EP0597233A1 - Method of producing a decay object - Google Patents

Method of producing a decay object Download PDF

Info

Publication number
EP0597233A1
EP0597233A1 EP93115823A EP93115823A EP0597233A1 EP 0597233 A1 EP0597233 A1 EP 0597233A1 EP 93115823 A EP93115823 A EP 93115823A EP 93115823 A EP93115823 A EP 93115823A EP 0597233 A1 EP0597233 A1 EP 0597233A1
Authority
EP
European Patent Office
Prior art keywords
active
target
masses
dummy
target body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93115823A
Other languages
German (de)
French (fr)
Other versions
EP0597233B1 (en
Inventor
Martin Fegg
Heinz Bannasch
Martin Wegscheider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Original Assignee
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buck Chemisch Technische Werke GmbH and Co, Buck Werke GmbH and Co filed Critical Buck Chemisch Technische Werke GmbH and Co
Publication of EP0597233A1 publication Critical patent/EP0597233A1/en
Application granted granted Critical
Publication of EP0597233B1 publication Critical patent/EP0597233B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H9/00Equipment for attack or defence by spreading flame, gas or smoke or leurres; Chemical warfare equipment
    • F41H9/06Apparatus for generating artificial fog or smoke screens

Definitions

  • the invention relates to a method for providing a target signature of an object, such as a land, air or water vehicle or the like, for an imaging radiation-sensitive target seeker with spectral differentiation, such as an IR seeker, simulating a dummy target body.
  • Such a method is known from DE-OS 33 11 530 in which the dummy target body, which is intended to emulate a ship-like target signature, is brought into its position outside the watercraft to be simulated by means of an underwater vehicle.
  • the disadvantage here is that the dummy target body as a whole has to be built up by means of a corresponding single active mass, and thus the spatial signature could only be achieved remotely and without temporal stabilization.
  • a spatial-spectral distribution of the active mass is excluded.
  • IR deceptive principles are currently used worldwide: burning off fuel, pyrotechnic active materials with metallic components (e.g. magnesium / polytetrafluoroethylene), pyrotechnic active materials on carrier materials (flares) and "warm clouds", generated by an exothermic chemical reaction. All of these principles have the common disadvantage that they create points in the infrared or, at best, structureless clouds that have nothing in common with the contour and IR signature of a military object. The consequence of this fact is that these deceptive principles against "intelligent" imaging target seekers, in particular IR target seekers, of the so-called third generation are completely ineffective.
  • the invention has for its object to provide a method of the type mentioned, by means of which objects, such as ships, can be effectively protected against object contour sensitive "intelligent" seekers with spectral differentiation.
  • this object is achieved in a further development of the generic method by spatially displacing part of the spatial target signature of the object by emitting radiation in the sensitivity range of the imaging target seeker in such a way into the position of the dummy target body to be generated and disassembling it there that a spectrally differentiated three-dimensional dummy target body simulating the target signature of the object for the target seeker head is generated.
  • the active masses are brought into the position of the dummy target body at such a time that the three-dimensional dummy target body is produced essentially continuously for a predeterminable period of time.
  • the active masses are positioned under computer control under essentially continuous monitoring of the dummy target body.
  • the active masses can be positioned by rapid-fire projectiles.
  • the invention also provides that the rapid-fire projectiles are fired from several launchers.
  • the invention also proposes that the rapid-fire projectiles be fired with such a cadence that a new active mass comes into disassembly essentially at each predefinable active mass location at the point in time at which the previous active mass expires.
  • the invention also provides that different active masses are used for areas of the dummy target body to be set up with different attractiveness for the target seeker head.
  • the invention also proposes that infrared active masses are used.
  • active substance types are used which each contain phosphor granules and phosphor flares in different ratios, the first active substance type with a higher phosphor granulate component being used to simulate relatively cool and the second type of active material with a lower phosphor granulate component being used to simulate relatively warm object surfaces.
  • the invention also provides that the active masses of the first active mass type about 80% phosphor granules and about 20% phosphor flares and the active masses of the second active mass type about 25% phosphor grain contain nulat and about 70% phosphor flares.
  • the invention proposes that active materials with a decomposition size of at least 10 m are used.
  • the invention is based on the surprising finding that it is possible to specify a method for protection against imaging target seekers that is suitable in principle for all conceivable objects by virtue of the fact that in particular computer-controlled, with essentially continuous monitoring of the three-dimensional dummy target body, active substances, e.g. B. in the form of rapid-fire ammunition relatively small caliber, so spatially or temporally offset at the location of the dummy target to be assembled for disassembly that the target signature of the object to be protected in "deceptive similarity" for imaging target seekers, such as IR heads, is simulated.
  • active substances e.g. B. in the form of rapid-fire ammunition relatively small caliber
  • Different active masses are preferably used in this way, in this way differently warm surfaces of the object to be protected, e.g. B.
  • an object to be protected such as. B. a destroyer, an ammunition transport or the like, with different spectral attractiveness for the target seeker, so that the most realistic simulation of the object to be protected is achieved in this way.
  • the IR signature of the destroyer 10 shown there has a fuselage area with a relatively uniform surface temperature and two "hot spots" in the form of two chimneys 12, 14.
  • FIG. 2 shows that, according to the method according to the invention, a dummy target body 10 'has a "fuselage part" with an essentially uniform surface temperature and two "hot spots" 12', 14 ', corresponding to the chimneys 12, 14 of FIG. 1.
  • the three-dimensional IR dummy target according to FIG. 2 has a specific similarity to the destroyer according to FIG. 1 for an "intelligent" IR seeker head, that the seeker head will attack the dummy target body instead of the destroyer if the beam strengths and / or beam densities etc the overall apparent target is made more attractive to the seeker than the destroyer.
  • Figure 3 shows a destroyer with a conventional dummy target (torch) 11 without an object-like contour, so that this is not the real object, that is, by an "intelligent" IR seeker head of the third generation. H. the destroyer 10 will be preferred.
  • FIG. 4 showing an ammunition transporter 16 with a single chimney 18. Accordingly, the IR dummy target, shown according to the invention, reproduces a dummy target body 16 'with a single "hot spot" 18' according to FIG. 5.
  • the invention has been explained above on the basis of the exemplary embodiments shown for the most common application, the protection of ships, but versions for other objects only exist in ammunition caliber and ammunition composition, which each have to be optimized for the respective contour and spatial-spectral IR signature, differentiate.
  • the specific IR criteria of the object to be protected shape, area size, spatial spectral radiation distribution, movement behavior
  • shape, area size, spatial spectral radiation distribution, movement behavior are reproduced true to the original according to the invention.
  • the radiance of the dummy target body relative to the object is increased in order to represent the more attractive target for the IR seeker head.
  • the faithful, three-dimensional replica also has the advantage that the invention creates an apparent target body that is effective for all threats and therefore also for several simultaneous attacks from different directions.
  • the method according to the invention enables a three-dimensional dummy target to be achieved by the rapid and continuous targeted firing of specific pyrotechnic active substances realize under the following basic principles: firing order with high cadence, e.g. B. with more than three rounds / sec., Small caliber, ie approx.
  • a sequence of shots with a high cadence is expedient when carrying out the method according to the invention in order to repair defects in the IR pattern which gradually become extinguished and sink as well as defects in the IR pattern which arise as a result of wind drift, and in order to be able to build up the apparent target as quickly as possible when an IR target seeker approaches.
  • a cadence of 3 rounds / sec. displayed in order to build up a three-dimensional apparent target with approx. 5 to 7 IR active masses in 2 seconds and to maintain it for the desired period.
  • the higher the cadence the more accurate the IR simulation of the object.
  • Small calibers (approx. 40 mm and smaller) are therefore used in order to be able to produce the shape, the area and the IR target signature as true to detail as possible.
  • small calibers offer the advantage of higher possible firing sequences. In general, the smaller the caliber, the more accurate (resolution) the IR replica of the object becomes.
  • the following time table shows an example of a shot sequence:
  • a ship does not have a homogeneous surface temperature, but rather large areas with significant temperature differences.
  • two types of active masses can be fired which have different spectral properties.
  • the decomposition size of the active mass with a diameter of 10 m and more (depending on the decomposition charge and the quantity of the active mass) generates the three-dimensional dummy target body and can be adapted to the object to be protected.
  • An ammunition 2 (active mass 2) is used for the spatial and spectral replication of the hot spots (chimneys), the characteristics of which are explained below with reference to FIG. 7.
  • the active mass of the ammunition 2 is intended to produce approximately the same spectral radiance.
  • the spatial extent is generated by the decomposition size of the active mass (010m or more, depending on the decomposition load and the amount of active mass) and can be adapted to the dimensions of the object.
  • the types of ammunition are taped (ie all on one ammunition belt) fired from a single launcher, whereby a predetermined order of ammunition must be followed, e.g. B.
  • one launcher preferably deploys only one type of ammunition.
  • the control of the output is undertaken in the most favorable case by a computer system in connection with the digital evaluation of an own thermal imaging device.
  • the computer control generates the dummy target pattern in accordance with the object shape and its IR signature.
  • the computer independently checks the fidelity to the original and compensates for imperfections in the pattern (due to wind drift or extinction of the active masses) by deliberately constantly reworking the apparent target.
  • Barr & Stroud IR 18 512 pixels, range 8 ... 13 ⁇ m
  • the computer can determine from the image coordinates together with the associated image indices both the firing coordinates and the type of ammunition for the next series of shots in order to optimally match the (stored) IR ship pattern in Achieve shape and spectral signature.
  • the computer control sets the dummy target (in the best case) between the object and the IR target seeker at a distance of approx. 50 m to 100 m from the object.
  • the successive separation of the re-sewing and the maneuvers of the ship result in a progressive separation of the apparent target and the ship.
  • the IR beam seeker is "pulled away" from the ship by the increased beam strength of the dummy target compared to the ship.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A method for producing a decoy body which simulates the target signature of an object such as a land vehicle, aircraft or vessel or the like for an imaging, radiation-sensitive target homing head, such as an IR homing head, characterised in that active masses which, during their decomposition, simulate in a spatially offset manner in each case a portion of the spectral and spatial target signature of the object by emitting radiation in the sensitivity band of the imaging target homing head are moved into the position of the decoy body to be produced and are decomposed there, in such a manner that a three-dimensional decoy body is produced which simulates the spectral-spatial target signature of the object for the target homing head. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Bereitstellen eines die Zielsignatur eines Objektes, wie Land-, Luft- oder Wasserfahrzeuges oder dergleichen, für einen abbildenden strahlungsempfindlichen Zielsuchkopf mit spektraler Unterscheidung, wie IR-Suchkopf, simulierenden Scheinzielkörpers.The invention relates to a method for providing a target signature of an object, such as a land, air or water vehicle or the like, for an imaging radiation-sensitive target seeker with spectral differentiation, such as an IR seeker, simulating a dummy target body.

