EP0599055A1 - Gasturbine combustor - Google Patents

Gasturbine combustor Download PDF

Info

Publication number
EP0599055A1
EP0599055A1 EP93116942A EP93116942A EP0599055A1 EP 0599055 A1 EP0599055 A1 EP 0599055A1 EP 93116942 A EP93116942 A EP 93116942A EP 93116942 A EP93116942 A EP 93116942A EP 0599055 A1 EP0599055 A1 EP 0599055A1
Authority
EP
European Patent Office
Prior art keywords
cooling
height
tubes
combustion chamber
baffle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93116942A
Other languages
German (de)
French (fr)
Other versions
EP0599055B1 (en
Inventor
Burkhard Dr. Schulte-Werning
Roger Suter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0599055A1 publication Critical patent/EP0599055A1/en
Application granted granted Critical
Publication of EP0599055B1 publication Critical patent/EP0599055B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/54Reverse-flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to a gas turbine combustion chamber in which the combustion chamber wall is cooled by means of impingement cooling.
  • Such gas turbine combustors are known.
  • a perforated plate is used which generates a cooling gas jet in such a way that it strikes the underlying surface perpendicularly and cools it.
  • the perforated plate and the baffle surface together form a channel in which the incoming cooling air mass is transported on.
  • the heat transfer coefficient is greatest for the first cooling jet. It then decreases along the length of the impingement cooling duct, since the influence of the increasing cross-flow speed leads to an increasing deflection of the impingement jet.
  • the invention tries to avoid all these disadvantages. It is based on the task of designing the cooling channel between the outer and inner jacket in a gas turbine combustion chamber for cooling the combustion chamber wall by means of impingement cooling in such a way that the cross-flow velocity in the cooling channel is constant and a uniform cooling effect is achieved. Furthermore, it is based on the additional task of achieving a targeted control of the cooling effect.
  • this is done in a gas turbine combustion chamber in which the combustion chamber wall can be cooled by impingement cooling, the cooling gas jet hitting the impingement surface through a perforated plate, tubes are arranged on the holes of the perforated plate in the cooling duct, and the perforated plate and the Baffle form the cooling channel, achieved in that the height of the cooling channel in the cross-flow direction is continuously increasing in accordance with the cooling air supply and the undesired cross-flow is thereby kept small.
  • the tubes are arranged in the cooling duct in such a way that the impact air strikes the impact surface perpendicularly, the height of the tubes in the cross-flow direction increasing so that the distance of the tubes from the impact surface is constant over the entire length of the cooling duct.
  • the diameter of the holes, the spacing of the holes from one another and the height of the tubes are selected as a function of the desired cooling effect. So z. B. at the end of countercurrent cooling of an annular combustion chamber, the cooling can be intensified locally in order to dissipate the high heat flows near the burner.
  • a gas turbine combustion chamber 1 part of a gas turbine combustion chamber 1 is shown. It is an annular combustion chamber with environmentally friendly burners 2 (double cone burners).
  • the inner wall of the gas turbine combustion chamber 1 is cooled by convective cooling with subsequent impingement cooling, i.e. the impact cooling section II connects to the convective cooling section I.
  • the transition to the burner inflow is designed as a small diffuser 8.
  • the cooling channel 5 between the perforated plate 3 and the baffle surface 4 has a linearly increasing height in the cross-flow direction.
  • This divergent cooling channel 5 causes a constant cross-flow velocity to arise, i.e. the mass supply via the perforated plate 3 is compensated for by a cross-sectional expansion. This measure leads to a reduction in the viscous pressure loss in the cooling channel 5 and a constant impingement jet speed due to the now constant pressure difference across the perforated plate 3.
  • the heat transfer coefficient along the impingement cooling section II is kept constant, thus achieving a very uniform heat dissipation.
  • the cooling effect can be influenced in a targeted manner by a suitable choice of the height of the tubes 7 and the diameter as well as the spacing of the holes 6, so that, for example, towards the end of countercurrent cooling of the combustion chamber 1 with environmentally friendly burners 2, the cooling can be intensified locally in order to accommodate the high heat flows dissipate near the burner 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

