EP0570731A1 - Stirlingmaschine mit Wärmetauscher - Google Patents

Stirlingmaschine mit Wärmetauscher Download PDF

Info

Publication number
EP0570731A1
EP0570731A1 EP93106852A EP93106852A EP0570731A1 EP 0570731 A1 EP0570731 A1 EP 0570731A1 EP 93106852 A EP93106852 A EP 93106852A EP 93106852 A EP93106852 A EP 93106852A EP 0570731 A1 EP0570731 A1 EP 0570731A1
Authority
EP
European Patent Office
Prior art keywords
housing
plate
bellows
machine according
stirling machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93106852A
Other languages
English (en)
French (fr)
Other versions
EP0570731B1 (de
Inventor
Eckhart Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0570731A1 publication Critical patent/EP0570731A1/de
Application granted granted Critical
Publication of EP0570731B1 publication Critical patent/EP0570731B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/30Heat inputs using solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2257/00Regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/50Crosshead guiding pistons

Definitions

  • the invention relates to a Stirling engine with heat exchanger, which is suitable for low to medium temperature operation, i.e. is designed for a small compression ratio and large displaced volume, in which a displacement plate can be moved back and forth between two housing plates of a housing that are parallel to one another and that is free of sliding friction along the circumference relative to the end faces of the housing, in which the displacement plate has two working gas volumes: expansion space and Separates compression space, which are assigned to the heat exchanger cooler and heater, in which the two working gas volumes are connected via a regenerator, and in which the reciprocating movement of the displacement plate is in phase displacement with a working piston.
  • the Stirling engine according to the invention is solving this problem, characterized in that the two housing plates are held at a distance from one another by means of struts arranged in a distributed manner, the struts passing through this at right angles to the displacement plate, and in that the displacement plate along its end edges is opposed by linear rolling membranes the housing end faces is guided.
  • the housing plates and the displacement plate can be designed to be unusually large, since the surface of the housing plates is stabilized against one another by the struts.
  • a power range of 50 - 500 W can be achieved, the housing plates being several square meters in size and working pressures of 10,000 pa and more occurring in the working gas partial volumes.
  • the struts should pass through the displacement plate as tightly as possible so that the strut-related Passages through the displacement plate do not lead to intolerable gas connections between the expansion space and the compression space. Therefore an exact parallel guidance of the displacement plate is necessary and this exact parallel guidance is given by the rolling membranes.
  • the roller membranes achieve a practically usable application of the struts between the housing plates.
  • connection between the displacer plate and the motor shaft can be made in the conventional way exclusively via linkage.
  • movement air bellows are provided, which can be actuated by means of a control bellows, which is conductively connected to the latter for the supply and removal of air Motor shaft is contractible and expandable via a connecting rod.
  • the actuation of the displacement plate by means of the air bellows distributed over the surface results in an improved parallel guidance of the displacement plate. In particular, the sliding friction of guided movement rods of the connecting linkage is avoided.
  • the connection of the displacement plate to the motor shaft by means of the movement air bellows, the air supply and removal and the control bellows is important in the case of a considerably enlarged displacement plate, for which precise parallel guidance to the housing plates and low friction during movement are crucial.
  • the volume of the moving air bellows is normally 90 degrees by changing the phase position between the movement of the displacement plate, ie the movement of the control bellows and the movement of the working bellows compensated greater than 90 degrees.
  • the struts can be designed so that they can absorb tensile and compressive forces.
  • a small connection from the engine compartment to the outside ensures that the air pressure in the working bellows is on average identical to the atmospheric pressure.
  • the struts are each designed as tensioning tie rods and a check valve sets the air pressure in the working bellows to the same or greater atmospheric pressure, or the struts are each designed as stiffening supports and a check valve the air pressure in the working bellows to the same or low atmospheric pressure.
  • regenerator is provided on the displacement plate and extends over its entire surface. This simplifies the sealing and guiding relationships between the end edges of the displacement plate and the end walls of the housing. There is also an adaptation of the dimension of the regenerator to the enlarged areas of the heat exchangers according to the invention and the flow resistance of the regenerator is reduced.
  • the regenerator acts through the volume of the displacement plate, which e.g. has a thickness of 0.1 m and e.g. is made of open-pore polyester foam.
  • the moving regenerator forms the heat exchangers on the surfaces facing the housing plates, which move with the housing plate and are designed to allow gas to flow through.
  • the cooler heat exchanger is usually located at the bottom with the horizontal displacement plate.
  • the present Stirling machine in the 50 - 500 W power range is particularly suitable for pumping water, generating cold and electricity or grinding grain in sunny areas. It can be manufactured from simple materials without precision parts and is therefore suitable to be manufactured in non-industrialized countries.
  • the Stirling engine according to FIGS. 1 and 2 comprises a heat exchanger which has an essentially rectangular housing which is formed by two housing plates 1, 2 and by four rectangular housing end walls 10. Struts designed as tie rods 3 are evenly distributed over the surface of the housing plates 1, 2, and are fixed at both ends to one of the housing plates. The tie rods cross through bores 27 of a rectangular displacement plate 5, which is accommodated in the housing and the end edges of which are spaced all around from the housing end walls 10. A long side of a rolling membrane 9 is fastened to the front edges, the other long side of which is fastened directly to the associated housing end wall 10.
  • the rolling membrane 9 is a strip running along the front edge, which forms a fold 21 in the direction of its longitudinal extent.
  • the displacement plate 5 forms the core of a plate-shaped regenerator 18, on the upper surface of which a heater 19 is provided for heat exchange and on the other surface of which a cooler 20 is provided for heat exchange.
  • the displacement plate 5 divides the housing into an expansion space 11 and a compression space 12 and is open at the bottom Lifting bellows 13 mounted.
  • Fluid diversions 36 originate from the lifting bellows 13 and fluid diversion 38 originates from the compression space 12, each leading to a machine part with a crank engine.
  • the fluid diversion 38 leads from the compression space 12 to a working bellows 7, the volume of which is assigned a check valve 6.
  • the working bellows 7 works via a connecting rod 47 on a crankshaft or engine shaft 15 which carries a flywheel 35.
  • the fluid diversions 36 coming from the lifting bellows 13 lead to a control bellows 14, which is connected to the motor shaft 15 via a connecting rod 16.
  • the working bellows 7 and the control bellows 14 are offset from one another by a phase position 17 which is greater than 90 degrees.
  • Fig. 2 illustrates the assignment of the housing plates, the displacement plate 5, the bores 27 and the tie rod 3 to each other.
  • the Stirling engine according to FIG. 3 is constructed to a large extent like that according to FIGS. 1 and 2.
  • the fold direction 34 of the fold formed by the roller membrane 9 runs along each end edge.
  • the regenerator plate 5 is connected to the motor part via a linearly guided push rod 28, which passes through a guide device 48 and engages the motor shaft 15 via a connecting rod 29.
  • the pressure-resistant housing is achieved in that the tie rods 3 brace the two opposite housing plates 1, 2 and the air pressure in the machine through the check valve 6, which only allows air to flow into the machine, to larger or atmospheric pressure is maintained, because tie rods can only be loaded under tension.
  • the working bellows 7 works as a pressure bellows (air pressure in the bellows> atmospheric pressure).
  • the one housing plate 1 can be made of transparent, unbreakable polycarbonate. If, according to FIG. 4, highly transparent, fragile security glass is to be used for the upper housing plate 1, it is particularly simple to take supports 4 instead of the tie rods on which the glass plate rests only loosely.
  • a work bellows 8 now works as a suction bellows (see FIGS. 5 and 6).
  • the glass pane is sucked against the supports and does not break if there is a sufficient number (approx. 25 / m2) of supports.
  • the struts are designed so that they can be subjected to both tension and pressure, the pressure in the machine can be kept at atmospheric pressure on average by means of a small bore instead of the check valve which means that the machine manages with a smaller flywheel.
  • the tie rods 3 or supports 4 are at right angles to the two parallel housing plates 1, 2 and go at right angles through the displacer plate 5 (FIG. 2), which must be guided exactly without wear and friction and not on the tie rods or struts should graze, although the holes 27, through which the tie rods pass, may hardly be larger than the diameters of the tie rods to ensure the separation of the expansion and compression space.
  • the displacement plate in the preferred embodiment described below is very heavy (approx. 30 kg / m2). The displacement plate guide must absorb this weight because the machine should work in all positions.
  • the guide according to the invention consists of the linear rolling membranes 9 (four in the case of a square or rectangular housing) which guide the displacement plate exactly and at the same time free of sliding friction against the housing end wall 10 seal.
  • the linear roller membranes are wear-free, since they are practically not subject to flexing work and, which is essential in the Stirling engine, can also work without a pressure difference between the inner and outer sides.
  • the linear fold 21 is load-bearing in the fold direction 34 and can absorb the weight of the displacement plate (when the machine is not in horizontal operation).
  • the exact seal between the displacer plate and the housing wall or regenerator is absolutely necessary in the interest of high efficiency (efficiency of the machine according to the invention measured: 60% by Carnot).
  • the known machine mentioned above has considerable gap losses between the displacer and regenerator, so that it does not achieve any efficiency (measured: ⁇ 1% of Carnot).
  • FIGS. 5 to 7 are each enlarged compared to the representations in FIGS. 1, 3 and 4.
  • 5 and 6 each illustrate a design of a suction bellows
  • FIG. 7 illustrates a design of a pressure bellows.
  • two opposing linear rolling membranes 9 extend according to the invention into the housing corners and have a deeper fold 21 than the other two rolling membranes which abut and end on the first-mentioned rolling membranes. This arrangement guarantees the secure sealing of the working gas part volumes against each other also in the housing corners with a simple, wear-free design of the linear roller diaphragms.
  • the reciprocating movement of the displacement plate between the two housing plates can be carried out according to FIG. 3 by a linearly guided (Watt's parallelogram, crosshead, linear ball bearing) push rod 28, which is rigidly connected at right angles from the center of the one housing plate 2 to the displacement plate 5 and via engages the connecting rod 29 on the motor shaft 15.
  • the displacer plate moves sinusoidally, which leads to an indicator diagram according to FIG. 9 with rounded corners 30.
  • Linear guides of push rods are usually not maintenance-free.
  • a push rod on which the entire heavy displacement plate hangs limits the size of the displacement plate to approximately 2 x 2 m. Due to the harmonic movement, the displacement plate is not subject to strong acceleration forces, the machine is balanced and runs very quietly.
  • the known machine mentioned above uses a bistably pretensioned crank mechanism which contains a push rod which is pretensioned with a spring, one end of which is fastened to the push rod and the other end of which is fastened to the lever arm of a fork, between the fork prongs of which a on a lever arm of the Diaphragm motor part arranged driver is displaceable according to the stroke of the membrane, with two stable positions being predetermined by the spring preload.
  • This arrangement is complicated, fragile and not suitable for jerking a heavy, several square meter displacement plate back and forth.
  • the preferred lifting and lowering mechanism of the displacement plate consists of a maintenance-free, low-friction, almost wear-free low-pressure pneumatics with toroidal diaphragms as control bellows and lifting bellows:
  • On the cold side of the displacement plate 5 are located in the corners of the displacement plate or in recesses in the housing plate 2, the lifting bellows 13, in which air is pressed and sucked out again by a control bellows 14, which is contracted and expanded sinusoidally by the motor shaft via the connecting rod 16.
  • the movement of the lifting bellows and the displacement plate is not sinusoidal, since the pressure increase in the sinusoidally moving control bellows is hyperbolic and, because of its own weight, the displacement plate only begins to move at a corresponding pressure in the lifting system.
  • the displacement plate is jerked to the hot side until it stops, stays there while the control bellows compresses the air in the lifting system a little and only suddenly falls back to the cold side when the pressure in the lifting system has dropped again (hyperbolic).
  • 19 is trapezoidal.
  • the discontinuous movement of the displacement plate in the indicator diagram results in sharper corners 31, which is known to increase the power density of the machine.
  • This lifting mechanism allows the safe movement of heavy displacement plates of several meters in length (see Fig. 25).
  • the displacement housing is no longer rigidly connected to the working bellows and shaft, but is, for example, via the flexible hoses 36, 38 connected so that the displacement box can be easily tracked in one or two axes of the sun (see Fig. 22).
  • the air volume of the lifting bellows 13 initially has a detrimental effect on the Stirling process, since it leads to air being added to the working gas in the compression phase and subtracted in the expansion phase, that is to say requiring more compression work and allowing less expansion work.
  • This additional bellows volume can be overlaid with the 90 ° offset volume of the working bellows (see Fig. 12), so that as a further feature of the invention there is an optimal phase shift greater than 90 ° between control bellows and working bellows and the additional compensation bellows 32 does not have to be installed .
  • the displacer is an unbroken, airtight plate.
  • the regenerator is arranged as a narrow strip on the front of the housing.
  • a gap is required between the circumference of the displacer plate and the inside of the regenerator, as already mentioned above, whereby the regenerator is practically ineffective because most of the air passes through the gap and not through the regenerator flows. Because of the small cross-section of the regenerator, this creates so much flow resistance that the discontinuous, jerky movement of the tuning fork generated with the bistable preload is only unsatisfactorily transmitted to the displacement plate due to the resulting damping.
  • the regenerator 18 which connects the expansion space 11 and the compression space 12, is arranged in the moving displacement plate 5 (FIGS. 1, 3, 4) and extends over its entire surface and also takes up its entire volume.
  • the regenerator has a thickness of at least about 0.1 m to isolate the hot expansion space and the cold compression space from each other, and is preferably made of open-pored polyester foam that is temperature-resistant, has a high specific heat capacity, poorly conducts heat and is therefore an excellent regenerator for low-temperature machines.
  • the large-area regenerator does not offer any significant flow resistance, even in sudden displacement movements.
  • the housing plates are at the same time the heat exchangers through which the fluid flows.
  • these can only heat and cool the working gas unsatisfactorily, since their surface is relatively small and the working gas does not pass over them in a forced manner.
  • the heaters 19 and coolers 20 are therefore mounted on the surfaces of the regenerator 18 facing the housing plates 1, 2 and are designed to be gas-flowable with a surface of almost any size as a lamellar heat exchanger. They are moved with the regenerator and are now in intimate contact with the working gas (measured temperature difference between heat exchanger fluid and working gas known machine: 20 ° C, machine according to the invention: 2 ° C). Heater 19, displacer 5, cooler 20 and regenerator 18 form a moving unit in the machine according to the invention.
  • the machine can be powered by a low temperature source (e.g. hot water solar flat collector) or medium temperature source (e.g. parabolic internal collector) (see Fig. 23).
  • a machine If a machine is mechanically driven, for example by a larger or several others, it works as a chiller (see Fig. 24).
  • the heat exchangers now both work as coolers, with which the pumped heat is dissipated and the other generates the low temperature for the cooling circuit.
  • the machines are preferably horizontal so that the cooler heat exchanger is always below to avoid convection of the working gas in the machine, which turns out to be Mechanism of loss has shown with significant losses in efficiency. If the machine has a transparent housing plate 1, the sun shines directly on the heat exchanger 19, which is now designed as a gas-permeable, optically black surface without a fluid tube and is usually simply the surface of the regenerator.
  • the known machine mentioned above uses normal (opaque) insulation material to insulate the outside of the heat exchanger against heat loss to the environment.
  • the machine according to the invention which is preferably operated with sunlight by means of collectors and is generally installed outdoors and is accessible to sunlight, uses a transparent insulation 22 (polycarbonate honeycomb, airgel etc.) on the overhead housing plate 1 in contact with the working gas in order to avoid heat losses of the working gas.
  • the sun shines through the transparent insulation 22 on the housing plate and keeps it hot, so that due to the lack of temperature difference between the plate and the working gas, no heat flow can take place. Negative temperature differences can even support the working gas.
  • This transparent insulation effect is also achieved if the upper housing plate 1 according to FIG.
  • An embodiment of the Stirling engine according to the invention uses, according to FIG. 15, an upper, highly heat-conducting housing plate 1, which forms a plate enlargement 33 and is larger than the displacement plate and therefore protrudes on at least one end face and at the same time is the optically black collector plate for incident sunlight and usually with a glass pane 39 is covered against heat loss.
  • the heat generated in the plate is transported by heat conduction to the plate area under which the engine housing space is located.
  • this heat transport in the plate can be supported by heat pipes which are fitted in or on the plate.
  • the plate enlargement 33 can also consist of several parts which are connected to the housing plate 1 via the heat pipes 24 (see FIG. 16).
  • the heat-conducting housing plate generally has an enlarged surface on the inside of the engine compartment, e.g. by fins 25 or rods that dip into the displacer plate or the regenerator 18 so as to ensure good heat transfer to the working gas.
  • the internal heat exchanger carried with the regenerator is not required in this case.
  • An embodiment of the machine according to the invention can be designed particularly simply with the following restrictions in terms of the operating mode: if the machine works as a power machine with a suction bellows 8 (FIG. 17), that is to say with negative pressure relative to the atmosphere, the machine is horizontal with the hot side (expansion space) 11 at the top, if the bellows diameter is selected correctly (they must be matched to the weight of the displacement plate and the temperature difference between the warm and cold engine side), the control bellows can be omitted, since only the pressure difference between the engine interior and surroundings are sufficient to lift the displacement plate 5.
  • the bellows 13 are now open to the atmosphere below.
  • the desired phase shift of about 90 degrees between the bellows movement and the displacer movement occurs automatically, but this is sensitive against load changes on the motor shaft.
  • the movement of the displacement plate is also discontinuous.
  • the bellows-free movement of the displacement plate is also possible if either the hot motor side is at the bottom and the lifting bellows are arranged at the top or, if desired, at the top hot engine side, the displacer plate 5 is held by springs 40 on the hot side and is pulled from the lifting bellows 13 - in this case, bellows - to the cold side.
  • the lifting bellows must always be arranged on the cold engine side.
  • This machine version without control bellows is used as a chiller operated, in order to avoid convection in the machine, as with the working machine, the colder heat exchanger should be at the bottom. In this case it is the cold generating heat exchanger. This is possible if the machine is operated below atmospheric pressure (FIG. 17), the phase shift between the displacement movement and the working bellows movement occurring automatically. As a refrigeration machine, however, a higher power density may be required than can be achieved with the suction machine.
  • an embodiment of the refrigerator according to the invention uses two valves between the interior of the lifting bellows and the atmosphere.
  • One 41 is spring-loaded and allows the air of the lifting bellows interior to escape into the atmosphere from a certain pressure in the lifting bellows 13.
  • the second 42 is loaded by a diaphragm 43 from the internal bellows pressure and allows the air to flow into the lifting bellows only below a specific internal bellows pressure by the membrane performing the function of a valve flap and temporarily closing the flow path.
  • This valve arrangement with the correct choice of valve loads shifts the phase position by 180 ° and the cold-generating side of the machine adjusts itself below, as desired.
  • the cooling effect is increased considerably if lamellae, rods, wires or the like are immersed in the water, which are fastened to the regenerator 18 and are immersed and pulled out with their movement in the water and offer the working gas to be cooled a large heat exchange surface. Care must be taken that the regenerator is not wetted with water because the regenerator effect is lost and the regenerator can no longer be flowed through by gas.
  • an embodiment according to the invention uses a mat 46 made of knitted wire, plastic fleece or the like underneath the regenerator, which mat acts as a spray water separator from the working gas, but can also separate aerosol that drips down from the wires.
  • This mat can replace the cooling fins mentioned above and immerse itself in the cooling water above the plate.
  • the mat can also be part of the regenerator itself.
  • An embodiment of the Stirling engine according to the invention does not act on a motor shaft with the working bellows via a connecting rod, but instead sets a mass in vibration, for example a pendulum, which does the compression work instead of the flywheel.
  • This arrangement has the advantage that the machine operates at the same frequency over the entire power range and an increase in power manifests itself in a larger oscillation amplitude, so that, for example, the power control when driving reciprocating water pumps can be done simply by changing the stroke.
  • a particularly simple embodiment of the Stirling engine uses the water column 51 of an inertial water lifter 52 as the oscillating mass or a part thereof. When moving upwards, the water column conveys a part of water per vibration from the bottom valve 53 in the well 54 and simultaneously compresses the working gas in the Stirling engine. The water column is pressed down during the expansion phase of the working bellows 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Basic Packing Technique (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Diaphragms And Bellows (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Machine Tool Units (AREA)