Aus der DE-OS 33 11 530 ist ein derartiges Verfahren bekannt, bei dem der Scheinzielkörper, der eine Nachbildung einer schiffsähnlichen Zielsignatur anstreben soll, mittels eines Unterwasserfahrzeuges in seine Position außerhalb des zu simulierenden Wasserfahrzeuges gebracht wird. Nachteilig ist dabei, daß der Scheinzielkörper insgesamt mittels einer entsprechenden einzigen Wirkmasse aufgebaut werden muß und somit die räumliche Signatur nur im entferntesten und ohne eine zeitliche Stabilisierung erreicht werden könnte. Zudem ist eine räumlich-spektrale Verteilung der Wirkmasse ausgeschlossen.Such a method is known from DE-OS 33 11 530 in which the dummy target body, which is intended to emulate a ship-like target signature, is brought into its position outside the watercraft to be simulated by means of an underwater vehicle. The disadvantage here is that the dummy target body as a whole has to be built up by means of a corresponding single active mass, and thus the spatial signature could only be achieved remotely and without temporal stabilization. In addition, a spatial-spectral distribution of the active mass is excluded.

Darüber hinaus ist es bekannt, als Scheinzielkörper für Flugzeuge, gepanzerte Fahrzeuge und Schiffe zwecks Täuschung von IR-Zielsuchköpfen einfache, heiße pyrotechnische Störstrahler einzusetzen, wobei die IR-Scheinziele in gewissem Umfang (Flächengröße, spektrale Strahlungsanteile) dem zu schützenden Objekt angenähert und, wie aus der DE-OS 34 21 734 bekannt, gegebenenfalls in Abhängigkeit von der Zeit durch Einsatz einer Vielzahl von zeitlich aufeinanderfolgend zur Verlegung kommender Wirkmassen allmählich von dem zu schützenden Objekt weggeführt werden.In addition, it is known to use simple, hot pyrotechnic interference emitters as dummy targets for aircraft, armored vehicles and ships for the purpose of deceiving IR target seekers, the IR dummy targets being approximated to a certain extent (area size, spectral radiation components) and how known from DE-OS 34 21 734, possibly depending on the time by using a large number of successive masses coming successively to be laid away gradually from the object to be protected.

Weltweit kommen derzeit folgende IR-Täuschprinzipien zur Anwendung: Abbrennen von Treibstoff, pyrotechnische Wirkmassen mit metallischer Komponente (z. B. Magnesium/Polytetrafluorethylen), pyrotechnische Wirkmassen auf Trägermaterialien (Flares) sowie "warme Wolken", erzeugt durch exotherme chemische Reaktion. Alle diese Prinzipien haben den gemeinsamen Nachteil, daß sie im Infraroten Punkte oder bestenfalls strukturlose Wolken erzeugen, die mit der Kontur und IR-Signatur eines militärischen Objekts nichts gemeinsam haben. Folge dieses Umstandes ist, daß diese Täuschprinzipien gegen "intelligent" abbildende Zielsuchköpfe, insbesondere IR-Zielsuchköpfe, der sogenannten dritten Generation völlig wirkungslos sind.The following IR deceptive principles are currently used worldwide: burning off fuel, pyrotechnic active materials with metallic components (e.g. magnesium / polytetrafluoroethylene), pyrotechnic active materials on carrier materials (flares) and "warm clouds", generated by an exothermic chemical reaction. All of these principles have the common disadvantage that they create points in the infrared or, at best, structureless clouds that have nothing in common with the contour and IR signature of a military object. The consequence of this fact is that these deceptive principles against "intelligent" imaging target seekers, in particular IR target seekers, of the so-called third generation are completely ineffective.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, mittels dessen Objekte, wie Schiffe, auch gegen objektkonturempfindliche "intelligente" Zielsuchköpfe mit spektraler Unterscheidung wirksam geschützt werden können.The invention has for its object to provide a method of the type mentioned, by means of which objects, such as ships, can be effectively protected against object contour sensitive "intelligent" seekers with spectral differentiation.