In a gas-turbine combustion chamber (1) cooled by means of baffle cooling, the height of the cooling duct (5) formed by the perforated plate (3) and the baffle surface (4) increases continuously in the cross-flow direction in accordance with the cooling air feed. Tubelets (7) are arranged in the cooling duct (5) on the holes (6) of the perforated plate (3) in such a way that the air to be deflected strikes the baffle surface (4) at right angles. The height of the tubelets (7) increases in the cross-flow direction in such a way that the distance of the tubelets (7) from the baffle surface (4) is constant over the entire length of the cooling duct (5). As a result, the heat transfer coefficient remains constant along the baffle cooling section, and a uniform thermal dissipation is permitted. The cooling effect can be controlled in a pinpointed fashion by suitably selecting the diameter of the holes (6) and the height of the tubelets (7). <IMAGE>

Description

Die Erfindung betrifft eine Gasturbinenbrennkammer, bei welcher die Brennkammerwand mittels Prallkühlung gekühlt wird.The invention relates to a gas turbine combustion chamber in which the combustion chamber wall is cooled by means of impingement cooling.

Stand der TechnikState of the art

Derartige Gasturbinenbrennkammern sind bekannt. Zur Realisierung des Prallkühlungskonzepts, z. B. zur Kühlung einer Ringbrennkammerwand, wird mit einer Lochplatte gearbeitet, die einen Kühlgasstrahl derart erzeugt, dass er senkrecht auf die darunter liegende Oberfläche trifft und diese kühlt. Die Lochplatte und die Prallfläche bilden zusammen einen Kanal, in dem die einströmende Kühlluftmasse weitertransportiert wird.Such gas turbine combustors are known. To implement the impingement cooling concept, e.g. B. for cooling an annular combustion chamber wall, a perforated plate is used which generates a cooling gas jet in such a way that it strikes the underlying surface perpendicularly and cools it. The perforated plate and the baffle surface together form a channel in which the incoming cooling air mass is transported on.

Der Wärmeübergangskoeffizient ist für den ersten Kühlstrahl am grössten. Er nimmt dann entlang der Lauflänge des Prallkühlungskanals ab, da der Einfluss der wachsenden Querströmungsgeschwindigkeit zu einer zunehmenden Ablenkung des Prallstrahles führt.The heat transfer coefficient is greatest for the first cooling jet. It then decreases along the length of the impingement cooling duct, since the influence of the increasing cross-flow speed leads to an increasing deflection of the impingement jet.

Nach einer längeren Laufstrecke ist deshalb die Kühlwirkung bei dieser Prallkühlung nur noch geringfügig besser als bei einer reinen Konvektivkühlung.After a longer running distance, the cooling effect is only slightly better with this impingement cooling than with pure convective cooling.

Um dennoch über eine bestimmte Distanz eine einigermassen gleichmässige Kühlwirkung zu erreichen, wurden bisher die Prallkühlungsströmungen jeweils neu gestartet, so dass für den Wärmeübergangskoeffizienten in etwa ein sägezahnartiger Verlauf um einen geforderten Mittelwert erreicht wird.In order to nevertheless achieve a reasonably uniform cooling effect over a certain distance, the impingement cooling flows have been restarted so far, so that a sawtooth-like course around a required average value is achieved for the heat transfer coefficient.

Die Nachteile des Standes der Technik bestehen darin, dass keine gleichmässige Kühlwirkung über die gesamte Länge der Kühlstrecke erzielt wird und dass ein zusätzlicher Aufwand zum Neustart der Prallkühlungsströmungen getrieben werden muss.The disadvantages of the prior art are that no uniform cooling effect is achieved over the entire length of the cooling section and that additional effort has to be made to restart the impingement cooling flows.

Diese Nachteile können auch nicht mit der bekannten technischen Lösung aus DE-OS 28 36 539, bei der zur Verbesserung der Prallkühlwirkung in einem Heissgasgehäuse für Gasturbinen in die Öffnungen der Lochplatte Kühlluftführungen in Form von Röhrchen einer konstanten Länge eingesetzt werden, beseitigt werden.These disadvantages can also not be eliminated with the known technical solution from DE-OS 28 36 539, in which cooling air guides in the form of tubes of a constant length are used in the openings of the perforated plate to improve the impact cooling effect in a hot gas housing for gas turbines.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer zur Kühlung der Brennkammerwand mittels Prallkühlung den Kühlkanal zwischen Aussen- und Innenmantel so zu gestalten, dass die Querströmungsgeschwindigkeit im Kühlkanal konstant ist und eine gleichmässige Kühlwirkung erzielt wird. Desweiteren liegt ihr die zusätzliche Aufgabe zugrunde, eine gezielte Steuerung der Kühlwirkung zu erreichen.The invention tries to avoid all these disadvantages. It is based on the task of designing the cooling channel between the outer and inner jacket in a gas turbine combustion chamber for cooling the combustion chamber wall by means of impingement cooling in such a way that the cross-flow velocity in the cooling channel is constant and a uniform cooling effect is achieved. Furthermore, it is based on the additional task of achieving a targeted control of the cooling effect.

