EP0586425B1 - Verfahren zur erzeugung von energie in einer kombinierten gas-dampfkraftanlage - Google Patents

Verfahren zur erzeugung von energie in einer kombinierten gas-dampfkraftanlage Download PDF

Info

Publication number
EP0586425B1
EP0586425B1 EP92910154A EP92910154A EP0586425B1 EP 0586425 B1 EP0586425 B1 EP 0586425B1 EP 92910154 A EP92910154 A EP 92910154A EP 92910154 A EP92910154 A EP 92910154A EP 0586425 B1 EP0586425 B1 EP 0586425B1
Authority
EP
European Patent Office
Prior art keywords
steam
steam generator
gas
power station
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92910154A
Other languages
English (en)
French (fr)
Other versions
EP0586425A1 (de
Inventor
Heinz Spliethoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saarbergwerke AG
Original Assignee
Saarbergwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saarbergwerke AG filed Critical Saarbergwerke AG
Publication of EP0586425A1 publication Critical patent/EP0586425A1/de
Application granted granted Critical
Publication of EP0586425B1 publication Critical patent/EP0586425B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Definitions

  • the invention relates to a combined gas-steam power Plant for the production of energy with a firing chamber having gas turbine cycle and a coal-fired steam turbine circuit, being the gas turbine one with water Heat recovery steam generator system fed from the steam turbine cycle downstream and a connecting line between the steam side exit of the Heat recovery steam generator system and the steam-side outlet of the steam generator is provided.
  • the hot turbine gases for those with increasing Gas turbine development rising gas turbine inlet temperatures are aimed at showing higher ones Temperatures lower oxygen levels. This performs in auxiliary fired steam generators that both the gas turbine exhaust heat as well as that in the gas turbine exhaust contained oxygen for combustion in the Want to use additional firing, so that the hereby Provided oxygen concentration through fresh air must be increased to complete combustion to ensure.
  • the setting and control of the steam temperature is essentially carried out by additional firing directly at the hot end of the heat recovery steam generation system (see FIG. 1 and page 50 bottom left).
  • This additional firing increases the exhaust gas temperature of the gas turbine as a whole, which means that the steam temperature in the superheater can also be influenced, with corresponding effects but also on the heat exchanger surfaces downstream of the superheater in the direction of the cold end.
  • Such a control concept is relatively complex and yet sluggish, since the entire mass flow must be treated in each case.
  • the present invention is based on the object a process for generating energy in one combined gas-steam power plant of the aforementioned Kind both to achieve higher efficiencies than also to further develop availability.
  • this object is achieved by that in the steam-carrying connecting line between the heat recovery steam generator system and the steam generator an additional boiler with its own furnace for adjustment the temperature of the steam flow from the heat recovery steam generator the temperature of the steam flow from the steam generator is integrated.
  • the combined gas-steam power plant according to the invention is characterized by a full firing side Decoupling of the two energy generation cycles out. Compared to the state of the So the hot exhaust gas from the gas turbine does not become technology introduced into the steam generator, but for generation of process steam in its own heat recovery steam generator utilized.
  • the invention is therefore particularly suitable for Retrofitting or expansion of existing steam power plants, since there are no interventions in the firing area of the steam generator or in the flue gas path integrated heat dissipation and gas cleaning systems become necessary.
  • thermodynamic connection of the two energy generation cycles takes place exclusively via the Water-steam cycle.
  • the two in the heat recovery steam generator and high-voltage generated in the steam generator Steam streams are adjusted after their Vapor states, essentially their temperatures, mixed and then in the same steam turbine relaxed working.
  • This also includes the adjustment of the steam flows required additional heat without influencing the furnace of the steam generator and generated in an additional boiler transferred, d. H. it is Z. B. not vorese hen, if the additional heat in an additional firing is generated, the hot flue gases of this additional firing in the combustion output zone of the steam generator initiate.