Erfindungsgemäß wird diese Aufgabe in Weiterbildung des gattungsgemäßen Verfahrens dadurch gelöst, daß räumlich versetzt bei ihrer Zerlegung jeweils einen Teil der räumlichen Zielsignatur des Objektes durch Aussendung von Strahlung im Empfindlichkeitsbereich des abbildenden Zielsuchkopfes simulierende Wirkmassen derart in die Position des zu erzeugenden Scheinzielkörpers gebracht und dort zerlegt werden, daß ein die Zielsignatur des Objektes für den Zielsuchkopf simulierender spektral differenzierter dreidimensionaler Scheinzielkörper erzeugt wird.According to the invention, this object is achieved in a further development of the generic method by spatially displacing part of the spatial target signature of the object by emitting radiation in the sensitivity range of the imaging target seeker in such a way into the position of the dummy target body to be generated and disassembling it there that a spectrally differentiated three-dimensional dummy target body simulating the target signature of the object for the target seeker head is generated.

Dabei kann vorgesehen sein, daß die Wirkmassen derart zeitlich versetzt in die Position des Scheinzielkörpers gebracht werden, daß der dreidimensionale Scheinzielkörper für einen vorgebbaren Zeitraum im wesentlichen kontinuierlich erzeugt wird.It can be provided that the active masses are brought into the position of the dummy target body at such a time that the three-dimensional dummy target body is produced essentially continuously for a predeterminable period of time.

Ferner kann vorgesehen sein, daß die Wirkmassen unter im wesentlich kontinuierlicher Überwachung des Scheinzielkörpers rechnergesteuert positioniert werden.Furthermore, it can be provided that the active masses are positioned under computer control under essentially continuous monitoring of the dummy target body.

Es kann so vorgegangen werden, daß die Wirkmassen durch Schnellfeuergeschosse positioniert werden.The active masses can be positioned by rapid-fire projectiles.

Dabei kann auch so vorgegangen werden, daß die Schnellfeuergeschosse aus einem einzigen Werfer abgefeuert werden.It can also be done in such a way that the rapid-fire projectiles are fired from a single launcher.

Ferner sieht die Erfindung auch vor, daß die Schnellfeuergeschosse aus mehreren Werfern abgefeuert werden.Furthermore, the invention also provides that the rapid-fire projectiles are fired from several launchers.

Auch schlägt die Erfindung vor, daß die Schnellfeuergeschosse mit einer derartigen Kadenz abgefeuert werden, daß im wesentlichen an jedem vorgebbaren Wirkmassenort eine neue Wirkmasse spätestens zu demjenigen Zeitpunkt zur Zerlegung kommt, zu dem die vorherige Wirkmasse erlischt.The invention also proposes that the rapid-fire projectiles be fired with such a cadence that a new active mass comes into disassembly essentially at each predefinable active mass location at the point in time at which the previous active mass expires.

Auch kann vorgesehen sein, daß Schnellfeuergeschosse mit einem Kaliber von höchstens 40 mm verwendet werden.It can also be provided that rapid-fire projectiles with a caliber of at most 40 mm are used.

Die Erfindung sieht auch vor, daß für mit unterschiedlicher Attraktivität für den Zielsuchkopf aufzubauende Bereiche des Scheinzielkörpers unterschiedliche Wirkmassen verwendet werden.The invention also provides that different active masses are used for areas of the dummy target body to be set up with different attractiveness for the target seeker head.

Ferner schlägt die Erfindung auch vor, daß infrarotaktive Wirkmassen verwendet werden.Furthermore, the invention also proposes that infrared active masses are used.

Dabei kann auch vorgesehen sein, daß Wirkmassenarten verwendet werden, die jeweils Phosphorgranulat und Phosphorflares in unterschiedlichem Verhältnis enthalten, wobei die erste Wirkmassenart mit höherem Phosphorgranulatanteil zur Simulation verhältnismäßig kühler und die zweite Wirkungsmassenart mit niedrigerem Phosphorgranulatanteil zur Simulation verhältnismäßig warmer Objektflächen eingesetzt wird.It can also be provided that active substance types are used which each contain phosphor granules and phosphor flares in different ratios, the first active substance type with a higher phosphor granulate component being used to simulate relatively cool and the second type of active material with a lower phosphor granulate component being used to simulate relatively warm object surfaces.

Auch sieht die Erfindung vor, daß die Wirkmassen der ersten Wirkmassenart etwa 80% Phosphorgranulat und etwa 20% Phosphorflares und die Wirkmassen der zweiten Wirkmassenart etwa 25% Phosphorgranulat und etwa 70% Phosphorflares enthalten.The invention also provides that the active masses of the first active mass type about 80% phosphor granules and about 20% phosphor flares and the active masses of the second active mass type about 25% phosphor grain contain nulat and about 70% phosphor flares.

Schließlich schlägt die Erfindung vor, daß Wirkmassen mit einer Zerlegungsgröße von mindestens 10 m verwendet werden.Finally, the invention proposes that active materials with a decomposition size of at least 10 m are used.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, daß es gelingt, ein prinzipiell für alle denkbaren Objekte geeignetes Verfahren zum Schutz gegen abbildende Zielsuchköpfe dadurch anzugeben, daß insbesondere rechnergesteuert unter im wesentlichen kontinuierlicher Überwachung des dreidimensional aufzubauenden Scheinzielkörpers Wirkmassen, z. B. in Form von Schnellfeuermunition verhältnismäßig kleinen Kalibers, derart räumlich bzw. zeitlich versetzt am Ort des aufzubauenden Scheinzielkörpers zur Zerlegung gebracht werden, daß die Zielsignatur des zu schützenden Objektes in "täuschender Ähnlichkeit" für abbildende Zielsuchköpfe, wie IR-Köpfe, simuliert wird. Vorzugsweise werden dabei unterschiedliche Wirkmassen eingesetzt, um auf diese Weise unterschiedlich warme Flächen des zu schützenden Objektes, z. B. den Rumpf einerseits und den Kamin oder die Kamine andererseits eines zu schützenden Objektes, wie z. B. eines Zerstörers, eines Munitionstransportes oder dergleichen, mit unterschiedlicher spektraler Attraktivität für den Zielsuchkopf darstellen zu können, damit auf diese Weise eine möglichst naturgetreue Simulation des zu schützenden Objektes erzielt wird.The invention is based on the surprising finding that it is possible to specify a method for protection against imaging target seekers that is suitable in principle for all conceivable objects by virtue of the fact that in particular computer-controlled, with essentially continuous monitoring of the three-dimensional dummy target body, active substances, e.g. B. in the form of rapid-fire ammunition relatively small caliber, so spatially or temporally offset at the location of the dummy target to be assembled for disassembly that the target signature of the object to be protected in "deceptive similarity" for imaging target seekers, such as IR heads, is simulated. Different active masses are preferably used in this way, in this way differently warm surfaces of the object to be protected, e.g. B. the fuselage on the one hand and the fireplace or chimneys on the other hand an object to be protected, such as. B. a destroyer, an ammunition transport or the like, with different spectral attractiveness for the target seeker, so that the most realistic simulation of the object to be protected is achieved in this way.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung, in der Ausführungsbeispiele anhand der Zeichnungen im einzelnen erläutert sind. Dabei zeigt:

  • Fig 1. eine IR-Zielsignatur eines als zu schützendes Objekt gedachten Zerstörers;
  • Fig. 2 ein dreidimensionales IR-Scheinziel des Zerstörers gemäß Fig. 1, erzeugt mittels des Verfahrens nach der Erfindung,
  • Fig. 3 einen herkömmlichen Scheinzielkörper zusammen mit einem Zerstörer entsprechend Fig. 1;
  • Fig. 4 eine IR-Zielsignatur eines als zu schützendes Objekt gedachten Munitionstransporters;
  • Fig. 5 ein dreidimensionales IR-Scheinziel des Munitionstransporters von Fig. 4, erzeugt nach dem erfindungsgemäßen Verfahren;
  • Fig. 6 die graphische Darstellung der spektralen Strahldichte eines Schwarzkörperstrahlers mit einer Oberflächentemperatur von 40 ° C; und
  • Fig. 7 die graphische Darstellung der spektralen Strahldichte eines Schwarzkörperstrahlers mit einer Oberflächentemperatur von 100 ° C.
Further features and advantages of the invention result from the following description, in which exemplary embodiments are explained in detail with reference to the drawings. It shows:
  • 1 shows an IR target signature of a destroyer intended to be protected;
  • 2 shows a three-dimensional IR apparent target of the destroyer according to FIG. 1, generated by means of the method according to the invention,
  • 3 shows a conventional dummy target body together with a destroyer corresponding to FIG. 1;
  • 4 shows an IR target signature of an ammunition transporter intended as an object to be protected;
  • FIG. 5 shows a three-dimensional IR dummy target of the ammunition transporter from FIG. 4, produced by the method according to the invention;
  • Fig. 6 is a graph showing the spectral radiance C a black body radiator having a surface temperature of 40 °; and
  • 7 shows the graphical representation of the spectral radiance of a blackbody radiator with a surface temperature of 100 ° C.

