EP0599926B1 - Thread regulating wheel - Google Patents

Thread regulating wheel Download PDF

Info

Publication number
EP0599926B1
EP0599926B1 EP92917601A EP92917601A EP0599926B1 EP 0599926 B1 EP0599926 B1 EP 0599926B1 EP 92917601 A EP92917601 A EP 92917601A EP 92917601 A EP92917601 A EP 92917601A EP 0599926 B1 EP0599926 B1 EP 0599926B1
Authority
EP
European Patent Office
Prior art keywords
storage body
yarn feeder
feeder according
oscillating
oscillating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92917601A
Other languages
German (de)
French (fr)
Other versions
EP0599926A1 (en
Inventor
Tore Claesson
Morgan Koskelainen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iro AB
Original Assignee
Iro AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iro AB filed Critical Iro AB
Publication of EP0599926A1 publication Critical patent/EP0599926A1/en
Application granted granted Critical
Publication of EP0599926B1 publication Critical patent/EP0599926B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft
    • D03D47/361Drum-type weft feeding devices
    • D03D47/362Drum-type weft feeding devices with yarn retaining devices, e.g. stopping pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2601/00Problem to be solved or advantage achieved
    • B65H2601/50Diminishing, minimizing or reducing
    • B65H2601/52Diminishing, minimizing or reducing entities relating to handling machine
    • B65H2601/524Vibration

Definitions

  • the invention relates to a thread feeder of the type specified in the preamble of claim 1.
  • the storage body of a thread feeder Since the storage body of a thread feeder is fed the thread from one side, placed in turns on it and then mostly removed overhead and circumferentially on the other side, the storage body must be rotatably mounted on the drive shaft of a thread take-up device and secured in a contactless manner against rotation.
  • An eccentric weight on the storage body which acts by gravity, can serve, for example, to prevent rotation.
  • CH-A 439 161 it has become established, as is known from CH-A 439 161, to arrange holding magnets which are aligned with one another in the housing and in the storage body and which, thanks to magnetic forces, ensure that the storage body is secured against rotation.
  • the holding magnets have the disadvantage that the rotational securing force of the storage body is smallest in the centered position of the holding magnets and increases progressively with a relative rotation of the storage body.
  • resonance phenomena occur, which result in reciprocating, oscillating movements of the storage body about the axis of the shaft.
  • These oscillating movements are extremely disadvantageous in operation, especially if the amplitude on the outer circumference touched by the thread turns increases to 1.5 mm or more. There is a risk that the turns may no longer be used properly Discharge side are transported that sensors aligned to the windings do not respond properly and that the mass forces result in severe wear and damage.
  • Holding magnets should also be provided in the storage body in order to suppress the torsional vibrations due to very high magnetic forces.
  • extremely small storage bodies lead to problems in the thread run.
  • the holding magnets are also very expensive.
  • the invention has for its object to provide a thread feeder of the type mentioned, in which rotational vibratory movements of the storage body are prevented or at least reduced to a tolerable level.
  • the oscillating body Since the oscillating body is arranged to be movable relative to the storage body and is connected to it via a friction connection, it is excited by the storage body during a rotationally oscillating movement of the latter, but this movement takes place out of phase. From the phase-shifted movement of the vibrating body and the frictional connection to the storage body, there is an energy consumption between the storage body and the vibrating body, which effectively dampens the torsional vibrations of the storage body at least to a tolerable extent, ie an externally perceptible amplitude of approximately 0.5 mm or less leads.
  • the vibrating body dampens the torsional vibrations of the storage body, although like the storage body it is withdrawn from direct mechanical intervention from the outside and does not impair the application, storage and removal of the thread.
  • the vibrating body Thanks to the high specific weight of the vibrating body, it takes up little space for effective damping, which is extremely important in the tight space in a thread feeder.
  • the centered arrangement of the vibrating body avoids undesirable eccentric forces.
  • the position assurance ensures that the vibrating body cannot separate from the storage body.
  • the vibrating body takes advantage of the small and anyway available space to accommodate the holding magnet on the storage body. It is therefore not necessary to fundamentally change the construction concept of already proven thread feeders. Thread feeders that have already been in operation can also be retrofitted by inserting an appropriately adapted oscillating body. Especially for thread feeders without a wobble ring as feed element, but with other feed drives or if necessary even with thread separation, the vibrating body is a simple, inexpensive and optimal solution to the torsional vibration problem.
  • the vibrating body is seated in the space caused by the accommodation of the holding magnet, the holding magnet being positioned in a recess in the vibrating body.
  • the rotary coupling which works with a rotational play, ensures that the vibrating body does not run against the holding magnet and is not robbed of its damping function.
  • the use of the soft iron carrier, which is anyway necessary for holding the holding magnet, to secure the position of the vibrating body is favorable.
  • the rotary coupling forms an elastic anti-rotation device for the vibrating body, on the one hand to suppress sudden contact between the storage body and the vibrating body and on the other hand to ensure the rotational play of the vibrating body necessary for torsional vibration damping.
  • the engagement part which can be designed as a spiral spring, serves, so to speak, as an emergency stop in the event that the vibrating body could move too far from its position desired for vibration damping.
  • the rotary coupling has no direct function for vibration damping.
  • the energy consumption in the vibration damping is achieved by mechanical sliding friction.
  • rolling friction or other types of friction for energy consumption in these areas.
  • the friction occurring during vibration damping is causally responsible for the vibration damping, a desired and / or constant friction can be ensured from the start. If necessary, the friction ratios can also be changed later, in order to adjust the damping effect to the speed range of the thread feeder, where the torsional vibrations are strongest.
  • a particularly effective torsional vibration damping of the storage body results according to claim 9.
  • the damping effect achieved is also due to design features, the radius of inertia of the vibrating body, the weight distribution within the storage body and / or in the vibrating body, and the like. It may also be expedient to choose the mass of the vibrating body smaller or larger than the mass of the storage body or to divide the vibrating body into several individual masses.
  • the oscillating body does not necessarily have to be arranged on one or the other axial side of the storage body, but it can also be positioned in the interior of the storage body.
  • Mixed forms are also conceivable, in which individual vibrating body parts are arranged distributed in the circumferential direction and also in the axial direction.
  • the adhesive layer ensures the positioning and centering of the vibrating body on the storage body. At the same time, due to the internal friction, it absorbs energy when damping vibrations.
  • the adhesive layer is expediently one that is as inelastic as possible in order to eliminate a spring effect as much as possible.
  • the vibrating body is formed here from a filling of heavy grains or spheres or objects of another shape, which can absorb energy by friction when moving relative to the storage body.
  • the vibrating body could also be formed from several weight inserts in cavities of the storage body or a separate carrier body for these weight inserts. These weight inserts can move freely in the cavities be accommodated.
  • the pendulum-shaped vibrating body consumes energy in its vibrating bearing and possibly in frictional contact with the storage body.
  • a displaceable or elastically deformable material can be provided according to claim 16, which opposes the relative movement of the oscillating body with an energy-consuming resistance.
  • the damping can be further improved by the throttle passage, in addition energy is consumed as it passes.
  • a thread feeder F according to FIGS. 1 to 3, in particular a weft measuring feeder for a jet weaving machine for delivering weft thread sections of precisely dimensioned length, has a housing G which contains a drive motor (not shown) and in which a drive shaft 1 is rotatably mounted and can be driven to rotate.