Abstract

Es gibt eine Stirlingmaschine, bei der zwischen zwei Gehäuseplatten 1,2 eine Verdrängerplatte 5 hin- und herbeweglich ist, die entlang dem Umfang frei von Gleitreibung gegenüber den Stirnseiten 10 des Gehäsues ist. Dabei ist es erwünscht, wenn die Stirlingmaschine für vergrößerte Leistungsbereiche bei verringertem Bauaufwand ausgelegt ist, indem die Gehäuseplatten und die Verdrängerplatte unter Berücksichtigung der Gehäuse-Druckfestigkeit möglichst groß gestaltet sind. Dies ist erreicht, indem die beiden Gehäuseplatten 1,2 durch verteilt angeordnete Streben 3 gegeneinander auf Distanz gehalten sind, wobei die Streben rechtwinkelig zu der Verdrängerplatte 5 verlaufend durch diese hindurchtreten, und indem die Verdrängerplatte 5 entlang ihrer Stirnkanten durch lineare Rollmembranen 9 gegenüber den Gehäuse-Stirnseiten 10 geführt ist. Die Gehäuseplatten sind durch die Streben über ihre Fläche hin gegeneinander stabilisiert und die Verdrängerplatte ist durch die Rollmembranen in Hinblick auf die Streben genau parallel geführt. <IMAGE>