Wie Figur 1 erkennen läßt, weist die IR-Signatur des dort wiedergegebenen Zerstörers 10 einen Rumpfbereich mit verhältnismäßig gleichmäßiger Oberflächentemperatur sowie zwei "Hot Spots" in Form von zwei Kaminen 12, 14 auf.As can be seen in FIG. 1, the IR signature of the destroyer 10 shown there has a fuselage area with a relatively uniform surface temperature and two "hot spots" in the form of two chimneys 12, 14.

Figur 2 zeigt, daß nach dem erfindungsgemäßen Verfahrens ein Scheinzielkörper 10' einen "Rumpfteil" mit im wesentlichen gleichmäßiger Oberflächentemperatur sowie zwei "Hot Spots" 12', 14', den Kaminen 12, 14 von Figur 1 entsprechend, aufweist. Das dreidimensionale IR-Scheinziel gemäß Figur 2 hat für einen "intelligenten" IR-Suchkopf eine spezifische Ähnlichkeit mit dem Zerstörer gemäß Figur 1, daß der-Suchkopf statt des Zerstörers-den-Scheinzielkörper angreifen wird, wenn durch entsprechende Strahlstärken und/oder Strahldichten etc. das Gesamtscheinziel für den Zielsuchkopf attraktiver gemacht wird als der Zerstörer.FIG. 2 shows that, according to the method according to the invention, a dummy target body 10 'has a "fuselage part" with an essentially uniform surface temperature and two "hot spots" 12', 14 ', corresponding to the chimneys 12, 14 of FIG. 1. The three-dimensional IR dummy target according to FIG. 2 has a specific similarity to the destroyer according to FIG. 1 for an "intelligent" IR seeker head, that the seeker head will attack the dummy target body instead of the destroyer if the beam strengths and / or beam densities etc the overall apparent target is made more attractive to the seeker than the destroyer.

Figur 3 zeigt einen Zerstörer mit einem herkömmlichen Scheinziel (Fackel) 11 ohne objektähnliche Kontur, so daß dieses durch einen "intelligenten" IR-Suchkopf der dritten Generation nicht dem wirklichen Objekt, d. h. dem Zerstörer 10, vorgezogen werden wird.Figure 3 shows a destroyer with a conventional dummy target (torch) 11 without an object-like contour, so that this is not the real object, that is, by an "intelligent" IR seeker head of the third generation. H. the destroyer 10 will be preferred.

Ähnliches ergibt sich aus einem Vergleich der Figuren 4 und 5, wobei Figur 4 einen Munitionstransporter 16 mit einem einzigen Kamin 18 zeigt. Dementsprechend gibt das IR-Scheinziel, erfindungsgemäß dargestellt, gemäß Figur 5 einen Scheinzielkörper 16' mit einem einzigen "Hot Spot" 18' wieder.Similar results from a comparison of FIGS. 4 and 5, FIG. 4 showing an ammunition transporter 16 with a single chimney 18. Accordingly, the IR dummy target, shown according to the invention, reproduces a dummy target body 16 'with a single "hot spot" 18' according to FIG. 5.

Vorstehend ist die Erfindung anhand der gezeigten Ausführungsbeispiele für den häufigsten Anwendungsfall, den Schutz von Schiffen, erläutert, wobei sich aber Ausführungen für andere Objekte lediglich in Munitionskaliber und Munitionszusammensetzung, die jeweils auf die jeweilige Kontur und räumlich-spektrale IR-Signatur optimiert werden müssen, unterscheiden. Die spezifischen IR-Kriterien des zu schützenden Objektes (Form, Flächengröße, räumliche spektrale Strahlungsverteilung, Bewegungsverhalten) werden erfindungsgemäß originalgetreu nachgebildet. Gleichzeitig wird die Strahlstärke des Scheinzielkörpers gegenüber dem Objekt erhöht, um für den IR-Suchkopf das attraktivere Ziel darzustellen. Die originalgetreue, dreidimensionale Nachbildung bietet zudem den Vorteil, daß durch die Erfindung ein Scheinzielkörper geschaffen wird, der für alle Bedrohungsrichtungen und deshalb auch für mehrere gleichzeitige Angriffe aus verschiedenen Richtungen wirksam ist.The invention has been explained above on the basis of the exemplary embodiments shown for the most common application, the protection of ships, but versions for other objects only exist in ammunition caliber and ammunition composition, which each have to be optimized for the respective contour and spatial-spectral IR signature, differentiate. The specific IR criteria of the object to be protected (shape, area size, spatial spectral radiation distribution, movement behavior) are reproduced true to the original according to the invention. At the same time, the radiance of the dummy target body relative to the object is increased in order to represent the more attractive target for the IR seeker head. The faithful, three-dimensional replica also has the advantage that the invention creates an apparent target body that is effective for all threats and therefore also for several simultaneous attacks from different directions.

Im Fall von IR-Scheinzielkörpern (natürlich läßt sich das Prinzip der Erfindung auch für z. B. radargesteuerte Zielsuchköpfe, schallgesteuerte Angriffskörper etc. verwenden) läßt sich nach dem erfindungsgemäßen Verfahren ein dreidimensionales Scheinziel durch das schnelle und fortwährende gezielte Verschie- ßen spezifischer pyrotechnischer Wirkmassen unter folgenden Grundprinzipien realisieren: Schußfolge mit hoher Kadenz, z. B. mit mehr als drei Schuß/Sek., kleines Kaliber, d. h. ca. 40 mm und kleiner (mögliche Verwendung von Schnellfeuergranatwerfern), Verwendung von zwei oder noch mehr pyrotechnischen IR-Wirkmassen mit unterschiedlicher, objektähnlicher spektraler Strahlungscharakteristik, und schließlich Steuerung der Ausbringung im einfachsten Fall manuell, besser jedoch durch einen Rechner, wobei durch Einbeziehung der digitalen Bildverarbeitung eines Wärmebildgerätes am Ort des Verschusses das IR-Scheinziel gemäß einem vorgegebenen Muster erzeugt und durch kontinuierliches Nachnähern an pyrotechnischen Wirkmassen aufrechterhalten werden kann. Durch sukzessive Verschiebung der Ausbringungsrichtung kann eine Bewegung (Fahrt) des Scheinzieles bewirkt werden, dies im Sinne der DE-OS 34 21 734.In the case of IR dummy target bodies (of course, the principle of the invention can also be used for, for example, radar-controlled target seekers, sound-controlled attack bodies, etc.), the method according to the invention enables a three-dimensional dummy target to be achieved by the rapid and continuous targeted firing of specific pyrotechnic active substances realize under the following basic principles: firing order with high cadence, e.g. B. with more than three rounds / sec., Small caliber, ie approx. 40 mm and smaller (possible use of rapid-fire grenade launchers), use of two or more pyrotechnic IR active materials with different, object-like spectral radiation characteristics, and finally control of the output in the simplest case manually, but better by a computer, whereby the inclusion of the digital image processing of a thermal imaging device at the point of firing generates the IR apparent target according to a predetermined pattern and can be maintained by continuous approaching pyrotechnic active substances. By successively shifting the direction of application, a movement (travel) of the apparent target can be effected, in the sense of DE-OS 34 21 734.

