EP0577944B1 - Hochfestige Legierung auf Aluminiumbasis und verdichteter und verfestigter Werkstoff daraus - Google Patents

Hochfestige Legierung auf Aluminiumbasis und verdichteter und verfestigter Werkstoff daraus Download PDF

Info

Publication number
EP0577944B1
EP0577944B1 EP93107285A EP93107285A EP0577944B1 EP 0577944 B1 EP0577944 B1 EP 0577944B1 EP 93107285 A EP93107285 A EP 93107285A EP 93107285 A EP93107285 A EP 93107285A EP 0577944 B1 EP0577944 B1 EP 0577944B1
Authority
EP
European Patent Office
Prior art keywords
aluminum
based alloy
element selected
atomic
compacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93107285A
Other languages
English (en)
French (fr)
Other versions
EP0577944A1 (de
Inventor
Kazuhiko Kita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Publication of EP0577944A1 publication Critical patent/EP0577944A1/de
Application granted granted Critical
Publication of EP0577944B1 publication Critical patent/EP0577944B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent

Definitions

  • the present invention relates to a high-strength aluminum-based alloy having a high strength, a high ductility and a high specific strength and to a compacted and consolidated aluminum-based alloy material produced by compacting and consolidating the alloy.
  • An aluminum-based alloy having a high strength and a high heat resistance has heretofore been produced by the liquid quenching process or other similar rapid solidification processes.
  • a rapidly solidified aluminum-based alloy is disclosed in Japanese Patent Laid-Open No. 275732/1989.
  • a rapidly solidified aluminum-based alloy is amorphous or microcrystalline and an excellent alloy having a high strength, a high heat resistance and a high corrosion resistance.
  • the aluminum-based alloy disclosed in Japanese Patent Laid-Open No. 275732/1989 is an excellent alloy having a high strength, a high heat resistance and a high corrosion resistance and is excellent also in the workability when it is used as a high-strength material, there is room for improvement when it is used as a material in which a high toughness and a high specific strength are required.
  • the above-described alloy is an alloy having a high strength, a heat resistance and a high corrosion resistance, and has excellent workability when it is prepared in a powdery or flaky form by the liquid quenching process and subjected as a raw material to various working processes to give a final product, that is, when a product is prepared through primary working only.
  • a consolidated material is formed from the powder or flakes as the raw material and further worked, that is, subjected to a secondary working, there is room for improvement in workability and retention of excellent properties of the material after the working.
  • abstract no. 22818r discloses eutectic (in wt%) Al-6% Ni compositions with ternary elements such as 0.5 % Cu, Fe and Mg, 0.2 % Ti and 1 % Cr and Mn.
  • JP-A-62230943 discloses heat-resistant, rapidly solidified Al-alloys containing (in wt%) 3-12 Ni, 0.03 Mn and at least one of 0.02-1 Cr, 0.02-0.7 Zr, 0.03-0.7 V, 0.03-1 Co, 0.08-1 Fe and 0.02-0.5 Ti.
  • an object of the present invention is to provide an aluminum alloy having a high strength, a high heat resistance, a high specific strength and an excellent toughness while maintaining a strength necessary for a structural member required to have a high reliability, and to provide a compacted and consolidated material of an aluminum-based material which enables secondary working (extrusion, machining, etc.) to be easily conducted and excellent properties inherent in the raw material to be retained, even after the working.
  • the first aspect of the present invention is directed to a high-strength aluminum-based alloy having a composition represented by the general formula: Al bal Ni a M 1b wherein M 1 represents at least one element selected from among V, Cr, Mn, Co and Mo and a and b are, in atomic %, 6 ⁇ a ⁇ 10 and 0.1 ⁇ b ⁇ 5.
  • the second aspect of the present invention is directed to a high-strength aluminum-based alloy having a composition represented by the general formula: Al bal Ni a M 1b M 2c wherein M 1 represents at least one element selected from among V, Cr, Mn, Co and Mo, M 2 represents at least one element selected from among Nb, Ta and Hf and a, b and c are, in atomic %, 5 ⁇ a ⁇ 10, 0.1 ⁇ b ⁇ 5 and 0.1 ⁇ c ⁇ 5.
  • the third aspect of the present invention is directed to a high-strength aluminum-based alloy having a composition represented by the general formula: Al bal Ni a M 1b Q d wherein M 1 represents at least one element selected from among V, Cr, Mn, Co and Mo, Q represents at least one element selected from among Mg, Cu and Zn and a, b and d are, in atomic %, 6 ⁇ a ⁇ 10, 0.1 ⁇ b ⁇ 5 and 0.01 ⁇ d ⁇ 4.