Description

  • Die Erfindung betrifft eine Stirlingmaschine mit Wärme-tauscher, die für Nieder- bis Mitteltemperaturbetrieb, d.h. für kleines Kompressionsverhältnis und großes verdrängtes Volumen ausgelegt ist, bei der zwischen zwei zueinander parallelen Gehäuseplatten eines Gehäuses eine Verdrängerplatte hin- und herbeweglich ist, die entlang dem Umfang frei von Gleitreibung gegenüber den Stirnseiten des Gehäuse ist, bei der die Verdrängerplatte zwei Arbeitsgasteilvolumina: Expansionsraum und Kompressionsraum voneinander trennt, denen zum Wärmeaustausch Kühler und Erhitzer zugeordnet sind, bei der die beiden Arbeitsgasteilvolumina über einen Regenerator miteinander verbunden sind, und bei der die Hin- und Herbewegung der Verdrängerplatte sich unter Phasenversatz im Takt mit einem Arbeitskolben befindet.
  • Bei einer bekannten (DE-DS 30 15 815) Stirlingmaschine dieser Art sind die beiden Gehäuseplatten nur über die die Stirnseiten bildenden Wandungen gegeneinander abgestützt und besitzt die Verdrängerplatte an den Stirnkanten Spiel gegenüber den Stirnseiten des Gehäuses. Wenn man bei dieser Stirlingmaschine die Gehäuseplatten und die Verdrängerplatte flächenmäßig größer gestalten will, um größere Leistung zu erreichen, so sind dem Grenzen gesetzt, weil die Gehäuseplatten dem erhöhten Druck nur bei aufwendiger Gestaltung standhalten. Deshalb sind bei der bekannten Stirlingmaschine eine Vielzahl relativ kleiner Motormodule zu einem Aggregat zusammengefaßt, um eine Maschine in dem erhöhten Leistungsbereich zu verwirklichen. Der mit einer Vielzahl relativ kleiner Motormodule verbundene Bauaufwand ist relativ groß, da jedes Modul zu fertigen ist und über mehrere Gestänge mit der Motorwelle zu verbinden ist.
  • Eine Aufgabe der Erfindung ist es daher, eine Stirlingmaschine der eingangs genannten Art zu schaffen, die für vergrößerte Leistungsbereiche bei veringertem Bauaufwand ausgelegt ist, indem die Gehäuseplatten und die Verdrängerplatte unter Berücksichtigung der Gehäuse-Druckfestigkeit möglichst groß gestaltet sind. Die erfindungsgemäße Stirlingmaschine ist, diese Aufgabe lösend, dadurch gekennzeichnet, daß die beiden Gehäuseplatten durch verteilt angeordnete Streben gegeneinander auf Distanz gehalten sind, wobei die Streben rechtwinkelig zu der Verdrängerplatte verlaufend durch diese hindurch treten, und daß die Verdrängerplatte entlang ihren Stirnkanten durch lineare Rollmembranen gegenüber den Gehäuse-Stirnseiten geführt ist.
  • Bei der erfindungsgemäßen Stirlingmaschine lassen sich die Gehäuseplatten und die Verdrängerplatte ungewöhnlich groß gestalten, da die Gehäuseplatten über ihre Fläche hin durch die Streben gegeneinander stabilisiert sind. Es läßt sich z.B. ein Leistungsbereich 50 - 500 W erreichen, wobei die Gehäuseplatten mehrere Quadratmeter groß sind und in den Arbeitsgasteilvolumina Arbeitsdrücke von 10.000 pa und mehr auftreten. Die Streben sollen die Verdrängerplatte möglichst dicht geführt passieren, damit die strebenbedingten Durchgänge durch die Verdrängerplatte nicht zu untragbaren Gasverbindungen zwischen Expansionsraum und Kompressionsraum führen. Deshalb ist eine genaue Parallelführung der Verdrängerplatte nötig und diese genaue Parallelführung ist durch die Rollmembranen gegeben. Durch die Rollmenbranen ist eine praktisch brauchbare Anwendung der Streben zwischen den Gehäuseplatten erreicht.
  • Die Verbindung zwischen der Verdrängerplatte und der Motorwelle kann in herkömmlicher Weise ausschließlich über Gestänge erfolgen. Besonders zweckmäßig und vorteilhaft ist es jedoch, wenn zur Hin- und Herbewegung der Verdrängerplatte zwischen dieser und der einen Gehäuseplatte Bewegungs-Luftbälge vorgesehen sind, die mittels eines Steuerbalges, mit diesem zur Luftzufuhr- und -abfuhr leitend verbunden, betätigbar sind, der von der Motorwelle über eine Pleuelstange kontrahierbar und expandierbar ist. Die Betätigung der Verdrängerplatte mittels der über die Fläche verteilten Bewegungs-Luftbälge ergibt eine verbesserte Paralellführung der Verdrängerplatte. Insbesondere aber wird die Gleitreibung von geführten Bewegungs-Stangen des verbindenden Gestänges vermieden. Die Anbindung der Verdrängerplatte an die Motorwelle mittels der Bewegungs-Luftbälge, der Luftzufuhr und -abfuhr und des Steuerbalges ist bei einer erheblich vergrößerten Verdrän-gerplatte wichtig, für die genaue Parallelführung zu den Gehäuseplatten und Reibungsarmut bei der Bewegung entscheidend sind. Das Volumen der Bewegungs-Luftbälge wird durch die Änderung der Phasenlage zwischen der Bewegung der Verdrängerplatte, d.h. der Bewegung des Steuerbalges und der Bewegung des Arbeitsbalges von normalerweise 90 Grad auf größer 90 Grad kompensiert.
  • Die Streben sind so ausbildbar, daß sie Zug- und Druckkräfte aufnehmen können. Eine kleine Verbindung vom Motorraum ins Freie sorgt dafür, daß der Luftdruck im Arbeitsbalg im Mittel mit dem Atmosphärendruck identisch ist.
  • Besonders zweckmäßig und vorteilhaft ist es, wenn entweder die Streben jeweils als verspannende Zuganker ausgebildet sind und ein Rückschlagventil den Luftdruck im Arbeitsbalg auf gleich oder größer Atmosphärendruck einstellt, oder die Streben jeweils als versteifende Stützen ausgebildet sind und ein Rückschlagventil den Luftdruck im Arbeitsbalg auf gleich oder kleiner Atmosphärendruck einstellt. Bei dieser wahlweisen Ausbildung ist die Funktion der Streben eindeutig und die Bauaufwendung vereinfacht. Die Festlegung auf entweder nur Druckverhältnisse oder nur Saugverhältnisse macht auch jeweils spezielle Anwendungsmöglichkeiten machbar.
  • Eine besonders zweckmäßige und vorteilhafte Ausführungsform der Erfindung liegt vor, wenn der Regenerator an der Verdrängerplatte vorgesehen ist und sich über deren gesamte Fläche erstreckt. Dies vereinfacht die Dicht- und Führungsverhältnisse zwischen den Stirnkanten der Verdrängerplatte und den Stirnseiten-Wandungen des Gehäuses. Es liegt auch eine Anpassung der Dimension des Regenerators an die vergrößerten Flächen der erfindungsgemäßen Wärmetauscher vor und der Strömungswiderstand des Regenerators wird herabgesetzt.
  • Der Regenerator wirkt durch das Volumen der Verdrängerplatte hindurch, die z.B. eine Dicke von 0,1 m aufweist und z.B. aus offenporigem Polyesterschaum gefertigt ist. Der bewegte Regenerator bildet an den den Gehäuseplatten zugewandten Oberflächen die Wärmetauscher, die sich mit der Gehäuseplatte mitbewegen und gasdurchströmbar ausgebildet sind. Der Kühler-Wärmetauscher ist in der Regel bei waagerechter Verdrängerplatte unten angeordnet.
  • Die vorliegende Stirlingmaschine im Leistungsbereich 50 - 500 W ist besonders geeignet in sonnenreichen Gegenden Wasser zu fördern, Kälte und Strom zu erzeugen oder Getreide zu mahlen. Sie ist aus einfachen Materialien ohne Präzisionsteile herstellbar und daher geeignet auch in nichtindustrialisierten Ländern gefertigt zu werden.
  • In der Zeichnung sind bevorzugte Ausführungsformen der Erfindung dargestellt und zeigt
  • Fig. 1
    eine erste Stirlingmaschine mit Wärmetauscher, schematisch im Schnitt,
    Fig. 2
    eine Einzelheit der Stirlingmaschine gemäß Fig. 1 in einem gegenüber Fig. 1 vergrößerten Maßstab,
    Fig. 3
    eine zweite Stirlingmaschine mit Wärmetauscher, schematisch im Schnitt,
    Fig. 4
    eine dritte Stirlingmaschine mit Wärmetauscher, schematisch im Schnitt,
    Fig. 5 und 6
    jeweils einen Saugbalg, schematisch im Schnitt,
    Fig. 7
    einen Druckbalg, schematisch im Schnitt,
    Fig. 8
    eine perspektivische Ansicht der Rollmembranen um die Verdrängerplatte,
    Fig. 9
    ein Indikatordiagramm für den Zusammenhang von Arbeitsgasdruck und Arbeitsgasvolumen,
    Fig. 10
    Kurvenverläufe von Einzelzuständen in einer Stirlingmaschine mit Wärmetauscher,
    Fig. 11
    eine vierte Stirlingmaschine mit Wärmetauscher, schematisch im Schnitt,
    Fig. 12
    Kurvenverläufe von Einzelzuständen der Stirlingmaschine gemäß Fig. 11,
    Fig. 13
    ein Verdrängerplattengehäuse einer fünften Stirlingmaschine, schematisch im Schnitt,
    Fig. 14
    ein Verdrängerplattengehäuse einer sechsten Stirlingmaschine, schematisch im Schnitt,
    Fig. 15
    eine Seitenansicht einer ersten vergrößerten Gehäuseplatte,
    Fig. 16
    eine perspektivische Ansicht einer zweiten vergrößerten Gehäuseplatte,
    Fig. 17
    eine achte Stirlingmaschine in einer ersten Ausführung ohne Steuerbalg, schematisch im Schnitt,