  • the invention provides for the case of an additional boiler with its own furnace, the hot flue gas flow this furnace either the exhaust gas from the gas turbine before entering the heat recovery steam generator system or also the flue gas from the steam generator behind the Add the firing power zone to then the residual heat either in the heat recovery steam generator itself or in the in the Rauchgsweg of the steam generator integrated heat exchangers. It offers then an admixture to the exhaust gas from the gas turbine if the additional firing with gas or oil as fuel is operated while an admixture to Flue gas flow from the steam generator for one with coal operated auxiliary firing is more likely.
  • the power ratio between the heat recovery steam generator system and the steam generator in the gas-steam power plant operated according to the invention is expediently ⁇ 1, preferably between 1: 1 and 1: 4.
  • the required or desired power ratio of the heat recovery steam generator system to the steam generator can be set by arranging a plurality of gas turbines, the respective heat recovery steam generator systems of which are connected in parallel with respect to the steam flow.
  • the figure shows schematically one according to the invention Processed combined gas-steam power plant.
  • the relaxed working steam in three turbine stages 9, 10 and 11, which are arranged on the same shaft with a generator 12, is condensed in a condenser 13 and conveyed as condensate by means of a pump via preheaters 15 and 16 connected in parallel into a feed water tank 17.
  • the water collected in the feed water tank 17 is pumped to process pressure in a high-pressure pump 18 and then divided into two partial flows.
  • the one partial flow first passes through a line 19 to a heat exchanger 20 heated by extraction steam and is then fed to a coal-fired steam generator system 21, for example it can be the steam generator of an existing coal-fired power plant.
  • a coal-fired steam generator system 21 for example it can be the steam generator of an existing coal-fired power plant.
  • the second partial flow of the pressurized feed water is fed via a line 22 to the heat recovery steam generator system 7 and is evaporated and heated in heating surfaces 23 in heat exchange with the hot exhaust gas from the gas turbine 4.
  • the steam thus obtained, which has not yet been completely overheated, is fed via line 24 to an additional boiler 25 which is gas-heated in this exemplary embodiment and is further heated there by supplying additional heat to the temperature of the superheated steam produced in the steam generator 21.
  • Both partial streams from the auxiliary boiler 25 and the steam generator system 21, now adjusted in their steam states, are mixed with one another and fed to the first stage 9 of the three-stage steam turbine.
  • the partially expanded steam stream is reheated.
  • the steam flow is divided into two partial flows.
  • the intermediate superheating of the one partial flow takes place in heating surfaces 27 within the gas-heated additional boiler 25, while the second partial flow is reheated in an intermediate superheater 28 integrated into the flue gas path of the steam generator.
  • the partial steam flow in the heating surfaces 27 corresponds in quantity to the steam flow flowing out of the heat recovery steam generator system 7 via the line 24.
  • the intermediate superheating of the steam generated in the heat recovery steam generator 7 takes place independently of the heat generation and heat transfer systems of the steam generator 21, so that, for. B. a standstill of the steam generator 21 has no effect on the reheating of the steam from the heat recovery steam generator 7.
  • the still hot flue gas accumulating in the auxiliary boiler 25 is drawn off according to the invention via a line 26, mixed with the hot exhaust gas of the gas turbine 4 flowing in line 6 and cooled together with this in the heat recovery steam generator system 7 and then withdrawn from the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft eine kombinierte Gas-Dampfkraft anlage zur Erzeugung von Energie mit einem eine Brenkammer aufweisenden Gasturbinenkreislauf und einem einen kohlebefeuerten Dampferzeuger aufweisenden Dampfturbinenkreislauf, wobei der Gasturbine eine mit Wasser aus dem Dampfturbinenkreislauf gespeiste Abhitzedampferzeugeranlage nachgeschaltet und eine Verbindungsleitung zwischen dem dampfseitigen Ausgang der Abhitzedampferzeugeranlage und dem dampfseitigen Ausgang des Dampferzeugers vorgesehen ist.
Bei einer bekannten kombinierten Gas-Dampfkraftanlage zur Erzeugung elektrischer Energie wird das in der öl- oder gasbefeuerten Brennkammer der Gasturbine anfallende verdichtete Arbeitsgas bei einer Temperatur von inzwischen über 1000° C zunächst in der Gasturbine arbeitsleistend entspannt. Die heißen Turbinenabgase werden in die Feuerungsleistungszone des Dampferzeugers eingespeist, wobei dann auch die Restwärme des Gasturbinenabgases im Dampferzeuger genutzt wird. Aufgrund der hohen Temperaturdifferenz zwischen dem Eingang der Gasturbine und dem Ausgang der Dampfturbine weist ein derartiger kombinierter Prozeß einen relativ hohen Wirkungsgrad auf.
