EP0588179B1 - Device for operating a wideband phased array antenna - Google Patents

Device for operating a wideband phased array antenna Download PDF

Info

Publication number
EP0588179B1
EP0588179B1 EP93114114A EP93114114A EP0588179B1 EP 0588179 B1 EP0588179 B1 EP 0588179B1 EP 93114114 A EP93114114 A EP 93114114A EP 93114114 A EP93114114 A EP 93114114A EP 0588179 B1 EP0588179 B1 EP 0588179B1
Authority
EP
European Patent Office
Prior art keywords
mixer
oscillator
antenna
circuit arrangement
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93114114A
Other languages
German (de)
French (fr)
Other versions
EP0588179A1 (en
Inventor
Michael Dipl.-Ing. Ludwig
Bernhard Dipl.-Ing. Schweizer
Rolf Dipl.-Ing. Reber
Heinz-Peter Dr. Feldle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz Aerospace AG filed Critical Daimler Benz Aerospace AG
Publication of EP0588179A1 publication Critical patent/EP0588179A1/en
Application granted granted Critical
Publication of EP0588179B1 publication Critical patent/EP0588179B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/42Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means using frequency-mixing

Definitions

  • the invention relates to a circuit arrangement for operation a broadband phased array antenna according to the preamble of claim 1.
  • a phased array antenna consists of several generally individual antennas arranged in a matrix, which are designed as transmitting and / or receiving antennas. Now, for example, a common to these individual antennas Transmitted signal, so is the direction of the the transmission signal emitted by the group antenna (transmitting lobe) of the electrical set between the individual antennas Phase differences dependent. The same applies to the so-called reception lobe of the group antenna when receiving electromagnetic signals.
  • From US 4,749,995 is an electronically controllable phase-controlled radar antenna known. It is for the Send / receive signals from adjacent send / receive arrays creates a phase difference. For that, a mixer used, at one input a modulated (transmit) Signal is present. The other input is electronic via one controllable phase shifter another signal fed. The output signal of the mixer is the Send and the receive path fed. With one Arrangement is an electronically controlled pivoting of the Send / receive direction possible.
  • the invention has for its object a generic Specify circuitry that allows using an inexpensive to manufacture and precisely adjustable Phase actuator producing a broadband as possible Group antenna with a highly precise swiveling To implement transmitting and / or receiving lobe.
  • a first advantage of the invention is dap one Phase actuator is used, which is essentially on a frequency is tuned.
  • Such a phase actuator is inexpensive and can be reliably produced in particular in an industrial mass production and in reproducible Way a high phase and amplitude accuracy.
  • a second advantage is that when adjusting the Phase actuator possibly occurring amplitude changes at most negligible changes effect the transmitting and / or receiving lobe.
  • a third advantage is that the transmit and / or Reception lobe (directional characteristic) of the group antenna highly accurate and with a high main to secondary lobe ratio can be adjusted and that this setting essentially in the entire swivel range of the transmission and / or receiving lobe is retained.
  • a fourth advantage is that with a single Group antenna several transmitting and / or receiving lobes independently are pivotable from each other.
  • FIG. 1 shows a proposed circuit arrangement works with a broadband phase actuator, which can be produced in monolithic technology and which are particularly useful for operating an active and / or receiving) individual antenna is suitable.
  • Such active single antenna consists of a passive transmission and / or individual reception antenna which is directed to the one to be transmitted and / or frequency band to be received, e.g. the frequency range from 11 GHz to 13 GHz.
  • a transmitter and / or receiver amplifier in the immediate vicinity coupled.
  • Such an example active single antenna can be connected to the following P4 designated input / output port can be connected.
  • a signal to be sent in a first Intermediate frequency range e.g. a center frequency of 3 GHz and has a bandwidth of 2 GHz.
  • This Intermediate frequency signal passes through a matched Bandpass filter BPZF on an input of a first Mixer M1, e.g. as a bidirectional mixer, e.g. is designed as a diode mixer.
  • a first Mixer M1 e.g. as a bidirectional mixer, e.g. is designed as a diode mixer.
  • the first mixer M1 is one of an oscillator OSC generated oscillator signal which e.g. a frequency of 9 GHz.
  • One takes place in the first mixer M1 so-called upmixing, so that a signal in the already mentioned first intermediate frequency range arises.
  • This signal passes through another adapted to it Bandpass filter BPA and a phase actuator PH to the already mentioned input / output port P4 and can be connected to an active Single antenna can be connected.
  • the oscillator signal is further branched VER Transmit / receive modules provided so phase coherence is guaranteed. This is shown in FIG. 1 through the connecting lines starting from the VER branch shown.
  • the circuit arrangement is also in the opposite direction usable, that is, from one at the input / output port P4 received signal is through a so-called downmixing in the first mixer M1 in the first intermediate frequency range implemented and then lies for further processing at the input / output port P1.
  • phase actuator PH must be very broadband, at least that is the entire frequency range of the transmission or Receive frequency must include.
  • Adjustment of the phase control element PH has a high amplitude and phase accuracy can be achieved. These demands are at the same time at high cost to meet and require high circuit and space requirement for the phase actuator PH. Farther is a high effort for calibration, i.e. the Compensation for possible phase and amplitude errors in the Individual modules required.