  • the fourth aspect of the present invention is directed to a high-strength aluminum-based alloy having a composition represented by the general formula: Al bal Ni a M 1b M 2c Q d wherein M 1 represents at least one element selected from among V, Cr, Mn, Co and Mo, M 2 represents at least one element selected from among Nb, Ta and Hf, Q represents at least one element selected from among Mg, Cu and Zn and a, b, c and d are, in atomic %, 5 ⁇ a ⁇ 10, 0.1 ⁇ b ⁇ 5, 0.1 ⁇ c ⁇ 5 and 0.01 ⁇ d ⁇ 4.
  • alloys of the first to fourth aspect are preferably composed of a matrix of aluminum or a supersaturated aluminum solid solution and, homogeneously and finely distributed in the matrix, particles made of a stable phase or a metastable phase of various intermetallic compounds formed from the matrix element and other alloying elements and/or various intermetallic compounds formed from other alloying elements themselves.
  • the present invention further provides a compacted and consolidated aluminum-based alloy material having a high strength and obtained by compacting and consolidating a quench-solidified aluminum-based alloy having a composition represented by any one of the above-defined general formulae.
  • the compacted and consolidated aluminum-based alloy is preferably composed of a matrix comprised of aluminum or a supersaturated aluminum solid solution, whose average crystal grain size is 40 to 2000 nm, and, homogeneously distributed in the matrix, particles made of a stable phase or a metastable phase of various intermetallic compounds formed from the matrix element and other alloying elements and/or various intermetallic compounds formed from other alloying elements themselves, the intermetallic compounds having a mean particle size of 10 to 1000 nm.
  • the compacted and consolidated material of the present invention is preferably produced by melting a material having the above-specified composition, quench-solidifying the melt into powder or flakes, compacting the resulting powder or flakes, and press forming and consolidating the compacted powder or flakes into the above-mentioned structure by conventional plastic working.
  • FIGS. 1 to 5 are each a graph showing the relationship between the change in composition in the alloy and its properties.
  • the aluminum-based alloy of the present invention can be produced through the rapid solidification of a molten metal of an alloy having the above-described composition by the liquid quench process.
  • the liquid quench process is a process wherein a molten alloy is rapidly cooled and, for example, the single-roller melt-spinning process, twin-roller melt-spinning process, in-rotating-water melt-spinning process, etc., are particularly useful. In these processes, a cooling rate of about 10 2 to 10 8 K/sec can be attained.
  • a molten metal is injected through a nozzle into, for example, a copper or steel roll having a diameter of 30 to 300 mm and rotating at a constant speed in the range of from about 300 to 10000 rpm.
  • a molten metal is injected through a nozzle into, for example, a copper or steel roll having a diameter of 30 to 300 mm and rotating at a constant speed in the range of from about 300 to 10000 rpm.
  • a fine wire material can be easily produced by the in-rotating-water melt-spinning process by injecting a molten metal, by means of a back pressure of an argon gas, through a nozzle into a liquid cooling medium layer having a depth of about 1 to 10 cm and held by means of a centrifugal force within a drum rotating at about 50 to 500 rpm.
  • the angle of the molten metal ejected through the nozzle to the cooling medium surface is preferably about 60° to 90°, while the relative speed ratio of the ejected molten metal to the liquid cooling medium surface is preferably 0.7 to 0.9.
  • a thin film can be produced by sputtering, and a quenched powder can be produced by various atomization processes, such as a high pressure gas spraying process, or a spray process.
  • the alloy of the present invention can be produced by the above-described single-roller melt-spinning process, twin-roller melt-spinning process, in-rotating-water melt spinning process, sputtering, various atomization processes, spray process, mechanical alloying process, mechanical grinding process, etc. Further, if necessary, the mean crystal grain size and the mean size of the intermetallic compound particles can be controlled by suitably selecting the production conditions.
  • compositions can provide an unnecessarily fine structure.
  • the structure is unnecessarily fine, however, it often becomes impossible to attain the ductility necessary for the working.