Die heißen Turbinengase, für die mit fortschreitender Gasturbinenentwicklung steigende Gasturbineneintrittstemperaturen angestrebt werden, weisen mit höheren Temperaturen geringere Sauerstoffgehalte auf. Dies führt in zusatzgefeuerten Dampferzeugern, die sowohl die Gasturbinenabgaswärme als auch den im Gasturbinenabgas enthaltenen Sauerstoff zur Verbrennung in der Zusatzfeuerung nutzen wollen, dazu, daß die hiermit gebotene Sauerstoffkonzentration durch weitere Frischluft erhöht werden muß, um eine vollständige Verbrennung zu gewährleisten.
Dadurch erhöht sich bei gleicher Dampferzeugerleistung der Abgas- bzw. Rauchgasmassenstrom durch den Dampferzeuger und die nachgeschalteten Komponenten, wie Elektrofilter, Saugzug, Entstickungsanlage und Rauchgasentschwefelungsanlage. Größeres Gasturbinenvolumen und zusätzliche Frischluft führten im Vergleich zu einer Verbrennung ausschließlich mit Frischluft wiederum zu einer Erhöhung des Energieeigenbedarfes der Kraftwerksanlage, so daß ein Teil der durch die Kombination von Gasturbine und Dampfturbine gewonnenen Wirkungsgradverbesserung wieder aufgezehrt wird.
Auch ist nicht auszuschließen, daß durch die enge und vielfache Verknüpfung der beiden Teilprozesse die Verfügbarkeit der Gesamtanlage negativ beeinflußt wird.
Die Zeitschrift "Oil and Gas Journal" ( Vol 27, Nr. 21, May 27, 1974, S. S. 48 - 51) offenbart eine kombinierte Gas-Dampfkraftanlage, bei der in der Brennkammer der Gasturbine Erdgas und in Zusatzboilern Butan verbrannt^21 wird. Die entsprechende Feuerung ist so ausgelegt, daß mit Sicherheit keine Flüssigkeit in die Turbine gelangen und dort die Turbinenschaufeln zerstören kann. Insoweit sind die Boiler mit dem erfindungsgemäßen Zusatzkessel nicht vergleichbar.
Gemäß der Veröffentlichung erfolgt die Einstellung und Regelung der Dampftemperatur im wesentlichen durch eine Zusatzfeuerung direkt am heißen Ende der Abhitzedampferzeugungsanlage (vgl. Figur 1 und Seite 50 links unten). Durch diese Zusatzfeuerung wird die Abgastemperatur der Gasturbine insgesamt erhöht, wodurch dann auch auf die Dampftemperatur im Überhitzer Einfluß genommen werden kann, mit entsprechenden Auswirkungen aber auch auf die dem Überhitzer in Richtung kaltes Ende nachgeschalteten Wärmetauscherflächen.
Ein derartiges Regelkonzept ist relativ aufwendig und doch träge, da jeweils der gesamte Massenstrom behandelt werden muß.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erzeugung von Energie in einer kombinierten Gas-Dampfkraftanlage der eingangs genannten Art sowohl zur Erzielung höherer Wirkungsgrade als auch zur Erhöhung der Verfügbarkeit weiterzuentwickeln.
Diese Aufgabe wird erfindgungsgemäß dadurch gelöst, daß in die dampfführende Verbindungsleitung zwischen der Abhitzedampferzeugeranlage und dem Dampferzeuger ein Zusatzkessel mit eigener Feuerung zur Angleichung der Temperatur des Dampfstromes aus der Abhitzedampferzeugungsanlage an die Temperatur des Dampfstromes aus dem Dampferzeuger integriert ist.
Die erfindungsgemäße kombinierte Gas-Dampfkraftanlage zeichnet sich durch eine vollständige feuerungseitige Entkopplung der beiden Energieerzeugungskreisläufe aus. Im Vergleich zum bekanntgewordenen Stand der Technik wird also das heiße Abgas der Gasturbine nicht in den Dampferzeuger eingeleitet, sondern zur Erzeugung von Prozeßdampf in einer eigenen Abhitzedampferzeugeranlage genutzt.
Durch eine derartige Entkopplung entfällt eine wesentliche Nahtstelle in der Gesamtanlage mit Vorteilen im Hinblick auf die Verbesserung von deren Verfügbarkeit.
Auch werden bei einer erfindungsgemäßen Gas-Dampfkraftanlage der Dampferzeuger selbst und in der Regel auch die nachgeschalteten Aggregate nicht mit zusätzlichen Abgasmengen aus dem Gasturbinenprozeß bzw. einer ggf. vorhandenen Zusatzfeuerung zur Erzeugung der benötigten Zusatzwärme belastet.
Die Erfindung eignet sich somit insbesondere auch zur Nachrüstung bzw. Erweiterung bestehender Dampfkraftwerke, da hierbei keine Eingriffe in den Feuerungsbereich des Dampferzeugers bzw. in die in den Rauchgasweg integrierten Wärmeableitungs- und Gasreinigungssysteme erforderlich werden.
Die thermodynamische Verknüpfung der beiden Energieerzeugungskreisläufe erfolgt ausschließlich über den Wasser-Dampfkreislauf. Die beiden in der Abhitzedampferzeugeranlage und im Dampferzeuger erzeugten hochgespannten Dampfteilströme werden nach Angleichung ihrer Dampfzustände, also im wesentlichen ihrer Temperaturen, vermischt und dann in der gleichen Dampfturbine arbeitsleistend entspannt.
Dabei wird auch die zur Angleichung der Dampfströme benötigte Zusatzwärme ohne Einflußnahme auf die Feuerung des Dampferzeugers erzeugt und in einen Zusatzkessel übertragen, d. h. es ist z. B. nicht vorgese hen, sofern die Zusatzwärme in einer Zusatzfeuerung erzeugt wird, die heißen Rauchgase dieser Zusatzfeuerung in die Feuerungsleistungszone des Dampferzeugers einzuleiten.