  • phase actuator PH is arranged in the oscillator path.
  • One of those Phase actuator PH downstream amplifier V is used only for impedance matching and / or for decoupling the signals and to generate the necessary power to control mixer M1. This seemingly minor However, change has significant advantages. Because that Phase actuator advantageously only needs to a frequency, namely the oscillator frequency tuned become.
  • Such a phase actuator PH can e.g. as switchable filter structure according to FIG. 5 be formed.
  • Such a phase actuator necessarily has at least a phase shift of 360 °.
  • FIG. 3 shows a circuit arrangement in which in the oscillator path no phase actuator PH according to the figures 2 and 5 is required.
  • the one fed to the first mixer M1 Oscillator signal is also mixed generated.
  • a signal e.g. generated with a frequency of 6 GHz.
  • This becomes one first input of a second mixer M2, e.g. Likewise a diode mixer is supplied.
  • that will Signal of the oscillator OSC also all other active ones Transmit / receive modules provided so that the Phase coherence is guaranteed.
  • the DDS synthesizer generates a signal, e.g. at a fixed frequency of 3 GHz, which is the frequency and phase of a reference oscillator REF transmitted signal is coupled.
  • This signal is common to all S / E modules (coherence).
  • the output signal generated by the synthesizer DDS is connected to a second input of the second mixer M2.
  • the actual oscillator signal then arises at its output, that e.g. has a frequency of 9 GHz. Because of this mixture, this is the actual oscillator signal within wide limits both in frequency, e.g. from 8 GHz to 10 GHz, as well as in the phase position, changeable with high precision.
  • This actual oscillator signal is then via a bandpass filter BPOS and a (driver) amplifier V fed to the first mixer Ml.
  • the circuit arrangement according to FIG. 3 enables in an advantageous manner Way, exactly repeatable and fast Setting the frequency and phase of the actual Oscillator signal, e.g. with the help of a not shown Data processing system (microprocessor), by which e.g. the synthesizer DDS and the oscillator OSC is adjusted.
  • a circuit arrangement e.g. a quick change in the frequency of the actual Oscillator signal possible, e.g. a so-called Multi-beam operation in time-division multiplex operation is possible.
  • FIG. 4 shows an exemplary circuit arrangement for Driving a single (active) single antenna EA with for example three different intermediate frequency signals ZF1 to ZF3, which are characterized by their center frequency differentiate and are present at the inputs P1 to P3.
  • These intermediate frequency signals pass through associated Bandpass filter BPZF 1 to BPZF 3 to the first inputs of the first mixer M11 to M13.
  • BPZF 1 to BPZF 3 Bandpass filter
  • OS 1 to OS 3 On by the output of a single oscillator OSC are derived.
  • the oscillator signals OS 1 to OS 3 therefore all have the same frequency, but different Phases by the phase actuators PH 1 to PH 3 are adjustable.
  • the amplifier V 1 to V 3 serve, according to FIG.
  • the output signals of the first mixer M 11 to M 13 pass through the associated BPA bandpasses 1 to BPA 3 on a coupling element KO, e.g. one out of several Couplers existing branching arrangement.
  • a coupling element KO e.g. one out of several Couplers existing branching arrangement.
  • the individual antenna EA is connected to P4.
  • the circuit arrangement described thus consists of a Coupling of several, here three, circuit arrangements according to FIG.2 to a single antenna EA.
  • this can advantageously with three different transmitters simultaneously and / or receiving lobes are operated. These are advantageous completely independent of each other and can therefore e.g. in three different directions at the same time send and / or receive. In this case it is only a one-time adjustment of the phase actuators is required.
  • Such a group antenna is e.g. as a directional radio antenna usable with the three different at the same time fixed directions independent of each other can be sent and / or received if the first mixer M 11 to M 13 as a bidirectional mixer are trained.
  • the existing one is otherwise very complex Signal processor through a more cost-effective design be replaced.
  • the described exemplary embodiments enable in particular at high frequencies, e.g. 12 GHz, working Radar systems in close proximity to a (Single) antenna an advantageous frequency conversion in a lower IF frequency position, e.g. 3 GHz.
  • This will further signal processing, e.g. Processing of Transmitting and / or receiving signals, greatly simplified, because disruptive effects of possibly existing phase errors occur at most in a negligible form on.
  • the low IF frequency range is advantageous a cheaper production of the signal processing system mentioned possible because the required components and assemblies are cheaper.
  • circuit arrangements are advantageous can be integrated monolithically on a chip, so that spatial compact and mechanically robust units can be manufactured are who work reliably and reproducibly.
  • FIG. 5 shows exemplary embodiments for a phase actuator PH (FIG. 2, FIG. 4) which is suitable for a frequency of 5 GHz to 6 GHz and a phase shift of 360 ° and which can also be integrated monolithically.
  • the exemplary embodiments show switched filter structures (left part of FIG. 5) which contain field effect transistors and can therefore be used both as high-pass HP and as low-pass LP. Switching takes place using switching voltages U 1 , U 2 . In the right part of FIG. 5 the associated functional principles are shown.
  • the invention is not based on the exemplary embodiments described limited, but applicable to others.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zum Betreiben einer breitbandigen phasengesteuerten Gruppenantenne nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a circuit arrangement for operation a broadband phased array antenna according to the preamble of claim 1.