Erfindungsgemäss wird dies bei einer Gasturbinenbrennkammer, bei welcher die Brennkammerwand mittels Prallkühlung kühlbar ist, wobei der Kühlgasstrahl durch eine Lochplatte auf die Prallfläche trifft, auf den Löchern der Lochplatte im Kühlkanal Röhrchen angeordnet sind und die Lochplatte und die Prallfläche den Kühlkanal bilden, dadurch erreicht, dass die Höhe des Kühlkanals in Querströmungsrichtung entsprechend der Kühlluftzufuhr stetig zunehmend ist und dadurch die unerwünschte Querströmung klein gehalten wird. Ausserdem sind die Röhrchen im Kühlkanal derart angeordnet, dass die Pralluft senkrecht auf die Prallfläche auftrifft, wobei die Höhe der Röhrchen in Querströmungsrichtung so zunehmend ist, dass der Abstand der Röhrchen von der Prallfläche über die gesamte Länge des Kühlkanals konstant ist.According to the invention, this is done in a gas turbine combustion chamber in which the combustion chamber wall can be cooled by impingement cooling, the cooling gas jet hitting the impingement surface through a perforated plate, tubes are arranged on the holes of the perforated plate in the cooling duct, and the perforated plate and the Baffle form the cooling channel, achieved in that the height of the cooling channel in the cross-flow direction is continuously increasing in accordance with the cooling air supply and the undesired cross-flow is thereby kept small. In addition, the tubes are arranged in the cooling duct in such a way that the impact air strikes the impact surface perpendicularly, the height of the tubes in the cross-flow direction increasing so that the distance of the tubes from the impact surface is constant over the entire length of the cooling duct.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass im Kühlkanal eine konstante Querströmungsgeschwindigkeit herrscht, der viskose Druckverlust im Kühlkanal verringert wird und sich eine konstante Prallstrahlgeschwindigkeit einstellt. Entlang der Prallkühlstrecke wird der Wärmeübergangskoeffizient konstant gehalten, so dass eine sehr gleichmässige Wärmeabfuhr ermöglicht wird.The advantages of the invention can be seen, inter alia, in the fact that there is a constant cross-flow velocity in the cooling duct, the viscous pressure loss in the cooling duct is reduced and a constant impingement jet velocity is established. The heat transfer coefficient is kept constant along the impingement cooling section, so that very uniform heat dissipation is made possible.

Es ist zweckmässig, wenn die Höhe des Kühlkanals und die Höhe der Röhrchen linear zunehmend sind.It is expedient if the height of the cooling channel and the height of the tubes increase linearly.

Ferner ist es vorteilhaft, wenn der Durchmesser der Löcher, der Abstand der Löcher voneinander und die Höhe der Röhrchen in Abhängigkeit von der gewünschten Kühlwirkung gewählt werden. So kann z. B. am Ende der Gegenstromkühlung einer Ringbrennkammer die Kühlung lokal intensiviert werden, um die hohen Wärmeströme in Brennernähe abzuführen.It is also advantageous if the diameter of the holes, the spacing of the holes from one another and the height of the tubes are selected as a function of the desired cooling effect. So z. B. at the end of countercurrent cooling of an annular combustion chamber, the cooling can be intensified locally in order to dissipate the high heat flows near the burner.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die einzige Figur zeigt einen Teillängsschnitt durch eine Ringbrennkammer mit umweltfreundlichen Brennern (Doppelkegelbrenner). Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.In the drawing, an embodiment of the invention is shown. The only figure shows a partial longitudinal section through an annular combustion chamber with environmentally friendly burners (double-cone burners). It is only for understanding the Invention essential elements shown. The direction of flow of the work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert. In der Figur ist ein Teil einer Gasturbinenbrennkammer 1 dargestellt. Es ist eine Ringbrennkammer mit umweltfreundlichen Brennern 2 (Doppelkegelbrenner). Die Innenwand der Gasturbinenbrennkammer 1 wird durch eine Konvektivkühlung mit anschliessender Prallkühlung gekühlt, d.h. an die Konvektivkühlstrecke I schliesst sich die Prallkühlstrecke II an. Um den Gesamtdruckverlust zu reduzieren, ist der Übergang zur Brennereinströmung als Kleindiffusor 8 ausgebildet.The invention is explained in more detail below using an exemplary embodiment. In the figure, part of a gas turbine combustion chamber 1 is shown. It is an annular combustion chamber with environmentally friendly burners 2 (double cone burners). The inner wall of the gas turbine combustion chamber 1 is cooled by convective cooling with subsequent impingement cooling, i.e. the impact cooling section II connects to the convective cooling section I. In order to reduce the total pressure loss, the transition to the burner inflow is designed as a small diffuser 8.