    Fig. 18
    eine neunte Stirlingmaschine in einer zweiten Ausführung ohne Steuerbalg, schematisch im Schnitt,
    Fig. 19
    eine zehnte Stirlingmaschine in einer dritten Ausführung ohne Steuerbalg, schematisch im Schnitt,
    Fig.20
    eine elfte Stirlingmaschine mit einer zweiten Ausführung des unteren Wärmetauschers, schematisch im Schnitt,
    Fig.21
    eine zwölfte Stirlingmaschine in einer Ausführung ohne Motorwelle, schematisch im Schnitt,
    Fig.22
    eine perspektivische Ansicht einer Stirlingmaschine gemäß Fig. 1 mit zweiachsig der Sonne nachführbarem Verdrängerkasten,
    Fig.23
    eine perspektivische Ansicht einer Stirlingmaschine gemäß Fig. 3 mit Sonnenkollektorfeld,
    Fig.24
    eine perspektivische Ansicht einer Gruppe von Stirlingmaschinen gemäß Fig. 3, die ein Stirlingkühlaggregat ebenfalls gemäß Fig. 3 antreiben, und
    Fig.25
    eine perspektivische Ansicht einer großen Stirlingmaschine gemäß Fig. 1 oder 4 mit zwei Verdrängerkästen.
  • Die Stirlingmaschine gemäß Fig. 1 und 2 umfaßt einen Wärmetauscher, der ein im wesentlichen reckteckiges Gehäuse aufweist, das von zwei Gehäuseplatten 1, 2 und von vier rechteckig umlaufenden Gehäusestirnwänden 10 gebildet ist. Über die Fläche der Gehäuseplatten 1, 2 hin sind als Zuganker 3 aus-gebildete Streben gleichmäßig verteilt, die beiderends an je einer der Gehäuseplatten festgelegt sind. Die Zuganker queren durch Bohrungen 27 einer rechteckigen Verdrängerplatte 5, die in dem Gehäuse untergebracht ist und deren Stirnkanten umlaufend von den Gehäusestirnwänden 10 Abstand aufweisen. An den Stirnkanten ist jeweils eine Längsseite einer Rollmembran 9 befestigt, deren andere Längsseite unmittelbar an der zugeord-neten Gehäusestirnwand 10 befestigt ist. Die Rollmembran 9 ist ein entlang der Stirnkante verlaufender Streifen, der in Richtung seiner Längserstreckung eine Falte 21 bildet. Die Verdrängerplatte 5 bildet als Kern einen plattenförmigen Regenerator 18, an dessen oberer Fläche zum Wärmetausch ein Erhitzer 19 und an dessen anderer Fläche zum Wärmetausch ein Kühler 20 vorgesehen ist. Die Verdrängerplatte 5 teilt das Gehäuse in einen Expansionsraum 11 und einen Kompressionsraum 12 und ist nach unten hin auf Hebebälgen 13 gelagert.
  • Von den Hebebälgen 13 gehen Fluidumleitungen 36 aus und vom Kompressionsraum 12 geht eine Fluidumleitung 38 aus, die jeweils zu einem Maschinenteil mit Kurbeltriebwerk führen. Und zwar führt die Fluidumleitung 38 von dem Kompressionsraum 12 zu einem Arbeitsbalg 7, dessen Volumen ein Rückschlagventil 6 zugeordnet ist. Der Arbeitsbalg 7 arbeitet über eine Pleuelstange 47 auf eine Kurbelwelle bzw. Motorwelle 15, die ein Schwungrad 35 trägt. Die von den Hebebälgen 13 kommenden Fluidumleitungen 36 führen zu einem Steuerbalg 14, der über eine Pleuelstange 16 mit der Motorwelle 15 verbunden ist. In Bezug auf die Motorwelle 15 sind der Arbeitsbalg 7 und der Steuerbalg 14 um eine Phasenlage 17 gegeneinander versetzt, die größer als 90 Grad ist. Fig. 2 verdeutlicht die Zuordnung der Gehäuseplatten, der Verdrängerplatte 5, der Bohrungen 27 und der Zuganker 3 zueinander.
  • Die Stirlingmaschine gemäß Fig. 3 ist in einem weiten Umfang so aufgebaut, wie die gemäß Fig. 1 und 2. Entlang jeder Stirnkante verläuft die Faltenrichtung 34 der von der Rollmembran 9 gebildeten Falte. Die Regeneratorplatte 5 ist mit dem Motorteil über eine linear geführte Schubstange 28 verbunden, die eine Führungseinrichtung 48 passiert und über eine Pleuelstange 29 an der Motorwelle 15 angreift.
  • Will man Stirlingmaschinen bauen, welche größer als etwa 1 mal 1 m sind, was mit gekrümmten Gehäuseflächen gerade noch beherrschbar ist, bereitet die Stabilisierung der Gehäuseraumwandungen Schwierigkeiten, da der Arbeitsdruck in der Maschine von 10.000 pa bestrebt ist, die Wandungen mit 1t/m² auseinander zu drücken. Eine massive Stahlstützkonstruktion ist aufwendig und würde, wenn eine Gehäuseplatte transparent sein soll, den Lichteinfall in die Maschine behindern.
  • Gemäß Fig. 1-3 wird das druckfeste Gehäuse dadurch erzielt, daß die Zuganker 3 die beiden einander gegenüber liegenden Gehäuseplatten 1, 2 verspannen und der Luftdruck in der Maschine durch das Rückschlagventil 6, das Luft in die Maschine nur einströmen läßt, auf größer oder gleich Atmosphärendruck gehalten wird, weil Zuganker nur auf Zug belastbar sind. Der Arbeitsbalg 7 arbeitet als Druckbalg (Luftdruck im Balg > Atmosphärendruck). Dabei kann die eine Gehäuseplatte 1 aus transparentem, unzerbrechlichem Polycarbonat sein. Falls gemäß Fig. 4 hochtransparentes, zerbrechliches Sekuritglas für die obere Gehäuseplatte 1 verwendet werden soll, ist es besonders einfach, statt der Zuganker Stützen 4 zu nehmen, auf weichen die Glasplatte nur lose aufliegt. Jetzt wird der Luftdruck in der Maschine durch das umgedrehte Rückschlagventil 6 kleiner oder gleich Atmosphärendruck gehalten, indem es Luft aus der Maschine nur ausströmen läßt. Ein Arbeitsbalg 8 arbeitet jetzt als Saugbalg (vergl. Fig. 5 und 6). Die Glasscheibe wird gegen die Stützen gesaugt und zerbricht bei ausreichender Anzahl (ca. 25/m²) der Stützen nicht. Werden die Streben so ausgebildet, daß sie sowohl auf Zug, wie auf Druck beiastbar sind, kann der Druck in der Maschine durch eine kleine Bohrung anstelle des Rückschlagventils im Mittel auf Atmosphärendruck gehalten werden, wodurch die Maschine mit einer kleineren Schwungmasse auskommt.
  • Bei der bekannten (DE-OS 30 15 815) Stirlingmaschine ist die Führung der Verdrängerplatte nicht definiert. Diese führt neben der Hin- und Herbewegung zwischen den Gehäuseplatten wegen der Drehdurchführung des Antriebsgestänges auch eine Schwenkbewegung aus. Die Verdrängerplatte kann nicht spaltfrei am Regenerator anliegen und ist deshalb zwar frei von Gleitreibung entlang ihrem Umfang, dichtet aber die Arbeitsgasteilvolumina Expansionsraum und Kompressionsraum nicht gegeneinander ab.
  • Bei der vorliegenden Stirlingmaschine stehen die Zuganker 3 oder Stützen 4 rechtwinkelig zu den zwei parallelen Gehäuseplatten 1, 2 und gehen rechtwinkelig durch die Verdrängerplatte 5 (Fig.2), die verschleiß- und reibungsfrei exakt geführt sein muß und nicht an den Zugankern bzw. Streben streifen soll, obwohl die Bohrungen 27, durch die die Zuganker hindurchgehen, kaum größer sein dürfen als die Durchmesser der Zuganker, um die Trennung von Expansions- und Kompressionsraum zu gewährleisten. Außerdem ist die Verdrängerplatte in der weiter unten beschriebenen bevorzugten Ausführungsform sehr schwer (ca. 30 kg/m²). Dieses Gewicht muß die Verdrängerplattenführung aufnehmen, da die Maschine in allen Lagen arbeiten soll. Die erfindungsgemäße Führung besteht aus den linearen Rollmembranen 9 (bei quadratischem oder rechteckigem Gehäuse vier Stück), welche die Verdrängerplatte exakt führen und gleichzeitig frei von Gleitreibung gegen die Gehäusestirnwandung 10 abdichten. Die linearen Rollmembranen sind im Gegensatz zu runden Rollsocken oder Schlauchrollbälgen verschleißfrei, da sie praktisch keiner Walkarbeit unterliegen und, was in der Stirlingmaschine zwingend nötig ist, auch ohne Druckdifferenz zwischen innerer und äußerer Seite arbeiten können. Die lineare Falte 21 ist in Faltenrichtung 34 tragfähig und kann das Gewicht der Verdrängerplatte (bei nicht horizontalem Betrieb der Maschine) aufnehmen. Die exakte Abdichtung zwischen Verdrängerplatte und Gehäusewand bzw. Regenerator ist im Interesse eines hohen Wirkungsgrades unbedingt erforderlich (Wirkungsgrad erfindungsgemäße Maschine gemessen: 60% von Carnot). Die obengenannte bekannte Maschine hat neben einem großen Mangel an Regeneratorvolumen erhebliche Spaltverluste zwischen Verdränger und Regenerator, so daß sie keinen Wirkungsgrad erzielt (gemessen: < 1% von Carnot).
  • Die Darstellungen in Fig. 5 bis 7 sind gegenüber den Darstellungen in Fig. 1, 3 und 4 jeweils vergrößert. Fig. 5 und 6 verdeutlichen jeweils eine Gestaltung eines Saugbalges und Fig. 7 verdeutlicht eine Gestaltung eines Druckbalges. Bei quadratischem oder rechteckigem Gehäuse erstrecken sich gemäß Fig.8 zwei gegenüberliegende lineare Rollmembranen 9 erfindungs-gemäß bis in die Gehäuseecken und haben eine tiefere Falte 21 als die beiden anderen Rollmembranen, die an den erstgenannten Rollmembranen anliegen und enden. Diese Anordnung garantiert die sichere Abdichtung der Arbeitsgasteilvolumina gegeneinander auch in den Gehäuseecken bei gleichzeitiger einfacher verschleißfreier Gestaltung der linearen Rollmenbranen.