Eine phasengesteuerte Gruppenantenne besteht aus mehreren, im allgemeinen matrixförmig angeordneten Einzelantennen, die als Sende- und/oder Empfangsantennen ausgebildet sind. Wird nun beispielsweise an diese Einzelantennen ein gemeinsames Sendesignal gelegt, so ist die Richtung des von der Gruppenantenne ausgesandten Sendesignales (Sendekeule) von den zwischen den Einzelantennen eingestellten elektrischen Phasendifferenzen abhängig. Entsprechendes gilt für die sogenannte Empfangskeule der Gruppenantenne beim Empfang elektromagnetischer Signale.A phased array antenna consists of several generally individual antennas arranged in a matrix, which are designed as transmitting and / or receiving antennas. Now, for example, a common to these individual antennas Transmitted signal, so is the direction of the the transmission signal emitted by the group antenna (transmitting lobe) of the electrical set between the individual antennas Phase differences dependent. The same applies to the so-called reception lobe of the group antenna when receiving electromagnetic signals.

In einigen Anwendungsfällen, z.B. in der Richtfunk - und/oder Radartechnik, ist es erforderlich, die Sende - und/oder Empfangskeule schwenkbar zu gestalten. Die dafür erforderliche Veränderung der Phasendifferenzen wird mit einstellbaren Phasenstellgliedern vorgenommen. Weiterhin ist es oftmals erforderlich, die Gruppenantenne möglichst breitbandig zu gestalten, so daß in einem möglichst breitem Sende- und/oder Empfangsband gesendet und/oder empfangen werden kann.In some applications, e.g. in the directional radio - and / or radar technology, it is necessary to transmit - and / or to make the receiving lobe pivotable. The one for that required change of the phase differences is with adjustable phase actuators made. Farther it is often necessary to use the group antenna as far as possible to design broadband, so that in one possible broad transmission and / or reception band sent and / or can be received.

Aus der US 4 951 060 ist ein Sende-/Empfangsmodul für eine aktive Radar-Antenne bekannt, welcher mit zwei zueinander harmonischen (Sende-/Empfangs-)Frequenzen arbeitet. Dabei ist jeder Sende-/Empfangsstrahler der Radar-Antenne an einen solchen Sende-/Empfangsmodul angeschlossen. Dabei wird ein empfangenes (Radar-)Signal an einen Eingang eines Mischers gelegt. Dem anderen Eingang wird über einen Phasenschieber ein Oszillator-Signal zugeführt. Am Ausgang des Mischers entsteht ein Zwischenfrequenzsignal, das ausgewertet wird.From US 4 951 060 is a transmission / reception module for one active radar antenna known, which with two to each other harmonic (transmit / receive) frequencies works. Here every transmitter / receiver of the radar antenna is on such a transmission / reception module connected. Here is a received (radar) signal to an input of a Mixer. The other input is through a phase shifter an oscillator signal supplied. At the exit an intermediate frequency signal is generated by the mixer is evaluated.

Aus der US 4 749 995 ist eine elektronisch steuerbare phasengesteuerte Radar-Antenne bekannt. Dabei wird für die Sende-/Empfangs-Signale benachbarter Sende-/Empfangs-Arrays ein Phasenunterschied erzeugt. Dafür wird ein Mischer verwendet, an dessen einem Eingang ein moduliertes (Sende-) Signal anliegt. Dem anderen Eingang wird über einen elektronisch steuerbaren Phasenschieber ein weiteres Signal zugeführt. Das Ausgangs-Signal des Mischers wird dem Sende- und dem Empfangspfad zugeführt. Mit einer solchen Anordnung ist eine elektronisch gesteuerte Schwenkung der Sende-/Empfangs-Richtung möglich.From US 4,749,995 is an electronically controllable phase-controlled radar antenna known. It is for the Send / receive signals from adjacent send / receive arrays creates a phase difference. For that, a mixer used, at one input a modulated (transmit) Signal is present. The other input is electronic via one controllable phase shifter another signal fed. The output signal of the mixer is the Send and the receive path fed. With one Arrangement is an electronically controlled pivoting of the Send / receive direction possible.

Aus der US 3 750 175 ist weiterhin ein Kommunikations-System bekannt, bei dem ein Array aus Sende-/Empfangsstrahlern verwendet wird. Bei diesem System wird ein empfangenes Signal an einen Eingang eines Mischers gelegt. Dem anderen Eingang wird über einen steuerbaren Phasenschieber ein Oszillatorsignal zugeführt. Am Ausgang des Mischers entsteht ein Zwischenfrequenzsignal, das ausgewertet wird. From US 3 750 175 is still a communication system known in which an array of transmitters / receivers is used. With this system, a received Signal applied to an input of a mixer. The other input is via a controllable phase shifter an oscillator signal supplied. At the exit of the Mixer creates an intermediate frequency signal that evaluates becomes.

Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Schaltungsanordnung anzugeben, die es ermöglicht, mit einem kostengünstig herstellbarem und genau einstellbarem Phasenstellglied die Herstellung einer möglichst breitbandigen Gruppenantenne mit einer hochgenau schwenkbaren Sende- und/oder Empfangskeule zu verwirklichen.The invention has for its object a generic Specify circuitry that allows using an inexpensive to manufacture and precisely adjustable Phase actuator producing a broadband as possible Group antenna with a highly precise swiveling To implement transmitting and / or receiving lobe.

Diese Aufgabe wird gelöst durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale. Vorteilhafte Ausgestaltungen und/oder Weiterbildungen sind den Unteransprüchen entnehmbar.This problem is solved by the in the characteristic Part of claim 1 specified features. Beneficial Refinements and / or further developments are the Removable subclaims.

Ein erster Vorteil der Erfindung besteht darin, dap ein Phasenstellglied verwendet wird, das im wesentlichen auf eine Frequenz abgestimmt ist. Ein solches Phasenstellglied ist kostengünstig und zuverlässig herstellbar insbesondere in einer industriellen Massenfertigung und besitzt in reproduzierbarer Weise eine hohe Phasen- und Amplitudengenauigkeit. A first advantage of the invention is dap one Phase actuator is used, which is essentially on a frequency is tuned. Such a phase actuator is inexpensive and can be reliably produced in particular in an industrial mass production and in reproducible Way a high phase and amplitude accuracy.

Ein zweiter Vorteil besteht darin, daß beim Verstellen des Phasenstellgliedes möglicherweise entstehende Amplitudenänderungen allenfalls vernachlässigbare Veränderungen der Sende- und/oder Empfangskeule bewirken.A second advantage is that when adjusting the Phase actuator possibly occurring amplitude changes at most negligible changes effect the transmitting and / or receiving lobe.

Ein dritter Vorteil besteht darin, daß die Sende- und/oder Empfangskeule (Richtcharakteristik) der Gruppenantenne hochgenau und mit einem hohem Haupt- zu Nebenzipfelverhältnis eingestellt werden kann und daß diese Einstellung im wesentlichen im ganzen Schwenkbereich der Sende- und/oder Empfangskeule erhalten bleibt.A third advantage is that the transmit and / or Reception lobe (directional characteristic) of the group antenna highly accurate and with a high main to secondary lobe ratio can be adjusted and that this setting essentially in the entire swivel range of the transmission and / or receiving lobe is retained.