Eine Schußfolge mit hoher Kadenz ist bei der Durchführung des Verfahrens nach der Erfindung zweckmäßig, um durch allmählich verlöschende und absinkende Wirkmassen sowie durch Windabdrift entstehende Fehlstellen im IR-Muster schnellstmöglich ausbessern und um bei Annäherung eines IR-Zielsuchkopfes das Scheinziel möglichst schnell aufbauen zu können. Für Schiffe ist eine Kadenz von 3 Schuß/Sek. angezeigt, um ein dreidimensionales Scheinziel mit ca. 5 bis 7 IR-Wirkmassen in 2 Sekunden aufzubauen und für den gewünschten Zeitraum aufrechtzuerhalten. Allgemein gilt, daß die IR-Nachbildung des Objektes um so genauer wird, je höher die Kadenz gewählt wird.A sequence of shots with a high cadence is expedient when carrying out the method according to the invention in order to repair defects in the IR pattern which gradually become extinguished and sink as well as defects in the IR pattern which arise as a result of wind drift, and in order to be able to build up the apparent target as quickly as possible when an IR target seeker approaches. For ships a cadence of 3 rounds / sec. displayed in order to build up a three-dimensional apparent target with approx. 5 to 7 IR active masses in 2 seconds and to maintain it for the desired period. In general, the higher the cadence, the more accurate the IR simulation of the object.

Kleine Kaliber (ca. 40 mm und kleiner) kommen deshalb zum Einsatz, um die Form, die Fläche und die IR-Zielsignatur möglichst detailgetreu erzeugen zu können. Zudem bieten kleine Kaliber den Vorteil höherer möglicher Schußfolgen. Allgemein gilt, daß die IR-Nachbildung des Objektes um so genauer (Auflösung) wird, je kleiner das Kaliber ist.Small calibers (approx. 40 mm and smaller) are therefore used in order to be able to produce the shape, the area and the IR target signature as true to detail as possible. In addition, small calibers offer the advantage of higher possible firing sequences. In general, the smaller the caliber, the more accurate (resolution) the IR replica of the object becomes.

Die Kalibergröße andererseits beschränkt die Zahl der Wirkmassen (bzw. Positionen), aus der das Scheinziel aufgebaut ist, durch deren Brenndauer. Es ist z. B. nicht möglich, ein homogenes Scheinziel aufzubauen, wenn die Wirkdauer (= Brennzeit) einer Position (= eine Wirkmasse = ein Geschoß) etwa 3 Sek. beträgt, aufgrund der festgegebenen Kadenz aber erst nach 4 Sek. nachgenährt werden kann.The caliber size, on the other hand, limits the number of active masses (or positions) from which the apparent target is built by their burning time. It is Z. B. not possible to build a homogeneous apparent target if the effective duration (= burning time) of a position (= an effective mass = one storey) is about 3 seconds, but can only be replenished after 4 seconds due to the specified cadence.

Für die nachfolgende Berechnung gilt:

Figure imgb0001
The following applies to the following calculation:
Figure imgb0001

Für die maximale Zahl der Wirkmassen einer Schußfolge gilt folgender Zusammenhang:

Figure imgb0002
Beispiel:
Figure imgb0003
Figure imgb0004
Für die Zerlegungszeit der Wirkmasse auf Position m in der Schußfolge n nach der ersten Zerlegung wurde folgender Zusammenhang ermittelt:
Figure imgb0005
Beispiel:
Figure imgb0006
Figure imgb0007
für die Zeit zwischen den Zerlegungen auf einer Position gilt:
Figure imgb0008
Die folgende Zeittabelle zeigt das Beispiel einer Schußfolge:
Figure imgb0009
Figure imgb0010
The following relationship applies to the maximum number of effective masses of a firing sequence:
Figure imgb0002
Example:
Figure imgb0003
Figure imgb0004
The following relationship was determined for the disassembly time of the active mass at position m in the weft sequence n after the first disassembly:
Figure imgb0005
Example:
Figure imgb0006
Figure imgb0007
for the time between the splits in a position:
Figure imgb0008
The following time table shows an example of a shot sequence:
Figure imgb0009
Figure imgb0010

Ferner ist zu beachten, daß ein Schiff (wie auch andere Fahrzeuge) keine homogene Oberflächentemperatur hat, sondern großflächige Zonen mit deutlichen Temperaturunterschieden. Die am häufigsten auf dem Wärmebild erkennbaren Temperaturzonen bilden bei einem Schiff, wie die Beispiele gemäß Figur 1 und 2 bzw. Figur 4 und 5 ebenso wie die dem Stand der Technik wiedergegebene Abbildung gemäß Figur 3 zeigen, der solar aufgeheizte Rumpf (etwa 40 bis 60 ° C) und der oder die heiße(n) Kamin(e) (ca. 1000 C), welche sogenannte "Hot Spots" bilden, wobei aufgrund ihrer höheren Temperatur (entsprechend der Strahldichte) die Kamine deutlich stärker hervortreten. Um eine originalgetreue IR-Signatur zu erzeugen, können in diesem Fall zwei Arten von Wirkmassen verschossen werden, die unterschiedliche spektrale Eigenschaften aufweisen.It should also be noted that a ship (like other vehicles) does not have a homogeneous surface temperature, but rather large areas with significant temperature differences. The temperature zones most frequently recognizable on the thermal image form on a ship, as the examples according to FIGS. 1 and 2 or FIGS. 4 and 5 as well as the illustration according to the state of the art according to FIG. 3 show, the solar-heated hull (approximately 40 to 60 ° C) and the hot chimney (s) (approx. 1000 C), which form so-called "hot spots", whereby the chimneys stand out much more strongly due to their higher temperature (corresponding to the radiance). In this case, in order to generate an IR signature true to the original, two types of active masses can be fired which have different spectral properties.

Zur räumlichen und spektralen Nachbildung des Schiffsrumpfes wird eine Munition 1 (Wirkmasse 1) verwendet, die nachstehend unter Bezugnahme auf Figur 6 erläutert wird. Wie Figur 6 zeigt, liegt nach Planck'schem Strahlungsgesetz bzw. Wien'schem Verschiebungsgesetz das Strahlungsmaximum (xmax) für die spektrale Strahldichte (entsprechend Temperatur) des Schiffsrumpfes in der Nähe von xmax = 10 um. Die Wirkmasse der Munition 1 sollte deshalb also eine annähernd gleiche spektrale Strahldichte erzeugen.An ammunition 1 (active mass 1) is used for the spatial and spectral simulation of the ship's hull, which is explained below with reference to FIG. 6. As shown in FIG. 6, according to Planck's law of radiation or Vienna's law of displacement, the maximum of radiation (x max ) for the spectral radiance (corresponding to temperature) of the hull is in the vicinity of x max = 10 µm. The active mass of the ammunition 1 should therefore generate approximately the same spectral radiance.