Die Erfindung sieht für den Fall eines Zusatzkessels mit eigener Feuerung vielmehr vor, den heißen Rauchgasstrom dieser Feuerung entweder dem Abgas der Gasturbine vor Eintritt in die Abhitzedampferzeugeranlage oder auch dem Rauchgas des Dampferzeugers hinter der Feuerungsleistungszone zuzumischen, um dann die Restwärme entweder in der Abhitzedampferzeugeranlage selbst oder auch in den im Rauchgsweg des Dampferzeugers integrierten Wärmetauschern zu nutzen. Dabei bietet sich eine Zumischung zum Abgas der Gasturbine dann an, wenn die Zusatzfeuerung mit Gas oder Öl als Brennstoff betrieben wird, während eine Zumischung zum Rauchgasstrom des Dampferzeugers bei einer mit Kohle betriebenen Zusatzfeuerung eher in Frage kommt.
Das Leistungsverhältnis zwischen der Abhitzedampferzeugeranlage und dem Dampferzeuger liegt bei der erfindungsgemäß betriebenen Gas-Dampfkraftanlage zweckmäßigerweise bei ≤ 1, vorzugsweise zwischen 1 : 1 und 1: 4.
Dabei kann nach einem weiteren Merkmal der Erfindung das jeweils geforderte bzw. gewünschte Leistungsverhältnis von Abhitzedampferzeugeranlage zu Dampferzeuger durch die Anordnung mehrerer Gasturbinen, deren jeweilige Abhitzedampferzeugeranlagen in Bezug auf die Dampfführung parallel geschaltet sind, eingestellt werden.
Weitere Erläuterungen zu der Erfindung sind dem in der Figur schematisch dargestellten Ausführungsbeispiel zu entnehmen.
Die Figur zeigt schematisch eine nach dem erfindungsgemäßen Verfahren arbeitende kombinierte Gas-Dampfkraftanlage.
Im Gasturbinenkreislauf wird über eine Leitung 1 angesaugte Frischluft in einem Verdichter 2 auf den Arbeitsdruck der Gasturbine verdichtet, in einer mit Erdgas befeuerten Brennkammer 3 stark erhitzt und dann in einer Gasturbine 4 arbeitsleistend entspannt. Die dabei gewonnene Energie wird an einen Generator 5 bzw. den Verdichter 2 abgegeben. Das noch heiße Abgas der Gasturbine wird über eine Leitung 6 einer Abhitzedampferzeugeranlage 7 zugeführt und dann über eine Leitung 8 und einen nicht dargestellten Kamin ins Freie geleitet.
Im Dampfturbinenkreislauf wird der in drei Turbinenstufen 9, 10 und 11, die auf gleicher Welle mit einem Generator 12 angeordnet sind, entspannte Arbeitsdampf in einem Kondensator 13 kondensiert und als Kondensat mittels einer Pumpe über parallel geschaltete Vorwärmer 15 und 16 in einen Speisewasserbehälter 17 gefördert.
Das im Speisewasserbehälter 17 gesammelte Wasser wird in einer Hochdruckpumpe 18 auf Verfahrensdruck gepumpt und dann in zwei Teilströme aufgeteilt.
Der eine Teilstrom passiert über eine Leitung 19 zunächst einen entnahmedampfbeheizten Wärmetauscher 20 und wird dann einer kohlebefeuerten Dampferzeugeranlage 21, beispielsweise kann es sich hier um den Dampferzeuger eines bestehenden Kohlekraftwerkes handeln, zugeführt.
Der zweite Teilstrom des auf Druck gebrachten Speisewassers wird nach der Erfindung über eine Leitung 22 der Abhitzedampferzeugeranlage 7 zugeführt und in Heizflächen 23 im Wärmetausch mit dem heißen Abgas der Gasturbine 4 verdampft und überhitzt. Der dabei gewonnene, noch nicht endüberhitzte Dampf wird über eine Leitung 24 einem in diesem Auführungsbeispiel gasbeheizten Zusatzkessel 25 zugeführt und dort durch Zufuhr von Zusatzwärme auf die Temperatur des im Dampferzeuger 21 anfallenden überhitzten Wasserdampfes weiter erhitzt.
Beide nunmehr in ihren Dampfzuständen angeglichenen Teilströme aus dem Zusatzkessel 25 und der Dampferzeugeranlage 21 werden miteinander vermischt und der ersten Stufe 9 der dreistufigen Dampfturbine zugeführt. Vor Eintritt in die zweite Entspannungsstufe 10 wird der teilentspannte Dampfstrom zwischenüberhitzt. Hierzu wird der Dampfstrom in zwei Teilströme aufgeteilt. Die Zwischenüberhitzung des einen Teilstromes erfolgt in Heizflächen 27 innerhalb des gasbeheizten Zusatzkessels 25, während der zweite Teilstrom in einem in den Rauchgasweg des Dampferzeugers integrierten Zwischenüberhitzer 28 erneut erhitzt wird. Zweckmäßigerweise entspricht dabei der in den Heizflächen 27 geführte Dampfteilstrom mengenmäßig dem über die Leitung 24 aus der Abhitzdedampferzeugeranlage 7 strömenden Dampfstrom. Auf diese Weise erfolgt auch die Zwischenüberhitzung des in der Abhitzedampferzeugeranlage 7 erzeugten Dampfes unabhängig von den Wärmeerzeugungs- und Wärmeübertragungssystemen des Dampferzeugers 21, so daß z. B. ein Stillstand des Dampferzeugers 21 keine Auswirkungen auf die Zwischenüberhitzung des Dampfes aus der Abhitzedampferzeugeranlage 7 hat.
Das im Zusatzkessel 25 anfallende noch heiße Rauchgas wird gemäß der Erfindung über eine Leitung 26 abgezogen, mit dem in der Leitung 6 strömenden heißen Abgas der Gasturbine 4 vermischt und zusammen mit diesem in der Abhitzedampferzeugeranlage 7 abgekühlt und dann aus der Anlage abgezogen.