Ein vierter Vorteil besteht darin, daß mit einer einzigen Gruppenantenne mehrere Sende- und/oder Empfangskeulen unabhängig voneinander schwenkbar sind.A fourth advantage is that with a single Group antenna several transmitting and / or receiving lobes independently are pivotable from each other.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf schematisch dargestellte Figuren näher erläutert. Es zeigen:

FIG. 1
eine vorgeschlagene Schaltungsanordnung mit einen breitbandig arbeitenden Phasenstellglied;
FIG. 2-5
Ausführungsbeispiele zur Erläuterung der Erfindung.
The invention is explained in more detail below on the basis of exemplary embodiments with reference to schematically illustrated figures. Show it:
FIG. 1
a proposed circuit arrangement with a broadband phase actuator;
FIG. 2-5
Exemplary embodiments for explaining the invention.

FIG. 1 zeigt eine vorgeschlagene Schaltungsanordnung, die mit einem breitbandig arbeitenden Phasenstellglied arbeitet, die in monolithischer Technologie herstellbar ist und die insbesondere zum Betreiben einer aktiven (Sende- und/oder Empfangs-) Einzelantenne geeignet ist. Eine solche aktive Einzelantenne besteht aus einer passiven Sende- und/oder Empfangseinzelantenne, die auf das zu sendende und/oder zu empfangende Frequenzband, z.B. den Frequenzbereich von 11 GHz bis 13 GHz, abgestimmt ist. An diese ist in unmittelbarer räumlicher Nähe ein Sende- und/oder Empfangsverstärker angekoppelt. Eine solche beispielhaft angegebene aktive Einzelantenne kann an den im folgenden mit P4 bezeichneten Ein-/Ausgangsport angeschlossen werden.FIG. 1 shows a proposed circuit arrangement works with a broadband phase actuator, which can be produced in monolithic technology and which are particularly useful for operating an active and / or receiving) individual antenna is suitable. Such active single antenna consists of a passive transmission and / or individual reception antenna which is directed to the one to be transmitted and / or frequency band to be received, e.g. the frequency range from 11 GHz to 13 GHz. To this is a transmitter and / or receiver amplifier in the immediate vicinity coupled. Such an example active single antenna can be connected to the following P4 designated input / output port can be connected.

Zur Erläuterung der vorgeschlagenen Schaltungsanordnung gemäß FIG. 1 wird angenommen, daß an dem weiteren Ein-/Ausgangsport P1 ein zu sendendes Signal in einem ersten Zwischenfrequenzbereich, der z.B. eine Mittenfrequenz von 3 GHz und eine Bandbreite von 2 GHz besitzt, anliegt. Dieses Zwischenfrequenzsignal gelangt über ein daran angepaßtes Bandpaßfilter BPZF auf einen Eingang eines ersten Mischers M1, der z.B. als bidirektionaler Mischer, z.B. als Diodenmischer, ausgebildet ist. An einem weiteren Eingang des ersten Mischers M1 liegt ein von einem Oszillator OSC erzeugtes Oszillatorsignal an, das z.B. eine Frequenz von 9 GHz besitzt. In dem ersten Mischer M1 erfolgt eine sogenannte Aufwärtsmischung, so daß ein Signal in dem bereits erwähnten ersten Zwischenfrequenzbereich entsteht. Dieses Signal gelangt über ein daran angepaßtes weiteres Bandpaßfilter BPA und ein Phasenstellglied PH an den bereits erwähnten Ein-/Ausgangsport P4 und kann an eine aktive Einzelantenne angeschlossen werden.To explain the proposed circuit arrangement according to FIG. 1 is assumed that at the further input / output port P1 a signal to be sent in a first Intermediate frequency range, e.g. a center frequency of 3 GHz and has a bandwidth of 2 GHz. This Intermediate frequency signal passes through a matched Bandpass filter BPZF on an input of a first Mixer M1, e.g. as a bidirectional mixer, e.g. is designed as a diode mixer. At another entrance the first mixer M1 is one of an oscillator OSC generated oscillator signal which e.g. a frequency of 9 GHz. One takes place in the first mixer M1 so-called upmixing, so that a signal in the already mentioned first intermediate frequency range arises. This signal passes through another adapted to it Bandpass filter BPA and a phase actuator PH to the already mentioned input / output port P4 and can be connected to an active Single antenna can be connected.

Das Oszillatorsignal wird über eine Verzweigung VER weiteren Sende-/Empfangsmodulen zur Verfügung gestellt, damit die Phasenkohärenz gewährleistet ist. Dieses ist in FIG. 1 durch die von der Verzweigung VER ausgehenden Verbindungslinien dargestellt.The oscillator signal is further branched VER Transmit / receive modules provided so phase coherence is guaranteed. This is shown in FIG. 1 through the connecting lines starting from the VER branch shown.

Die Schaltungsanordnung ist auch in umgekehrter Richtung nutzbar, daß heißt, aus einem an dem Ein-/Ausgangsport P4 anliegendes Empfangssignal wird durch eine sogenannte Abwärtsmischung in dem ersten Mischer M1 in den ersten Zwischenfrequenzbereich umgesetzt und liegt dann zur Weiterverarbeitung an dem Ein-/Ausgangsport P1 an.The circuit arrangement is also in the opposite direction usable, that is, from one at the input / output port P4 received signal is through a so-called downmixing in the first mixer M1 in the first intermediate frequency range implemented and then lies for further processing at the input / output port P1.