Realisierbar ist dies durch ein Gemisch aus Phosphorgranulat (warmer Rauch) und kleinen Phosphorflares im Verhältnis von ca. 80% (Granulat) und 20% (Flares). Dieses Verhältnis stellt einen Richtwert dar und kann auf die verschiedenen Schiffstypen (oder andere Fahrzeuge) angepaßt werden. Die Zerlegungsgröße der Wirkmasse mit einem Durchmesser von 10 m und mehr (Abhängigkeit von Zerlegerladung und Menge der Wirkmasse) erzeugt den dreidimensionalen Scheinzielkörper und kann dem zu schützenden Objekt angepaßt werden.This can be achieved using a mixture of phosphor granules (warm smoke) and small phosphor flares in a ratio of approx. 80% (granules) and 20% (flares). This ratio is a guideline and can be adapted to the different types of ship (or other vehicles). The decomposition size of the active mass with a diameter of 10 m and more (depending on the decomposition charge and the quantity of the active mass) generates the three-dimensional dummy target body and can be adapted to the object to be protected.

Zur räumlichen und spektralen Nachbildung der Hot Spots (Kamine) dient eine Munition 2 (Wirkmasse 2), deren Charakteristiken nachstehend unter Bezugnahme auf Figur 7 erläutert werden.An ammunition 2 (active mass 2) is used for the spatial and spectral replication of the hot spots (chimneys), the characteristics of which are explained below with reference to FIG. 7.

Wie Figur 7 zeigt, liegt das Strahlungsmaximum hierfür laut Planck'schem Strahlungsgesetz bzw. Wien'schem Verschiebungsgesetz für die spektrale Strahldichte eines Kamines im Bereich von xmax = 7 um.As shown in FIG. 7, the radiation maximum for this is, according to Planck's radiation law or Vienna's displacement law, for the spectral radiance of a fireplace in the range of x max = 7 µm.

Eine annähernd gleiche spektrale Strahldichte soll die Wirkmasse der Munition 2 erzeugen.The active mass of the ammunition 2 is intended to produce approximately the same spectral radiance.

Dies ist realisierbar durch die gleichen Substanzen wie in der Munition 1, jedoch in einem veränderten Mischungsverhältnis. Als Richtwert nimmt man hierfür ca 75% kleinere Flares mit 25% Phosphorgranulat. Die räumliche Ausdehnung wird durch die Zerlegungsgröße der Wirkmasse (010m oder mehr, abhängig von der Zerlegerladung und der Menge an Wirkmasse) erzeugt und kann den Ausdehnungen des Objekts angepaßt werden.This can be achieved using the same substances as in the ammunition 1, but in a different mixing ratio. As a guideline, approx. 75% smaller flares with 25% phosphor granulate are used. The spatial extent is generated by the decomposition size of the active mass (010m or more, depending on the decomposition load and the amount of active mass) and can be adapted to the dimensions of the object.

Für andere Objekte können auch mehrere Munitionsarten mit variierenden Mischungverhältnissen von Phosphorgranulat zu Flares bzw. auch andere Wirkmassen (Zweifarb-Flares etc.) eingesetzt werden.For other objects, several types of ammunition with varying mixing ratios of phosphor granules to flares or other active materials (two-color flares etc.) can also be used.

Im einfachsten Fall werden die Munitionsarten gegurtet (d. h. alle auf einem Munitionsgurt) von einem einzigen Werfer aus abgefeuert, wobei hierbei eine vorher festgelegte Munitionsreihenfolge eingehalten werden muß, z. B.

Figure imgb0011
In the simplest case, the types of ammunition are taped (ie all on one ammunition belt) fired from a single launcher, whereby a predetermined order of ammunition must be followed, e.g. B.
Figure imgb0011

Möglich ist aber auch der Abschuß aus zwei oder mehreren Werfern, wobei dann vorzugsweise ein Werfer nur eine Munitionsart ausbringt.However, it is also possible to fire two or more launchers, in which case one launcher preferably deploys only one type of ammunition.

Die Steuerung der Ausbringung (Schußfolge, Schußrichtung) übernimmt im günstigsten Fall eine Rechneranlage in Verbindung mit der digitalen Auswertung eines eigenen Wärmebildgerätes. Entsprechend der Objektform und deren IR-Signatur erzeugt die Rechnersteuerung das Scheinzielmuster. Anhand des Wärmebildes kontrolliert der Rechner selbständig die Originaltreue und gleicht Fehlstellen im Muster (durch Windabdrift oder Verlöschen der Wirkmassen) durch gezieltes ständiges Nachnähren des Scheinzieles aus.The control of the output (firing sequence, firing direction) is undertaken in the most favorable case by a computer system in connection with the digital evaluation of an own thermal imaging device. The computer control generates the dummy target pattern in accordance with the object shape and its IR signature. On the basis of the thermal image, the computer independently checks the fidelity to the original and compensates for imperfections in the pattern (due to wind drift or extinction of the active masses) by deliberately constantly reworking the apparent target.

Die Kontrolle des Wärmebildes erfolgt pixelweise (= kleinste Bildeinheit) über das ganze Wärmebild (z. B. Barr & Stroud IR 18 : 512 Pixel, Bereich 8 ... 13 um), wobei man jedes Pixel als quasi punktuelles Radiometer betrachten kann.The thermal image is checked pixel by pixel (= smallest image unit) over the entire thermal image (e.g. Barr & Stroud IR 18: 512 pixels, range 8 ... 13 µm), whereby each pixel can be viewed as a quasi-selective radiometer.

Behandelt man das Wärmebild mit digitaler Bildverarbeitung, so erhält man für jedes Pixel den dazugehörenden Pixelindex (= Helligkeitswert). Dieser Index ist proportional zur Strahldichte des entsprechenden Bildausschnittes. Bezieht man die geometrischen Daten des Gesichtsfeldes des Wärmebildgerätes mit ein, so kann der Rechner aus den Bildkoordinaten zusammen mit den dazugehörigen Bildindizes sowohl die Abschußkoordinaten als auch die Munitionsart für die nächsten Schußfolgen bestimmen, um die optimale Übereinstimmung mit dem (gespeicherten) IR-Schiffsmuster in Form und spektraler Signatur zu erreichen.If you treat the thermal image with digital image processing, you get the corresponding pixel index (= brightness value) for each pixel. This index is proportional to the radiance of the corresponding image section. If one includes the geometric data of the field of view of the thermal imaging device, the computer can determine from the image coordinates together with the associated image indices both the firing coordinates and the type of ammunition for the next series of shots in order to optimally match the (stored) IR ship pattern in Achieve shape and spectral signature.

Entsprechend der momentanen taktischen Lage setzt die Rechnersteuerung das Scheinziel (im günstigsten Fall) zwischen Objekt und IR-Zielsuchkopf in einem Abstand von ca. 50 m bis 100 m vom Objekt. Durch sukzessives Verschieben des Nachnährens und durch die Fahrmanöver des Schiffes erfolgt eine fortschreitende Separation von Scheinziel und Schiff. Durch die erhöhte Strahlstärke des Scheinziels gegenüber dem Schiff wird der IR-Zielsuchkopf vom Schiff "weggezogen".Depending on the current tactical situation, the computer control sets the dummy target (in the best case) between the object and the IR target seeker at a distance of approx. 50 m to 100 m from the object. The successive separation of the re-sewing and the maneuvers of the ship result in a progressive separation of the apparent target and the ship. The IR beam seeker is "pulled away" from the ship by the increased beam strength of the dummy target compared to the ship.