Der Kühlkanal 5 zwischen Lochplatte 3 und Prallfläche 4 weist eine in Querströmungsrichtung linear zunehmende Höhe auf. Dieser divergente Kühlkanal 5 bewirkt, dass eine konstante Querströmungsgeschwindigkeit entsteht, d.h. die Massenzufuhr über die Lochplatte 3 wird durch eine Querschnittserweiterung ausgeglichen. Diese Massnahme führt zu einer Verringerung des viskosen Druckverlustes im Kühlkanal 5 sowie einer konstanten Prallstrahlgeschwindigkeit auf Grund der nun konstanten Druckdifferenz über die Lochplatte 3.The cooling channel 5 between the perforated plate 3 and the baffle surface 4 has a linearly increasing height in the cross-flow direction. This divergent cooling channel 5 causes a constant cross-flow velocity to arise, i.e. the mass supply via the perforated plate 3 is compensated for by a cross-sectional expansion. This measure leads to a reduction in the viscous pressure loss in the cooling channel 5 and a constant impingement jet speed due to the now constant pressure difference across the perforated plate 3.

Allerdings verlängert sich dadurch auch der Weg des Kühlstrahles bis zum Auftreffen auf die Prallfläche 4, so dass auch eine geringe, entlang dieses Weges wirkende Querströmung den Kühlstrahl ablenken und damit die Kühlwirkung vermindern kann. Eine Kompensation wird dadurch erreicht, dass auf der Lochplatte 3 auf den Löchern 6 die Röhrchen 7 so aufgebracht werden, dass der Abstand zur Prallfläche 4 im Kühlkanal 5 konstant ist und die Pralluft in den Kanälen der Röhrchen 7 bis nahe an die Kühloberfläche (Prallfläche 4) herangebracht wird und dann senkrecht auf die Prallfläche 4 auftrifft.However, this also extends the path of the cooling jet until it strikes the impact surface 4, so that even a small transverse flow acting along this path can deflect the cooling jet and thus reduce the cooling effect. Compensation is achieved in that the tubes 7 are applied to the holes 6 on the perforated plate 3 in such a way that the distance to the baffle surface 4 in the cooling channel 5 is constant and the baffle air in the channels of the tubes 7 is brought up close to the cooling surface (baffle surface 4) and then strikes the baffle surface 4 perpendicularly.

Durch die Kombination der beiden Massnahmen wird der Wärmeübergangskoeffizient entlang der Prallkühlstrecke II konstant gehalten und damit eine sehr gleichmässige Wärmeabfuhr erzielt.By combining the two measures, the heat transfer coefficient along the impingement cooling section II is kept constant, thus achieving a very uniform heat dissipation.

Durch geeignete Wahl der Höhe der Röhrchen 7 und des Durchmessers sowie des Abstandes der Löcher 6 voneinander kann die Kühlwirkung gezielt beeinflusst werden, so dass beispielsweise gegen Ende der Gegenstromkühlung der Brennkammer 1 mit umweltfreundlichen Brennern 2 die Kühlung lokal intensiviert werden kann, um die hohen Wärmeströme in der Nähe der Brenner 2 abzuführen.The cooling effect can be influenced in a targeted manner by a suitable choice of the height of the tubes 7 and the diameter as well as the spacing of the holes 6, so that, for example, towards the end of countercurrent cooling of the combustion chamber 1 with environmentally friendly burners 2, the cooling can be intensified locally in order to accommodate the high heat flows dissipate near the burner 2.