Diese Schaltungsanordnung hat den Nachteil, daß das Phasenstellglied PH sehr breitbandig sein muß, das heißt zumindest den ganzen Frequenzbereich der Sende- bzw. Empfangsfrequenz umfassen muß. Außerdem sollte bei der Verstellung des Phasenstellgliedes PH eine hohe Amplituden- und Phasengenauigkeit erreicht werden. Diese Forderungen sind gleichzeitig allenfalls mit einem hohen Kostenaufwand zu erfüllen und erfordern einen hohen Schaltungs- und Raumbedarf für das Phasenstellglied PH. Weiterhin ist ein hoher Aufwand für die Kalibrierung, d.h. die Kompensation möglicher Phasen- und Amplitudenfehler in den Einzelmodulen nötig.This circuit arrangement has the disadvantage that the phase actuator PH must be very broadband, at least that is the entire frequency range of the transmission or Receive frequency must include. In addition, the Adjustment of the phase control element PH has a high amplitude and phase accuracy can be achieved. These demands are at the same time at high cost to meet and require high circuit and space requirement for the phase actuator PH. Farther is a high effort for calibration, i.e. the Compensation for possible phase and amplitude errors in the Individual modules required.

Diese Nachteile sind vermeidbar durch eine Schaltungsanordnung entsprechend FIG. 2. Diese unterscheidet sich von derjenigen entsprechend FIG. 1 dadurch, daß das Phasenstellglied PH im Oszillatorpfad angeordnet ist. Ein dem Phasenstellglied PH nachgeschalteter Verstärker V dient lediglich zur Impedanzanpassung und/oder zur Entkopplung der Signale sowie zur Erzeugung der notwendigen Leistung zur Ansteuerung des Mischers M1. Diese scheinbar geringfügige Änderung hat jedoch erhebliche Vorteile. Denn das Phasenstellglied braucht vorteilhafterweise nur noch auf eine Frequenz, nämlich die Oszillatorfrequenz abgestimmt werden. Ein solches Phasenstellglied PH kann z.B. als schaltbare Filterstruktur gemäß FIG. 5 ausgebildet sein. Ein derartiges Phasenstellglied hat notwendiger Weise mindestens einen Phasenhub von 360°. Weiterhin wirken sich bei einer Phasenverstellung möglicherweise entstehende Anplitudenänderungen der Amplitude des Oszillatorsignals allenfalls vernachlässigbar aus, da während der Mischung in dem ersten Mischer Ml notwendigerweise eine Amplitudenbegrenzung vorhanden ist.These disadvantages can be avoided by a circuit arrangement according to FIG. 2. This differs from that corresponding to FIG. 1 in that the phase actuator PH is arranged in the oscillator path. One of those Phase actuator PH downstream amplifier V is used only for impedance matching and / or for decoupling the signals and to generate the necessary power to control mixer M1. This seemingly minor However, change has significant advantages. Because that Phase actuator advantageously only needs to a frequency, namely the oscillator frequency tuned become. Such a phase actuator PH can e.g. as switchable filter structure according to FIG. 5 be formed. Such a phase actuator necessarily has at least a phase shift of 360 °. Continue to work in the event of a phase change, possibly changes in the occlusion the amplitude of the oscillator signal at most negligible because during the mixing in the first mixer Ml necessarily has an amplitude limitation is available.

FIG. 3 zeigt eine Schaltungsanordnung, bei der im Oszillatorpfad kein Phasenstellglied PH entsprechend den Figuren 2 und 5 benötigt wird. Das dem ersten Mischer M1 zugeführte Oszillatorsignal wird ebenfalls durch eine Mischung erzeugt. Dazu wird in dem Oszillator OSC ein Signal z.B. mit einer Frequenz von 6 GHz erzeugt. Dieses wird einem ersten Eingang eines zweiten Mischers M2, der z.B. ebenfalls ein Diodenmischer ist, zugeführt. Weiterhin wird das Signal des Oszillators OSC auch allen anderen aktiven Sende/Empfangsmodulen zur Verfügung gestellt, damit die Phasenkohärenz gewährleistet ist. Der Synthetisierer DDS erzeugt ein Signal, z.B. bei einer fest Frequenz von 3 GHz, das an die Frequenz und die Phase eines von einem Referenz-Oszillator REF ausgesandten Signals gekoppelt ist. Dieses Signal ist allen S/E-Modulen gemeinsam (Kohärenz). Das von dem Synthetisierer DDS erzeugte Ausgangssignal wird an einen zweiten Eingang des zweiten Mischers M2 gelegt. An dessen Ausgang entsteht dann das eigentliche Oszillatorsignal, das z.B. eine Frequenz von 9 GHz besitzt. Aufgrund dieser Mischung ist daher dieses eigentliche Oszillatorsignal in weiten Grenzen sowohl in der Frequenz, z.B. von 8 GHz bis 10 GHz, als auch in der Phasenlage, hochgenau veränderbar. Dieses eigentliche Oszillatorsignal wird dann über ein Bandpaßfilter BPOS sowie einen (Treiber-)Verstärker V dem ersten Mischer Ml zugeführt.FIG. 3 shows a circuit arrangement in which in the oscillator path no phase actuator PH according to the figures 2 and 5 is required. The one fed to the first mixer M1 Oscillator signal is also mixed generated. For this purpose, a signal e.g. generated with a frequency of 6 GHz. This becomes one first input of a second mixer M2, e.g. Likewise a diode mixer is supplied. Furthermore, that will Signal of the oscillator OSC also all other active ones Transmit / receive modules provided so that the Phase coherence is guaranteed. The DDS synthesizer generates a signal, e.g. at a fixed frequency of 3 GHz, which is the frequency and phase of a reference oscillator REF transmitted signal is coupled. This signal is common to all S / E modules (coherence). The output signal generated by the synthesizer DDS is connected to a second input of the second mixer M2. The actual oscillator signal then arises at its output, that e.g. has a frequency of 9 GHz. Because of this mixture, this is the actual oscillator signal within wide limits both in frequency, e.g. from 8 GHz to 10 GHz, as well as in the phase position, changeable with high precision. This actual oscillator signal is then via a bandpass filter BPOS and a (driver) amplifier V fed to the first mixer Ml.