  • a storage body B is rotatably mounted with bearings 7, which has a base body 2 and defines a drum-shaped storage surface 3 for thread windings W.
  • the shown embodiment of the thread feeder F works with thread separation, i.e. the windings W deposited on the storage surface 3 are pushed forward from left to right in FIG. 1 and are spaced apart from one another in the process.
  • only schematically indicated installation inserts 4, 5 are provided in the storage body B, e.g. Oblique and / or eccentric hubs, which are driven, for example, by the drive shaft 1 and set intermediate distances between the windings W indicated by 6.
  • At least one stop device S is connected to the housing G, which is cyclically withdrawn from an actuator M, for example a magnet Contains position in a stop position to the storage area 3 movable stop element P.
  • an actuator M for example a magnet Contains position in a stop position to the storage area 3 movable stop element P.
  • the storage body B rotatably mounted on the drive shaft 1 must be supported against rotation with the drive shaft 1.
  • aligned holding magnets 8, 9 are provided in the housing G and on the base body 2 of the storage body B.
  • the holding magnets 8 are expediently arranged in a row over the entire circumference.
  • only two diametrically opposed holding magnets 9 or two pairs of such holding magnets are required on the base body 2 of the storage body B.
  • the holding magnets 9 are fastened to the base body 2 with soft iron carriers 10 and holding screws 11.
  • the storage body B is e.g. made of plastic.
  • a thread winding element 12 is connected in a rotationally fixed manner, which is incorporated into a funnel-shaped support part 14 and extends outwards between the holding magnets 8 and 9.
  • a thread guide channel 13 leads through the drive shaft 1 and the winding member 12 to the outside.
  • a thread Y which in Fig. 1 comes from the left of a supply spool into the guide channel 13, is deposited by the winding member 12 in successive turns W on the storage surface 3 and then overhead of the storage body B with a circumferential thread withdrawal point from a consumer, not shown , for example a jet weaving machine, if the stop element P is withdrawn. If the stop element P is extended (FIG. 1), then the thread take-off is blocked.
  • a vibrating body K is seated, which has the shape of a plate-like circular disk and has two diametrically opposite recesses 18 in the regions of the holding magnets 9.
  • the vibrating body K is made of heavy material, preferably metal. It is expediently designed as a zinc die-cast molded part or as a steel turned part and adapted to the contour of the string side of the base body 2, designated 16, so that it faces the end face 17 of the winding member 12 without contact.
  • the vibrating body K is arranged so as to be movable relative to the storage body B and is secured in position thereon. It is in a friction connection R with the storage body B, the embodiment shown indicating two friction connections R.
  • the vibrating body K has several friction connections with the storage body B.
  • a securing part 10a is formed on the soft iron carrier 10 and engages over the edge of the recess 18 of the oscillating body K.
  • a friction connection R is provided there, for example.
  • the base body 2 has a bearing seat 21 with which it is fixed on the bearing 7. Adjacent to the bearing holder 21, a circumferential groove 19 is formed in the base body 2, in which the oscillating body K engages with an annular flange 20 which is centered and guided on the bearing holder 21 in a sliding fit.
  • a friction connection R is provided between the ring flange 20 and the bearing receptacle 21. If necessary, there is a friction lining or a in this friction connection R.
  • adjustable friction element E arranged.
  • the vibrating body K is limitedly secured against rotation on the base body 2 by a rotary coupling C which can be seen in FIG. 2.
  • the rotary coupling C is formed by a recess 22 in the oscillating body K and a projection-like engagement part 23 which is formed on the end face 16 of the base body 2 and engages in the recess 22.
  • the engagement part 23 is expediently designed in the manner of a spiral spring which is bendable in the circumferential direction and has a widened head 24 which is opposite the edges of the recess 22 with a rotational play 25 in each case.
  • the rotary coupling C is not required for the torsional vibration damping, but serves to avoid excessive twisting between the vibrating body K and the base body 2, in which the holding magnet 9 or the soft iron carrier 10 could possibly come into undesired contact with the edges of the recesses 18.
  • the vibrating body K represents a damping mass m for the storage body B.
  • the damping mass m expediently corresponds approximately to the mass of the entire storage body B.
  • the drive shaft 1 In operation of the thread feeder F, the drive shaft 1 is driven within a relatively wide speed range, so that the winding member 12 rotates and the thread turns W are deposited on the storage surface 3.
  • the holding magnets 8, 9 secure the rotational position of the storage body B in relation to the housing G. If the storage body B is excited to torsional vibrations during the rotational movement of the drive shaft 1, then the torsional vibrations are caused by the Friction connections R also transferred to the vibrating body K. This takes up phase-shifting torsional vibrations. An energy dissipation takes place via the friction connections, which results in a damping of the torsional vibrations of the storage body B.
  • the principle of effectively damping the torsional vibrations by means of at least one vibrating body K that is structurally integrated in the storage body B can be used for any type of storage body, ie also for storage bodies without thread separation or with a variable diameter or with another feed mechanism for the thread turns. Furthermore, the oscillating body can also be arranged inside the storage body B or on the end face facing away from the winding member 12.
  • the vibrating body K is connected in the intermediate space 15 to the base body 2 of the storage body B by means of an adhesive layer 26.
  • the adhesive layer 26 consists of a material with high internal friction and the least possible spring effect.
  • the vibrating body is vulcanized or glued to the base body 2 with a rubber or elastomer adhesive layer, the adhesive layer 26 possibly extending only over a partial area of the possible radial extent of the contact area between the base body 2 and the vibrating body K.
  • Fig. 5 illustrates a substantially circular vibrating body which can be attached at any point in the storage body B, e.g. 6, in a central region within a recess 27 of the storage body B.
  • FIG. 7 illustrates an end view of the oscillating body K according to FIGS. 1 and 4 with the two diametrically opposite recesses 18 for the holding magnets of the storage body.
  • FIG. 8 illustrates a design variant of a vibrating body K with a widened lower part 28 and a radially narrow upper part 29, which delimits a recess 18 for the holding magnets which is approximately half the circumference.
  • At least one oscillating body K designed as a pendulum is arranged on the storage body B so as to be rotatable about a rotary bearing 30. Stops 31 limit the Pendulum deflection of the vibrating body K around the pivot bearing 30. Either the friction in the pivot bearing 30 is used for damping or further friction connections (not shown) with the storage body B are provided.
  • the oscillating body K consists of a plurality of balls or grains or pellets 33 made of heavy material, which are arranged in a cavity 32 of the storage body B. If necessary, the cavity 32 is additionally filled with a liquid, a paste or another material with high internal friction.
  • a pocket-shaped cavity 34 of the storage body B is arranged in a freely movable manner as an oscillating body K which is designed as a curved piece 39 and which is coupled to the storage body B via friction connections.
  • a plurality of such vibrating bodies K can optionally be distributed over the circumference and also in the axial direction of the storage body B.
  • the vibrating body K is arranged in a container 35 in its cavity 37 and is designed as a ball 39 with a high mass.
  • the cavity 37 is filled, for example, with a liquid, a paste or another deformable medium, also a powder or a granulate.
  • the container 35 can be attached with brackets 36 at a suitable location on the storage body, expediently such that when the storage body begins to vibrate, the vibrating body K is displaced in the longitudinal direction in the cavity 37, possibly on the walls of the Container 35 rubs and / or displaces the filling 38 and thus consumes energy.
  • Throttle passages are provided between the outer circumference of the vibrating body K and the wall of the container 35, through which the filling 38 must pass when the vibrating body K is moving, which leads to additional energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Forwarding And Storing Of Filamentary Material (AREA)
  • Vibration Prevention Devices (AREA)
  • Looms (AREA)
  • Jigging Conveyors (AREA)