  • Die Hin- und Herbewegung der Verdrängerplatte zwischen den zwei Gehäuseplatten kann gemäß Fig.3 durch eine linear geführte (Watt's Parallelogramm, Kreuzkopf, Linearkugellager) Schubstange 28 erfolgen, die vom Zentrum der einen Gehäuseplatte 2 aus rechtwinkelig mit der Verdrängerplatte 5 starr verbunden ist und über den Pleuel 29 an der Motorwelle 15 angreift. Die Verdrängerplatte bewegt sich dabei sinusförmig, was zu einm Indikatordiagramm gemäß Fig.9 mit abgerundeten Ecken 30 führt. Linearführungen von Schubstangen sind in der Regel nicht wartungsfrei. Eine Schubstange, an der die gesamte schwere Verdrängerplatte hängt, begrenzt die Größe der Verdrängerplatte auf etwa 2 mal 2 m. Durch die harmonische Bewegung unterliegt die Verdrängerplatte jedoch keinen starken Beschleunigungskräften, die Maschine ist wuchtbar und läuft sehr ruhig.
  • Wünschenswert ist zur Erhöhung der Leistungsdichte aber trotzdem eine diskontinuierliche Verdrängungsbewegung. Die oben erwähnte bekannte Maschine verwendet hierzu einen bistabil vorgespannten Kurbeltrieb, der eine Schubstange enthält, die mit einer Feder vorgespannt ist, deren eines Ende an der Schubstange und deren anderes Ende an dem Hebelarm einer Gabel befestigt ist, zwischen deren Gabelzinken ein auf einem Hebelarm des Membranmotorteils angeordneter Mitnehmer entsprechend dem Hub der Membran verschieblich ist, wobei durch die Federvorspannung zwei stabile Stellungen vorgegeben sind. Diese Anordnung ist kompliziert, fragil und nicht geeignet, um eine schwere, mehrere Quadratmeter große Verdrängerplatte ruckartig hin- und herzubewegen.
  • Der bevorzugte Hebe- und Senkmechanismus der Verdrängerplatte besteht gemäß Fig. 1 und 4 aus einer wartungsfreien, reibungsarmen, nahezu verschleißfreien Niederdruckpneumatik mit torusförmigen Diaphragmen als Steuerbalg und Hebebälgen: Auf der kalten Seite der Verdrängerplatte 5 befinden sich in den Ecken der Verdrängerplatte oder in Versenkungen in der Gehäuseplatte 2 die Hebebälge 13, in welche von einem Steuerbalg 14, der von der Motorwelle aus über die Pleuelstange 16 sinusförmig kontrahiert und expandiert wird, Luft gedrückt und wieder abgesaugt wird. Die Bewegung der Hebebälge und der Verdrängerplatte ist dabei nicht sinusförmig, da der Druckanstieg im sinusförmig bewegten Steuerbalg hyperbelartig erfolgt und die Verdrängerplatte wegen ihres Eigengewichts erst ab einem entsprechenden Druck im Hebesystem mit der Bewegung beginnt. Die Verdrängerplatte wird ruckartig zur heißen Seite bis zum Anschlag gelenkt, verweilt dort, während der Steuerbalg die Luft im Hebesystem noch etwas komprimiert und fällt erst schlagartig zur kalten Seite zurück, wenn der Druck im Hebesystem wieder (hyperbelartig) abgefallen ist. Die Verdrängerbewegung ist gemäß Fig. 19 trapezförmig. Die diskontinuierliche Bewegung der Verdrängerplatte hat im Indikatordiagramm schärfer ausgefahrene Ecken 31 zur Folge, was bekanntlich die Leistungsdichte der Maschine erhöht. Die Leistung der Maschine ist proportional der im Indikatordiagramm gemäß Fig.9 umfahrenen Fläche; W = §pdV
    Figure imgb0001
    . Dieser Hebemechanismus gestattet das sichere Bewegen von schweren Verdrängerplatten von mehreren Metern Länge (vergleiche Fig.25). Das Verdrängergehäuse ist nicht mehr zwingend starr mit Arbeitsbalg und Welle verbunden, sondern ist z.B. über die flexiblen Schläuche 36, 38 angeschlossen, so daß der Verdrängerkasten mühelos der Sonne einachsig oder zweiachsig nachgeführt werden kann (vergleiche Fig. 22).
  • Das Luftvolumen der Hebebälge 13 hat zunächst schädliche Wirkung auf den Stirlingprozess, da es dazu führt, daß in der Kompressionsphase Luft zum Arbeitsgas addiert und in der Expansionsphase subtrahiert wird, also mehr Kompressionsarbeit erforderlich macht und weniger Expansionsarbeit gestattet. Um diese verminderte Motorleistung nicht in Kauf nehmen zu müssen, kann man gemäß Fig. 11 über einen weiteren Balg 32 genau diesen Luftanteil der Hebebälge 180° versetzt zum Steuerbalg 14 zum Arbeitsgasvolumen hinzufügen und herausnehmen, um so die schädliche Wirkung der Hebebalgvolumina zu kompensieren. Dieses weitere Balgvolumen kann man jedoch mit dem hierzu 90° versetzten Volumen des Arbeitsbalgs überlagern (siehe Fig. 12), so daß als weiteres Merkmal der Erfindung eine optimale Phasenverschiebung größer 90° zwischen Steuerbalg und Arbeitsbalg entsteht und der zusätzliche Kompensationsbalg 32 nicht eingebaut werden muß.
  • Bei der oben erwähnten bekannten Maschine ist der Verdränger eine nicht durchbrochene, luftundurchlässige Platte. Der Regenerator ist als schmaler Streifen fest an den Gehäusestirnseiten angeordnet. Um Reibungsfreiheit zu erzielen, ist zwischen Verdrängerplattenumfang und Regeneratorinnenseite, wie oben bereits erwähnt, ein Spalt nötig, wodurch der Regenerator praktisch wirkungslos ist, weil die meiste Luft durch den Spalt und nicht durch den Regenerator strömt. Wegen des kleinen Querschnitts des Regenerator erzeugt dieser soviel Strömungswiderstand, daß die mit der bistabilen Vorspannung erzeugte diskontinuierliche, ruckartige Bewegung der Schwinggabel durch die entstehende Dämpfung der Verdrängerplatte nur unbefriedigend auf diese übertragen wird.
  • Bei der hier vorliegenden Stirlingmaschine ist der Regnerator 18, der Expansionsraum 11 und Kompressionsraum 12 verbindet, in der bewegten Verdrängerplatte 5 angeordnet (Fig. 1,3,4) und erstreckt sich über deren gesamte Fläche und nimmt auch ihr gesamtes Volumen ein. Unabhängig von der Gehäusegröße hat der Regenerator eine Dicke von mindestens etwa 0,1 m, um den heißen Expansionsraum und den kalten Kompressionsraum voneinander zu isolieren, und besteht bevorzugt aus offenporigem Polyesterschaum, der temperaturbeständig ist, eine hohe spezifische Wärmekapazität hat, schlecht Wärme leitet und daher ein hervorragender Regenerator für Niedertemperaturmaschinen ist. Der großflächige Regenerator bietet auch schlagartig ausgeführten Verdrängerbewegungen keinen nennenswerten Strömungswiderstand.
  • Bei der oben erwähnten bekannten Maschine sind die Gehäuseplatten gleichzeitig die fluidumdurchflossenen Wärmetauscher. Diese können aber das Arbeitsgas nur unbefriedigend heizen und kühlen, da ihre Oberfläche relativ klein ist und das Arbeitsgas nicht über sie zwangsgeführt darüberstreicht. Bei praktischen Niedertemperaturmaschinen muß man im Interesse eines hohen Wirkungsgrades, welcher in erster Ordnung von der Temperaturdifferenz zwischen heißer und kalter Motorseite abhängt, bestrebt sein, diese Temperaturdifferenz möglichst groß zu halten. Dies erreicht man nur, indem man die Wärmetauscheroberflächen so groß dimensioniert und mit dem Arbeitsgas in Kontakt bringt, daß praktisch keine Temperaturdifferenz zwischen heizendem bzw. kühlendem Fluidum und heißem bzw. kaltem Arbeitsgas besteht.
  • Bei der hier vorliegenden Stirlingmaschine sind die Erhitzer 19 und Kühler 20 daher auf den, den Gehäuseplatten 1, 2 zugewandten Oberflächen des Regenerators 18 angebracht und gasdurchströmbar mit nahezu beliebig großer Oberfläche als Lamel-lenwärmetauscher ausgebildet. Sie werden mit dem Regenerator mitbewegt und stehen jetzt in innigem Kontakt mit dem Arbeitsgas (gemessene Temperaturdifferenz zwischen Wärmetauscherfluidum und Arbeitsgas bekannte Maschine : 20° C, erfindungsgemäße Maschine: 2° C). Erhitzer 19, Verdränger 5, Kühler 20 und Regenerator 18 bilden in der erfindungsgemäßen Maschine eine bewegte Einheit. Die Maschine kann von einer Niedertemperaturquelle (z.B. Warmwasser-Solarflachkollektor) oder Mitteltemperaturquelle (z.B. Parabolinnenkollektor) gespeist werden (vergleiche Fig.23). Wird eine Maschine mechanisch angetrieben, z.B. von einer größeren oder mehreren anderen, arbeitet sie als Kältemaschine (vergleiche Fig.24). Die Wärmetauscher arbeiten jetzt beide als Kühler, wobei mit dem einen die gepumpte Wärme abgeführt wird und in dem anderen die niedere Temperatur für den Kühlkreislauf erzeugt wird. Die Maschinen liegen bevorzugt waagerecht und zwar so, daß der kühlere Wärmetauscher stets unten liegt, um Konvektion des Arbeitsgases in der Maschine zu vermeiden, was sich als Verlustmechanismus mit deutlichen Wirkungsgradeinbußen herausgestellt hat. Hat die Maschine eine transparente Gehäuseplatte 1, scheint die Sonne direkt auf den Wärmetauscher 19, der jetzt als eine gasdurchlässige, optisch schwarze Oberfläche ohne Fluidumröhrchen ausgebildet ist und in der Regel einfach die Oberfläche des Regenerators ist.