  • the resultant structure is heated, crystals grow above a specified temperature. At that time, various intermetallic compounds precipitate within the crystals.
  • an alloy having a crystal grain size and an intermetallic compound particle size suitable for the present invention also by suitably selecting the heating conditions.
  • the alloy having a composition represented by the general formula according to the first to fourth aspects, when the values of a, b, c and d are respectively outside the ranges of from 5 to 10%, from 0.1 to 5%, from 0.1 to 5% and from 0.01 to 4%, in terms of atomic %, the alloy becomes so brittle that neither satisfactory toughness nor high strength can be obtained.
  • no alloy having properties contemplated in the present invention can be produced by quenching means on a commercial scale utilizing the above-described liquid quenching process, etc.
  • the Ni element combines with Al to form compounds (for example, Al 3 Ni), which are homogeneously dispersed in the Al matrix to improve the strength, rigidity and heat resistance.
  • compounds for example, Al 3 Ni
  • the matrix cannot be satisfactorily strengthened, while when the Ni content exceeds 10 atomic %, the ductility becomes poor.
  • the M 1 element is at least one element selected from among V, Cr, Mn, Co and Mo and combines with Al to form compounds which are homogeneously and finely dispersed in the Al matrix to increase the strength of the matrix and, at the same time, to improve the heat resistance.
  • the M 1 element content is less than 0.1 atomic %, the matrix is coarsened to lower the strength.
  • the M 1 element content exceeds 5 atomic %, the elongation at room temperature lowers to cause a problem in working.
  • the M 2 element is at least one element selected from among Nb, Ta and Hf and, when it is present together with the M 1 element, the strength of the matrix can be further increased, with the heat resistance.
  • the M 2 element content when the M 2 element content is less than 0.1 atomic %, the matrix is coarsened to lower the strength.
  • the M 2 element content exceeds 5 atomic %, the elongation at room temperature lowers, which causes a problem in working.
  • both the M 1 element content and the M 2 element content are preferably 5 atomic % or less.
  • the addition of the M 2 element in a very small amount with respect to the M 1 element is particularly useful from the viewpoint of improving the strength and ductility of the alloy.
  • the Q element is at least one element selected from among Mg, Cu and Zn and combines with Al or between Q elements to form compounds.
  • the addition of the Q element in a very small amount serves to strengthen the matrix to improve the strength and, at the same time, can improve the heat resistance, specific strength and specific elasticity.
  • the Q element content is less than 0.01 atomic %, the effect of the addition of the Q element cannot be expected.
  • the content exceeds 4 atomic %, the strength lowers.
  • the compacted and consolidated material of the aluminum-based alloy of the present invention is preferably produced by quench-solidifying a material having the composition represented by any one of the general formulae defined above in the first to fourth aspect, compacting the resultant powder or flakes and subjecting the compacted powder or flakes to press forming and consolidating by conventional plastic working means.
  • the powder or flake as the raw material should have a mean crystal grain size of 2000 nm or less, and when the intermetallic compounds precipitate, the mean particle size should be 1000 nm or less.
  • the raw material is heated at a temperature of 50 to 600°C in the step of compacting and subjected to forming consolidation to provide the compacted and consolidated material of the present invention.
  • the material when the values of a, b, c and d are respectively limited to 5 to 10%, 0.5 to 5% , 0.5 to 5% and 0.01 to 4% in terms of atomic %, the material has a higher strength at room temperature to high temperatures (particularly 200°C) than that of the conventional (commercially available) high-strength aluminum alloys and a ductility sufficient to withstanding practical working.
  • Ni element is an element having a relatively small diffusibility in the Al matrix and, when Ni is finely dispersed as an intermetallic compound (for example, Al 3 Ni) in the Al matrix, it has the effect of strengthening the matrix and inhibiting the growth of crystal grains. Thus, it can remarkably improve the hardness and strength of the alloy and stabilize the finely crystalline phase not only at room temperature but also at high temperatures, thus imparting heat resistance.