Claims (5)

  1. Kombinierte Gas-Dampfkraftanlage zur Erzeugung von Energie mit einem eine Brennkammer(3) aufweisenden Gasturbinenkreislauf und einem einen kohlebefeuerten Dampferzeuger (21) aufweisenden Dampfturbinenkreislauf, wobei der Gasturbine (4) eine mit Wasser aus dem Dampfturbinenkreislauf gespeiste Abhitzedampferzeugeranlage (7) nachgeschaltet und eine Verbindungsleitung zwischen dem dampfseitigen Ausgang der Abhitzedampferzeugeranlage (7) und dem dampfseitigen Ausgang des Dampferzeugers (21) vorgesehen ist, dadurch gekennzeichnet, daß in die dampfführende Verbindungsleitung zwischen der Abhitzedampferzeugeranlage (7) und dem Dampferzeuger (21) ein Zusatzkessel (25) mit eigener Feuerung zur Angleichung der Temperatur des Dampfstromes (24) aus der Abhitzedampferzeugeranlage (7) an die Temperatur des Dampfstromes aus dem Dampferzeuger (21) integriert ist.
  2. Kombinierte Gas-Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Zusatzkessel (25) eine mit Öl oder Gas als Brennstoff betriebene Feuerung aufweist und rauchgasseitig mit dem Ausgang der Gasturbine verbunden ist.
  3. Kombinierte Gas-Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Zusatzkessel (25) eine Kohlefeuerung aufweist und rauchgasseitig mit der Rauchgasableitung des Dampferzeugers (21) hinter der Feuerungsleistungszone in Verbindung steht.
  4. Kombinierte Gas-Dampfkraftanlage nach einem der Ansprüche 1 bis 3, wobei zumindest nach einer ersten Entspannungsstufe des Dampfes eine erneute Zwischenüberhitzung vorgesehen ist, dadurch gekennzeichnet, daß für die Zwischenüberhitzung zumindest eines Dampfteilstromes Wärmetauscherflächen (27) im Zusatzkessel (25) vorgesehen sind.
  5. Kombinierte Gas-Dampfkraftanlage nach Anspruch 4, dadurch gekennzeichnet, daß der in den Wärmetauscherflächen (27) des Zusatzkessels (25) zwischenüberhitzte Dampfteilstrom mengenmäßig dem Dampfteilstrom aus der Abhitzedampferzeugungsanlage (7) entspricht.
EP92910154A 1991-05-25 1992-05-21 Verfahren zur erzeugung von energie in einer kombinierten gas-dampfkraftanlage Expired - Lifetime EP0586425B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4117191 1991-05-25
DE19914117191 DE4117191C2 (de) 1991-05-25 1991-05-25 Kombinierte Gas-Dampfkraftanlage zur Erzeugung von Energie
PCT/DE1992/000414 WO1992021860A1 (de) 1991-05-25 1992-05-21 Verfahren zur erzeugung von energie in einer kombinierten gas-dampfkraftanlage