Abstract

In a thread regulating wheel (F), a storage body (B) is rotatably mounted on a shaft (1) that can be rotated in a housing, and mutually oriented holding magnets (8, 9) mounted in the housing (G) and on the storage body (B) position the storage body (B). At least one oscillating body (K) movably arranged in relation to the storage body (B), linked by friction (R) thereto, is associated with the storage body (B) and acts as a damping mass (m).

Description

Die Erfindung betrifft einen Faden-Fournisseur der im Oberbegriff des Patentanspruchs 1 angegebenen Art.The invention relates to a thread feeder of the type specified in the preamble of claim 1.

Da dem Speicherkörper eines Faden-Fournisseurs der Faden von einer Seite zugeführt, in Windungen darauf abgelegt und dann zumeist überkopf und umlaufend an der anderen Seite abgenommen wird, muß der Speicherkörper auf der Antriebswelle eines Fadenaufwickelorgans drehbar gelagert und berührungslos gegen ein Mitdrehen gesichert werden. Zur Drehsicherung kann beispielsweise ein exzentrisches Gewicht am Speicherkörper dienen, das durch Schwerkraft wirkt. In der Praxis hat es sich jedoch durchgesetzt, wie aus der CH-A 439 161 bekannt, im Gehäuse und im Speicherkörper aufeinander ausgerichtete Haltemagneten anzuordnen, die dank magnetischer Kräfte für die Drehsicherung des Speicherkörpers sorgen. Allerdings haben die Haltemagneten den Nachteil, daß die Drehsicherungskraft des Speicherkörpers in zentrierter Stellung der Haltemagneten am kleinsten ist und bei einer relativen Verdrehung des Speicherkörpers progressiv zunimmt. Innerhalb des großen Drehzahlbereichs der Antriebswelle kommt es zu Resonanzerscheinungen, aus denen hin- und hergehende Dreh-Schwingbewegungen des Speicherkörpers um die Achse der Welle resultieren. Diese Schwingbewegungen sind im Betrieb außerordentlich nachteilig, speziell wenn die Amplitude am von den Fadenwindungen berührten Außenumfang auf 1,5mm oder mehr wächst. Es besteht die Gefahr, daß die Windungen nicht mehr ordnungsgemäß zur Abzugsseite transportiert werden, daß auf die Windungen ausgerichtete Sensoren nicht richtig ansprechen und daß aus den Massenkräften starker Verschleiß und Schäden resultieren. Bei sogenannten Meß-Fournisseuren mit wenigstens einer Stopvorrichtung, die mit einem Stopelement taktweise am Speicherkörper angreift, um dann das Abziehen des Fadens zu blockieren, ergeben sich bei den Dreh-Schwingbewegungen schädliche Kräfte am Stopelement. Auch wird das Ansprechen eines zumeist in die Stopvorrichtung integrierten Fadensensors durch die Dreh-Schwingbewegungen beeinträchtigt. Schließlich ist bei Faden-Fournisseuren, die mit sogenannter Fadenseparation arbeiten, wegen der für die Fadenseparation benötigten Komponenten im Speicherkörper die Masse des Speicherkörpers relativ groß, was bei den Dreh-Schwingbewegungen große Amplituden und gegebenenfalls schädliche Massenkräfte begünstigt. Da wegen der Fadenbewegungen vom stationären Gehäuse her kein mechanischer Zugriff zum Speicherkörper möglich ist, um diesen gegen diese Schwingbewegungen abzustützen, mußten die Schwingbewegungen bisher in Kauf genommen werden.Since the storage body of a thread feeder is fed the thread from one side, placed in turns on it and then mostly removed overhead and circumferentially on the other side, the storage body must be rotatably mounted on the drive shaft of a thread take-up device and secured in a contactless manner against rotation. An eccentric weight on the storage body, which acts by gravity, can serve, for example, to prevent rotation. In practice, however, it has become established, as is known from CH-A 439 161, to arrange holding magnets which are aligned with one another in the housing and in the storage body and which, thanks to magnetic forces, ensure that the storage body is secured against rotation. However, the holding magnets have the disadvantage that the rotational securing force of the storage body is smallest in the centered position of the holding magnets and increases progressively with a relative rotation of the storage body. Within the large speed range of the drive shaft, resonance phenomena occur, which result in reciprocating, oscillating movements of the storage body about the axis of the shaft. These oscillating movements are extremely disadvantageous in operation, especially if the amplitude on the outer circumference touched by the thread turns increases to 1.5 mm or more. There is a risk that the turns may no longer be used properly Discharge side are transported that sensors aligned to the windings do not respond properly and that the mass forces result in severe wear and damage. In so-called measuring feeders with at least one stop device which intermittently engages the storage body with a stop element in order to then block the thread from being pulled, damaging forces result at the stop element during the rotary oscillating movements. The response of a thread sensor, which is mostly integrated in the stop device, is also impaired by the rotary oscillating movements. Finally, in the case of thread feeders who work with so-called thread separation, the mass of the storage body is relatively large because of the components in the storage body required for the thread separation, which favors large amplitudes and possibly damaging inertial forces during the rotary oscillating movements. Since, because of the thread movements from the stationary housing, mechanical access to the storage body is not possible in order to support it against these oscillating movements, the oscillating movements had to be accepted up to now.

Es ist zwar bekannt, bei einem Meß-Fournisseur mit einem hinter dem Fadenvorrat angeordneten Taumelring als Vorschubelement des Speicherkörpers die Taumelbewegung dazu zu nutzen, periodisch den Taumelring von außen her mit einem Druckbügel zu berühren, um das Entstehen von DrehSchwingbewegungen des Speicherkörpers zu stören. Dieses Prinzip ist jedoch an die Verwendung eines taumelnden Taumelringes gebunden.It is known to use the wobble movement in a measuring feeder with a wobble ring arranged behind the thread supply as a feed element of the storage body to periodically touch the wobble ring from the outside with a pressure bracket in order to disrupt the occurrence of torsional vibratory movements of the storage body. However, this principle is linked to the use of a wobbling wobble ring.

Bekannt ist es ferner, den Speicherkörper extrem klein und leicht zu bauen und eine sehr große Zahl von Haltemagneten auch im Speicherkörper vorzusehen, um die Drehschwingungen durch sehr hohe Magnetkräfte zu unterdrucken. Extrem kleine Speicherkörper führen jedoch zu Problemen im Fadenlauf. Die Haltemagneten sind zudem sehr teuer.It is also known to build the storage body extremely small and light and a very large number of Holding magnets should also be provided in the storage body in order to suppress the torsional vibrations due to very high magnetic forces. However, extremely small storage bodies lead to problems in the thread run. The holding magnets are also very expensive.

Der Erfindung liegt die Aufgabe zugrunde, einen Faden-Fournisseur der eingangs genannten Art zu schaffen, bei dem Dreh-Schwingbewegungen des Speicherkörpers verhindert oder zumindest auf ein tolerierbares Maß reduziert sind.The invention has for its object to provide a thread feeder of the type mentioned, in which rotational vibratory movements of the storage body are prevented or at least reduced to a tolerable level.

Ausgehend von dem Schussfadenzwischenspeicher gemäß der CH-A 439 161 wird die gestellte Aufgabe mit den Merkmalen des Patentanspruchs 1 gelöst.Starting from the weft buffer according to CH-A 439 161, the object is achieved with the features of claim 1.

Da der Schwingkörper relativ zum Speicherkörper beweglich angeordnet und mit diesem über eine Reibverbindung verbunden ist, wird er bei einer Dreh-Schwingbewegung des Speicherkörpers von diesem zu einer Bewegung angeregt, die jedoch phasenverschoben abläuft. Aus der phasenverschobenen Bewegung des Schwingkörpers und der Reibverbindung zum Speicherkörper ergibt sich eine Energieaufzehuung zwischen dem Speicherkörper und dem Schwingkörper, die zu einer wirksamen Dämpfung der Drehschwingungen des Speicherkörpers zumindest bis auf ein tolerierbares Maß, d.h. eine außen fühlbare Amplitude von in etwa 0,5mm oder weniger führt. Der Schwingkörper dämpft die Drehschwingungen des Speicherkörpers, obwohl er wie der Speicherkörper einem direkt mechanischen Eingriff von außen entzogen ist und das Aufbringen, Speichern und Abziehen des Fadens nicht beeinträchtigt.Since the oscillating body is arranged to be movable relative to the storage body and is connected to it via a friction connection, it is excited by the storage body during a rotationally oscillating movement of the latter, but this movement takes place out of phase. From the phase-shifted movement of the vibrating body and the frictional connection to the storage body, there is an energy consumption between the storage body and the vibrating body, which effectively dampens the torsional vibrations of the storage body at least to a tolerable extent, ie an externally perceptible amplitude of approximately 0.5 mm or less leads. The vibrating body dampens the torsional vibrations of the storage body, although like the storage body it is withdrawn from direct mechanical intervention from the outside and does not impair the application, storage and removal of the thread.

Für eine ausreichende Drehpositionierung des Speicherkörpers reichen wenige und relativ schwache Haltemagneten, die in den Gesamtkosten des Fournisseurs nur einen untergeordneten Faktor darstellen. Das Grundkonzept des Fournisseurs bleibt praktisch trotz der integrierten Dämpfungsmaßnahmen unverändert.For a sufficient rotational positioning of the storage body, a few and relatively weak holding magnets are sufficient, which represent only a subordinate factor in the overall costs of the supplier. The basic concept of the supplier remains practically unchanged despite the integrated damping measures.

Eine zweckmäßige Ausführungsform geht aus Anspruch 2 hervor. Beim Aufbauen einer Dreh-Schwingbewegung am Speicherkörper tritt eine phasenverschobene Dreh-Schwingbewegung des Schwingkörpers ein, die zur erwünschten Abdämpfung führt.An expedient embodiment emerges from claim 2. When a rotating oscillating movement is built up on the storage body, a phase-shifting rotating oscillating movement of the oscillating body occurs, which leads to the desired damping.

Dank des hohen spezifischen Gewichtes des Schwingkörpers beansprucht dieser für eine wirksame Abdämpfung nur wenig Raum, was bei den beengten Platzverhältnissen in einem Faden-Fournisseur außerordentlich wichtig ist. Die zentrierte Anordnung des Schwingkörpers vermeidet unerwünschte exzentrische Kräfte. Die Lagesicherung stellt sicher, daß sich der Schwingkörper nicht vom Speicherkörper trennen kann.Thanks to the high specific weight of the vibrating body, it takes up little space for effective damping, which is extremely important in the tight space in a thread feeder. The centered arrangement of the vibrating body avoids undesirable eccentric forces. The position assurance ensures that the vibrating body cannot separate from the storage body.