  • the M 1 element is an element having a small diffusibility in the Al matrix and forms various metastable or stable intermetallic compounds, which contributes to the stabilization of the resultant fine crystalline structure.
  • the M 2 element has a small diffusibility in the Al matrix to form various metastable or stable intermetallic compounds and is present together with the M 1 element to further contribute to the stabilization of the fine crystalline structure.
  • the Q element combines with Al or another Q element to form compounds to strengthen the matrix and, at the same time, to improve the heat resistance. Further, it can improve the specific strength and specific elasticity.
  • the mean crystal grain size of the matrix is preferably limited to 40 to 2000 nm, because when it is less than 40 nm, the strength is high but the ductility is insufficient and a mean crystal grain size of 40 nm or more is necessary for attaining a ductility sufficient for existing working processes, while when it exceeds 2000 nm, the strength lowers so rapidly that a material having a high strength cannot be produced.
  • the mean matrix crystal grain size be 2000 nm or less.
  • the mean particle size of the intermetallic compounds is preferably limited to 10 to 1000 nm, because when it is outside the above-described range, the intermetallic compounds do not serve as an element for strengthening the Al matrix. Specifically, when the mean particle size is less than 10 nm, the intermetallic compounds do not contribute to the strengthening of the Al matrix, and when the intermetallic compounds are excessively dissolved in the solid solution form in the matrix, there is a possibility that the material becomes brittle. On the other hand, when the mean particle size exceeds 1000 nm, the size of the dispersed particles becomes too large to maintain the strength and the intermetallic compounds cannot serve as a strengthening element.
  • the mean crystal grain size and the state of dispersion of the intermetallic compounds can be controlled through proper selection of the production conditions.
  • the mean crystal grain size of the matrix and the mean grain size of the intermetallic compounds are controlled so as to become small.
  • the mean crystal grain size of the matrix and the mean particle size of the intermetallic compounds are controlled so as to become large.
  • the mean crystal grain size of the matrix is controlled so as to fall within the range of from 40 to 2000 nm, it becomes possible to impart excellent properties as a superplastic working material.
  • Each of the master alloys having a composition (atomic percentage) specified in Table 1 was produced by the melt process in an arc melting furnace, and a thin ribbon (thickness: 20 ⁇ m, width: 1.5 mm) was produced therefrom by means of a conventional single-roller liquid quenching apparatus (a melt spinning apparatus).
  • the roll was a copper roll with a diameter of 200 mm, the number of revolutions was 4000 rpm, and the atmosphere was argon having a pressure of 10 -3 Torr.
  • the hardness is the value (DPN) measured with a microVickers hardness tester under a load of 25 g.
  • the ductility is expressed in terms of Duc (ductile) when the material has a ductility such that it is not broken in a 180° adhesion bending test, while it is expressed in terms of Bri (brittle) when the material has a ductility such that it cannot be applied to the 180° adhesion bending test.
  • the alloys of the present invention are materials having excellent hardness and ductility.
  • the thin ribbons produced under the above-described production conditions were observed under TEM (transmission electron microscopy).
  • TEM transmission electron microscopy
  • Aluminum-based alloy powders having respective predetermined compositions (Al 97.5-x Ni x Cr 2.5 and Al 92-x Ni 8 Cr x ) were prepared using a gas atomizing apparatus.
  • the aluminum-based alloy powders thus produced were filled into a metallic capsule and degassed to prepare billets for extrusion. These billets were extruded at a temperature of 200 to 550°C by an extruder.
  • the mechanical properties (tensile strength and elongation) at room temperature of the extruded materials (consolidated materials) produced under the above-described production conditions are shown in FIGS. 1 and 2.
  • the tensile strength of the consolidated material at room temperature rapidly increases when the Ni content is 5 atomic % or more, and rapidly lowers when the Ni content exceeds 10 atomic %. Further, it is apparent that, when the Ni content exceeds 10 atomic %, the elongation is small and the minimum elongation (2%) necessary for general working is obtained when the Ni content is 10 atomic % or less.