Publications (2)

Publication Number Publication Date
EP0586425A1 EP0586425A1 (de) 1994-03-16
EP0586425B1 true EP0586425B1 (de) 1998-08-05

Family

ID=6432471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92910154A Expired - Lifetime EP0586425B1 (de) 1991-05-25 1992-05-21 Verfahren zur erzeugung von energie in einer kombinierten gas-dampfkraftanlage

Country Status (6)

Country Link
EP (1) EP0586425B1 (de)
AU (1) AU1694692A (de)
DE (2) DE4117191C2 (de)
DK (1) DK0586425T3 (de)
ES (1) ES2121013T3 (de)
WO (1) WO1992021860A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012683A1 (de) * 2012-06-27 2014-01-02 RERUM COGNITIO Institut GmbH Kombinierter Gas- und Dampfturbinenprozess mit erhöhter Leistung und verbesserter Effizienz durch zusätzliche Hochtemperatur-Zwischenüberhitzung für die Elektroenergieerzeugung im Kreisprozess

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2116136B1 (es) * 1993-05-03 1998-12-16 Rosado Serafin Luis Mendoza Procedimiento de mejora de la combinacion entre una turbina de gas y un ciclo de vapor con otra fuente no fosil de energia primaria.
ES2116137B1 (es) * 1993-05-14 1999-04-16 Rosado Serafin Mendoza Un procedimiento de mejora para centrales electricas de ciclo combinado con aporte de energia al ciclo de vapor en una caldera de combustible fosil.
ES2116139B1 (es) * 1993-05-14 1999-04-16 Rosado Serafin Mendoza Perfeccionamientos introducidos en la patente de invencion n- 9301044 titulada un procedimiento de mejora para centrales electricas de ciclo combinado con aporte paralelo de energia al ciclo de vapor en una caldera de combustible fosil.
GB2390121B (en) * 2000-01-19 2004-08-04 Alstom Combined cycle power plant
DE10001995A1 (de) * 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verfahren zur Einstellung bzw. Regelung der Dampftemperatur des Frischdampfes und/oder Zwischenüberhitzerdampfers in einem Verbundkraftwerk sowie Verbundkraftwerk zur Durchführung des Verfahrens
IT1402363B1 (it) 2010-06-10 2013-09-04 Turboden Srl Impianto orc con sistema per migliorare lo scambio termico tra sorgente di fluido caldo e fluido di lavoro
DE102011102929A1 (de) * 2011-05-31 2012-12-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Produktion von überhitztem Dampf