Die in der vorstehenden Beschreibung, in der Zeichnung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.The features of the invention disclosed in the above description, in the drawing and in the claims can be essential both individually and in any combination for realizing the invention in its various embodiments.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

  • 10 Zerstörer10 destroyers
  • 12 Hot Spot durch Kamin12 Hot spot by the fireplace
  • 14 Hot Spot durch Kamin14 Hot spot by the fireplace
  • 10' Scheinzielkörper gem. Erfindung10 'dummy target according to invention
  • 11 Scheinziel nach dem Stand der Technik (Punktscheinziel)11 false target according to the state of the art (point false target)
  • 12' Hot Spot durch heiße Wirkmasse12 'Hot spot due to hot active mass
  • 14' Hot Spot durch heiße Wirkmasse14 'Hot spot due to hot active mass
  • 16 Munitionstransporter16 ammunition transporters
  • 18 Hot Spot durch Kamin18 Hot spot by the fireplace
  • 16' Scheinzielkörper gem. Erfindung16 'dummy target according to invention
  • 18' Hot Spot durch heiße Wirkmasse18 'Hot spot due to hot active mass

Claims (13)

1. Verfahren zum Bereitstellen eines die Zielsignatur eines Objektes, wie Land-, Luft- oder Wasserfahrzeuges oder dergleichen, für einen abbildenden strahlungsempfindlichen Zielsuchkopf, wie IR-Suchkopf, simulierenden Scheinzielkörpers, dadurch gekennzeichnet, daß räumlich versetzt bei ihrer Zerlegung jeweils einen Teil der Zielsignatur des Objektes durch Aussendung von spektral differenzierter Strahlung im Empfindlichkeitsbereich des abbildenden Zielsuchkopfes simulierende Wirkmassen derart in die Position des zu erzeugenden Scheinzielkörpers gebracht und dort zerlegt werden, daß ein die spektrale und räumliche Zielsignatur des Objektes für den Zielsuchkopf simulierender dreidimensionaler Scheinzielkörper erzeugt wird.1. A method for providing a target signature of an object, such as land, air or watercraft or the like, for an imaging radiation-sensitive target seeker, such as an IR seeker, simulating a dummy target body, characterized in that spatially offset each time a part of the target signature when they are broken down of the object by emitting spectrally differentiated radiation in the sensitivity range of the imaging target seeker, simulating active masses are brought into the position of the dummy target body to be generated and broken down there in such a way that a three-dimensional target target body simulating the spectral and spatial target signature of the target probe is generated. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Wirkmassen derart zeitlich versetzt in die Position des Scheinzielkörpers gebracht werden, daß der dreidimensionale Scheinzielkörper für einen vorgebbaren Zeitraum im wesentlichen kontinuierlich erzeugt wird.2. The method according to claim 1, characterized in that the active masses are brought into the position of the dummy target body in such a time-displaced manner that the three-dimensional dummy target body is produced essentially continuously for a predeterminable period of time. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wirkmassen unter im wesentlich kontinuierlicher Überwachung des Scheinzielkörpers rechnergesteuert positioniert werden.3. The method according to claim 1 or 2, characterized in that the active masses are positioned under computer control under substantially continuous monitoring of the dummy target body. 4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Wirkmassen durch Schnellfeuergeschosse positioniert werden.4. The method according to any one of the preceding claims, characterized in that the active masses are positioned by rapid-fire projectiles. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Schnellfeuergeschosse aus einem einzigen Werfer abgefeuert werden.5. The method according to claim 4, characterized in that the rapid-fire projectiles are fired from a single launcher. 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Schnellfeuergeschosse aus mehreren Werfern abgefeuert werden.6. The method according to claim 4, characterized in that the rapid-fire projectiles are fired from several launchers. 7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Schnellfeuergeschosse mit einer derartigen Kadenz abgefeuert werden, daß im wesentlichen an jedem vorgebbaren Wirkmassenort eine neue Wirkmasse spätestens zu demjenigen Zeitpunkt zur Zerlegung kommt, zu dem die vorherige Wirkmasse erlischt.7. The method according to any one of claims 4 to 6, characterized in that the rapid-fire projectiles are fired with such a cadence that essentially at each preselectable active mass location, a new active mass comes to be decomposed at the latest at the point in time at which the previous active mass expires. 8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß Schnellfeuergeschosse mit einem Kaliber von höchstens 40 mm verwendet werden.8. The method according to any one of claims 4 to 7, characterized in that rapid-fire projectiles with a caliber of at most 40 mm are used. 9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß für mit unterschiedlicher Attraktivität für den Zielsuchkopf aufzubauende Bereiche des Scheinzielkörpers unterschiedliche Wirkmassen verwendet werden.9. The method according to any one of the preceding claims, characterized in that different active masses are used for areas of the dummy target body to be set up with different attractiveness for the target seeker. 10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß infrarotaktive Wirkmassen verwendet werden.10. The method according to any one of the preceding claims, characterized in that infrared active masses are used. 11. Verfahren nach Anspruch 9 und 10, dadurch gekennzeichnet, daß Wirkmassenarten verwendet werden, die jeweils Phosphorgranulat und Phosphorflares in unterschiedlichem Verhältnis enthalten, wobei die erste Wirkmassenart mit höherem Phosphorgranulatanteil zur Simulation verhältnismäßig kühler und die zweite Wirkungsmassenart mit niedrigerem Phosphorgranulatanteil zur Simulation verhältnismäßig warmer Objektflächen eingesetzt wird.11. The method according to claim 9 and 10, characterized in that active compound types are used, each containing phosphor granules and phosphor flares in different ratios, the first active compound type with a higher proportion of phosphor granules for simulation relatively cooler and the second type of active compound with lower phosphor granules for simulation of relatively warm object surfaces is used. 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Wirkmassen der ersten Wirkmassenart etwa 80% Phosphorgranulat und etwa 20% Phosphorflares und die Wirkmassen der zweiten Wirkmassenart etwa 25% Phosphorgranulat und etwa 70% Phosphorflares enthalten.12. The method according to claim 11, characterized in that the active masses of the first active mass type contain about 80% phosphor granules and about 20% phosphorus flares and the active compositions of the second active mass type contain about 25% phosphorus granules and about 70% phosphorus flares. 13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß Wirkmassen mit einer Zerlegungsgröße von mindestens 10 m verwendet werden.13. The method according to any one of the preceding claims, characterized in that active materials with a decomposition size of at least 10 m are used.
EP93115823A 1992-11-11 1993-09-30 Method of producing a decay object Expired - Lifetime EP0597233B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4238038 1992-11-11
DE4238038A DE4238038C1 (en) 1992-11-11 1992-11-11 Method of providing a dummy target

Publications (2)

Publication Number Publication Date
EP0597233A1 true EP0597233A1 (en) 1994-05-18
EP0597233B1 EP0597233B1 (en) 1997-02-19

Family

ID=6472609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93115823A Expired - Lifetime EP0597233B1 (en) 1992-11-11 1993-09-30 Method of producing a decay object

Country Status (5)

Country Link
US (1) US5397236A (en)
EP (1) EP0597233B1 (en)
JP (1) JP2735779B2 (en)
DE (2) DE4238038C1 (en)
ES (1) ES2098614T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028257A1 (en) * 2010-08-31 2012-03-08 Rheinmetall Waffe Munition Gmbh Device and method for producing an effective fog wall or fog cloud
WO2016139295A1 (en) * 2015-03-05 2016-09-09 Rheinmetall Waffe Munition Gmbh Method and device for providing a dummy target for protecting a vehicle and/or an object from radar-guided seeker heads