Eine weitere, zweckmäßige Ausführungsform geht aus Anspruch 3 hervor. Der Schwingkörper nutzt gewinnbringend den geringen und ohnedies zur Verfügung stehenden Zwischenraum zur Unterbringung des Haltemagneten am Speicherkörper aus. Es ist deshalb keine grundlegende Änderung des Baukonzepts schon bewährter Faden-Fournisseure notwendig. Auch können schon im Betrieb gewesene Faden-Fournisseure durch Einsetzen eines entsprechend angepaßten Schwingkörpers nachträglich umgerüstet werden. Gerade für Faden-Fournisseure ohne Taumelring als Vorschubelement, sondern mit anderen Vorschubantrieben oder gegebenenfalls sogar mit Fadenseparation, ist der Schwingkörper eine einfache, kostengünstige und optimale Lösung des Drehschwingungsproblems.Another useful embodiment is set out in claim 3. The vibrating body takes advantage of the small and anyway available space to accommodate the holding magnet on the storage body. It is therefore not necessary to fundamentally change the construction concept of already proven thread feeders. Thread feeders that have already been in operation can also be retrofitted by inserting an appropriately adapted oscillating body. Especially for thread feeders without a wobble ring as feed element, but with other feed drives or if necessary even with thread separation, the vibrating body is a simple, inexpensive and optimal solution to the torsional vibration problem.

Bei der Ausführungsform gemäß Fig. 4 sitzt der Schwingkörper im durch die Unterbringung des Haltemagneten bedingten Zwischenraum, wobei der Haltemagnet in einer Ausnehmung des Schwingkörpers positioniert ist. Die mit einem Drehspiel arbeitende Drehkupplung stellt sicher, daß der Schwingkörper nicht gegen den Haltemagneten anläuft und seiner Dämpffunktion nicht beraubt wird. Baulich ist die Verwendung des ohnedies für die Halterung des Haltemagneten notwendigen Weicheisenträgers zur Lagesicherung des Schwingkörpers günstig.In the embodiment according to FIG. 4, the vibrating body is seated in the space caused by the accommodation of the holding magnet, the holding magnet being positioned in a recess in the vibrating body. The rotary coupling, which works with a rotational play, ensures that the vibrating body does not run against the holding magnet and is not robbed of its damping function. In terms of construction, the use of the soft iron carrier, which is anyway necessary for holding the holding magnet, to secure the position of the vibrating body is favorable.

Bei der Ausführungsform gemäß Anspruch 5 bildet die Drehkupplung eine elastische Drehsicherung für den Schwingkörper, um einerseits schlagartige Berührungen zwischen dem Speicherkörper und dem Schwingkörper zu unterdrücken und andererseits das für die Drehschwingungsdämpfung notwendige Drehspiel des Schwingkörpers zu gewährleisten. Der Eingriffsteil, der als Biegefeder ausgebildet sein kann, dient sozusagen als Notanschlag für den Fall, daß sich der Schwingungskörper zu weit aus seiner für das Schwingungsdämpfen gewünschten Stellung verlagern könnte. Für die Schwingungsdämpfung ist die Drehkupplung ohne direkte Funktion.In the embodiment according to claim 5, the rotary coupling forms an elastic anti-rotation device for the vibrating body, on the one hand to suppress sudden contact between the storage body and the vibrating body and on the other hand to ensure the rotational play of the vibrating body necessary for torsional vibration damping. The engagement part, which can be designed as a spiral spring, serves, so to speak, as an emergency stop in the event that the vibrating body could move too far from its position desired for vibration damping. The rotary coupling has no direct function for vibration damping.

Eine einfache Ausführungsform, bei der eine wirksame Reibverbindung zwischen dem Schwingkörper und dem Speicherkörper geschaffen wird, geht aus Anspruch 6 hervor. Es ist aber auch denkbar, zwischen dem Schwingkörper und dem Speicherkörper weitere Berührungsbereiche zu schaffen. Der Gleitsitz auf der Lageraufnanme des Speicherkörpers sorgt schließlich auch für eine wünschenswerte Zentrierung des Schwingkörpers relativ zur Achse der Antriebswelle.A simple embodiment, in which an effective frictional connection between the oscillating body and the storage body is created, is evident from claim 6. But it is also conceivable between the Vibrating body and the storage body to create further contact areas. Finally, the sliding fit on the bearing seat of the storage body also ensures a desirable centering of the vibrating body relative to the axis of the drive shaft.

Bei der Ausführungsform gemäß Anspruch 7 wird die Energieaufzehrung bei der Schwingungsdämpfung durch mechanische Gleitreibung erreicht. Es wäre aber auch denkbar, in diesen Bereichen Wälzreibung oder andere Reibungsarten zur Energieaufzehrung zu verwenden.In the embodiment according to claim 7, the energy consumption in the vibration damping is achieved by mechanical sliding friction. However, it would also be conceivable to use rolling friction or other types of friction for energy consumption in these areas.

Da die bei der Schwingungsdämpfung stattfindende Reibung ursächlich für die Schwingungsdämpfung verantwortlich ist, kann gemäß Anspruch 8 von vornherein für eine gewünschte und/oder gleichbleibende Reibung gesorgt werden. Gegebenenfalls lassen sich die Reibungsverhältnisse auch nachträglich verändern, um sozusagen die Dämpfungswirkung gezielt auf den Drehzahlbereich des Faden-Fournisseurs einzustellen, bei dem die Drehschwingungen am stärksten sind.Since the friction occurring during vibration damping is causally responsible for the vibration damping, a desired and / or constant friction can be ensured from the start. If necessary, the friction ratios can also be changed later, in order to adjust the damping effect to the speed range of the thread feeder, where the torsional vibrations are strongest.

Eine besonders wirksame Drehschwingungsdämpfung des Speicherkörpers, selbst wenn dieser mit weiteren für die Fadenseparation benötigten Komponenten ausgestattet ist, ergibt sich gemäß Anspruch 9. Da die erzielte Dämpfungswirkung aber auch von konstruktiven Merkmalen, vom Trägheitsradius des Schwingkörpers, von der Gewichtsverteilung innerhalb des Speicherkörpers und/oder im Schwingkörper, und dgl. abhängt, kann es durchaus auch zweckmäßig sein, die Masse des Schwingkörpers kleiner oder größer als die Masse des Speicherkörpers zu wählen oder den Schwingkörper auf mehrere Einzelmassen aufzuteilen.A particularly effective torsional vibration damping of the storage body, even if it is equipped with further components required for thread separation, results according to claim 9. However, since the damping effect achieved is also due to design features, the radius of inertia of the vibrating body, the weight distribution within the storage body and / or in the vibrating body, and the like. It may also be expedient to choose the mass of the vibrating body smaller or larger than the mass of the storage body or to divide the vibrating body into several individual masses.

Wenn es die baulichen Gegebenheiten zulassen, wird gemäß Anspruch 10 eine optimale und schnellansprechende Dämpfungswirkung erreicht.If the structural conditions allow it, an optimal and responsive damping effect is achieved according to claim 10.

Der Schwingkörper muß nicht notwendigerweise an der einen oder anderen Axialseite des Speicherkörpers angeordnet sein, sondern er kann gemäß Anspruch 11 auch im Inneren des Speicherkörpers positioniert werden. Denkbar sind ferner Mischformen, bei denen einzelne Schwingkörperteile in Umfangsrichtung und auch in Axialrichtung verteilt angeordnet werden.The oscillating body does not necessarily have to be arranged on one or the other axial side of the storage body, but it can also be positioned in the interior of the storage body. Mixed forms are also conceivable, in which individual vibrating body parts are arranged distributed in the circumferential direction and also in the axial direction.

Eine weitere, vorteilhafte Ausführungsform geht aus Anspruch 12 hervor. Die Haftschicht sorgt für die Positionierung und das Zentrieren des Schwingkörpers am Speicherkörper. Gleichzeitig sorgt sie aufgrund der inneren Reibung für die Energieaufzehrung beim Schwingungsdämpfen. Zweckmäßigerweise handelt es sich bei der Haftschicht um eine möglichst unelastische, um eine Federwirkung so weit wie möglich auszuschalten.Another advantageous embodiment is set out in claim 12. The adhesive layer ensures the positioning and centering of the vibrating body on the storage body. At the same time, due to the internal friction, it absorbs energy when damping vibrations. The adhesive layer is expediently one that is as inelastic as possible in order to eliminate a spring effect as much as possible.

Eine weitere, vorteilhafte Alternative geht aus Anspruch 13 hervor. Der Schwingkörper wird hier aus einer Füllung von schweren Körnern oder Kugeln oder Gegenständen anderer Form gebildet, die bei einer Bewegung relativ zum Speicherkörper durch Reibung Energie aufzehren können.Another advantageous alternative is set out in claim 13. The vibrating body is formed here from a filling of heavy grains or spheres or objects of another shape, which can absorb energy by friction when moving relative to the storage body.