  • Die oben erwähnte bekannte Maschine verwendet normales (opakes) Isolationsmaterial, um die Außenseite der Wärmetauscher gegen Wärmeverluste an die Umgebung zu isolieren. In der Ausführung mit nichttransparenten Gehäuseplatte 1 verwendet die erfindungsgemäße Maschine, die bevorzugt mit Sonnenlicht mittels Kollektoren betrieben wird und in der Regel im Freien, für Sonnenlicht zugänglich aufgestellt ist, gemäß Fig. 13 eine transparente Isolation 22 (Polycarbonatwaben, Aerogel etc.) auf der obenliegenden, mit dem Arbeitsgas in Kontakt stehenden Gehäuseplatte 1, um Wärmeverluste des Arbeitsgases zu vermeiden. Die Sonne scheint hierzu durch die transparente Isolation 22 auf die Gehäuseplatte und hält diese heiß, sodaß mangels Temperaturdifferenz zwischen Platte und Arbeitsgas kein Wärmefluß stattfinden kann. Negative Temperaturdifferenz kann sogar unterstützend das Arbeitsgas heizen. Diese transparente Isolationswirkung wird auch erzielt, wenn die obere Gehäuseplatte 1 gemäß Fig. 14 mit Warmwasser-Solarflachkollektoren 23 belegt wird, deren Kollektorplatten 53 über eine Fluidumleitung 54 den inneren Wärmetauscher 19 mit Heißwasser versorgen. Dabei wird sowohl der Wärmeverlust des Kollektors über seine Rückseite verhindert als auch der Wärmeverlust des Arbeitsgases über die obere Gehäuseplatte ausgeschaltet, weil die heiße Kollektorplatte den Wärmefluß von unten nach oben nicht ermöglicht. Normale Isolation wird gespart.
  • Eine erfindungsgemäße Ausführung der Stirlingmaschine verwendet gemaß Fig.15 eine obere gut wärmeleitende Gehäuseplatte 1, die eine Plattenvergrößerung 33 bildet und größer ist als die Verdrängerplatte und daher an mindestens einer Stirnseite übersteht und gleichzeitig die optisch schwarze Kollektorplatte für einfallendes Sonnenlicht ist und in der Regel mit einer Glasscheibe 39 gegen Wärmeverlust abgedeckt ist. Die entstehende Wärme in der Platte wird durch Wärmeleitung zu dem Plattenbereich transportiert, unter dem sich der Motorgehäuseraum befindet. Dieser Wärmetransport in der Platte kann gemäß Fig.15 durch Wärmerohre, die in oder an der Platte angebracht sind, unterstützt werden. In diesem Fall kann die Plattenvergrößerung 33 auch aus mehreren Teilen bestehen, die über die Wärmerohre 24 mit der Gehäuseplatte 1 verbunden sind (siehe Fig.16). Die wärmeleitende Gehäuseplatte hat gemäß Fig.15 und 16 in der Regel an der Motorrauminnenseite eine vergrößerte Oberfläche, z.B. durch Lamellen 25 oder Stäbe, die in die Verdrängerplatte bzw. den Regenerator 18 eintauchen, um so den guten Wärmeübergang auf das Arbeitsgas zu gewährleisten. Der mit dem Regenerator mitgeführte innere Wärmetauscher entfällt in diesem Fall.
  • Eine Ausführung der erfindungsgemäßen Maschine ist mit folgenden Einschränkungen in der Betriebsweise besonders einfach zu gestalten: Arbeitet die Maschine als Arbeitskraftmaschine mit einem Saugbalg 8 (Fig. 17), also mit Unterdruck gegenüber der Atmosphäre und liegt die Maschine horizontal mit der heißen Seite (Expansionsraum) 11 oben, kann bei richtiger Wahl der Hebebalgdurchmesser (sie müssen auf das Gewicht der Verdrängerplatte und auf die Temperaturdifferenz von warmer und kalter Motorseite abgestimmt sein) der Steuer-balg entfallen, da alleine der Druckunterschied zwischen Motor-innenraum und Umgebung genügt, um die Verdrängerplatte 5 zu heben. Die Hebebälge 13 sind jetzt unten zur Atmosphäre offen. Durch die Temperaturdifferenz zwischen warmer und kalter Motorseite, den Strömungswiderstand des Regenerators, das Gewicht der Verdrängerplatte sowie der Wahl der Größe der Öffnungen 55 zwischen Hebebalginnenräumen und Atmosphäre stellt sich die erwünschte Phasenverschiebung von etwa 90 Grad zwischen Arbeitsbalgbewegung und Verdrängerbewegung von selbst ein, die aber empfindlich gegen Lastwechsel an der Motorwelle ist. Die Bewegung der Verdrängerplatte ist dabei auch dis-kon-tinuierlich.
  • Arbeitet die Maschine als Arbeitskraftmaschine mit einem Druckbalg 7 als Arbeitsbalg (Fig. 18), also mit Überdruck gegenüber der Atmospähre, ist die steuerbalgfreie Bewegung der Verdrängerplatte auch möglich, wenn entweder die heiße Motorseite unten liegt und die Hebebälge oben angeordnet sind oder bei gewünschter obenliegender heißer Motorseite die Verdrängerplatte 5 von Federn 40 auf der heißen Seite gehalten wird und von den Hebebälgen 13 - in diesem Fall sind es Zug-bälge - zur kalten Seite gezogen wird. Aus werkstofftechnischen Gründen muß man die Hebebälge stets auf der kalten Motorseite anordnen. Wird diese Maschinenausführung ohne Steuerbalg als Kältemaschine betrieben, sollte, um Konvektion in der Maschine zu vermeiden, wie bei der Arbeitskraftmaschine, der kältere Wärmetauscher unten liegen. In diesem Fall ist es der Kälte erzeugende Wärmetauscher. Dies ist möglich, wenn die Maschine unterhalb des Atmosphärendruckes betrieben wird (Fig. 17), wobei die Phasenverschiebung zwischen Verdrängerbewegung und Arbeitsbalgbewegung sich von selbst einstellt. Als Kältemaschine kann jedoch eine höhere Leistungsdichte erforderlich sein, als mit der Saugmaschine erzielt werden kann.
  • Als Kältemaschine mit Druckbalg ergibt sich jedoch eine inverse Phasenlage (270° versetzt, die kalte Seite ist bestrebt, oben zu entstehen).
  • Deshalb verwendet eine erfindungsgemäße Ausführung der Kältemaschine (Fig. 19) zwei Ventile zwischen dem Hebebalginnenraum und der Atmosphäre. Eines 41 ist federbelastet und läßt die Luft des Hebebalginnenraums ab einem bestimmten Druck im Hebebalg 13 in die Atmosphäre entweichen. Das zweite 42 ist über eine Membran 43 vom Hebebalginnendruck belastet und läßt die Luft nur unterhalb eines bestimmten Balginnendruckes in den Hebebalg strömen, indem die Membran die Funktion einer Ventilklappe ausübt und zeitweilig den Strömungsweg zuhält. Diese Ventilanordnung mit der richtigen Wahl der Ventilbelastungen versetzt die Phasenlage um 180° und die Kälte erzeugende Seite der Maschine stellt sich, wie gewünscht, unten ein.
  • Eine erfindungsgemäße Ausführung der Stirlingmaschine gemäß Fig.20 verwendet zur Kühlung der kalten Motorseite 12 Wasser 44, das durch einen Einlaß 49 in den Motorraum geleitet wird, über der unteren Gehäuseplatte steht und über einen Auslaß 50 wieder ausgeschleust wird. Die Kühlwirkung wird beträchtlich gesteigert, wenn in das Wasser Lamellen, Stäbe, Drähte o.ä.45 eintauchen, die am Regenerator 18 befestigt sind und mit ihrer Bewegung ins Wasser getaucht und herausgezogen werden und dem zu kühlenden Arbeitsgas eine große Wärmetauschoberfläche bieten. Dabei muß darauf geachtet werden, daß der Regenerator nicht mit Wasser benetzt wird, weil die Regeneratorwirkung verlorengeht und der Regenerator nicht mehr gasdurchströmbar ist. Zu diesem Zweck verwendet eine erfindungsgemäße Ausführung unterhalb des Regenerators eine Matte 46 aus Drahtgestrick, Kunststoffvlies o.ä., die als Spritzwasserabscheider aus dem Arbeitsgas fungiert, aber auch Aerosol abscheiden kann, welches von den Drähten nach unten tropft. Diese Matte kann die oben erwähnten Kühllamellen ersetzen und selbst in das über die Platte stehende Kühlwasser eintauchen. Die Matte kann auch Bestandteil des Regenerators selbst sein.
  • Eine erfindungsgemäße Ausführung der Stirlingmaschine (Fig. 21) greift mit dem Arbeitsbalg über eine Pleuelstange nicht an einer Motorwelle an, sondern versetzt eine Masse in Schwingung, beispielsweise ein Pendel, das anstelle des Schwungrades die Kompressionsarbeit leistet. Diese Anordnung hat den Vorteil, daß die Maschine über den ganzen Leistungsbereich mit der gleichen Frequenz arbeitet und eine Leistungszunahme sich in einer größeren Schwingungsamplitude äußert, sodaß z.B. beim Antrieb von Hubkolbenwasserpumpen die Leistungsregelung einfach über die Veränderung des Hubes erfolgen kann. Eine besonders einfache Ausführung der Stirlingmaschine verwendet als schwingende Masse oder einen Teil davon die Wassersäule 51 eines Trägheitswasserhebers 52. Die Wassersäule befördert bei ihrer Aufwärtsbewegung pro Schwingung einen Teil Wasser vom Bodenventil 53 im Brunnen nach oben 54 und komprimiert gleichzeitig das Arbeitsgas im Stirlingmotor. Das Hinunterdrücken der Wassersäule geschieht während der Expansionsphase des Arbeitsbalges 7.