  • the strength of the consolidated material at room temperature begins to increase when the Cr content reaches 0.1 atomic %, and rapidly lowers when the Cr content exceeds 5 atomic %. Further, it is apparent that the elongation lowers when the Cr content exceeds 5 atomic % and the minimum elongation (2%) necessary for general working is obtained when the Cr content is 5 atomic % or less.
  • Example 2 The procedure of Example 2 was repeated to prepare extruded materials (consolidated materials) having compositions respectively represented by the formulae Al 98-x Ni x Cr 1 Nb 1 and Al 91.5-x Ni 7.5 Cr 1 Nb X . The materials were examined for their mechanical properties (tensile strength and elongation). The results are shown in FIGS. 3 and 4.
  • the tensile strength of the consolidated material at room temperature rapidly increases when the Ni content is 5 atomic % or more and rapidly lowers when the Ni content exceeds 10 atomic %. Further, it is apparent that, when the Ni content exceeds 10 atomic %, the elongation is small and the minimum elongation (2%) necessary for general working is obtained when the Ni content is 10 atomic % or less.
  • the strength of the consolidated material at room temperature begins to increase when the Nb content reaches 0.1 atomic %, and rapidly lowers when the Nb content exceeds 4.5 atomic %. Further, it is apparent that the minimum elongation (2%) necessary for general working is obtained when the Nb content is 5 atomic % or less. Further, it is apparent that the strength rapidly lowers when the total content of Nb and Cr exceeds about 5 atomic %.
  • Example 2 The procedure of Example 2 was repeated to prepare extruded materials (consolidated materials) having a composition represented by the formula Al 91.5-x Ni 8.5 Co x . The material was examined for its mechanical properties (tensile strength and elongation). The results are shown in FIG. 5.
  • the tensile strength of the consolidated material at room temperature begins to increase when the Co content reaches 0.1 atomic % and rapidly lowers when the Co content exceeds 5 atomic %. Further, it is apparent that when the Co content exceeds 5 atomic %, the elongation lowers and the minimum elongation (2%) necessary for general working is obtained when the Co content is 5 atomic % or less.
  • Example 2 The procedure of Example 2 was repeated to prepare extruded materials (consolidated materials) having the compositions specified in the left column of Table 2 and these materials were subjected to measurement of tensile strength at room temperature, tensile strength at a high temperature (200°C), Young's modulus (modulus of elasticity) and hardness as shown in the right column of Table 2.
  • the consolidated materials of the present invention have an excellent tensile strength at room temperature and a high temperature (200°C), Young's modulus and hardness. Further, the tensile strength is large and the specific gravity is small, so that it is apparent that the consolidated materials of the present invention have a high specific strength.
  • Test pieces for observation under TEM were cut out of the consolidated materials (extruded materials), including consolidated materials of Examples 2 to 4, produced under the above-described production conditions and observation was conducted to determine the crystal grain size of their matrix and particle size of the intermetallic compounds.
  • All the samples were composed of a matrix of aluminum or a supersaturated aluminum solid solution having a mean crystal grain size of 40 to 2000 nm and, homogeneously distributed in the matrix, particles made of a stable phase or a metastable phase of various intermetallic compounds formed from the matrix element and other alloying elements and/or various intermetallic compounds formed from other alloying elements themselves, the intermetallic compounds having a mean grain size of 10 to 1000 nm.
  • the aluminum-based alloy of the present invention has a high strength and a high heat resistance, which renders it useful as a high specific strength material and, at the same time, has an excellent workability by virtue of its high specific elasticity and high toughness. Further, it can be worked while retaining sufficient strength necessary to structural materials of which a high reliability is required.
  • the compacted and consolidated material of an aluminum-based alloy according to the present invention can be easily subjected to secondary working (extrusion, cutting, etc.) and still retain excellent properties inherent in the raw material, even after the working.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Claims (12)