Alternativ könnte der Schwingkörper auch gemäß Anspruch 14 aus mehreren Gewichtseinsätzen in Hohlräumen des Speicherkörpers oder eines eigenen Trägerkörpers für diese Gewichtseinsätze gebildet sein. Diese Gewichtseinsätze können in den Hohlräumen freibeweglich untergebracht werden.Alternatively, the vibrating body could also be formed from several weight inserts in cavities of the storage body or a separate carrier body for these weight inserts. These weight inserts can move freely in the cavities be accommodated.

Eine weitere Alternative geht aus Anspruch 15 hervor. Der pendelförmige Schwingkörper zehrt Energie in seiner Schwinglagerung und gegebenenfalls im Reibkontakt mit dem Speicherkörper auf.Another alternative emerges from claim 15. The pendulum-shaped vibrating body consumes energy in its vibrating bearing and possibly in frictional contact with the storage body.

Als zusätzliche, die Dämpfung verbessernde Maßnahme kann gemäß Anspruch 16 ein verdrängbares oder elastisch verformbares Material vorgesehen werden, das der Relativbewegung des Schwingkörpers einen energieaufzehrenden Widerstand entgegensetzt.As an additional measure which improves the damping, a displaceable or elastically deformable material can be provided according to claim 16, which opposes the relative movement of the oscillating body with an energy-consuming resistance.

Ist dieses Material z.B. eine Flüssigkeit oder eine pastöse Substanz, dann kann die Dämpfung durch den Drosseldurchgang noch verbessert werden, bei dessen Passieren zusätzlich Energie aufgezehrt wird.Is this material e.g. a liquid or a pasty substance, then the damping can be further improved by the throttle passage, in addition energy is consumed as it passes.

Anhand der Zeichnung werden Ausführungsformen des Erfindungsgegenstandes erläutert. Es zeigen:

Fig. 1
die Hälfte eines Längsschnitts eines Faden-Fournisseurs,
Fig. 2
eine Ansicht in der Ebene II-II von Fig. 1,
Fig. 3
einen Schnitt in der Ebene III-III von Fig. 2,
Fig. 4
einen Schnitt ähnlich dem von Fig. 1 einer anderen Ausführungsform,
Fig. 5,7,8,9,10A,10B
verschiedenen Ausführungsdetails,
Fig. 6
einen schematischen Längsschnitt durch eine weitere Ausführungsform, und
Fig. 11
einen Schnitt durch eine Detailvariante.
Embodiments of the subject matter of the invention are explained with the aid of the drawing. Show it:
Fig. 1
half of a longitudinal section of a thread feeder,
Fig. 2
2 shows a view in the plane II-II of FIG. 1,
Fig. 3
2 shows a section in the plane III-III of FIG. 2,
Fig. 4
2 shows a section similar to that of FIG. 1 of another embodiment,
Fig. 5,7,8,9,10A, 10B
various execution details,
Fig. 6
a schematic longitudinal section through a further embodiment, and
Fig. 11
a section through a detail variant.

Ein Faden-Fournisseur F gemäß den Fig. 1 bis 3, insbesondere ein Schußfaden-Meßfournisseur für eine Düsenwebmaschine zum Liefern von in der Länge genau bemessenen Schußfadenabschnitten, weist ein einen nicht-dargestellten Antriebsmotor enthaltendes Gehäuse G auf, in dem eine Antriebswelle 1 drehbar gelagert und zur Drehung antreibbar ist. Auf der Antriebswelle 1 ist mit Lagern 7 ein Speicherkörper B drehbar gelagert, der einen Grundkörper 2 aufweist und eine trommelförmige Speicherfläche 3 für Fadenwindungen W definiert. Die gezeigte Ausführungsform des Faden-Fournisseurs F arbeitet mit Fadenseparation, d.h. die auf der Speicherfläche 3 abgelegten Windungen W werden in Fig. 1 von links nach rechts vorwärts geschoben und dabei voneinander beabstandet. Für die Fadenseparation sind im Speicherkörper B nur schematisch angedeutete Einbaueinsätze 4, 5 vorgesehen, z.B. Schrägund/oder Exzenternaben, die beispielsweise durch die Antriebswelle 1 angetrieben werden und mit 6 angedeutete Zwischenabstände zwischen den Windungen W einstellen.A thread feeder F according to FIGS. 1 to 3, in particular a weft measuring feeder for a jet weaving machine for delivering weft thread sections of precisely dimensioned length, has a housing G which contains a drive motor (not shown) and in which a drive shaft 1 is rotatably mounted and can be driven to rotate. On the drive shaft 1, a storage body B is rotatably mounted with bearings 7, which has a base body 2 and defines a drum-shaped storage surface 3 for thread windings W. The shown embodiment of the thread feeder F works with thread separation, i.e. the windings W deposited on the storage surface 3 are pushed forward from left to right in FIG. 1 and are spaced apart from one another in the process. For the thread separation, only schematically indicated installation inserts 4, 5 are provided in the storage body B, e.g. Oblique and / or eccentric hubs, which are driven, for example, by the drive shaft 1 and set intermediate distances between the windings W indicated by 6.

Mit dem Gehäuse G ist wenigstens eine Stopvorrichtung S verbunden, die ein mittels eines Betätigers M, z.B. eines Magneten, taktweise aus einer zurückgezogenen Position in eine Stopposition zur Speicherfläche 3 hinbewegbares Stopelement P enthält.At least one stop device S is connected to the housing G, which is cyclically withdrawn from an actuator M, for example a magnet Contains position in a stop position to the storage area 3 movable stop element P.

Der auf der Antriebswelle 1 drehbar gelagerte Speicherkörper B muß gegen ein Mitdrehen mit der Antriebswelle 1 abgestützt werden. zu diesem Zweck sind aufeinander ausgerichtete Haltemagneten 8, 9 im Gehäuse G und am Grundkörper 2 des Speicherkörpers B vorgesehen. Im Gehäuse G sind die Haltemagneten 8 zweckmäßigerweise über den gesamten Umfang in einer Reihe verteilt angeordnet. Am Grundkörper 2 des Speicherkörpers B sind hingegen nur zwei diametral gegenüberliegende Haltemagneten 9 oder zwei Paare solcher Haltemagneten erforderlich. Die Haltemagneten 9 sind mit Weicheisenträgern 10 und Halteschrauben 11 am Grundkörper 2 befestigt. Der Speicherkörper B besteht z.B. aus Kunststoff.The storage body B rotatably mounted on the drive shaft 1 must be supported against rotation with the drive shaft 1. For this purpose aligned holding magnets 8, 9 are provided in the housing G and on the base body 2 of the storage body B. In the housing G, the holding magnets 8 are expediently arranged in a row over the entire circumference. On the other hand, only two diametrically opposed holding magnets 9 or two pairs of such holding magnets are required on the base body 2 of the storage body B. The holding magnets 9 are fastened to the base body 2 with soft iron carriers 10 and holding screws 11. The storage body B is e.g. made of plastic.

Mit der Antriebswelle 1, die in ihrem linken Teil als Hohlwelle ausgebildet ist, ist drehfest ein Faden-Aufwickelorgan 12 verbunden, das in einen trichterförmigen Tragteil 14 eingegliedert ist und sich zwischen den Haltemagneten 8 und 9 nach außen erstreckt. Ein Fadenleitkanal 13 führt durch die Antriebswelle 1 und das Aufwickelorgan 12 nach außen. Ein Faden Y, der in Fig. 1 von links von einer Vorratsspule kommend in den Leitkanal 13 eintritt, wird von dem Aufwickelorgan 12 in aufeinanderfolgenden Windungen W auf der Speicherfläche 3 abgelegt und dann überkopf des Speicherkörpers B mit umlaufendem Fadenabzugspunkt von einem nicht-dargestellten Verbraucher, z.B. einer Düsenwebmaschine, abgezogen, sofern das Stopelement P zurückgezogen ist. Ist das Stopelement P ausgefahren (Fig. 1), dann ist der Fadenabzug blockiert.With the drive shaft 1, which is formed in its left part as a hollow shaft, a thread winding element 12 is connected in a rotationally fixed manner, which is incorporated into a funnel-shaped support part 14 and extends outwards between the holding magnets 8 and 9. A thread guide channel 13 leads through the drive shaft 1 and the winding member 12 to the outside. A thread Y, which in Fig. 1 comes from the left of a supply spool into the guide channel 13, is deposited by the winding member 12 in successive turns W on the storage surface 3 and then overhead of the storage body B with a circumferential thread withdrawal point from a consumer, not shown , for example a jet weaving machine, if the stop element P is withdrawn. If the stop element P is extended (FIG. 1), then the thread take-off is blocked.