BezugszeichenlisteReference list

11
GasturbinenbrennkammerGas turbine combustion chamber
22nd
Brennerburner
33rd
LochplattePerforated plate
44th
PrallflächeBaffle
55
KühlkanalCooling channel
66
LöcherHoles
77
Röhrchentube
88th
KleindiffusorSmall diffuser
II.
KonvektivkühlstreckeConvective cooling section
IIII
PrallkühlstreckeImpact cooling section

Claims (3)

Gasturbinenbrennkammer, bei welcher die Brennkammerwand mittels Prallkühlung kühlbar ist, wobei der Kühlgasstrahl durch eine Lochplatte (3) auf die Prallfläche (4) trifft, auf den Löchern (6) der Lochplatte (3) im Kühlkanal Röhrchen (7) angeordnet sind und die Lochplatte (3) und die Prallfläche (4) den Kühlkanal (5) bilden, dadurch gekennzeichnet, dass die Höhe des Kühlkanals (5) in Querströmungsrichtung entsprechend der Kühlluftzufuhr stetig zunehmend ist und die Röhrchen (7) derart angeordnet sind, dass die Pralluft senkrecht auf die Prallfläche (4) auftrifft, wobei die Höhe der Röhrchen (6) in Querströmungsrichtung so zunehmend ist, dass der Abstand der Röhrchen (7) von der Prallfläche (4) über die gesamte Länge des Kühlkanals (5) konstant ist.Gas turbine combustion chamber in which the combustion chamber wall can be cooled by impingement cooling, the cooling gas jet hitting the impingement surface (4) through a perforated plate (3), on the holes (6) of the perforated plate (3) in the cooling duct tubes (7) and the perforated plate (3) and the baffle surface (4) form the cooling channel (5), characterized in that the height of the cooling channel (5) in the cross-flow direction is continuously increasing in accordance with the cooling air supply and the tubes (7) are arranged such that the baffle air is perpendicular the baffle surface (4) strikes, the height of the tubes (6) in the cross-flow direction increasing so that the distance of the tubes (7) from the baffle surface (4) is constant over the entire length of the cooling channel (5). Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Höhe des Kühlkanals (5) und die Höhe der Röhrchen (7) linear zunehmend sind.Gas turbine combustion chamber according to claim 1, characterized in that the height of the cooling channel (5) and the height of the tubes (7) are increasing linearly. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der Durchmesser der Löcher (6), der Abstand der Löcher (6) voneinander und die Höhe der Röhrchen (7) in Abhängigkeit von der gewünschten Kühlwirkung wählbar sind.Gas turbine combustion chamber according to claim 1, characterized in that the diameter of the holes (6), the spacing of the holes (6) from one another and the height of the tubes (7) can be selected as a function of the desired cooling effect.
EP93116942A 1992-11-27 1993-10-20 Gasturbine combustor Expired - Lifetime EP0599055B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4239856A DE4239856A1 (en) 1992-11-27 1992-11-27 Gas turbine combustion chamber
DE4239856 1992-11-27

Publications (2)

Publication Number Publication Date
EP0599055A1 true EP0599055A1 (en) 1994-06-01
EP0599055B1 EP0599055B1 (en) 1997-06-11

Family

ID=6473763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93116942A Expired - Lifetime EP0599055B1 (en) 1992-11-27 1993-10-20 Gasturbine combustor

Country Status (4)

Country Link
US (1) US5388412A (en)
EP (1) EP0599055B1 (en)
JP (1) JP3414806B2 (en)
DE (2) DE4239856A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018849A1 (en) * 1994-12-15 1996-06-20 United Technologies Corporation Combustor liner arrangement
WO2009103671A1 (en) * 2008-02-20 2009-08-27 Alstom Technology Ltd Gas turbine having an improved cooling architecture
CH699309A1 (en) * 2008-08-14 2010-02-15 Alstom Technology Ltd Thermal machine with air cooled, annular combustion chamber.
EP3098386A1 (en) * 2015-05-29 2016-11-30 General Electric Company Impingement insert
US9849510B2 (en) 2015-04-16 2017-12-26 General Electric Company Article and method of forming an article
US10087776B2 (en) 2015-09-08 2018-10-02 General Electric Company Article and method of forming an article
US10253986B2 (en) 2015-09-08 2019-04-09 General Electric Company Article and method of forming an article
US10739087B2 (en) 2015-09-08 2020-08-11 General Electric Company Article, component, and method of forming an article

