAINING IRON-BASED CASTING
EP0511274B1 (en) Device for treating the surfaces of workpieces with light beams
DE102004037074B3 (en) Heat treatment system for piece of steel comprises heating to 1100 degrees C over 120 seconds and maintained at high temperature for 0.5 to 20 seconds before rapid cooling
Fouquet et al. Laser surface melting of a pearlitic grey cast iron
EP0161408B1 (en) Process for surface-hardening by remelting cast iron cylinders
EP0347568B1 (en) Method of making wear-resisting castings
GB2160227A (en) Heat treatment process
DE836358C (en) Surface hardening process
EP0604836B1 (en) Method for making wear-resistant surface coatings on steel pieces and steel pieces with such coatings
DE10163970A1 (en) Production of fluid-lubricated light metal cylinder surfaces of reciprocating machine comprises forming harder sites by changing the intermetallic structure of the base material
DD140761A1 (en) PROCESS FOR THE LOCAL PROTECTION OF IRON AND STEEL PARTS FOR HEAT TREATMENTS
DE102021213888A1 (en) Method and device for localized nitriding or nitrocarburizing of the surface of a component
DE4139956A1 (en) Borating metal surface, giving wear-resistant feathered lamella coating - by applying paste contg. borating cpd., heating to cause remelting of outer layer, and cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB SE

17P Request for examination filed

Effective date: 19940709

17Q First examination report despatched

Effective date: 19970616

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970616

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59310090

Country of ref document: DE

Date of ref document: 20000928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001002

Year of fee payment: 8

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001204

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001206

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2151496

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010222

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011202

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011201

EUG Se: european patent has lapsed

Ref document number: 93119338.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030113