Zwischen dem Grundkörper 2 und der Umlaufbahn des Aufwickelorgans 12 ist ein schmaler Zwischenraum 15 vorgesehen, in dem ein Schwingkörper K sitzt, der die Form einer tellerähnlichen Kreisringscheibe hat und zwei diametral gegenüberliegende Ausnehmungen 18 in den Bereichen der Haltemagneten 9 aufweist. Der Schwingkörper K besteht aus schwerem Material, vorzugsweise Metall. Zweckmäßigerweise ist er als Zink-Druckguß-Formteil oder als Stahldrehteil ausgebildet und an die Kontur der mit 16 bezeichneten Strinseite des Grundkörpers 2 angepaßt, so daß er der Stirnseite 17 des Aufwickelorgans 12 berührungsfrei gegenüberliegt. Der Schwingkörper K ist relativ zum Speicherkörper B beweglich angeordnet und an diesem lagegesichert. Er steht mit dem Speicherkörper B in einer Reibverbindung R, wobei die gezeigte Ausführungsform zwei Reibverbindungen R andeutet. Es ist aber denkbar, daß der Schwingkörper K mehrere Reibverbindungen mit dem Speicherkörper B hat. Gegen ein axiales Abgleiten des Schwingkörpers ist am Weicheisenträger 10 ein Sicherungsteil 10a angeformt, das über den Rand der Ausnehmung 18 des Schwingkörpers K greift. Dort ist beispielsweise eine Reibverbindung R vorgesehen. Ferner besitzt der Grundkörper 2 eine Lageraufnahme 21, mit der er auf dem Lager 7 festgelegt ist. Angrenzend an die Lageraufnahme 21 ist ein umlaufende Nut 19 in den Grundkörper 2 eingeformt, in welche der Schwingkörper K mit einem Ringflansch 20 eingreift, der auf der Lageraufnahme 21 in einem Gleitsitz zentriert und geführt ist. Zwischen dem Ringflansch 20 und der Lageraufnahme 21 ist eine Reibverbindung R vorgesehen. Gegebenenfalls sind in dieser Reibverbindung R ein Reibbelag oder ein einstellbares Reibelement E angeordnet.Between the base body 2 and the orbit of the winding member 12, a narrow space 15 is provided, in which a vibrating body K is seated, which has the shape of a plate-like circular disk and has two diametrically opposite recesses 18 in the regions of the holding magnets 9. The vibrating body K is made of heavy material, preferably metal. It is expediently designed as a zinc die-cast molded part or as a steel turned part and adapted to the contour of the string side of the base body 2, designated 16, so that it faces the end face 17 of the winding member 12 without contact. The vibrating body K is arranged so as to be movable relative to the storage body B and is secured in position thereon. It is in a friction connection R with the storage body B, the embodiment shown indicating two friction connections R. But it is conceivable that the vibrating body K has several friction connections with the storage body B. To prevent the oscillating body from sliding axially, a securing part 10a is formed on the soft iron carrier 10 and engages over the edge of the recess 18 of the oscillating body K. A friction connection R is provided there, for example. Furthermore, the base body 2 has a bearing seat 21 with which it is fixed on the bearing 7. Adjacent to the bearing holder 21, a circumferential groove 19 is formed in the base body 2, in which the oscillating body K engages with an annular flange 20 which is centered and guided on the bearing holder 21 in a sliding fit. A friction connection R is provided between the ring flange 20 and the bearing receptacle 21. If necessary, there is a friction lining or a in this friction connection R. adjustable friction element E arranged.

Ferner ist der Schwingkörper K am Grundkörper 2 durch eine aus Fig. 2 erkennbare Drehkupplung C begrenzt drehgesichert. Die Drehkupplung C wird von einer Aussparung 22 im Schwingkörper K und einem an der Stirnseite 16 des Grundkörpers 2 angeformten, vorsprungartigen Eingriffsteil 23 gebildet, der in die Aussparung 22 eingreift. Der Eingriffsteil 23 ist zweckmäßigerweise nach Art einer Biegefeder ausgebildet, die in Umfangsrichtung biegbar ist und einen verbreiterten Kopf 24 aufweist, der den Rändern der Aussparung 22 jeweils mit einem Drehspiel 25 gegenüberliegt. Die Drehkupplung C ist für die Drehschwingungsdämpfung nicht erforderlich, sondern dient zum Vermeiden exzessiver Verdrehungen zwischen dem Schwingkörper K und dem Grundkörper 2, bei denen gegebenenfalls der Haltemagnet 9 bzw. der Weicheisenträger 10 in unerwünschten Kontakt mit den Rändern der Ausnehmungen 18 gelangen könnte. Der Schwingkörper K repräsentiert eine Dämpfmasse m für den Speicherkörper B. Zweckmäßigerweise entspricht die Dämpfmasse m in etwa der Masse des gesamten Speicherkörpers B.Furthermore, the vibrating body K is limitedly secured against rotation on the base body 2 by a rotary coupling C which can be seen in FIG. 2. The rotary coupling C is formed by a recess 22 in the oscillating body K and a projection-like engagement part 23 which is formed on the end face 16 of the base body 2 and engages in the recess 22. The engagement part 23 is expediently designed in the manner of a spiral spring which is bendable in the circumferential direction and has a widened head 24 which is opposite the edges of the recess 22 with a rotational play 25 in each case. The rotary coupling C is not required for the torsional vibration damping, but serves to avoid excessive twisting between the vibrating body K and the base body 2, in which the holding magnet 9 or the soft iron carrier 10 could possibly come into undesired contact with the edges of the recesses 18. The vibrating body K represents a damping mass m for the storage body B. The damping mass m expediently corresponds approximately to the mass of the entire storage body B.

Im Betrieb des Faden-Fournisseurs F wird die Antriebswelle 1 innerhalb eines relativ breiten Drehzahlbereiches angetrieben, so daß das Aufwickelorgan 12 rotiert und die Fadenwindungen W auf der Speicherfläche 3 ablegt. Die Haltemagneten 8, 9 sichern die Drehposition des Speicherkörpers B in Relation zum Gehäuse G. Wird der Speicherkörper B bei der Drehbewegung der Antriebswelle 1 zu Drehschwingungen angeregt, dann werden die Drehschwingungen über die Reibverbindungen R auch auf den Schwingkörper K übertragen. Dieser nimmt phasenversetzte Drehschwinghewegungen auf. Über die Reibverbindungen findet eine Energieaufzehrung statt, aus der eine Abdämpfung der Drehschwingungen des Speicherkörpers B resultiert. In der Praxis konnten bei einem Speicherkörper B mit Fadenseparation und einem aus Kunststoff bestehenden Grundkörper 2 mittels eines einfachen aus Stahl hergestellten Schwingkörpers ohne zusätzliche Reibelemente E die in einem Drehzahlbereich von rund 1000 U/min auftretenden Drehschwingungen mit einer Amplitude bis zu 1,5 bis 2,0mm sofort auf eine Amplitude kleiner als 0,5mm gedämpft werden, was für den ordnungsgemäßen Betrieb ausreichte. Bei einer entsprechenden Feinabstimmung, unter anderem auch der Reibverbindungen R, läßt sich eine vollständige Abdämpfung der Drehschwingungen erreichen. Zweckmäßigerweise sind zur Unterbringung des Schwingkörpers K keine grundsätzlichen baulichen Veränderungen des bewährten Konstruktionsprinzips solcher Faden-Fournisseure notwendig, weil der funktionsnotwendige Zwischenraum 15 auf zweckmäßige Weise zur Unterbringung des Schwingkörpers genutzt wird. Das Prinzip, die Drehschwingungen mittels wenigstens eines in den Speicherkörper B baulich integrierten Schwingkörpers K wirksam abzudämpfen, ist für jede Bauart eines Speicherkörpers anwendbar, d.h. auch für Speicherkörper ohne Fadenseparation oder mit variablem Durchmesser oder mit einer anderen Vorschubmechanik für die Fadenwindungen. Ferner kann der Schwingkörper auch innerhalb des Speicherkörpers B oder an der dem Aufwickelorgan 12 abgewandten Stirnseite angeordnet werden.In operation of the thread feeder F, the drive shaft 1 is driven within a relatively wide speed range, so that the winding member 12 rotates and the thread turns W are deposited on the storage surface 3. The holding magnets 8, 9 secure the rotational position of the storage body B in relation to the housing G. If the storage body B is excited to torsional vibrations during the rotational movement of the drive shaft 1, then the torsional vibrations are caused by the Friction connections R also transferred to the vibrating body K. This takes up phase-shifting torsional vibrations. An energy dissipation takes place via the friction connections, which results in a damping of the torsional vibrations of the storage body B. In practice, in the case of a storage body B with thread separation and a base body 2 made of plastic, by means of a simple vibrating body made of steel without additional friction elements E, the torsional vibrations occurring in a speed range of around 1000 rpm with an amplitude of up to 1.5 to 2 .0mm are immediately dampened to an amplitude of less than 0.5mm, which was sufficient for correct operation. With a corresponding fine tuning, including the friction connections R, a complete damping of the torsional vibrations can be achieved. Expediently, no fundamental structural changes to the proven design principle of such thread feeders are necessary for accommodating the vibrating body K, because the space 15 required for the function is expediently used to accommodate the vibrating body. The principle of effectively damping the torsional vibrations by means of at least one vibrating body K that is structurally integrated in the storage body B can be used for any type of storage body, ie also for storage bodies without thread separation or with a variable diameter or with another feed mechanism for the thread turns. Furthermore, the oscillating body can also be arranged inside the storage body B or on the end face facing away from the winding member 12.