Die Schaltungsanordnung gemäß FIG. 3 ermöglicht in vorteilhafter Weise eine genau wiederholbare und schnelle Einstellung der Frequenz- und der Phasenlage des eigentlichen Oszillatorsignals, z.B. mit Hilfe einer nicht dargestellten Datenverarbeitungsanlage (Mikroprozessor), durch welche z.B. der Synthetisierer DDS und der Oszillator OSC verstellt wird. Mit einer solchen Schaltungsanordnung ist z.B. ein schneller Wechsel der Frequenz des eigentlichen Oszillatorsignals möglich, so z.B. ein sogenannter Multibeambetrieb im Zeitmultiplexbetrieb möglich ist.The circuit arrangement according to FIG. 3 enables in an advantageous manner Way, exactly repeatable and fast Setting the frequency and phase of the actual Oscillator signal, e.g. with the help of a not shown Data processing system (microprocessor), by which e.g. the synthesizer DDS and the oscillator OSC is adjusted. With such a circuit arrangement e.g. a quick change in the frequency of the actual Oscillator signal possible, e.g. a so-called Multi-beam operation in time-division multiplex operation is possible.

FIG. 4 zeigt eine beispielhafte Schaltungsanordnung zum Ansteuern einer einzigen (aktiven) Einzelantenne EA mit beispielsweise drei verschiedenen Zwischenfrequenzsignalen ZF1 bis ZF3, die sich durch ihre Mittenfrequenz unterscheiden und die an den Eingängen Pl bis P3 anliegen. Diese Zwischenfrequenzsignale gelangen über zugehörige Bandpaßfilter BPZF 1 bis BPZF 3 an erste Eingänge der ersten Mischer M11 bis M13. An deren zweiten Eingängen (Oszillatoreingängen) liegen nun Oszillatorsignale OS 1 bis OS 3 an, die von dem Ausgangssignal eines einzigen Oszillators OSC abgeleitet sind. Die Oszillatorsignale OS 1 bis OS 3 besitzen daher alle dieselbe Frequenz, jedoch unterschiedliche Phasenlagen, die durch die Phasenstellglieder PH 1 bis PH 3 einstellbar sind. Die Verstärker V 1 bis V 3 dienen, entsprechend FIG. 2, zur Entkopplung und Verstärkung der Signale. Die Ausgangssignale der ersten Mischer M 11 bis M 13 gelangen über zugehörige Bandpässe BPA 1 bis BPA 3 auf ein Koppelglied KO, z.B. eine aus mehreren Kopplern bestehende Verzweigungsanordnung. An dessen Ausgang P4 ist die Einzelantenne EA angeschlossen.FIG. 4 shows an exemplary circuit arrangement for Driving a single (active) single antenna EA with for example three different intermediate frequency signals ZF1 to ZF3, which are characterized by their center frequency differentiate and are present at the inputs P1 to P3. These intermediate frequency signals pass through associated Bandpass filter BPZF 1 to BPZF 3 to the first inputs of the first mixer M11 to M13. At their second entrances (Oscillator inputs) there are now oscillator signals OS 1 to OS 3 on by the output of a single oscillator OSC are derived. The oscillator signals OS 1 to OS 3 therefore all have the same frequency, but different Phases by the phase actuators PH 1 to PH 3 are adjustable. The amplifier V 1 to V 3 serve, according to FIG. 2, for decoupling and amplification of the signals. The output signals of the first mixer M 11 to M 13 pass through the associated BPA bandpasses 1 to BPA 3 on a coupling element KO, e.g. one out of several Couplers existing branching arrangement. At the exit The individual antenna EA is connected to P4.

Die beschriebene Schaltungsanordnung besteht also aus einer Kopplung mehrer, hier drei, Schaltungsanordnungen gemäß FIG.2 an eine Einzelantenne EA. Werden nun mehrere derart angesteuerte Einzelantennen zu einer eingangs erwähnten Gruppenantenne zusammengefaßt, so kann diese vorteilhafterweise gleichzeitig mit drei verschiedenen Sende- und/oder Empfangskeulen betrieben werden. Diese sind vorteilhafterweise völlig unabhängig voneinander und können daher z.B. in drei verschiedenen Richtungen gleichzeitig senden und/oder empfangen. In diesem Fall ist lediglich eine einmalige Einstellung der Phasenstellglieder erforderlich. Eine solche Gruppenantenne ist z.B. als Richtfunkantenne verwendbar, mit der gleichzeitig in drei verschiedene fest eingestellte Richtungen unabhängig voneinander gesendet und/oder empfangen werden kann, sofern die ersten Mischer M 11 bis M 13 als bidirektionale Mischer ausgebildet sind.The circuit arrangement described thus consists of a Coupling of several, here three, circuit arrangements according to FIG.2 to a single antenna EA. Now be several individual antennas driven in this way to one mentioned at the beginning Group antenna summarized, this can advantageously with three different transmitters simultaneously and / or receiving lobes are operated. These are advantageous completely independent of each other and can therefore e.g. in three different directions at the same time send and / or receive. In this case it is only a one-time adjustment of the phase actuators is required. Such a group antenna is e.g. as a directional radio antenna usable with the three different at the same time fixed directions independent of each other can be sent and / or received if the first mixer M 11 to M 13 as a bidirectional mixer are trained.

Werden diese dagegen zeitabhängig verändert, so ist z.B. ein voneinander unabhängiges Schwenken der beispielhaft erwähnten drei Sende- und/oder Empfangskeulen möglich. Mit einer solchen Gruppenantenne, die als Radarantenne ausgebildet ist, kann z.B. ein vorgebbarer Raumbereich mit voneinander unabhängigen Antennenkeulen (Richtdiagrammen) in verschiedenen Frequenzbereichen überwacht werden. If, on the other hand, these are changed depending on the time, then e.g. an independent pivoting of the example mentioned three transmission and / or reception lobes possible. With such a group antenna, which is designed as a radar antenna is e.g. a definable area with each other independent antenna lobes (directional diagrams) in different frequency ranges are monitored.

Es ist ersichtlich, daß das Beispiel gemäß FIG. 4 wahlweise auch auf eine andere Anzahl von unabhängigen Mischanordnungen abwandelbar ist.It can be seen that the example according to FIG. 4 optional also on a different number of independent mixing arrangements is changeable.