Claims (21)

  1. Stirlingmaschine mit Wärmetauscher,
    die für Nieder- bis Mitteltemperaturbetrieb, d.h. für kleines Kompressionsverhältnis und großes verdrängtes Volumen ausgelegt ist, bei der zwischen zwei zueinander parallelen Gehäuseplatten eines Gehäuses eine Verdrängerplatte hin- und herbeweglich ist, die entlang dem Umfang frei von Gleitreibung gegenüber den Stirnseiten des Gehäuses ist, bei der die Verdrängerplatte zwei Arbeitsgasteilvolumina: Expansionsraum und Kompressionsraum voneinander trennt, denen zum Wärmetausch Kühler und Erhitzer zugeordnet sind,
    bei der die beiden Arbeitsgasteilvolumina über einen Regenerator miteinander verbunden sind,
    und bei der die Hin- und Herbewegung der Verdrängerplatte sich unter Phasenversatz im Takt mit einem Arbeitskolben befindet,
    dadurch gekennzeichnet,
    daß die beiden Gehäuseplatten (1,2) durch verteilt angeordnete Streben (3,4) gegeneinander auf Distanz gehalten sind, wobei die Streben (3,4) rechtwinkelig zu der Verdrängerplatte (5) verlaufend durch diese hindurchtreten, und
    daß die Verdrängerplatte (5) entlang ihren Stirnkanten durch lineare Rollmembranen (9) gegenüber den Gehäuse-Stirnseiten (10) geführt ist.
  2. Stirlingmaschine nach Anspruch 1, dadurch gekennzeichnet, daß zur Hin- und Herbewegung der Verdrängerplatte (5) zwischen dieser und der einen Gehäuseplatte (1,2) Bewegungs-Luftbälge (13) vorgesehen sind, die mittels eines Steuerbalges (14), mit diesem zur Luftzufuhr und -abfuhr leitend verbunden, betätigbar sind, der von der Motorwelle (15) über eine Pleuelschubstange (16) kontrahierbar und expandierbar ist.
  3. Stirlingmaschine nach Anspruch 2, dadurch gekennzeichnet, daß das Volumen der Bewegungs-Luftbälge durch die Änderung der Phasenlage (17) zwischen Steuerbalgbewegung und Arbeitsbalgbewegung von 90° auf größer 90° kompensiert wird.
  4. Stirlingmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Streben sowohl Zug- wie auch Druckkräfte aufnehmen können und eine kleine Öffnung im Motorgehäuse den Druck im Arbeitsbalg im Mittel auf Atmosphärendruck hält.
  5. Stirlingmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Streben jeweils als verspannende Zuganker (3) ausgebildet sind und ein Rückschlagventil (6) den Luftdruck im Arbeitsbalg (7) auf gleich oder größer Atmosphärendruck einstellt.
  6. Stirlingmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Streben jeweils als versteifende Stützen (4) ausgebildet sind und ein Rückschlagventil (6) den Luftdruck im Arbeitsbalg (7) auf gleich oder kleiner Atmosphärendruck einstellt.
  7. Stirlingmaschine nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß der Regenerator (18) an der Verdrängerplatte (5) vorgesehen ist und sich über deren gesamte Fläche erstreckt.
  8. Stirlingmaschine nach Anspruch 7, dadurch gekennzeichnet, daß der Regenerator auf seinen, den Gehäuseplatten (1,2) zugewandten Oberflächen die beiden Wärmetauscher (19,20) mitführt, welche gasdurchströmbar ausgebildet sind.
  9. Stirlingmaschinen nach Anspruch 8, dadurch gekennzeichnet, daß das Verdrängergehäuse waagerecht und der kühlere Wärmetauscher unten angeordnet ist.
  10. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei quadratischem oder rechteckigem Gehäuse sich zwei gegenüberliegende Rollmembranen (9) bis in die Gehäuseecken erstrecken und eine tiefere Falte (21) haben als die beiden anderen (9), die an den erstgenannten Rollmembranen mit ihren Stirnseiten anliegen und enden.
  11. Stirlingmaschine nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die zum heißen Gehäuseteilraum (Expansionsraum 11) gehörende opake Gehäuseplatte (1) auf der Außenseite mit einer transparenten Isolation (22) versehen ist oder mit der Rückseite eines Sonnenkollektors (23) in Kontakt ist.
  12. Stirlingmaschine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß eine Gehäuseplatte (33) größer ist als der Verdrängerplattenraum, mindestens an einer Stirnseite übersteht und gleichzeitig die optisch schwarze Kollektorplatte für einfallendes Sonnenlicht ist.
  13. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Wärmetransport in Richtung der Erstreckung der Gehäuseplatte (33) durch in ihr eingebettete oder an ihr befestigte Wärmerohre (24) unterstützt wird.
  14. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die im Motorraum befindliche Oberfläche der Gehäuseplatte (33) durch Lamellen (25) o.ä. vergrößert ist, die in den Regenerator (18) eintauchen können.
  15. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Hin- und Herbewegung der Verdrängerplatte durch Hebebälge erfolgt, deren Innenräume zur Atmosphäre Verbindung haben.
  16. Stirlingmaschine nach Anspruch 15, dadurch gekennzeichnet, daß die Verbindung der Hebebalginnenräume zur Atmosphäre über Ventile (41, 42) gesteuert wird.
  17. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß über die untere Gehäuseplatte (2) Kühlwasser (44) durch den Motorraum geleitet wird und über der Gehäuseplatte steht, sodaß es die Funktion des kalten Wärmetauschers übernimmt.
  18. Stirlingmaschine nach Anspruch 17, dadurch gekennzeichnet, daß an der Verdrängerplatte Lamellen o.ä. (45) angebracht sind, die in die Wasseroberfläche eintauchen.
  19. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Kühler an der Regeneratorunterseite ein Spritzwasser- oder Aerosolabscheider (46) angebracht ist.
  20. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Arbeitsbalg nicht an einer Motorwelle angreift, sondern eine Masse (50) in Schwingung versetzt.
  21. Stirlingmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Arbeitsbalg nicht an einer Motorwelle angreift, sondern die Wassersäule eines Trägheitswasserhebers in Schwingung versetzt.
EP93106852A 1992-05-21 1993-04-28 Stirlingmaschine mit Wärmetauscher Expired - Lifetime EP0570731B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4216839A DE4216839C1 (de) 1992-05-21 1992-05-21 Stirlingmaschine mit waermetauscher
DE4216839 1992-05-21

Publications (2)

Publication Number Publication Date
EP0570731A1 true EP0570731A1 (de) 1993-11-24
EP0570731B1 EP0570731B1 (de) 1996-02-21

Family

ID=6459434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93106852A Expired - Lifetime EP0570731B1 (de) 1992-05-21 1993-04-28 Stirlingmaschine mit Wärmetauscher

Country Status (19)