Bei der Ausführungsform gemäß Fig. 4 ist der Schwingkörper K im Zwischenraum 15 mittels einer Haftschicht 26 mit dem Grundkörper 2 des Speicherkörpers B verbunden. Dadurch entfallen lagesichernde Maßnahmen für den Schwingkörper K. Die Haftschicht 26 besteht aus einem Material mit hoher innerer Reibung und möglichst geringem Federeffekt. Beispielsweise ist der Schwingkörper mit einer Gummi- oder Elastomer-Haftschicht am Grundkörper 2 anvulkanisiert oder angeklebt, wobei gegebenenfalls die Haftschicht 26 sich nur über einen Teilbereich der möglichen radialen Erstreckung des Berührungsbereiches zwischen dem Grundkörper 2 und dem Schwingkörper K erstreckt.In the embodiment according to FIG. 4, the vibrating body K is connected in the intermediate space 15 to the base body 2 of the storage body B by means of an adhesive layer 26. This eliminates position-securing measures for the vibrating body K. The adhesive layer 26 consists of a material with high internal friction and the least possible spring effect. For example, the vibrating body is vulcanized or glued to the base body 2 with a rubber or elastomer adhesive layer, the adhesive layer 26 possibly extending only over a partial area of the possible radial extent of the contact area between the base body 2 and the vibrating body K.

Fig. 5 verdeutlicht einen im wesentlichen kreisringförmigen Schwingkörper, der an jeder beliebigen Stelle im Speicherkörper B angebracht werden kann, z.B. wie in Fig. 6 gezeigt, in einem Mittelbereich innerhalb einer Ausnehmung 27 des Speicherkörpers B.Fig. 5 illustrates a substantially circular vibrating body which can be attached at any point in the storage body B, e.g. 6, in a central region within a recess 27 of the storage body B.

Fig. 7 verdeutlicht eine Stirnansicht des Schwingkörpers K gemäß den Fig. 1 und 4 mit den zwei diametral gegenüberliegenden Ausnehmungen 18 für die Haltemagneten des Speicherkörpers.FIG. 7 illustrates an end view of the oscillating body K according to FIGS. 1 and 4 with the two diametrically opposite recesses 18 for the holding magnets of the storage body.

Fig. 8 verdeutlicht eine Ausbildungsvariante eines Schwingkörpers K mit einem verbreiterten Unterteil 28 und einem radial schmalen Oberteil 29, der eine über annähernd den halben Umfang durchgehende Ausnehmung 18 für die Haltemagneten begrenzt.8 illustrates a design variant of a vibrating body K with a widened lower part 28 and a radially narrow upper part 29, which delimits a recess 18 for the holding magnets which is approximately half the circumference.

Gemäß Fig. 9 ist am Speicherkörper B wenigstens ein als Pendel ausgebildeter Schwingkörper K um ein Drehlager 30 drehbar angeordnet. Anschläge 31 begrenzen den Pendelausschlag des Schwingkörpers K um das Drehlager 30. Zur Dämpfung wird entweder die Reibung im Drehlager 30 herangezogen oder sind weitere, nicht-dargestellte Reibverbindungen mit dem Speicherkörper B vorgesehen.According to FIG. 9, at least one oscillating body K designed as a pendulum is arranged on the storage body B so as to be rotatable about a rotary bearing 30. Stops 31 limit the Pendulum deflection of the vibrating body K around the pivot bearing 30. Either the friction in the pivot bearing 30 is used for damping or further friction connections (not shown) with the storage body B are provided.

Bei der Ausführungsform gemäß Fig. 10A besteht der Schwingkörper K aus einer Vielzahl von Kugeln oder Körnern oder Pellets 33 aus schwerem Material, die in einem Hohlraum 32 des Speicherkörpers B angeordnet sind. Gegebenenfalls ist der Hohlraum 32 zusätzlich mit einer Flüssigkeit, einer Paste oder einem anderen Material mit hoher innerer Reibung gefüllt.In the embodiment according to FIG. 10A, the oscillating body K consists of a plurality of balls or grains or pellets 33 made of heavy material, which are arranged in a cavity 32 of the storage body B. If necessary, the cavity 32 is additionally filled with a liquid, a paste or another material with high internal friction.

Bei der Ausführungsform gemäß Fig. 10B ist einem taschenförmigen Hohlraum 34 des Speicherkörpers B ein als Bogenstück 39 ausgebildeter Schwingkörper K freibeweglich angeordnet, der mit dem Speicherkörper B über Reibverbindungen gekoppelt ist. Über den Umfang und auch in axialer Richtung des Speicherkörpers B können gegebenenfalls mehrere solche Schwingkörper K verteilt sein.In the embodiment according to FIG. 10B, a pocket-shaped cavity 34 of the storage body B is arranged in a freely movable manner as an oscillating body K which is designed as a curved piece 39 and which is coupled to the storage body B via friction connections. A plurality of such vibrating bodies K can optionally be distributed over the circumference and also in the axial direction of the storage body B.

Bei der Ausführungsform gemäß Fig. 11 ist der Schwingkörper K in einem Behälter 35 in dessen Hohlraum 37 angeordnet und als Kugel 39 mit hoher Masse ausgebildet. Der Hohlraum 37 ist beispielsweise mit einer Flüssigkeit, einer Paste oder einem anderen deformierbaren Medium, auch einem Pulver oder einem Granulat gefüllt. Der Behälter 35 läßt sich mit Halterungen 36 an geeigneter Stelle des Speicherkörpers anbringen, und zwar zweckmäßigerweise so, daß bei beginnenden Drehschwingungen des Speicherkörpers der Schwingkörper K im Hohlraum 37 in dessen Längsrichtung verlagert wird, dabei gegebenenfalls an den Wänden des Behälters 35 reibt und/oder die Füllung 38 verdrängt und so Energie aufzehrt. Zwischen dem Außenumfang des Schwingkörpers K und der Wand des Behälters 35 sind Drosseldurchgänge vorgesehen, durch die die Füllung 38 bei der Bewegung des Schwingkörpers K passieren muß, was zu einer zusätzlichen Energieaufzehrung führt.In the embodiment according to FIG. 11, the vibrating body K is arranged in a container 35 in its cavity 37 and is designed as a ball 39 with a high mass. The cavity 37 is filled, for example, with a liquid, a paste or another deformable medium, also a powder or a granulate. The container 35 can be attached with brackets 36 at a suitable location on the storage body, expediently such that when the storage body begins to vibrate, the vibrating body K is displaced in the longitudinal direction in the cavity 37, possibly on the walls of the Container 35 rubs and / or displaces the filling 38 and thus consumes energy. Throttle passages are provided between the outer circumference of the vibrating body K and the wall of the container 35, through which the filling 38 must pass when the vibrating body K is moving, which leads to additional energy consumption.