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4244301C2 (en) * 1992-12-28 2001-09-13 Abb Research Ltd Impact cooling device
DE19720786A1 (en) * 1997-05-17 1998-11-19 Abb Research Ltd Combustion chamber
DE19751299C2 (en) 1997-11-19 1999-09-09 Siemens Ag Combustion chamber and method for steam cooling a combustion chamber
SE9801822L (en) * 1998-05-25 1999-11-26 Abb Ab combustion device
US6484505B1 (en) * 2000-02-25 2002-11-26 General Electric Company Combustor liner cooling thimbles and related method
US6536201B2 (en) * 2000-12-11 2003-03-25 Pratt & Whitney Canada Corp. Combustor turbine successive dual cooling
DE10064264B4 (en) * 2000-12-22 2017-03-23 General Electric Technology Gmbh Arrangement for cooling a component
US6438959B1 (en) * 2000-12-28 2002-08-27 General Electric Company Combustion cap with integral air diffuser and related method
EP1270874B1 (en) * 2001-06-18 2005-08-31 Siemens Aktiengesellschaft Gas turbine with an air compressor
GB2379499B (en) * 2001-09-11 2004-01-28 Rolls Royce Plc Gas turbine engine combustor
KR20030076848A (en) * 2002-03-23 2003-09-29 조형희 Combustor liner of a gas turbine engine using impingement/effusion cooling method with pin-fin
GB0504445D0 (en) * 2005-03-03 2005-04-06 Univ Cambridge Tech Oxygen generation apparatus and method
US8151570B2 (en) * 2007-12-06 2012-04-10 Alstom Technology Ltd Transition duct cooling feed tubes
US8166764B2 (en) * 2008-07-21 2012-05-01 United Technologies Corporation Flow sleeve impingement cooling using a plenum ring
US8291711B2 (en) 2008-07-25 2012-10-23 United Technologies Corporation Flow sleeve impingement cooling baffles
US9423132B2 (en) * 2010-11-09 2016-08-23 Opra Technologies B.V. Ultra low emissions gas turbine combustor
JP2012145098A (en) * 2010-12-21 2012-08-02 Toshiba Corp Transition piece, and gas turbine
US8966903B2 (en) * 2011-08-17 2015-03-03 General Electric Company Combustor resonator with non-uniform resonator passages
EP2738469B1 (en) 2012-11-30 2019-04-17 Ansaldo Energia IP UK Limited Combustor part of a gas turbine comprising a near wall cooling arrangement
US9010125B2 (en) 2013-08-01 2015-04-21 Siemens Energy, Inc. Regeneratively cooled transition duct with transversely buffered impingement nozzles
DE102017125051A1 (en) * 2017-10-26 2019-05-02 Man Diesel & Turbo Se flow machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
DE1938326A1 (en) * 1968-08-02 1970-02-19 Rolls Royce Flame tube for gas turbine jet engines
DE2836539A1 (en) * 1978-08-03 1980-02-14 Bbc Brown Boveri & Cie GAS TURBINE HOUSING
EP0203431A1 (en) * 1985-05-14 1986-12-03 General Electric Company Impingement cooled transition duct
EP0239020A2 (en) * 1986-03-20 1987-09-30 Hitachi, Ltd. Gas turbine combustion apparatus
GB2216645A (en) * 1988-03-25 1989-10-11 Gen Electric Cooling of wall members of structures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1356114A (en) * 1970-09-03 1974-06-12 Lage J R Method of and apparatus for heat transfer
DE2339366A1 (en) * 1972-08-15 1974-02-28 Stal Laval Turbin Ab COMBUSTION CHAMBER FOR GAS TURBINE
FR2624953B1 (en) * 1987-12-16 1990-04-20 Snecma COMBUSTION CHAMBER FOR TURBOMACHINES HAVING A DOUBLE WALL CONVERGENT
GB2219653B (en) * 1987-12-18 1991-12-11 Rolls Royce Plc Improvements in or relating to combustors for gas turbine engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
DE1938326A1 (en) * 1968-08-02 1970-02-19 Rolls Royce Flame tube for gas turbine jet engines
DE2836539A1 (en) * 1978-08-03 1980-02-14 Bbc Brown Boveri & Cie GAS TURBINE HOUSING
EP0203431A1 (en) * 1985-05-14 1986-12-03 General Electric Company Impingement cooled transition duct
EP0239020A2 (en) * 1986-03-20 1987-09-30 Hitachi, Ltd. Gas turbine combustion apparatus
GB2216645A (en) * 1988-03-25 1989-10-11 Gen Electric Cooling of wall members of structures