Country Link
US (1) US5337563A (de)
EP (1) EP0570731B1 (de)
JP (1) JPH074309A (de)
KR (1) KR930023586A (de)
CN (1) CN1085313A (de)
AT (1) ATE134420T1 (de)
AU (1) AU667353B2 (de)
BR (1) BR9302017A (de)
CA (1) CA2096762A1 (de)
DE (1) DE4216839C1 (de)
DK (1) DK0570731T3 (de)
EG (1) EG20100A (de)
ES (1) ES2085070T3 (de)
GR (1) GR3019108T3 (de)
IL (1) IL105532A (de)
MX (1) MX9302940A (de)
TR (1) TR27770A (de)
ZA (1) ZA933017B (de)
ZW (1) ZW5693A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9302325U1 (de) * 1993-02-18 1993-04-15 Schager, Dieter, 6050 Offenbach Handwärmemotor
GB2296047A (en) * 1994-12-15 1996-06-19 Jonathan Maxwell Boardman Stirling cycle engine
WO2000025013A1 (de) * 1998-10-23 2000-05-04 Texim Ag Wärmekraftmaschine mit einem zylindrischen gehäuse
ITBO20120120A1 (it) * 2012-03-09 2013-09-10 Alessandro Cima Motore volumetrico con energia termica fornita dall'esterno
EP2543860A3 (de) * 2011-07-04 2015-07-01 GPI Gesellschaft Für Prüfstanduntersuchungen und Ingenieurdienstleistungen MbH Wärmekraftmaschine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322817A1 (de) * 1993-07-08 1995-01-19 Hans Josef Janetzko Stirling-Motor
DE4429659A1 (de) * 1994-08-20 1996-02-22 Eckhart Weber Flachkollektor-Stirling-Maschine
US6688113B1 (en) 2003-02-11 2004-02-10 Superconductor Technologies, Inc. Synthetic felt regenerator material for stirling cycle cryocoolers
US7392934B2 (en) * 2004-06-09 2008-07-01 U.S. Bank National Association Transaction accounting processing system and approach
DE102004047054A1 (de) * 2004-09-28 2006-11-30 Hugo Post Modifikation Flachplatten-Stirlingmotor und Prozessanbindung
FR2927155B1 (fr) * 2007-03-05 2010-04-02 R & D Ind Sarl Capteur solaire.
DE102010013620B4 (de) 2010-04-01 2022-03-17 Hans - W. Möllmann Heißgasmotor mit rotierenden Segmentkolben
DE102011122071B4 (de) 2011-12-22 2013-10-31 Eads Deutschland Gmbh Stirlingmotor mit Schlagflügel für ein emissionsfreies Fluggerät
DE102011122072B3 (de) 2011-12-22 2013-02-28 Eads Deutschland Gmbh Stirlingmotor für ein emissionsfreies Fluggerät
ES2481345B1 (es) * 2013-01-28 2015-07-15 Deba Energy, S.L. Motor stirling equipado con cámaras en forma de fuelles
US9869180B2 (en) * 2015-04-03 2018-01-16 Synergy Power, LLC Energy harvesting heat engine and actuator
US10533810B2 (en) * 2015-05-20 2020-01-14 Other Lab, Llc Near-isothermal compressor/expander
CN105736266B (zh) * 2016-03-10 2018-10-16 常州大学 一种利用太阳能产生旋转驱动的方法和装置
CN105927492A (zh) * 2016-05-17 2016-09-07 李宏江 冷热气流发电方法和装置
US11054194B2 (en) 2017-10-10 2021-07-06 Other Lab, Llc Conformable heat exchanger system and method
US11173575B2 (en) 2019-01-29 2021-11-16 Treau, Inc. Film heat exchanger coupling system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326381A (en) * 1979-06-22 1982-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar engine
US4414814A (en) * 1980-08-27 1983-11-15 White Eugene W Solar heat engines
WO1991017352A1 (de) * 1990-04-27 1991-11-14 Bomin Solar Gmbh & Co. Kg Stirling-maschine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604821A (en) * 1969-08-13 1971-09-14 Mc Donnell Douglas Corp Stirling cycle amplifying machine
DE2161723A1 (de) * 1971-12-13 1973-06-14 Motoren Werke Mannheim Ag Abdichtung eines hin- und hergehenden zylindrischen teils
US4183214A (en) * 1977-05-05 1980-01-15 Sunpower, Inc. Spring and resonant system for free-piston Stirling engines
DE2736472C3 (de) * 1977-08-12 1980-10-02 Arnulf Dipl.-Ing. Keller Hubkolbenmaschine, insbesondere Heißgasmaschine oder Verdichter
YU100980A (en) * 1980-04-11 1983-09-30 Ivo Kolin Hot gas motor
US4642988A (en) * 1981-08-14 1987-02-17 New Process Industries, Inc. Solar powered free-piston Stirling engine
US4490974A (en) * 1981-09-14 1985-01-01 Colgate Thermodynamics Co. Isothermal positive displacement machinery
US4404802A (en) * 1981-09-14 1983-09-20 Sunpower, Inc. Center-porting and bearing system for free-piston stirling engines
DE8710325U1 (de) * 1987-07-28 1987-11-05 Kufner, Walter, Dipl.-Ing. (FH), 8997 Hergensweiler Heißgasmotor nach dem Stirlingprinzip
US4856280A (en) * 1988-12-19 1989-08-15 Stirling Technology, Inc. Apparatus and method for the speed or power control of stirling type machines
US4945726A (en) * 1989-08-23 1990-08-07 Sunpower, Inc. Leaky gas spring valve for preventing piston overstroke in a free piston stirling engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326381A (en) * 1979-06-22 1982-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar engine
US4414814A (en) * 1980-08-27 1983-11-15 White Eugene W Solar heat engines
WO1991017352A1 (de) * 1990-04-27 1991-11-14 Bomin Solar Gmbh & Co. Kg Stirling-maschine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9302325U1 (de) * 1993-02-18 1993-04-15 Schager, Dieter, 6050 Offenbach Handwärmemotor
GB2296047A (en) * 1994-12-15 1996-06-19 Jonathan Maxwell Boardman Stirling cycle engine
GB2296047B (en) * 1994-12-15 1998-04-08 Jonathan Maxwell Boardman Diaphragm stirling engine
WO2000025013A1 (de) * 1998-10-23 2000-05-04 Texim Ag Wärmekraftmaschine mit einem zylindrischen gehäuse
EP2543860A3 (de) * 2011-07-04 2015-07-01 GPI Gesellschaft Für Prüfstanduntersuchungen und Ingenieurdienstleistungen MbH Wärmekraftmaschine
ITBO20120120A1 (it) * 2012-03-09 2013-09-10 Alessandro Cima Motore volumetrico con energia termica fornita dall'esterno

Also Published As

Publication number Publication date
DK0570731T3 (da) 1996-03-18
ZW5693A1 (en) 1993-11-03
EG20100A (en) 1997-07-31
ATE134420T1 (de) 1996-03-15
JPH074309A (ja) 1995-01-10
AU667353B2 (en) 1996-03-21
ZA933017B (en) 1993-11-05
GR3019108T3 (en) 1996-05-31
ES2085070T3 (es) 1996-05-16
CA2096762A1 (en) 1993-11-22
CN1085313A (zh) 1994-04-13
MX9302940A (es) 1995-01-31
AU3836693A (en) 1993-11-25
US5337563A (en) 1994-08-16
EP0570731B1 (de) 1996-02-21
KR930023586A (ko) 1993-12-21
IL105532A0 (en) 1993-08-18
BR9302017A (pt) 1993-11-30
TR27770A (tr) 1995-08-04
DE4216839C1 (de) 1993-11-04
IL105532A (en) 1996-08-04

Similar Documents

Publication Publication Date Title
EP0570731B1 (de) Stirlingmaschine mit Wärmetauscher
EP1017933B1 (de) Vorrichtung und verfahren zum transfer von entropie mit thermodynamischem kreisprozess
DE3015815C2 (de) Heißgasmotor
EP3390785B1 (de) Gleichdruckmehrkammerbehälter, thermodynamischer energiewandler und betriebsverfahren
DE2109891B2 (de) Thermodynamische Maschine als Kältemaschine oder Wärmemotor
EP1963757A1 (de) Wärmepumpe
EP2657497A1 (de) Thermoelektrischer Wandler mit verbessertem Wärmeüberträger
EP2258947A1 (de) Modularer thermoelektrischer Wandler
DE102006059504A1 (de) Wärmepumpe
EP1285160B1 (de) Heissgasmotor
WO1991017352A1 (de) Stirling-maschine
EP0796392B1 (de) Vorrichtung mit einem antrieb und einer vom antrieb antreibbaren maschine
AT505645B1 (de) Wärmekraftmaschine
DE102009017493B4 (de) Wärmekraftmaschine
DE102008016663A1 (de) Verflüssiger für eine Wärmepumpe und Wärmepumpe
DE19742677A1 (de) Verfahren und Vorrichtung zur Nutzung von Sonnenenergie oder Wärmequellen zur Transformation von Entropie
DE2902330A1 (de) Mit stirling-zyklus arbeitende vorrichtung
DE19527272C2 (de) Solarer Erhitzer für Stirling-Motoren
DE102004060819B3 (de) Niedertemperatur Stirling-Vorrichtung zur Raumklimatisierung
EP1126153A2 (de) Stirlingmaschine
DE102011106466B4 (de) Wärmekraftmaschine
AT412571B (de) Stirlingmaschine
DE102012107064A1 (de) Heißgasmotor
DE19742660A1 (de) Verfahren und Vorrichtung zur Nutzung von Sonnenenergie oder Wärmequellen zur Transformation von Entropie
DE3732123A1 (de) Kraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19940419

17Q First examination report despatched

Effective date: 19950427

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 134420

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 67302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19960329

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960313

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960419

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19960422

Year of fee payment: 4

Ref country code: MC

Payment date: 19960422

Year of fee payment: 4

Ref country code: BE

Payment date: 19960422

Year of fee payment: 4

Ref country code: AT

Payment date: 19960422

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960426

Year of fee payment: 4

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3019108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960501

Year of fee payment: 4

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085070

Country of ref document: ES

Kind code of ref document: T3

SC4A Pt: translation is available

Free format text: 960221 AVAILABILITY OF NATIONAL TRANSLATION

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970417

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19970418

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19970422

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970428

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970428

Ref country code: GB

Effective date: 19970428

Ref country code: DK

Effective date: 19970428

Ref country code: AT

Effective date: 19970428

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: BE

Effective date: 19970430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970430

Year of fee payment: 5

BERE Be: lapsed

Owner name: WEBER ECKHART

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Effective date: 19971031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970428

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971101

EUG Se: european patent has lapsed

Ref document number: 93106852.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 19981031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050428