In dem Beispiel entsprechend FIG. 4 werden Mischanordnungen entsprechend FIG. 2 verwendet. Alternativ dazu ist eine Verwendung von Mischanordnungen entsprechend FIG. 3 möglich. In diesem Fall werden insbesondere für eine Radaranlage, bedingt durch die Verwendung von digitalen Synthetisierern DDS, sehr hohe Phasenauflösungen, z.B. <1°, möglich sowie ein hochgenaues sogenanntes Nulling des Antennendiagramm. Das bedeutet, daß allenfalls vernachlässigbare Nebenzipfel vorhanden sind, so daß eine hervorragende Störsignalunterdrückung erreicht wird. Eine derart ausgerüstete Radaranlage ist daher vorteilhaft in sehr vielseitiger Weise einsetzbar.In the example according to FIG. 4 will be mixed arrangements according to FIG. 2 used. Alternatively, it is a use of mixing arrangements according to FIG. 3rd possible. In this case, especially for a radar system, due to the use of digital synthesizers DDS, very high phase resolutions, e.g. <1 °, possible as well as a highly precise so-called zeroing of the antenna diagram. That means that at most negligible Side lobes are in place, making an excellent one Interference signal suppression is achieved. Such a equipped radar system is therefore advantageous in very versatile use.

Durch die dezentrale Anordnung, daß heißt jeweils ein digitaler Synthetisierer pro Einzelantenne, kann die weitere Signalverarbeitung, insbesondere diejenige des empfangenen Signals, vorteilhafterweise wesentlich vereinfacht werden. Beispielsweise kann der vorhandene ansonsten sehr aufwendige Signalprozessor durch eine kostengünstigere Ausführung ersetzt werden.Due to the decentralized arrangement, that means a digital one Synthesizer per single antenna, the other Signal processing, especially that of the received one Signal, advantageously be significantly simplified. For example, the existing one is otherwise very complex Signal processor through a more cost-effective design be replaced.

Die beschriebenen Ausführungsbeispiele ermöglichen insbesondere bei mit hohen Frequenzen, z.B. 12 GHz, arbeitenden Radaranlagen in unmittelbarer räumlicher Nähe einer (Einzel-)Antenne eine vorteilhafte Frequenzumsetzung in eine niedrigere ZF-Frequenzlage, z.B. 3 GHz. Dadurch wird die weitere Signalverarbeitung, z.B. Aufbereitung von Sende- und/oder Empfangssignalen, stark vereinfacht, denn störende Auswirkungen von möglicherweise vorhandenen Phasenfehlern treten allenfalls in vernachlässigbarer Form auf. In der niedrigen ZF-Frequenzlage ist vorteilhafterweise eine kostengünstigere Herstellung der erwähnten Signalverarbeitungsanlage möglich, da die benötigten Bauelemente sowie Baugruppen kostengünstiger sind.The described exemplary embodiments enable in particular at high frequencies, e.g. 12 GHz, working Radar systems in close proximity to a (Single) antenna an advantageous frequency conversion in a lower IF frequency position, e.g. 3 GHz. This will further signal processing, e.g. Processing of Transmitting and / or receiving signals, greatly simplified, because disruptive effects of possibly existing phase errors occur at most in a negligible form on. In the low IF frequency range is advantageous a cheaper production of the signal processing system mentioned possible because the required components and assemblies are cheaper.

Derartige Schaltungsanordnungen sind vorteilhafterweise monolithisch auf einem Chip integrierbar, so daß räumlich kompakte und mechanisch robuste Baueinheiten herstellbar sind, die zuverlässig und reproduzierbar arbeiten.Such circuit arrangements are advantageous can be integrated monolithically on a chip, so that spatial compact and mechanically robust units can be manufactured are who work reliably and reproducibly.

FIG. 5 zeigt Ausführungsbeispiele für ein Phasenstellglied PH (FIG. 2, FIG. 4), das für eine Frequenz von 5 GHz bis 6 GHz und einen Phasenhub von 360° geeignet ist und das außerdem monolithisch integriert werden kann. Die Ausführungsbeispiele zeigen geschaltete Filterstrukturen (linker Teil der FIG. 5), die Feldeffekttransistoren enthalten und damit sowohl als Hochpaß HP als auch als Tiefpaß LP verwendbar sind. Die Umschaltung erfolgt durch Schaltspannungen U1, U2. Im rechten Teil der FIG. 5 sind die zugehörigen Funktionsprinzipien dargestellt.FIG. 5 shows exemplary embodiments for a phase actuator PH (FIG. 2, FIG. 4) which is suitable for a frequency of 5 GHz to 6 GHz and a phase shift of 360 ° and which can also be integrated monolithically. The exemplary embodiments show switched filter structures (left part of FIG. 5) which contain field effect transistors and can therefore be used both as high-pass HP and as low-pass LP. Switching takes place using switching voltages U 1 , U 2 . In the right part of FIG. 5 the associated functional principles are shown.

Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, sondern sinngemäß auf weitere anwendbar.The invention is not based on the exemplary embodiments described limited, but applicable to others.