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327976C1 (en) * 1993-08-19 1995-01-05 Buck Chem Tech Werke Flare charge for producing decoys
DE19511825A1 (en) * 1995-03-30 1996-10-02 Georg Mainas Stealth and security system for fast stream-lined ships in environment protection
DE19605337C2 (en) * 1996-02-14 1998-12-03 Daimler Benz Aerospace Ag Process for changing the infrared signature of an aircraft
DE19951767C2 (en) 1999-10-27 2002-06-27 Buck Neue Technologien Gmbh Dual mode decoy
AUPQ413299A0 (en) * 1999-11-18 1999-12-09 Metal Storm Limited Forming temporary airborne images
DE10117007A1 (en) * 2001-04-04 2002-10-17 Buck Neue Technologien Gmbh Method and device for protecting mobile military equipment
DE10119970B4 (en) * 2001-04-24 2005-06-30 Blohm + Voss Gmbh Method for detecting a ship signature
US6767015B1 (en) * 2003-06-05 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Thermal target
DE10346001B4 (en) 2003-10-02 2006-01-26 Buck Neue Technologien Gmbh Device for protecting ships from end-phase guided missiles
DE102004005105A1 (en) * 2004-02-02 2005-09-01 Buck Neue Technologien Gmbh Object protection system and method for protecting objects
DE102004047231B4 (en) 2004-09-28 2008-08-21 Rheinmetall Waffe Munition Gmbh submunitions
US7154429B1 (en) * 2004-12-06 2006-12-26 Roberts Jr Charles C Device for protecting military vehicles from infrared guided munitions
US9341444B2 (en) 2005-11-23 2016-05-17 Robert Levine Thermal electric images
US20080206718A1 (en) * 2006-12-01 2008-08-28 Aai Corporation Apparatus, method and computer program product for weapon flyout modeling and target damage assessment
EP2204632A1 (en) * 2008-12-31 2010-07-07 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO A method of applying soft-kill deployment, a soft-kill deployment system and a computer program product
DE102010060807A1 (en) 2010-11-25 2012-05-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Device for testing thermographic sensors of driving assistance system in motor car, has viewing object heated and detected by thermographic sensors of driving assistance system, where object is electrically heated by heating mats
CN104596358A (en) * 2013-10-31 2015-05-06 北京航天长征飞行器研究所 Infrared smoke screen generation device
RU2617157C1 (en) * 2016-05-04 2017-04-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Device for adaptive masking objects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311530A1 (en) * 1983-03-30 1984-10-11 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for providing decoys and/or concealment bodies for the purpose of simulating a target signature of a water craft
DE3421734A1 (en) * 1984-06-12 1985-12-12 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen METHOD FOR PROTECTING INFRARED RADIATING DESTINATIONS, ESPECIALLY SHIPS, FROM AIRCRAFT EQUIPPED WITH INFRARED STEERING HEADS
EP0240819A2 (en) * 1986-04-11 1987-10-14 Buck Werke GmbH & Co Method of deceiving radar or infrared-guided missiles, particularly for boats and naval units, and apparatus therefor
WO1990004750A1 (en) * 1988-10-21 1990-05-03 Rheinmetall Gmbh Cartridge for producing mock targets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331897A (en) * 1975-08-07 1994-07-26 The United States Of America As Represented By The Secretary Of The Navy Ship decoy
DE2911639A1 (en) * 1979-03-24 1982-12-02 Dynamit Nobel Ag, 5210 Troisdorf Heat-radiation emitting aerosol cloud generation - providing decoy using fluid supplied to several vaporisation jets
DE3311539A1 (en) * 1982-04-02 1983-10-13 Onkyo K.K., Neyagawa, Osaka CIRCUIT FOR A SMOOTHED DC VOLTAGE SOURCE
GB2121148A (en) * 1982-05-28 1983-12-14 Edward David Furze Radar decoys
DE3310616A1 (en) * 1983-03-24 1984-09-27 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Method for camouflaging a sea-going craft against location by electromagnetic radiation and deception device for carrying out this camouflaging
DE4007811C2 (en) * 1990-03-12 1994-05-19 Dornier Gmbh Infrared dummy target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311530A1 (en) * 1983-03-30 1984-10-11 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for providing decoys and/or concealment bodies for the purpose of simulating a target signature of a water craft
DE3421734A1 (en) * 1984-06-12 1985-12-12 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen METHOD FOR PROTECTING INFRARED RADIATING DESTINATIONS, ESPECIALLY SHIPS, FROM AIRCRAFT EQUIPPED WITH INFRARED STEERING HEADS
EP0240819A2 (en) * 1986-04-11 1987-10-14 Buck Werke GmbH & Co Method of deceiving radar or infrared-guided missiles, particularly for boats and naval units, and apparatus therefor
WO1990004750A1 (en) * 1988-10-21 1990-05-03 Rheinmetall Gmbh Cartridge for producing mock targets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028257A1 (en) * 2010-08-31 2012-03-08 Rheinmetall Waffe Munition Gmbh Device and method for producing an effective fog wall or fog cloud
WO2016139295A1 (en) * 2015-03-05 2016-09-09 Rheinmetall Waffe Munition Gmbh Method and device for providing a dummy target for protecting a vehicle and/or an object from radar-guided seeker heads
KR20170129116A (en) * 2015-03-05 2017-11-24 라인메탈 바페 뮤니션 게엠베하 Method and apparatus for providing dummy targets to protect vehicles and / or objects from radar guided tracking heads
US10670376B2 (en) 2015-03-05 2020-06-02 Rheinmetall Waffe Munition Gmbh Method and device for providing a dummy target for protecting a vehicle and/or an object from radar-guided seeker heads

Also Published As

Publication number Publication date
JP2735779B2 (en) 1998-04-02
US5397236A (en) 1995-03-14
DE59305490D1 (en) 1997-03-27
ES2098614T3 (en) 1997-05-01
EP0597233B1 (en) 1997-02-19
DE4238038C1 (en) 1994-06-16
JPH06235598A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
EP0597233B1 (en) Method of producing a decay object
DE2907590C2 (en) Method and device for evaluating simulated target practice with laser beams reflected at the target
EP0664876B1 (en) Method for the creation of an artificial target
EP2612101B1 (en) Device and method for producing an effective fog wall or fog cloud
EP0679150B1 (en) Pyrotechnic smoke-generating composition for camouflage purposes and its use in a smoke-generating body
EP0240819B1 (en) Method of deceiving radar or infrared-guided missiles, particularly for boats and naval units, and apparatus therefor
DE3531596C2 (en) Procedure for fighting a target with a gun
DE3507007C2 (en)
DE4115384C2 (en) Method for protecting objects emitting IR radiation
WO2016139295A1 (en) Method and device for providing a dummy target for protecting a vehicle and/or an object from radar-guided seeker heads
EP0547391A1 (en) Method for increasing the success probability for an anti-aircraft defence system using remote-controlled scattering projectiles
EP0588015B1 (en) Camouflage method and material and its application
DE19704070C2 (en) Camouflage and / or deception device
DE3022460C2 (en)
DE2746534C2 (en) Method for simulating a moving target
EP0090323A1 (en) Training device for the firing of guided missiles, particularly of surface-to-surface missiles
DE3905748A1 (en) Decoy target simulating aircraft - has radar reflector and propulsion drive designed to provide enlarged IR plume for deflecting target seeking missile
DE3734758C2 (en)
DE19617060A1 (en) Explosives simulation method for army training
DE102018131524A1 (en) Process for protecting moving or immovable objects from approaching laser-guided threats
DE202024102683U1 (en) Target for shooting training
DE69519282T2 (en) Marking arrangement for targets destroyed by flag bodies
DE3329747A1 (en) Method and device for shooting simulation
DE102022130560A1 (en) Method and device for defence against aircraft, in particular unmanned aircraft
DE102020103249A1 (en) Procedure for protecting a helicopter by throwing fog and helicopters with a fog protection system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19940511

17Q First examination report despatched

Effective date: 19951012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970219

REF Corresponds to:

Ref document number: 59305490

Country of ref document: DE

Date of ref document: 19970327

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098614

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970909

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970922

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970929

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970930

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110923

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59305490

Country of ref document: DE

Effective date: 20130403