Claims (17)

  1. Yarn feeder (F), having a storage body (B) rotatably mounted on a shaft (1) which may be set in rotation in a housing (G), and having holding magnets (8, 9) which are aligned with one another in the housing (G) and on the storage body (B) for positioning the storage body (B) non-rotatably relative to the housing (G), characterized in that at least one oscillating body (K) is associated as a damping mass (m) with the storage body (B), that the oscillating body (K) is disposed so as to be movable relative to the storage body (B), and that a frictional connection (R) is provided between the storage body (B) and the oscillating body (K).
  2. Yarn feeder according to claim 1, characterized in that the oscillating body (K) is made of a solid material with a high specific gravity, preferably of metal, and is fixed in position, centred coaxially with the storage body (B) and rotatable at least to a limited extent relative to the storage body (B), preferably on the storage body (B).
  3. Yarn feeder according to claim 1 or 2, characterized in that the, preferably single-piece, oscillating body (K) is disposed in a gap (15) between a take-up element (12) non-rotatably connected to the shaft (1) and the storage body (B) on the face (16) of the latter directed towards the take-up element (12), that at least one holding magnet (9) is fastened to the face (16) in a region cut out from the oscillating body (K), and that countermagnets (8) associated with the holding magnet (9) are disposed in the housing (G) on the other side of the take-up element (12).
  4. Yarn feeder according to claim 3, characterized in that the holding magnet (9) is seated by means of a soft-iron holder (10) inside a recess (18) of the oscillating body (K), that the oscillating body (K) substantially fills the gap (15) approximately axially below the holding magnet (9) and the soft-iron holder (10), that the oscillating body (K) is locked against rotation on the storage body (B) by means of a rotary coupling (C) having a rotational clearance (25), and that the soft-iron holder (10) comprises a locking part (10a) which engages over the edge of the recess (18).
  5. Yarn feeder according to claim 4, characterized in that the rotary coupling (C) comprises a projection-like engagement part (23), preferably in the form of a torsion spring, on the face (16) of the storage body (B) and a recess (22) in the oscillating body (K), into which the engagement part (23) engages with the rotational clearance (25).
  6. Yarn feeder according to claim 2, characterized in that the oscillating body (K) comprises a centrical bush (20), which is disposed in a sliding fit on a bearing seat (21) of the storage body (B).
  7. Yarn feeder according to one of claims 1 to 5, characterized in that the oscillating body (K) contacts the storage body (B) with mechanical sliding friction.
  8. Yarn feeder according to claim 7, characterized in that a friction lining (E) or a preferably adjustable and/or exchangeable friction element is provided in the mutual contact region on the oscillating body (K) and/or on the storage body (B).
  9. Yarn feeder according to claim 1, characterized in that the storage body (B) comprises built-in inserts (4, 5) for separating yarn windings (W) produced on the storage body (B) by means of the take-up element (12), and that the damping mass (m) of the oscillating body (K) is approximately equal to the mass of the storage body (B) plus the built-in inserts (4, 5).
  10. Yarn feeder according to claim 1, characterized in that the damping mass (m) of the oscillating body (K) is approximately equal to the mass of the, preferably plastic, storage body (B).
  11. Yarn feeder according to claim 1, characterized in that the oscillating body (K) is fitted into the interior of the storage body (B).
  12. Yarn feeder according to claim 1, characterized in that the oscillating body (K) is connected by a plastically deformable adhesive layer (26) to the storage body (B), and that the adhesive layer (26) is made of a material with high internal friction upon deformation.
  13. Yarn feeder according to claim 1, characterized in that the oscillating body (K) takes the form of a filling of balls (33) or grains of heavy solid material and is disposed in a container (35) or cavity (32), and that the container (35) or cavity (32) is disposed on or in the storage body (B).
  14. Yarn feeder according to claim 1, characterized in that the oscillating body (K) is at least one weight insert (39) in a cavity (37, 34) on or in the storage body (B).
  15. Yarn feeder according to claim 1, characterized in that at least one pendulum-like oscillating body (K) is disposed on the storage body (B).
  16. Yarn feeder according to one of claims 11, 13, 14, characterized in that a displaceable, plastically deformable material with high internal friction, e.g. a liquid, a paste-like substance, granulates or a powder, is provided as an additional filling (38) in the cavity (32, 37) or in the container (35).
  17. Yarn feeder according to claim 16, characterized in that at least one throttling passage for the filling (38) displaceable from the oscillating body (K) upon movement of the latter relative to the storage body (B) is provided in the container or cavity (32, 34, 35, 37).
EP92917601A 1991-08-22 1992-08-21 Thread regulating wheel Expired - Lifetime EP0599926B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4127796A DE4127796A1 (en) 1991-08-22 1991-08-22 THREAD FOURNISSEUR
DE4127796 1991-08-22
PCT/EP1992/001926 WO1993003991A1 (en) 1991-08-22 1992-08-21 Thread regulating wheel

Publications (2)

Publication Number Publication Date
EP0599926A1 EP0599926A1 (en) 1994-06-08
EP0599926B1 true EP0599926B1 (en) 1995-12-20

Family

ID=6438845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92917601A Expired - Lifetime EP0599926B1 (en) 1991-08-22 1992-08-21 Thread regulating wheel

Country Status (7)

Country Link
US (1) US5560556A (en)
EP (1) EP0599926B1 (en)
JP (1) JP3341081B2 (en)
KR (1) KR100246982B1 (en)
CZ (1) CZ280858B6 (en)
DE (2) DE4127796A1 (en)
WO (1) WO1993003991A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533312A1 (en) * 1995-09-08 1997-05-07 Iro Ab Thread delivery device
DE10014623A1 (en) * 2000-03-24 2001-09-27 Iro Patent Ag Baar Yarn feed control for a shuttleless loom has a structured inching action on the feed motor to maintain yarn tension until activated for insertion according to the weaving pattern
JP5915219B2 (en) 2012-02-07 2016-05-11 村田機械株式会社 Yarn winding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH439161A (en) * 1965-06-25 1967-06-30 Sulzer Ag Weaving machine with intermediate weft storage
FR2428641A1 (en) * 1978-06-12 1980-01-11 Labaz NOVEL PYRROLE-1 AND PYRROLIDINE-1 CARBOXYLIC ACID DERIVATIVES AND THEIR PREPARATION PROCESS
CH669804A5 (en) * 1986-05-15 1989-04-14 Sulzer Ag
ES2029086T3 (en) * 1988-03-02 1992-07-16 L.G.L. Electronics S.P.A. FEEDING DEVICE FOR SCREEN, PARTICULARLY FOR LOOMS.
DE3938646A1 (en) * 1989-11-03 1991-05-08 Iro Ab Yarn feed appts. - has additional dampener at yarn store surface activated temporarily during shaft rotation to prevent oscillation
JP2880289B2 (en) * 1989-11-03 1999-04-05 イーロー アーベー Method for preventing rotational vibration generated in yarn storage and supply device and yarn storage and supply device
DE9111875U1 (en) * 1991-09-23 1993-01-28 Sobrevin Société de brevets industriels-Etablissement, Vaduz Thread storage and delivery device with adjustable bristle alignment

Also Published As

Publication number Publication date
EP0599926A1 (en) 1994-06-08
CZ280858B6 (en) 1996-04-17
DE4127796A1 (en) 1993-02-25
JPH07500801A (en) 1995-01-26
KR100246982B1 (en) 2000-04-01
CZ40694A3 (en) 1994-06-15
DE59204780D1 (en) 1996-02-01
JP3341081B2 (en) 2002-11-05
WO1993003991A1 (en) 1993-03-04
US5560556A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
DE69804085T2 (en) REINFORCED THREAD SPINDLE
EP1927688A1 (en) Support arrangements for spindel assemblies in ring spinning machines of the Individual-spindle-drive type
EP0599926B1 (en) Thread regulating wheel
DE19720795A1 (en) Thread brake and textile machine equipped with it and thread delivery device
DE3324262A1 (en) DEVICE FOR SHARPENING ROTATING CUTTING KNIVES
DE3914777C2 (en) Thrust bearing for the shaft of a spinning rotor
DE3011078C2 (en) Magnetic bearings
DE2527343A1 (en) SPEED MEASURING UNIT
DE4306087C2 (en) Feed spindle mechanism with a vibration damping device
EP1518810B1 (en) Yarn brake and textile machine and yarn feeding device equipped with such a yarn brake
DE2839437C2 (en) Yarn storage and delivery device
DE10038060A1 (en) Laboratory centrifuge comprises mass balance ring made of laminated elastomer
EP1927689A1 (en) Support arrangements of spindles in ring spinning frames with single spindle drives
DE3818827C2 (en)
EP0367726B1 (en) Device to compensate for the deflection of the winding mandrel of a winding machine
DE3716588A1 (en) TURNING VIBRATION DETECTORS, ESPECIALLY FOR TRANSMISSIONS OF MOTOR VEHICLES
DE60002536T2 (en) yarn winder
WO1980000428A1 (en) Device for damping the vibrations of a sharpening machine tool
WO2001014763A1 (en) Friction damper
EP0501024B1 (en) Yarn delivering device
EP0070343A1 (en) Vibrator with an unbalanced mass depending on the number of revolutions
EP0498852B1 (en) Process for preventing torsional vibrations in a thread-storage and thread-feed device, and thread-storage and thread-feed device
DE4445277B4 (en) Method for balancing a tool head, in particular for turning and boring operations, and tool head
DE102004049211A1 (en) Yarn feeder
DE737200C (en) Vibration exciter for testing technical structures using rotating masses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE IT LI NL SE

17Q First examination report despatched

Effective date: 19950203

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE IT LI NL SE

REF Corresponds to:

Ref document number: 59204780

Country of ref document: DE

Date of ref document: 19960201

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020820

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030828

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030929

Year of fee payment: 12

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040824

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040826

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060301

BERE Be: lapsed

Owner name: *IRO A.B.

Effective date: 20050831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100826

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110821