  1. Hochfeste Legierung auf Aluminiumbasis mit einer Zusammensetzung, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1b

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, und a und b, in Atom-%, 6 ≤ a ≤ 10 und 0,1 ≤ b ≤ 5 sind.
  2. Hochfeste Legierung auf Aluminiumbasis mit einer Zusammensetzung, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1bM2c

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, M2 mindestens ein Element darstellt, das aus Nb, Ta und Hf ausgewählt ist, und a, b und c , in Atom-%, 5 ≤ a ≤ 10 und 0,1 ≤ b ≤ 5 und 0,1 ≤ c ≤ 5 sind.
  3. Hochfeste Legierung auf Aluminiumbasis mit einer Zusammensetzung, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1bQd

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, Q mindestens ein Element darstellt, das aus Mg, Cu und Zn ausgewählt ist, und a, b und d, in Atom-%, 6 ≤ a ≤ 10 , 0,1 ≤ b ≤ 5 und 0,01 ≤ d ≤ 4 sind.
  4. Hochfeste Legierung auf Aluminiumbasis mit einer Zusammensetzung, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1bM2cQd

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, M2 mindestens ein Element darstellt, das aus Nb, Ta und Hf ausgewählt ist, Q mindestens ein Element darstellt, das aus Mg, Cu und Zn ausgewählt ist, und a, b, c und d, in Atom-%, 5 ≤ a ≤ 10, 0,1 ≤ b ≤ 5 , 0,1 ≤ c ≤ 5 und 0,01 ≤ d ≤ 4 sind.
  5. Hochfeste Legierung auf Aluminiumbasis nach Anspruch 2 oder 4, wobei b und c in der allgemeinen Formel in Atom-%, b + c ≤ 5 sind.
  6. Hochfeste Legierung auf Aluminiumbasis nach einem der Ansprüche 1 bis 5, wobei die Legierung auf Aluminiumbasis aus einer Matrix aus Aluminium oder aus einer festen Lösung aus übersättigtem Aluminium und homogen und fein in der Matrix verteilten Aluminiumpartikeln aufgebaut ist, welche aus einer stabilen Phase oder einer metastabilen Phase von verschiedenen intermetallischen Verbindungen bestehen, welche aus dem Matrixelement und weiteren Legierungselementen und/oder verschiedenen intermetallischen Verbindungen gebildet sind, die selber aus weiteren Legierungselementen gebildet sind.
  7. Verdichtete und verfestigte Legierung auf Aluminiumbasis, welche durch Verdichten und Verfestigen eines abschreck-verfestigten Materials hergestellt ist, welches eine Zusammensetzung besitzt, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1b

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, und a und b, in Atom-%, 6 ≤ a ≤ 10 und 0,1 ≤ b ≤ 5 sind.
  8. Verdichtete und verfestigte Legierung auf Aluminiumbasis, welche durch Verdichten und Verfestigen eines abschreckverfestigten Materials hergestellt ist, welches eine Zusammensetzung besitzt, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1bM2c

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, M2 mindestens ein Element darstellt, das aus Nb, Ta und Hfausgewählt ist, und a, b und c, in Atom-%, 5 ≤ a ≤ 10 und 0,1 ≤ b ≤ 5 und 0,1 ≤ c ≤ 5 sind.
  9. Verdichtete und verfestigte Legierung auf Aluminiumbasis, welche durch Verdichten und Verfestigen eines abschreckverfestigten Materials hergestellt ist, welches eine Zusammensetzung besitzt, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1bQd