Claims (8)

  1. Circuit arrangement for operating a wide-band phase-controlled antenna array, which consists of several wide-band individual antennae, wherein
    an associated antenna signal can be applied at each individual antenna and wherein those signals, which belong to a different frequency, differ at adjacent individual antennae by a phase difference,
    each individual antenna is associated with a mixer arrangement, at least consisting of a first mixer, which is connected each time with one end of an intermediate frequency path, an oscillator path as well as an antenna path,
    an amplitude-limiting circuit is present in the mixer arrangement,
    a phase setting element, which is settable in correspondence with the phase difference between the antennae signals, is present in the oscillator path, characterised thereby
    that the phase setting element (PH) consists at least of
    a second mixer (M2), the first input of which is connected with the oscillator (OSC) of the oscillator path and the output of which is coupled to an oscillator input of the fist mixer (M1), and
    an auxiliary oscillator (DDS), which is connected to the second input of the second mixer (M2) and the frequency position and phase position of which are settable and coupled with those of the oscillator (OSC), wherein the frequency and phase positions are selected in correspondence with the phase difference to be set,
    that, for control of an individual antenna (EA) with a presettable number of different intermediate frequency signals, intermediate frequency paths corresponding thereto are present,
    that a mixer arrangement is present for each intermediate frequency path,
    that the oscillator paths of the mixer arrangements are combined and connected to an oscillator (OSC) and
    that the antenna paths of the mixer arrangements are combined by way of a coupling element (KO) and coupled to the individual antennae (EA).
  2. Circuit arrangement according to claim 1, characterised thereby that the auxiliary oscillator (DDS) is constructed as a digital synthesiser.
  3. Circuit arrangement according to one of the preceding claims, characterised thereby that the first mixer (M1) is constructed as a bidirectional mixer.
  4. Circuit arrangement according to one of the preceding claims, characterised thereby that the mixer arrangement is constructed as a monolithic circuit arrangement.
  5. Circuit arrangement according to one of the preceding claims, characterised thereby that the antenna array is constructed as a radar antenna.
  6. Circuit arrangement according to one of the preceding claims, characterised thereby that the antenna array is constructed as a directional radio antenna.
  7. Circuit arrangement according to one of the preceding claims, characterised thereby that the antenna array is designed for a multi-frequency operation.
  8. Circuit arrangement according to one of the preceding claims, characterised thereby that one of the intermediate frequencies is designed for the radar range.
EP93114114A 1992-09-10 1993-09-03 Device for operating a wideband phased array antenna Expired - Lifetime EP0588179B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4230252A DE4230252A1 (en) 1992-09-10 1992-09-10 Circuit arrangement for operating a broadband phase-controlled group antenna
DE4230252 1992-09-10

Publications (2)

Publication Number Publication Date
EP0588179A1 EP0588179A1 (en) 1994-03-23
EP0588179B1 true EP0588179B1 (en) 1999-01-27

Family

ID=6467658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114114A Expired - Lifetime EP0588179B1 (en) 1992-09-10 1993-09-03 Device for operating a wideband phased array antenna

Country Status (2)

Country Link
EP (1) EP0588179B1 (en)
DE (2) DE4230252A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142650A (en) * 1989-11-14 1992-08-25 Asahi Glass Company Ltd. Bottom electrode for a direct current arc furnace
DE69533861T2 (en) 1994-11-04 2005-12-15 Andrew Corp., Orland Park A base station for a cellular telecommunications system having a phase control system and method for adjusting club luff
US6239744B1 (en) 1999-06-30 2001-05-29 Radio Frequency Systems, Inc. Remote tilt antenna system
US6573875B2 (en) 2001-02-19 2003-06-03 Andrew Corporation Antenna system
DE10130764C1 (en) * 2001-06-26 2002-11-07 Eads Deutschland Gmbh Integrated HF circuit for signal amplitude modification has inductances or capacitances for compensation of phase alteration within damping elements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750175A (en) * 1967-12-14 1973-07-31 Texas Instruments Inc Modular electronics communication system
US4749995A (en) * 1985-02-26 1988-06-07 Westinghouse Electric Corp. Phased array radar antenna system
EP0359238A3 (en) * 1988-09-13 1991-05-22 Nec Corporation Array antenna device having ic units with if conversion circuits for coupling antenna elements and signal combiner
US4951060A (en) * 1988-09-21 1990-08-21 Westinghouse Electric Corp. Dual frequency transmit-receive module for an active aperture radar system

Also Published As

Publication number Publication date
DE4230252A1 (en) 1994-03-17
DE59309339D1 (en) 1999-03-11
EP0588179A1 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
EP1792203B1 (en) Monostatic planar multibeam radar sensor
EP1532716B1 (en) Calibration device for an antenna array and method for calibrating said array
EP0204259B1 (en) Two-frequency instrument-landing system
EP2235559B1 (en) Monostatic multibeam radar sensor device for motor vehicle
EP1794614A1 (en) Antenna radar system and method for the operation thereof
DE2812575C2 (en) Phased antenna field
DE3334451T1 (en) Combined transmit / receive element for transmitted signals, in particular for phase-controlled antenna element groups
EP0588179B1 (en) Device for operating a wideband phased array antenna
DE69008551T2 (en) Antenna system.
DE69023878T2 (en) Room-fed, phase-controlled group antenna with phase shifters for two signal paths.
WO2007077062A1 (en) Radar device
DE60130396T2 (en) Cost-effective radar, especially for high-resolution imaging
EP2225799B1 (en) Antenna arrangement for a radar transceiver and circuit arrangement for feeding an antenna arrangement of such a radar transceiver
DE202018105377U1 (en) Multi-channel radar system
EP1005105B1 (en) Arrangement for generating and automatic tracking of antenna diagrams in elevation for aircrafts during flight manoeuvres with the purpose of data transmission
EP0316611B1 (en) Vhf radio transmission installation using at least two transmitters with a different frequency
DE69838212T2 (en) mobile phone
DE2558134C3 (en) Circuit arrangement for the formation of several output signals with their phase shifted in a group of radiators
EP0227005B1 (en) Transmitting device comprising two microwave transmitters radiating different frequencies with different radiation patterns
DE3545639C1 (en) Transmitter operating at at least two frequencies - uses single VHF antenna array with different polar diagrams
DE3836143C2 (en) Mixer for high frequency transmit and receive arrangements
EP0829971B1 (en) Circuit for transmit-receive switching
DE3725066A1 (en) Microwave antenna with radiation diagram synthesis
EP0984296A2 (en) Multi-channel radar device
WO1998026305A1 (en) Transmitter/receiver module for a phased array radar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19940914

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19961014

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990209

REF Corresponds to:

Ref document number: 59309339

Country of ref document: DE

Date of ref document: 19990311

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050822

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050823

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050912

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050914

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060903

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002