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018849A1 (en) * 1994-12-15 1996-06-20 United Technologies Corporation Combustor liner arrangement
WO2009103671A1 (en) * 2008-02-20 2009-08-27 Alstom Technology Ltd Gas turbine having an improved cooling architecture
US8413449B2 (en) 2008-02-20 2013-04-09 Alstom Technology Ltd Gas turbine having an improved cooling architecture
CH699309A1 (en) * 2008-08-14 2010-02-15 Alstom Technology Ltd Thermal machine with air cooled, annular combustion chamber.
EP2154431A2 (en) * 2008-08-14 2010-02-17 Alstom Technology Ltd Thermal machine
EP2154431A3 (en) * 2008-08-14 2010-08-04 Alstom Technology Ltd Thermal machine
US9849510B2 (en) 2015-04-16 2017-12-26 General Electric Company Article and method of forming an article
EP3098386A1 (en) * 2015-05-29 2016-11-30 General Electric Company Impingement insert
US9976441B2 (en) 2015-05-29 2018-05-22 General Electric Company Article, component, and method of forming an article
US10087776B2 (en) 2015-09-08 2018-10-02 General Electric Company Article and method of forming an article
US10253986B2 (en) 2015-09-08 2019-04-09 General Electric Company Article and method of forming an article
US10739087B2 (en) 2015-09-08 2020-08-11 General Electric Company Article, component, and method of forming an article

Also Published As

Publication number Publication date
DE59306732D1 (en) 1997-07-17
JPH06213002A (en) 1994-08-02
DE4239856A1 (en) 1994-06-01
JP3414806B2 (en) 2003-06-09
US5388412A (en) 1995-02-14
EP0599055B1 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
EP0599055B1 (en) Gasturbine combustor
DE60113620T2 (en) Gas burner nozzle and method of cooling same
EP0985882B1 (en) Vibration damping in combustors
DE102005023536B4 (en) Premix burner with impact-cooled centerbody and method of cooling the centerbody
DE60111682T2 (en) Gas turbine combustor
DE1626138C3 (en) Twin-flow gas turbine jet engine with at least one additional combustion device
EP0638769A2 (en) Fuel injector for liquid and/or gaseous fuels and method for its operation
EP0924470B1 (en) Premix combustor for a gas turbine
EP3134677B1 (en) Combustor having a fluidic oscillator, for a gas turbine, and gas turbine having the combustor
EP0577862A1 (en) Afterburner
EP0276696A2 (en) Hybrid burner for premix operation with gas and/or oil, particularly for gas turbine plants
EP1342953A1 (en) Gas turbine
EP1207350B1 (en) Combustor and method for operating the same
DE2116429A1 (en) Combustion chamber for gas turbine engines
EP0602384A1 (en) Gasturbine combustor
EP0718550A1 (en) Injection nozzle
EP2462379B1 (en) Stabilising of the flame of a burner
EP0483554A1 (en) Method for minimising the NOx emissions from a combustion
EP0882932B1 (en) Combustor
DE19535370B4 (en) Process for low-emission premix combustion in gas turbine combustion chambers
DE1288487B (en) Control for rocket engines
DE4325802B4 (en) Method for operating a gas turbine plant with liquid or gaseous fuel
DE19531387C2 (en) Process for burning liquid fuels in particular and burners for carrying out the process
EP0899510B1 (en) Plenum for a combustor
EP0590338A1 (en) Gas turbine combustion chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19941115

17Q First examination report despatched

Effective date: 19960226

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59306732

Country of ref document: DE

Date of ref document: 19970717

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970820

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091030

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101004

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100923

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20101025

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111020

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111020

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102