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, Q mindestens ein Element darstellt, das aus Mg, Cu und Zn ausgewählt ist, und a, b und d, in Atom-%, 6 ≤ a ≤ 10 , 0,1 ≤ b ≤ 5 und 0,01 ≤ d ≤ 4 sind.
  10. Verdichtete und verfestigte Legierung auf Aluminiumbasis, welche durch Verdichten und Verfestigen eines abschreckverfestigten Materials hergestellt ist, welches eine Zusammensetzung besitzt, die durch die allgemeine Formel dargestellt ist:

            AlbalNiaM1bM2cQd

    wobei M1 mindestens ein Element darstellt, das aus V, Cr, Mn, Co und Mo ausgewählt ist, M2 mindestens ein Element darstellt, das aus Nb, Ta und Hf ausgewählt ist, Q mindestens ein Element darstellt, das aus Mg, Cu und Zn ausgewählt ist, und a, b, c und d, in Atom-%, 5≤ a ≤ 10, 0,1 ≤ b ≤ 5 , 0,1 ≤ c ≤ 5 und 0,01 ≤ d ≤ 4 sind.
  11. Verdichtetes und verfestigtes Legierungsmaterial auf Aluminiumbasis nach einem der Ansprüche 7 bis 10, wobei das verdichtete und verfestigte Material erzeugt wurde durch: Schmelzen eines Materials mit einer durch die allgemeine Formel dargestellten Zusammensetzung, Abschreck-Verfestigen des gescchmolzenen Materials in Pulver oder Flocken, Verdichten des sich ergebenden Pulvers oder der Flocken und Unterziehen des verdichteten Pulvers oder der Flocken einem Preßformen, und Verfestigen des verdichteten Pulvers oder der Flocken durch herkömmliche formgebende Bearbeitungseinrichtungen.
  12. Verdichtetes und verfestigtes Legierungsmaterial auf Aluminiumbasis nach einem der Ansprüche 7 bis 11, wobei das verdichtete und verfestigte Material aus einer Matrix aus Aluminium oder aus einer festen Lösung aus übersättigtem Aluminium, bei denen die durchschnittliche Kristallkorngröße 40 bis 2000 nm beträgt, und homogen in der Matrix verteilten Aluminiumpartikeln aufgebaut ist, welche aus einer stabilen Phase oder einer metastabilen Phase von verschiedenen intermetallischen Verbindungen bestehen, welche aus dem Matrixelement und weiteren Legierungselementen und/oder verschiedenen intermetallischen Verbindungen gebildet sind, die selber aus weiteren Legierungselementen gebildet sind, wobei die intermetallischen Verbindungen eine mittlere Partikelgröße von 10 bis 1000 nm besitzen.
EP93107285A 1992-05-14 1993-05-05 Hochfestige Legierung auf Aluminiumbasis und verdichteter und verfestigter Werkstoff daraus Expired - Lifetime EP0577944B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP121908/92 1992-05-14
JP4121908A JPH05311359A (ja) 1992-05-14 1992-05-14 高強度アルミニウム基合金及びその集成固化材

Publications (2)

Publication Number Publication Date
EP0577944A1 EP0577944A1 (de) 1994-01-12
EP0577944B1 true EP0577944B1 (de) 1997-03-05

Family

ID=14822888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107285A Expired - Lifetime EP0577944B1 (de) 1992-05-14 1993-05-05 Hochfestige Legierung auf Aluminiumbasis und verdichteter und verfestigter Werkstoff daraus

Country Status (3)