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118429A (en) * 1961-11-08 1964-01-21 Combustion Eng Power plant in which single cycle gas turbine operates in parallel with direct fired steam generator
DE2512774C2 (de) * 1975-03-22 1982-09-02 Brown, Boveri & Cie Ag, 6800 Mannheim Kombinierte Gas-Dampfturbinenanlage
CH645433A5 (de) * 1980-04-11 1984-09-28 Sulzer Ag Kombinierte gasturbinen-dampfkraftanlage.
DE3815536C1 (en) * 1988-05-06 1989-07-20 Wolff Walsrode Ag, 3030 Walsrode, De Heating and power station and method for generating heat energy in the form of steam and generating electrical energy
DE3926964A1 (de) * 1989-08-16 1991-02-21 Siemens Ag Verfahren zur minderung des kohlendioxidgehalts des abgases eines gas- und dampfturbinenkraftwerks und danach arbeitendes kraftwerk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012683A1 (de) * 2012-06-27 2014-01-02 RERUM COGNITIO Institut GmbH Kombinierter Gas- und Dampfturbinenprozess mit erhöhter Leistung und verbesserter Effizienz durch zusätzliche Hochtemperatur-Zwischenüberhitzung für die Elektroenergieerzeugung im Kreisprozess

Also Published As

Publication number Publication date
DE59209451D1 (de) 1998-09-10
ES2121013T3 (es) 1998-11-16
DE4117191C2 (de) 1994-11-24
DE4117191A1 (de) 1992-12-03
EP0586425A1 (de) 1994-03-16
AU1694692A (en) 1993-01-08
DK0586425T3 (da) 1999-05-03
WO1992021860A1 (de) 1992-12-10

Similar Documents

Publication Publication Date Title
EP0778397B1 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
DE19645322B4 (de) Kombinierte Kraftwerksanlage mit einem Zwangsdurchlaufdampferzeuger als Gasturbinen-Kühlluftkühler
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0750718B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
EP0591163B1 (de) Kombinierte gas- und dampfturbinenanlage
EP2368021B1 (de) Abhitzedampferzeuger sowie ein verfahren zum verbesserten betrieb eines abhitzedampferzeugers
EP0674099A1 (de) Verfahren zur Kühlung von thermische belasteten Komponenten einer Gasturbogruppe
EP1023526A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage
EP0648323B1 (de) Dampfkraftanlage zur erzeugung elektrischer energie
EP0515911B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
EP0918151B1 (de) Verfahren und Vorrichtung zur Brennstoffvorwärmung einer Feuerungsanlage
DE19506787B4 (de) Verfahren zum Betrieb einer Dampfturbine
EP0405235B1 (de) Kombinierte Gas- und Dampfturbinen-Anlage mit Kohlevergasung
DE3002615A1 (de) Verfahren und einrichtung fuer den teillastbetrieb von kombinierten kraftanlagen
EP0523466B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP1105624A1 (de) Gas- und dampfturbinenanlage
EP0586425B1 (de) Verfahren zur erzeugung von energie in einer kombinierten gas-dampfkraftanlage
DE19720789B4 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
DE19627425A1 (de) Verfahren zum Betrieb einer Hybrid-Solar-Kombianlage sowie eine Hybrid-Solar-Kombianlage
DE4441324C1 (de) Anordnung zur Nutzung der im Rauchgas eines kohlegefeuerten Dampferzeugers enthaltenen Wärme
EP2372239A2 (de) Verfahren zum Betreiben eines Dampfturbinenkraftwerks mit einer Wirbelschichtfeuerung
EP0898054B1 (de) Dampferzeuger und Betriebsverfahren
DE19542917A1 (de) Kombianlage mit konventionellem Wasser/Dampf-Kreislauf
DE4227146A1 (de) Verfahren zur Erzeugung von Energie in einer kombinierten Gas-Dampfkraftanlage
EP2138677A1 (de) Gas- und Dampfturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT

17Q First examination report despatched

Effective date: 19950315

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT

REF Corresponds to:

Ref document number: 59209451

Country of ref document: DE

Date of ref document: 19980910

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981002

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2121013

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110506

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59209451

Country of ref document: DE

Owner name: STEAG POWER SAAR GMBH, DE

Free format text: FORMER OWNER: EVONIK NEW ENERGIES GMBH, 66111 SAARBRUECKEN, DE

Effective date: 20120117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59209451

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59209451

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120522