Country Link
EP (1) EP0577944B1 (de)
JP (1) JPH05311359A (de)
DE (2) DE69308402T4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198791A1 (en) 2022-04-12 2023-10-19 Nano Alloys Technology Aluminium alloy and method for producing the alloy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703481B2 (ja) * 1993-03-02 1998-01-26 健 増本 高強度高剛性アルミニウム基合金
US6017403A (en) * 1993-03-02 2000-01-25 Yamaha Corporation High strength and high rigidity aluminum-based alloy
JPH1030145A (ja) * 1996-07-18 1998-02-03 Ykk Corp 高強度アルミニウム基合金
DE102007056298A1 (de) * 2007-11-22 2009-05-28 Bayerische Motoren Werke Aktiengesellschaft Kolben
CN101805852B (zh) * 2009-09-18 2011-06-29 贵州华科铝材料工程技术研究有限公司 Mo-RE高强耐热铝合金材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743317A (en) * 1983-10-03 1988-05-10 Allied Corporation Aluminum-transition metal alloys having high strength at elevated temperatures
JPS6447831A (en) * 1987-08-12 1989-02-22 Takeshi Masumoto High strength and heat resistant aluminum-based alloy and its production
JP2538692B2 (ja) * 1990-03-06 1996-09-25 ワイケイケイ株式会社 高力、耐熱性アルミニウム基合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 104, no. 4, 27 January 1986, Columbus, Ohio, US; abstract no. 22818r, NAKATANI, Y., OHNISHI,T., HATANAKA,T., KOZIMA H. 'STRUCTURE AND MECHANICAL PROPERTIES OF UNIDIRECTIONALLY SOLIDIFIED TERNARY AL- 6%NI-X (TI,CU,MG,FE,CR AND MN) ALLOYS' "abstract" & KEIKINZOKU vol. 10, no. 34, 1984, JAPAN pages 578 - 584 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198791A1 (en) 2022-04-12 2023-10-19 Nano Alloys Technology Aluminium alloy and method for producing the alloy

Also Published As

Publication number Publication date
DE69308402D1 (de) 1997-04-10
JPH05311359A (ja) 1993-11-22
EP0577944A1 (de) 1994-01-12
DE69308402T2 (de) 1997-09-25
DE69308402T4 (de) 1998-04-16

Similar Documents

Publication Publication Date Title
EP0187235B1 (de) Verfahren zur Erhöhung der Duktilität von verstärkten Gegenständen, gefertigt aus einer rasch erstarrten Legierung
US4439236A (en) Complex boride particle containing alloys
US5593515A (en) High strength aluminum-based alloy
EP0339676A1 (de) Hochfeste, hitzebeständige Aluminiumlegierungen
EP0561375A2 (de) Hochfeste Aluminiumlegierung
EP0475101B1 (de) Hochfeste Legierungen auf Aluminiumbasis
EP0534470B1 (de) Superplastisches Material aus Legierung auf Aluminiumbasis und Verfahren zur Herstellung
EP0558957B1 (de) Hochfestige und verschleissfestige Aluminiumlegierung
EP0584596A2 (de) Rostfeste und hochfeste Aluminiumlegierung
EP0606572B1 (de) Hochfeste und wärmebeständige Aluminiumlegierung, verdichteter und verfestigter Werkstoff daraus und Verfahren zur Herstellung
US5647919A (en) High strength, rapidly solidified alloy
US5407636A (en) High-strength, heat-resistant aluminum-based alloy, compacted and consolidated material thereof, and process for producing the same
EP0819778B1 (de) Hochfeste Aluminiumlegierung
JP2807374B2 (ja) 高強度マグネシウム基合金およびその集成固化材
EP0577944B1 (de) Hochfestige Legierung auf Aluminiumbasis und verdichteter und verfestigter Werkstoff daraus
EP0540056B1 (de) Verdichtete und verfestigte Wirkstoffe aus Aluminium-Legierung
JPH073375A (ja) 高強度マグネシウム合金及びその製造方法
EP0534155B1 (de) Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung
JP3485961B2 (ja) 高強度アルミニウム基合金
EP0524527B1 (de) Verdichtete und verfestigte Werkstoffe auf Aluminiumbasis und Verfahren zur Herstellung dieser Werkstoffe
JPH0693394A (ja) 高強度耐食性アルミニウム基合金
EP0530710B1 (de) Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung
JP2798840B2 (ja) 高強度アルミニウム基合金集成固化材並びにその製造方法
JPH051346A (ja) 高強度アルミニウム基合金

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940421

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INOUE, AKIHISA

Owner name: YKK CORPORATION

17Q First examination report despatched

Effective date: 19941111

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69308402

Country of ref document: DE

Date of ref document: 19970410

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020501

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020508

Year of fee payment: 10

Ref country code: DE

Payment date: 20020508

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST