EP0569398B1 - Counterbalancingdevice for divers and method for operating same - Google Patents

Counterbalancingdevice for divers and method for operating same Download PDF

Info

Publication number
EP0569398B1
EP0569398B1 EP92903032A EP92903032A EP0569398B1 EP 0569398 B1 EP0569398 B1 EP 0569398B1 EP 92903032 A EP92903032 A EP 92903032A EP 92903032 A EP92903032 A EP 92903032A EP 0569398 B1 EP0569398 B1 EP 0569398B1
Authority
EP
European Patent Office
Prior art keywords
diver
control unit
electronic control
valve
water depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92903032A
Other languages
German (de)
French (fr)
Other versions
EP0569398A1 (en
Inventor
Michael Tolksdorf
Thomas Tolksdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GfT Gesellschaft fur Tauchtechnik mbH and Co KG
Original Assignee
TOLKSDORF Michael
TOLKSDORF Thomas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOLKSDORF Michael, TOLKSDORF Thomas filed Critical TOLKSDORF Michael
Publication of EP0569398A1 publication Critical patent/EP0569398A1/en
Application granted granted Critical
Publication of EP0569398B1 publication Critical patent/EP0569398B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/04Resilient suits
    • B63C11/08Control of air pressure within suit, e.g. for controlling buoyancy ; Buoyancy compensator vests, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • B63C11/2245With provisions for connection to a buoyancy compensator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C2011/027Shells for diving equipment, i.e. substantially rigid housings or covers, e.g. streamlined shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/04Resilient suits
    • B63C11/08Control of air pressure within suit, e.g. for controlling buoyancy ; Buoyancy compensator vests, or the like
    • B63C2011/085Buoyancy compensator vests

Definitions

  • the invention relates to a method for actuating a buoyancy control device of a diver according to the generic part of the first claim.
  • Buoyancy is one of the most important diving skills that a diver must master, especially to protect himself from health damage but also to save energy and dive comfortably under water.
  • the buoyancy control is relatively difficult because there is a time delay between the actuation of the valve for filling or emptying the life and life jacket and the change in height and because as a result of a change in height due to swimming movements or water currents, the air volume in the vest changes automatically so that the Buoyancy and downforce is increased.
  • a particularly critical case is surfacing, as the air in the vest expands due to the sinking water pressure and consequently the buoyancy increases. If the ascent is too fast and uncontrolled, there is a risk of decompression damage or a lung tear.
  • EP-A 41194 shows a device for automatically limiting the rate of climb when divers emerge.
  • the device is characterized by a chamber connected to the interior of the life jacket and having an elastically longitudinally movable, sealing part that divides it Partition wall, which is connected to a sealingly displaceable, outwardly leading valve closing part, the associated valve seat of which is arranged in the life jacket outer wall, the chamber sections formed by the partition wall being connected to one another by a metering nozzle and a check valve opening towards the closed chamber section.
  • DE-A 3644742 is a diving buoyancy compensator, in particular in the form of a balance or buoyancy compensator for buoyancy compensation or stabilization and emergency flotation of a diver when diving.
  • the buoyancy compensator interacts with a safety valve arrangement which has an actuating mechanism for opening a valve, this mechanism being provided with a pull line by means of which the diver can handle this mechanism.
  • the towing line extends from the actuating mechanism through the first inflation hose, which is expandable and contractible in the manner of a bar, to the inflator, which is arranged at the end of the hose.
  • the safety valve arrangement furthermore has effective means for sealing against water.
  • the ascent and descent speeds cannot be variably set, so that the ascent and descent cannot be optimally controlled for the diver.
  • These facilities may be able to assist a diver as they ascend, but are unsuitable for maintaining a level of suspension at a given water depth.
  • the generic US-A 3487647 relates to a method for actuating a buoyancy control device for the semi-automatic diving or surfacing and hovering of a diver.
  • the diver manually operates the valve descent and must also manually operate the valve descent if it drops too quickly.
  • the diver also has to manually balance himself at the desired depth and can only then activate a type of automatic system that is supposed to keep the diver in a position-controlled manner, whereby this position control causes the diver to perform an oscillating movement that does not stabilize.
  • this position control causes the diver to perform an oscillating movement that does not stabilize.
  • the diver is in the balanced position in constant unwanted movement.
  • This type of taring appears to be complex on the one hand because the diver must constantly intervene in the regulation when diving in and out and on the other hand uncomfortable with regard to the constant movements in the balanced position.
  • the aim of the object of the invention is to be seen on the one hand to realize the descent and emergence at a speed acceptable for the diver without constant intervention in the control process and on the other hand to keep the diver in a predetermined or preselectable water depth without it being one constant manual readjustment of the buoyancy device is required.
  • a device for the automatic dipping or surfacing and hovering of a diver in a predetermined or preselectable water depth according to the preamble of claim 14 is characterized by at least one electronic control unit for controlling the valve, at least one pressure sensor and a setpoint device which are connected to the electronic control unit .
  • buoyancy compensator for automatic descent and ascent is the subject of claim 23.
  • buoyancy control device consisting of control electronics, at least one valve, at least one pressure sensor, a setpoint device and a life jacket for automatic dipping and ascending in the permissible speed range and levitation of a scuba diver in a predetermined or preselectable water depth is claimed.
  • the rate of descent and ascent can be set variably within permissible ranges, with the electronics regulating the descent and ascent as long as the diver presses a switch.
  • the associated water depth is then determined and stored, the diver then being kept constant with the aid of the control electronics at the depth that is either predetermined or preselected by the diver.
  • a speed control loop is preferably superimposed on the depth control or pressure bearing control loop, as a result of which a further safety measure is provided.
  • the superimposed speed control remains active even in the water depth reached, whereby the setpoint for the speed control loop can be set in the values on the control electronics. If the rate of descent or climb is correct, the speed control therefore has no influence on the depth or pressure control loop, i.e. it is on hold.
  • the parameters underlying the diving process with the help of an automatic buoyancy compensator such as setpoint, control deviation, rate of descent or ascent, actual value and the respective operating status (possible emergency situation) are constantly shown on a display.
  • the position of the valve or valves is preferably monitored by limit switches.
  • failures of the pressure transducer, cable breaks and the capacity of the power supply device are monitored, the warning for the diver e.g. acoustically or the control electronics are switched off automatically.
  • control electronics are set so that the change in the maximum water depth set in advance is locked by a timer for the duration of the dive, so that no unintentional Intervention by the diver can be brought about.
  • control electronics perform a self-test before each dive, in which all functions are checked and the result is shown on the display.
  • control electronics automatically initiates the ascent process, for example if the permissible diving time is exceeded, impending damage to health or if there is not enough air to continue the dive.
  • control electronics can be arranged in the area of the life jacket, any other location on the body of the diver or on other equipment items can also be provided for this purpose. The same applies to the pressure transducer or the valve or valves.
  • the control electronics can be constructed on the basis of a microprocessor or on an analog basis.
  • Fig. 1 shows a diver 1, who is equipped with a compressed air bottle 2 and a life jacket 3.
  • the compressed air bottle 2 is provided with a pressure reducing valve 4.
  • the hose 5 adjoining this leads on the one hand to the lung regulator 6 and on the other hand in the manner of a bypass 7 to the life jacket 3.
  • the automatic tare device 8 is formed by control electronics, which in this example is based on a microprocessor.
  • the control electronics 8 controls a valve 9, in this example an electropneumatic directional valve.
  • an actuator 10 in the form of a setpoint potentiometer and a pressure sensor 11 are provided, both of which are operatively connected to the control electronics 8.
  • the pressure transducer 11 converts the pressure into an electronic quantity that is processed by the control electronics 8 and compares the setting of the setpoint potentiometer 10 with the actual value pressure or with the water depth. If diver 1 is above the setpoint, e.g. on the water surface, the control electronics 8 calculates a control difference and actuates the magnet 12 of the valve 9, which discharges air from the life jacket 3 of the diver 1, so that it drops until the set water depth is reached and the valve 9 closes. If the diver 1 is lower than the preselected value, the sign of the control difference changes and the other magnet 13 of the valve 9 is controlled so long that air is let into the life jacket 3 and the diver 1 rises higher until the set value is reached and the valve 9 closes due to the control difference 0.
  • Fig. 2 shows a detail of the life jacket 3.
  • the control electronics 8 two valves 9, 9 'and the pressure sensor 11 are provided.
  • a finger-like element 14 Connected to the control electronics 8 is a finger-like element 14 to be operated by the diver 1, which on the one hand has a display 15 and on the other hand, in contrast to FIG. 1, alternatively has buttons 16, 17.
  • the finger-like element 14 is connected to the control electronics 8 via a line 18.
  • the opening area of the bypass line 7 to the life jacket 3 and the drainage area 19 for air in the life jacket 3 can also be seen.
  • the control electronics 8 are supplied with energy via a rechargeable battery 20.
  • the diving process with buoyancy control and buttons 16, 17 is illustrated instead of the potentiometer 10 at a water depth of 10 meters.
  • the diver 1 equipped with a buoyancy compensator 8, compressed air bottle 2 and other necessary objects, fills the life jacket 3 with air before the diving process. He jumps into the water and swims on the surface because the vest filled with air generates 3 buoyancy.
  • the diver 1 actuates the button 17 (descent) and holds it down. This measure gives the control electronics 8 an electrical signal and opens the outlet valve 9 'and air escapes from the vest 3. The sinking process begins.
  • the water pressure on the vest 3 increases proportionally to the water depth and compresses the vest 3, which increases the rate of descent.
  • the pressure change over time is measured with the pressure sensor 11 and the rate of descent is determined therefrom.
  • the control electronics 8 compares the determined sinking speed (actual value) with the permanently programmed sinking speed (setpoint) and controls the inlet valve 9 so that the vest 3 is filled with air and thus the buoyancy is increased or the sinking speed is reduced.
  • the diver 1 ends the actuation of the button 17 (descent).
  • the control electronics 8 uses the first value, which the pressure sensor 11 measures after the button 17 is opened, to determine the desired value for the current depth.
  • control electronics 8 now compare the actual values with the target value. If the diver 1 has e.g. reaches a depth of 13 meters, the control electronics 8 controls the inlet valve 9 and the vest 3 is filled with air. Due to the buoyancy, the diver 1 rises.
  • control electronics 8 controls the outlet valve 9 'and air escapes from the vest 3 and the diver 1 sinks.
  • the diver 1 is kept constant at a depth of 10 meters.
  • the control electronics 8 receives a signal which causes the intake valve 9 to open.
  • the vest 3 fills with air, and the diving process begins.
  • the water pressure is proportional to the water depth.
  • the vest 3 decompresses, which increases the rate of climb.
  • the pressure change over time is measured with the pressure sensor 11 and the rate of climb is determined therefrom.
  • the control electronics 8 compares the determined rate of climb (actual value) with the permanently programmed rate of climb (setpoint) and controls the exhaust valve 9 'in such a way that air escapes from the vest 3, and thus the lift is less or the rate of climb is lower.
  • Fig. 3 shows a block diagram of the diving process with automatic buoyancy device based on FIGS. 1 and 2 and the previous example. Assuming that the diver 1 is at a depth of 10 meters, the process of diving in and out should be explained in more detail.
  • the life jacket 3 of the diver 1 is filled with exactly the same amount of air that the diver 1 floats at a depth of 10 meters.
  • the diver 1 decides to dive to a depth of 13 meters and therefore actuates the setpoint potentiometer 10 according to this example.
  • This value is compared with a value specified in the control electronics 8 and in the event that the value is greater than the predetermined value, for example when the value drops, the control electronics 8 controls the electropneumatic valve 9 so that air from the compressed air bottle 2 into the life jacket 3 is performed and for this reason the rate of descent becomes lower until the specified value is reached and the control electronics no longer control magnets 12 or 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Control Of Fluid Pressure (AREA)
  • Road Signs Or Road Markings (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Ladders (AREA)
  • Holders For Apparel And Elements Relating To Apparel (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Road Repair (AREA)

Abstract

PCT No. PCT/EP92/00164 Sec. 371 Date Jun. 11, 1993 Sec. 102(e) Date Jun. 11, 1993 PCT Filed Jan. 25, 1992 PCT Pub. No. WO92/13756 PCT Pub. Date Aug. 20, 1992.A counterbalancing device and method for a diver for automatically diving, surfacing or floating at a predetermined water depth including a control element for setting the predetermined water depth, a pressure sensor for measuring a water depth of the diver, an electronic control unit for determining a rate of descent and a rate of ascent based on a change of the measured water depth over time, such that the electronic control unit controls at least one valve for one of filling air into and releasing air from at least one life jacket associated with the diver for controlling the diver's rate of ascent and descent, respectively, as a function of a difference between the determined rate of ascent or descent and a predetermined rate of ascent and descent, respectively, until the predetermined water depth is attained.

Description

Die Erfindung betrifft ein Verfahren zur Betätigung einer Tariereinrichtung eines Tauchers gemäß gattungsbildendem Teil des ersten Patentanspruches.The invention relates to a method for actuating a buoyancy control device of a diver according to the generic part of the first claim.

Im Unterwassersport, beim Gerätetauchen, d.h. mit Preßluftflaschen, Schwimm- und und Rettungsweste, Lungenautomat sowie anderen Ausrüstungsgegenständen ist das Abtauchen, Auftauchen und das Schweben in einer bestimmten Wassertiefe vom Taucher manuell über Handbetätigung von Ventilen einzustellen. Zu diesem Zweck beschwert der Taucher sich vor dem Tauchgang mit einem Gewichtsgürtel je nach Bedarf mit Blei, um sicherzustellen, daß ein Abtauchen möglich ist. Nachdem der Taucher die gewünschte Wassertiefe erreicht hat, füllt er über Ventile seine Schwimm- und Rettungsweste mit soviel Luft aus der Preßluftflasche, bis er sich im Schwebezustand im Wasser befindet. Dieser Zustand ist dann erreicht, wenn die Gewichtskraft des vom Taucher einschließlich seiner Geräte verdrängten Wassers genauso groß ist, wie die Gewichtskraft des Gerätetauchers.In underwater sports, scuba diving, i.e. With compressed air bottles, life and life jackets, a lung regulator and other equipment, the diver has to set, dive and float in a certain water depth manually by manually operating valves. For this purpose, the diver complains of a weight belt with lead as needed before the dive to ensure that diving is possible. After the diver has reached the desired water depth, he uses valves to fill his life and life vest with enough air from the compressed air bottle until he is in the water in the floating state. This condition is reached when the weight of the water displaced by the diver, including his equipment, is as great as the weight of the scuba diver.

Dieses Einstellen der gewünschten Wassertiefe wird Tarieren genannt. Tarieren ist eine der wichtigsten Tauchfertigkeiten, die ein Taucher beherrschen muß, insbesondere, um sich vor gesundheitlichen Schäden zu schützen aber auch, um unter Wasser Energie zu sparen und angenehm zu tauchen. Der Tariervorgang ist relativ schwierig, weil zwischen dem Betätigen des Ventiles zum Füllen oder Entleeren der Schwimm- und Rettungsweste und der Höhenänderung eine Zeitverzögerung gegeben ist und weil als Folge einer Höhenänderung durch Schwimmbewegungen oder Wasserströmungen sich automatisch das Luftvolumen in der Weste genauso ändert, daß der Auf- bzw. Abtrieb noch verstärkt wird.This setting of the desired water depth is called taring. Buoyancy is one of the most important diving skills that a diver must master, especially to protect himself from health damage but also to save energy and dive comfortably under water. The buoyancy control is relatively difficult because there is a time delay between the actuation of the valve for filling or emptying the life and life jacket and the change in height and because as a result of a change in height due to swimming movements or water currents, the air volume in the vest changes automatically so that the Buoyancy and downforce is increased.

Ein besonders kritischer Fall ist das Auftauchen, da die Luft in der Weste aufgrund von absinkendem Wasserdruck expandiert und folglich der Auftrieb immer größer wird. Bei zu schnellem und unkontrolliertem Aufstieg besteht die Gefahr eines Dekompressionsschadens oder eines Lungenrisses.A particularly critical case is surfacing, as the air in the vest expands due to the sinking water pressure and consequently the buoyancy increases. If the ascent is too fast and uncontrolled, there is a risk of decompression damage or a lung tear.

Der EP-A 41194 ist eine Vorrichtung zur selbsttätigen Begrenzung der Steiggeschwindigkeit beim Auftauchen von Tauchern zu entnehmen. Die Vorrichtung ist gekennzeichnet durch eine mit dem Rettungswesteninnenraum verbundene Kammer mit einer diese unterteilenden, elastisch längsbeweglichen, dichtenden Trennwand, die mit einem dichtend verschiebbaren, nach außen führenden Ventilschließteil verbunden ist, dessen zugehöriger Ventilsitz in der Rettungswestenaußenwand angeordnet ist, wobei die durch die Trennwand gebildeten Kammerabschnitte durch eine Dosierdüse und ein in Richtung zum abgeschlossenen Kammerabschnitt öffnendes Rückschlagventil miteinander verbunden sind.EP-A 41194 shows a device for automatically limiting the rate of climb when divers emerge. The device is characterized by a chamber connected to the interior of the life jacket and having an elastically longitudinally movable, sealing part that divides it Partition wall, which is connected to a sealingly displaceable, outwardly leading valve closing part, the associated valve seat of which is arranged in the life jacket outer wall, the chamber sections formed by the partition wall being connected to one another by a metering nozzle and a check valve opening towards the closed chamber section.

Der DE-A 3644742 ist ein Tauchauftriebskompensator, insbesondere in Form einer Ausgleichs- oder Tarierweste zur Auftriebskompensation oder -stabilisation und Notflotation eines Tauchers beim Tauchen zu entnehmen. Die Tarierweste wirkt mit einer Sicherheitsventilanordnung zusammen, die einen Betätigungsmechanismus zum Öffnen eines Ventiles aufweist, wobei dieser Mechanismus mit einer Zugleine versehen ist, mittels welcher der Taucher diesen Mechanismus handhaben kann. Die Zugleine erstreckt sich von dem Betätigungsmechanismus durch den nach Art eines Balkens ausdehnbaren und zusammenziehbaren ersten Aufblasschlauch zum Inflator hin, der am Ende des Schlauches angeordnet ist. Die Sicherheitsventilanordnung weist des weiteren wirksame Mittel zur Abdichtung gegen Wasser auf.DE-A 3644742 is a diving buoyancy compensator, in particular in the form of a balance or buoyancy compensator for buoyancy compensation or stabilization and emergency flotation of a diver when diving. The buoyancy compensator interacts with a safety valve arrangement which has an actuating mechanism for opening a valve, this mechanism being provided with a pull line by means of which the diver can handle this mechanism. The towing line extends from the actuating mechanism through the first inflation hose, which is expandable and contractible in the manner of a bar, to the inflator, which is arranged at the end of the hose. The safety valve arrangement furthermore has effective means for sealing against water.

Infolge der rein mechanischen Betätigung der Tariereinrichtungen können die Auf- und Abstiegsgeschwindigkeiten nicht variabel eingestellt werden, so daß der Auf- und Abstieg für den Taucher nicht optimal gesteuert werden kann. Diese Einrichtungen mögen wohl in der Lage sein, einen Taucher beim Aufstieg behilflich zu sein, sie sind jedoch nicht geeignet, einen Schwebezustand in vorgegebener Wassertiefe konstant zu halten.As a result of the purely mechanical actuation of the buoyancy control devices, the ascent and descent speeds cannot be variably set, so that the ascent and descent cannot be optimally controlled for the diver. These facilities may be able to assist a diver as they ascend, but are unsuitable for maintaining a level of suspension at a given water depth.

Die gattungsgemäße US-A 3487647 betrifft ein Verfahren zur Betätigung einer Tariereinrichtung zum halbautomatischen Ab- bzw. Auftauchen sowie Schweben eines Tauchers. Der Taucher bedient hierbei manuell das Ventil Abtauchen und muß bei zu schnellem Absinken ebenfalls manuell das Ventil Auftauchen betätigen. Der Taucher muß sich im Anschluß an den Absinkvorgang selber in der gewünschten Tiefe ebenfalls manuell austarieren und kann danach erst eine Art Automatik aktivieren, die den Taucher positionsgeregelt halten soll, wobei durch diese Positionsregelung der Taucher in eine Schwingbewegung versetzt wird, die sich nicht stabilisiert. Demzufolge befindet sich der Taucher in der austarierten Lage in ständiger nicht gewollter Bewegung. Diese Art des Tarierens erscheint einerseits aufwendig, da der Taucher beim Ab- und Auftauchen ständig in die Regelung eingreifen muß und andererseits unkomfortabel im Hinblick auf die ständigen Bewegungen in der austarierten Lage.The generic US-A 3487647 relates to a method for actuating a buoyancy control device for the semi-automatic diving or surfacing and hovering of a diver. The diver manually operates the valve descent and must also manually operate the valve descent if it drops too quickly. After the sinking process, the diver also has to manually balance himself at the desired depth and can only then activate a type of automatic system that is supposed to keep the diver in a position-controlled manner, whereby this position control causes the diver to perform an oscillating movement that does not stabilize. As a result, the diver is in the balanced position in constant unwanted movement. This type of taring appears to be complex on the one hand because the diver must constantly intervene in the regulation when diving in and out and on the other hand uncomfortable with regard to the constant movements in the balanced position.

Das dem Erfindungsgegenstand zugrunde liegende Ziel ist darin zu sehen, einerseits das Ab- und Auftauchen mit einer für den Taucher annehmbaren Geschwindigkeit ohne ständige Eingriffe in den Regelvorgang zu realisieren und andererseits den Taucher in einer vorgegebenen bzw. vorwählbaren Wassertiefe zu halten, ohne daß es eines ständigen manuellen Nachregelns der Tariereinrichtung bedarf.The aim of the object of the invention is to be seen on the one hand to realize the descent and emergence at a speed acceptable for the diver without constant intervention in the control process and on the other hand to keep the diver in a predetermined or preselectable water depth without it being one constant manual readjustment of the buoyancy device is required.

Dieses Ziel wird verfahrensgemäß mit den kennzeichnenden Merkmalen des ersten Patentanspruches erreicht.According to the method, this aim is achieved with the characterizing features of the first claim.

Vorteilhafte Weiterbildungen des Verfahrens sind den zugehörigen Unteransprüchen zu entnehmen.Advantageous developments of the method can be found in the associated subclaims.

Eine Einrichtung zum automatischen Ab- bzw. Auftauchen sowie Schweben eines Tauchers in vorgegebener bzw. vorwählbarer Wassertiefe gemäß dem Gattungsbegriff des Anspruchs 14 ist gekennzeichnet durch mindestens eine Regelelektronik zur Ansteuerung des Ventiles, mindestens einen Druckaufnehmer sowie einen Sollwertgeber, die mit der Regelelektronik in Verbindung stehen.A device for the automatic dipping or surfacing and hovering of a diver in a predetermined or preselectable water depth according to the preamble of claim 14 is characterized by at least one electronic control unit for controlling the valve, at least one pressure sensor and a setpoint device which are connected to the electronic control unit .

Die Verwendung einer Tariereinrichtung zum automatischen Ab- und Auftauchen ist Gegenstand des Anspruchs 23.The use of a buoyancy compensator for automatic descent and ascent is the subject of claim 23.

Vorteilhafte Weiterbildungen der Einrichtung sind den zugehörigen Unteransprüchen zu entnehmen.Advantageous further developments of the device can be found in the associated subclaims.

Darüberhinaus wird die Verwendung eines aus einer Regelelektronik, mindestens einem Ventil, mindestens einem Druckaufnehmer, einem Sollwertgeber sowie einer Rettungsweste bestehenden Tariereinrichtung zum automatischen Ab- bzw. Auftauchen im zulässigen Geschwindigkeitsbereich sowie Schweben eines Gerätetauchers in vorgegebener bzw. vorwählbarer Wassertiefe beansprucht.In addition, the use of a buoyancy control device consisting of control electronics, at least one valve, at least one pressure sensor, a setpoint device and a life jacket for automatic dipping and ascending in the permissible speed range and levitation of a scuba diver in a predetermined or preselectable water depth is claimed.

Die mit dem Erfindungsgegenstand erzielten Vorteile bestehen insbesondere darin, daß das Tauchen wesentlich vereinfacht und die Sicherheit erhöht wird, da die Tiefe, in der man tauchen möchte, automatisch überwacht und geregelt wird, wodurch das Tauchen in ungewollten Tiefen sicher vermieden werden kann. Darüberhinaus wird die Sink- und Steiggeschwindigkeit begrenzt, um gesundheitsschädliche Folgen zu vermeiden. Es besteht die Möglichkeit, vorgewählte Wassertiefen geregelt so genau einzustellen und zu halten, daß Tätigkeiten unter Wasser, z.B. Arbeiten, die von Berufstauchern ausgeführt werden, einfacher als bisher zu verrichten sind.The advantages achieved with the subject matter of the invention consist in particular in that diving is considerably simplified and safety is increased, since the depth at which one wishes to dive is automatically monitored and regulated, whereby diving at unwanted depths can be safely avoided. In addition, the rate of descent and climb is limited to avoid harmful consequences. It is possible to set and maintain preselected water depths so precisely that activities under water, such as work performed by professional divers, are easier than before.

Die Sink- und Steiggeschwindigkeit können in zulässigen Bereichen variabel eingestellt werden, wobei die Elektronik den Ab- bzw. Aufstieg so lange regelt, wie seitens des Tauchers ein Schalter betätigt wird. Anschließend wird die zugehörige Wassertiefe ermittelt und abgespeichert, wobei der Taucher dann mit Hilfe der Regelelektronik konstant in der entweder vorgegebenen oder seitens des Tauchers vorher vorgewählten Tiefe gehalten wird.The rate of descent and ascent can be set variably within permissible ranges, with the electronics regulating the descent and ascent as long as the diver presses a switch. The associated water depth is then determined and stored, the diver then being kept constant with the aid of the control electronics at the depth that is either predetermined or preselected by the diver.

Dem Tiefen- bzw. Drucklagerregelkreis ist vorzugsweise ein Geschwindigkeitsregelkreis überlagert, wodurch eine weitere Sicherheitsmaßnahme gegeben ist. Die überlagerte Geschwindigkeitsregelung bleibt auch in der erreichten Wassertiefe aktiv, wobei der Sollwert für den Geschwindigkeitsregelkreis in seinen Werten an der Regelelektronik eingestellt werden kann. Bei korrekter Sink- bzw. Steiggeschwindigkeit übt die Geschwindigkeitsregelung demzufolge keinen Einfluß auf den Tiefen- bzw. Drucklageregelkreis aus, d.h. sie befindet sich in Wartestellung.A speed control loop is preferably superimposed on the depth control or pressure bearing control loop, as a result of which a further safety measure is provided. The superimposed speed control remains active even in the water depth reached, whereby the setpoint for the speed control loop can be set in the values on the control electronics. If the rate of descent or climb is correct, the speed control therefore has no influence on the depth or pressure control loop, i.e. it is on hold.

Im Hinblick auf die Sicherheit des Tauchers unter Wasser wird weiterhin vorgeschlagen, daß, sofern die Regelabweichung bei aktivierter Regelelektronik nicht abnimmt, der Taucher gewarnt und die Regelelektronik abgeschaltet wird, so daß der Taucher zum sicheren Aufstieg wieder manuell tarieren kann.With regard to the safety of the diver under water, it is further proposed that, provided that the control deviation does not decrease when the control electronics are activated, the diver is warned and the control electronics are switched off, so that the diver can tare manually for safe ascent.

Die dem Tauchvorgang mit Hilfe eines Tarierautomaten zugrunde liegenden Parameter wie Sollwert, Regelabweichung, Absink- bzw. Aufstiegsgeschwindigkeit, Istwert sowie der jeweilige Betriebszustand (eventuelle Notsituation) werden ständig auf einem Display angezeigt. Die Stellung des bzw. der Ventile wird vorzugsweise durch Endschalter überwacht. Darüberhinaus werden Ausfälle des Druckaufnehmers, Kabelbrüche sowie die Kapazität der Stromversorgungseinrichtung überwacht, wobei die Warnung für den Taucher z.B. akustisch bzw. die Abschaltung der Regelelektronik automatisch durchgeführt werden.The parameters underlying the diving process with the help of an automatic buoyancy compensator, such as setpoint, control deviation, rate of descent or ascent, actual value and the respective operating status (possible emergency situation) are constantly shown on a display. The position of the valve or valves is preferably monitored by limit switches. In addition, failures of the pressure transducer, cable breaks and the capacity of the power supply device are monitored, the warning for the diver e.g. acoustically or the control electronics are switched off automatically.

Für Menschen, denen das Tauchen noch nicht so vertraut ist bzw. die das Tauchen gerne lernen möchten, wird die Regelelektronik dahingehend eingestellt, daß die Änderung der vorab eingestellten maximalen Wassertiefe durch eine Zeitschaltung für die Dauer des Tauchganges verriegelt wird, so daß hier kein unbeabsichtigter Eingriff seitens des Tauchers herbeigeführt werden kann.For people who are not yet familiar with diving or who would like to learn to dive, the control electronics are set so that the change in the maximum water depth set in advance is locked by a timer for the duration of the dive, so that no unintentional Intervention by the diver can be brought about.

Aus Sicherheitsgründen führt die Regelelektronik vor jedem Tauchgang einen Eigentest durch, in dem alle Funktionen geprüft werden und das Resultat am Display angezeigt wird.For safety reasons, the control electronics perform a self-test before each dive, in which all functions are checked and the result is shown on the display.

Im Gegensatz zum aufgezeigten Stand der Technik leitet die Regelelektronik beispielsweise bei Übersteigung der zulässigen Tauchzeit, sich ankündigenden gesundheitlichen Schäden oder bei nicht ausreichender Luftmenge zur Fortführung des Tauchganges automatisch den Auftauchvorgang ein.In contrast to the prior art shown, the control electronics automatically initiates the ascent process, for example if the permissible diving time is exceeded, impending damage to health or if there is not enough air to continue the dive.

Die Regelelektronik kann im Bereich der Rettungsweste angeordnet werden, wobei jede andere Stelle am Körper des Tauchers bzw. an weiteren Ausrüstungsgegenständen ebenfalls zu diesem Zweck vorgesehen werden kann. Gleiches gilt für den Druckaufnehmer oder das bzw. die Ventile.The control electronics can be arranged in the area of the life jacket, any other location on the body of the diver or on other equipment items can also be provided for this purpose. The same applies to the pressure transducer or the valve or valves.

Die Regelelektronik kann auf Basis eines Mikroprozessors oder auf analoger Basis aufgebaut sein. Gleiches gilt für die Ventile, die sowohl in unstetiger als auch stetiger Funktion ausgeführt sein können, wobei sowohl Druckventile als auch Wegeventile zum Einsatz kommen können.The control electronics can be constructed on the basis of a microprocessor or on an analog basis. The same applies to the valves, which can be designed both in a discontinuous and in a continuous function, whereby both pressure valves and directional valves can be used.

Die Erfindung ist anhand eines Ausführungsbeispieles in der Zeichnung dargestellt und wird wie folgt beschrieben. Es zeigen:

  • Fig. 1
    Taucher mit Druckluftflasche und Rettungsweste sowie schematische Anordnung der Funktion der automatischen Tariereinrichtung.
  • Fig. 2
    Ausschnitt der Rettungsweste samt automatischer Tariereinrichtung.
  • Fig. 3
    Funktionsschaubild des Tauchvorganges mit Tariereinrichtung in Anlehnung an Fig. 1 und 2.
The invention is illustrated in the drawing using an exemplary embodiment and is described as follows. Show it:
  • Fig. 1
    Divers with compressed air bottle and life jacket as well as a schematic arrangement of the function of the automatic buoyancy control.
  • Fig. 2
    Detail of the life jacket with automatic buoyancy control.
  • Fig. 3
    Functional diagram of the diving process with buoyancy device based on FIGS. 1 and 2.

Fig. 1 zeigt einen Taucher 1, der mit einer Druckluftflasche 2 sowie einer Rettungsweste 3 ausgerüstet ist. Die Druckluftflasche 2 ist mit einem Druckminderventil 4 versehen. Der sich hieran anschließende Schlauch 5 führt einerseits zum Lungenautomaten 6 und andererseits nach Art eines Bypasses 7 zur Rettungsweste 3. Die automatische Tariereinrichtung 8 wird gebildet durch eine Regelelektronik, die in diesem Beispiel auf der Grundlage eines Mikroprozessors aufgebaut ist. Die Regelelektronik 8 steuert ein Ventil 9, in diesem Beispiel ein elektropneumatisches Wegeventil, an. Ferner ist ein Stellglied 10 in Form eines Sollwertpotis sowie ein Druckaufnehmer 11 vorgesehen, die beide in Wirkverbindung mit der Regelelektronik 8 stehen.Fig. 1 shows a diver 1, who is equipped with a compressed air bottle 2 and a life jacket 3. The compressed air bottle 2 is provided with a pressure reducing valve 4. The hose 5 adjoining this leads on the one hand to the lung regulator 6 and on the other hand in the manner of a bypass 7 to the life jacket 3. The automatic tare device 8 is formed by control electronics, which in this example is based on a microprocessor. The control electronics 8 controls a valve 9, in this example an electropneumatic directional valve. Furthermore, an actuator 10 in the form of a setpoint potentiometer and a pressure sensor 11 are provided, both of which are operatively connected to the control electronics 8.

Der Taucher 1 wählt eine Wassertiefe an dem Sollwertpoti 10 vor und die aktuelle wassertiefe wird vom Druckaufnehmer 11 gemessen, ausgehend davon, daß der hydrostatische Druck und die Wassertiefe direkt proportional zueinander sind ( p = g x rho x h

Figure imgb0001
Figure imgb0002
, worin g = 9,8 m/s², rho = Dichte sowie h = Wassertiefe sind).The diver 1 preselects a water depth at the setpoint potentiometer 10 and the current water depth is measured by the pressure sensor 11, on the basis that the hydrostatic pressure and the water depth are directly proportional to one another ( p = gx rho xh
Figure imgb0001
Figure imgb0002
, where g = 9.8 m / s², rho = density and h = water depth).

Der Druckaufnehmer 11 wandelt den Druck in eine elektronische Größe, die von der Regelelektronik 8 verarbeitet wird und vergleicht die Einstellung des Sollwertpotis 10 mit dem Istwert Druck bzw. mit der Wassertiefe. Befindet sich der Taucher 1 oberhalb des eingestellten Sollwertes, z.B. an der Wasseroberfläche, so errechnet die Regelelektronik 8 eine Regeldifferenz und betätigt den Magneten 12 des Ventiles 9, welches Luft aus der Rettungsweste 3 des Tauchers 1 abläßt, so daß dieser absinkt, bis die eingestellte Wassertiefe erreicht wird und das Ventil 9 schließt. Befindet sich der Taucher 1 tiefer als der vorgewählte Wert, so ändert sich das Vorzeichen der Regeldifferenz und der andere Magnet 13 des Ventiles 9 wird so lange angesteuert, daß Luft in die Rettungsweste 3 eingelassen wird und der Taucher 1 höher steigt, bis der eingestellte Wert erreicht wird und aufgrund der Regeldifferenz 0 das Ventil 9 schließt.The pressure transducer 11 converts the pressure into an electronic quantity that is processed by the control electronics 8 and compares the setting of the setpoint potentiometer 10 with the actual value pressure or with the water depth. If diver 1 is above the setpoint, e.g. on the water surface, the control electronics 8 calculates a control difference and actuates the magnet 12 of the valve 9, which discharges air from the life jacket 3 of the diver 1, so that it drops until the set water depth is reached and the valve 9 closes. If the diver 1 is lower than the preselected value, the sign of the control difference changes and the other magnet 13 of the valve 9 is controlled so long that air is let into the life jacket 3 and the diver 1 rises higher until the set value is reached and the valve 9 closes due to the control difference 0.

Diesem Lageregelkreis wird ein Geschwindigkeitsregelkreis überlagert, so daß die Höhendifferenz über die Zeit gemessen wird und somit Sink- bzw. Steiggeschwindigkeit ermittelt werden ( v = ds/dt

Figure imgb0003
Figure imgb0004
, worin d die Differenz, s der Weg sowie t die Zeit sind) und vorrangig so eingestellt wird, daß sie für den Taucher 1 sicher und angenehm ist.A speed control loop is superimposed on this position control loop so that the height difference is measured over time and thus the sinking or climbing speed is determined ( v = ds / dt
Figure imgb0003
Figure imgb0004
, where d is the difference, s are the route and t are the time) and are primarily set so that they are safe and pleasant for diver 1.

Fig. 2 zeigt als Ausschnittsdarstellung die Rettungsweste 3. Im Bereich der Rettungsweste 3 sind einerseits die Regelelektronik 8, zwei Ventile 9, 9' sowie der Druckaufnehmer 11 vorgesehen. Mit der Regelelektronik 8 verbunden ist ein vom Taucher 1 zu bedienendes fingerartiges Element 14, das einerseits ein Display 15 und andererseits, abweichend zu Fig. 1, alternativ Taster 16, 17 aufweist. Das fingerartige Element 14 ist über eine Leitung 18 mit der Regelelektronik 8 verbunden. Darüberhinaus erkennbar ist der Mündungsbereich der Bypassleitung 7 an die Rettungsweste 3 sowie der Ablaßbereich 19 für in der Rettungsweste 3 befindliche Luft. Die Regelelektronik 8 wird über einen Akku 20 mit Energie versorgt.Fig. 2 shows a detail of the life jacket 3. In the area of the life jacket 3 on the one hand the control electronics 8, two valves 9, 9 'and the pressure sensor 11 are provided. Connected to the control electronics 8 is a finger-like element 14 to be operated by the diver 1, which on the one hand has a display 15 and on the other hand, in contrast to FIG. 1, alternatively has buttons 16, 17. The finger-like element 14 is connected to the control electronics 8 via a line 18. The opening area of the bypass line 7 to the life jacket 3 and the drainage area 19 for air in the life jacket 3 can also be seen. The control electronics 8 are supplied with energy via a rechargeable battery 20.

Anhand eines Beispieles wird der Tauchvorgang mit Tariereinrichtung und Tastern 16, 17 anstelle des Potis 10 auf 10 Meter Wassertiefe verdeutlicht.Using an example, the diving process with buoyancy control and buttons 16, 17 is illustrated instead of the potentiometer 10 at a water depth of 10 meters.

Der Taucher 1, ausgerüstet mit Tariereinrichtung 8, Druckluftflasche 2 und anderen notwendigen Gegenständen füllt vor dem Tauchvorgang die Rettungsweste 3 mit Luft. Er springt ins Wasser und schwimmt an der Oberfläche, da die mit Luft gefüllte Weste 3 Auftrieb erzeugt. Der Taucher 1 betätigt den Taster 17 (Abtauchen) und hält ihn niedergedrückt. Durch diese Maßnahme erhält die Regelelektronik 8 ein elektrisches Signal und öffnet das Auslaßventil 9' und es entweicht Luft aus der Weste 3. Der Sinkvorgang beginnt.The diver 1, equipped with a buoyancy compensator 8, compressed air bottle 2 and other necessary objects, fills the life jacket 3 with air before the diving process. He jumps into the water and swims on the surface because the vest filled with air generates 3 buoyancy. The diver 1 actuates the button 17 (descent) and holds it down. This measure gives the control electronics 8 an electrical signal and opens the outlet valve 9 'and air escapes from the vest 3. The sinking process begins.

Der Wasserdruck auf die Weste 3 erhöht sich proportional zur Wassertiefe und komprimiert die Weste 3, wodurch sich die Sinkgeschwindigkeit erhöht. Mit dem Druckaufnehmer 11 wird die Druckänderung über die Zeit gemessen und daraus die Sinkgeschwindigkeit ermittelt. Die Regelelektronik 8 vergleicht die ermittelte Sinkgeschwindigkeit (Istwert) mit der fest programmierten Sinkgeschwindigkeit (Sollwert) und steuert das Einlaßventil 9 so an, daß die Weste 3 mit Luft gefüllt wird und somit der Auftrieb erhöht bzw. die Sinkgeschwindigkeit verringert wird.The water pressure on the vest 3 increases proportionally to the water depth and compresses the vest 3, which increases the rate of descent. The pressure change over time is measured with the pressure sensor 11 and the rate of descent is determined therefrom. The control electronics 8 compares the determined sinking speed (actual value) with the permanently programmed sinking speed (setpoint) and controls the inlet valve 9 so that the vest 3 is filled with air and thus the buoyancy is increased or the sinking speed is reduced.

In einer Tiefe von 10 Metern beendet der Taucher 1 die Betätigung des Tasters 17 (Abtauchen). Die Regelelektronik 8 ermittelt mit dem ersten Wert, den der Druckaufnehmer 11 nach Öffnen des Tasters 17 mißt, den Sollwert für die aktuelle Tiefe.At a depth of 10 meters, the diver 1 ends the actuation of the button 17 (descent). The control electronics 8 uses the first value, which the pressure sensor 11 measures after the button 17 is opened, to determine the desired value for the current depth.

Alle später gemessenen Werte werden als Istwerte herangezogen. Die Regelelektronik 8 vergleicht nun die Istwerte mit dem Sollwert. Hat der Taucher 1 z.B. eine Tiefe von 13 Metern erreicht, steuert die Regelelektronik 8 das Einlaßventil 9 und die Weste 3 wird mit Luft gefüllt. Durch den Auftrieb steigt der Taucher 1.All values measured later are used as actual values. The control electronics 8 now compare the actual values with the target value. If the diver 1 has e.g. reaches a depth of 13 meters, the control electronics 8 controls the inlet valve 9 and the vest 3 is filled with air. Due to the buoyancy, the diver 1 rises.

Hat der Taucher z.B. eine Tiefe von 7 Metern erreicht, steuert die Regelelektronik 8 das Auslaßventil 9' an und es entweicht Luft aus der Weste 3 und der Taucher 1 sinkt. Der Taucher 1 wird in der Tiefe von 10 Metern konstant gehalten.If the diver reaches a depth of 7 meters, the control electronics 8 controls the outlet valve 9 'and air escapes from the vest 3 and the diver 1 sinks. The diver 1 is kept constant at a depth of 10 meters.

Zum Auftauchen betätigt der Taucher 1 den Taster 16 (Auftauchen) und hält ihn niedergedrückt. Die Regelelektronik 8 erhält ein Signal, welches ein Öffnen des Einlaßventiles 9 zur Folge hat. Die Weste 3 füllt sich mit Luft, wobei der Auftauchvorgang beginnt.To surface the diver 1 actuates the button 16 (surface) and holds it down. The control electronics 8 receives a signal which causes the intake valve 9 to open. The vest 3 fills with air, and the diving process begins.

Der Wasserdruck ist proportional zur Wassertiefe. Beim Auftauchen dekomprimiert sich die Weste 3, wodurch sich die Steiggeschwindigkeit erhöht. Mit dem Druckaufnehmer 11 wird die Druckänderung über die Zeit gemessen und daraus die Steiggeschwindigkeit ermittelt. Die Regelelektronik 8 vergleicht die ermittelte Steiggeschwindigkeit (Istwert) mit der fest programmierten Steiggeschwindigkeit (Sollwert) und steuert das Auslaßventil 9' so an, daß aus der Weste 3 Luft entweicht, und somit der Auftrieb kleiner bzw. die Steiggeschwindigkeit geringer wird.The water pressure is proportional to the water depth. When surfacing, the vest 3 decompresses, which increases the rate of climb. The pressure change over time is measured with the pressure sensor 11 and the rate of climb is determined therefrom. The control electronics 8 compares the determined rate of climb (actual value) with the permanently programmed rate of climb (setpoint) and controls the exhaust valve 9 'in such a way that air escapes from the vest 3, and thus the lift is less or the rate of climb is lower.

Fig. 3 zeigt anhand eines Blockschaltbildes den Tauchvorgang mit automatischer Tariereinrichtung in Anlehnung an die Fig. 1 und 2 sowie das vorangegangene Beispiel. Ausgehend davon, daß der Taucher 1 sich in 10 Meter Wassertiefe befindet, soll der Vorgang des Ab- und Auftauchens nochmals näher erläutert werden.Fig. 3 shows a block diagram of the diving process with automatic buoyancy device based on FIGS. 1 and 2 and the previous example. Assuming that the diver 1 is at a depth of 10 meters, the process of diving in and out should be explained in more detail.

Die Rettungsweste 3 des Tauchers 1 ist mit genau so viel Luft gefüllt, daß der Taucher 1 in 10 Meter Wassertiefe schwebt. Der Taucher 1 entscheidet sich, auf 13 Meter Wassertiefe abzutauchen und betätigt deshalb in diesem Beispiel den Sollwertpoti 10 gem. Fig. 1 entsprechend einem elektrischen Signal für den Sollwert S = 13 Meter Wassertiefe. Der Additionsstelle 21 wird der aktuelle Wert der Tiefe S = 10 Meter zugeführt, welcher über den Druckaufnehmer 11 gemessen sowie elektrisch gewandelt wird, so daß der Regelelektronik 8 eine Differenz von delta S = +3 Meter als elektronisches Signal gemeldet wird. Die Schaltung bzw. das Programm der Regelelektronik 8 erkennt aufgrund des Vorzeichens + der Regelabweichung delta S = + 3 Meter, daß um diesen Weg tiefer getaucht werden soll und steuert den Magneten 13 des elektropneumatischen Ventiles 9 an, welches Luft aus der Rettungsweste 3 abläßt, so daß der Körper mit Rettungsweste absinkt. Der Druckaufnehmer 11 mißt ständig die Wassertiefe über den hydrostatischen Wasserdruck und vergleicht die Position ständig über die Additionsstelle 21 mit der Position, die am Sollwertpoti 10 vorgewählt wurde. Hat der Taucher 1 die Position S = 13 Meter Wassertiefe erreicht, so ist die Differenz an der Additionsstelle S = 0 und die Regelelektronik 8 steuert das elektropneumatische Ventil 9 nicht weiter an.The life jacket 3 of the diver 1 is filled with exactly the same amount of air that the diver 1 floats at a depth of 10 meters. The diver 1 decides to dive to a depth of 13 meters and therefore actuates the setpoint potentiometer 10 according to this example. Fig. 1 corresponding to an electrical signal for the target value S = 13 meters water depth. The addition point 21 is supplied with the current value of the depth S = 10 meters, which is measured via the pressure transducer 11 and converted electrically, so that the control electronics 8 are notified of a difference of delta S = +3 meters as an electronic signal. The circuit or the program of the control electronics 8 recognizes on the basis of the sign + the control deviation delta S = + 3 meters that it is intended to dive deeper by this path and controls the magnet 13 of the electropneumatic valve 9 which releases air from the life jacket 3. so that the body sinks with life jacket. The pressure transducer 11 constantly measures the water depth via the hydrostatic water pressure and continuously compares the position via the addition point 21 with the position that was preselected at the setpoint potentiometer 10. If the diver 1 has reached the position S = 13 meters water depth, the difference at the addition point S = 0 and the control electronics 8 no longer actuate the electro-pneumatic valve 9.

Sollte der Taucher 1 mit diesem Absinkvorgang tiefer als S = 13 Meter sinken, z.B. auf S = 15 Meter, so mißt der Druckaufnehmer 11 diese Tiefe und wandelt den Druck in eine elektronische Größe um, welche an der Additionsstelle 21 mit dem am Sollwertpoti 10 elektronisch eingestellten Wert entsprechend S = 13 Meter verglichen wird und ermittelt eine Differenz von delta S = -2 Meter. Die Regelelektronik 8 erkennt aufgrund des Vorzeichens, daß nun der andere Magnet 12 des elektropneumatischen Ventiles 9' angesteuert werden muß und schaltet mit dem Ventil 9' pneumatisch die Verbindung von der Druckluftflasche 2 zur Rettungsweste 3 frei, so daß das Volumen der Rettungsweste 3 größer wird und deshalb der Körper mit Rettungsweste 3 aufsteigt bis auf S = 13 Meter. Der vom Druckaufnehmer 11 nunmehr gemessene und elektrisch gewandelte Wert ergibt eine Differenz von delta S = 0 Meter an der Additionsstelle 21, wodurch die Regelelektronik 8 das pneumatische Ventil 9' nicht weiter ansteuert, wobei die pneumatische Verbindung zwischen Druckluftflasche 2 und Rettungsweste 3 wieder geschlossen wird.Should the diver 1 sink deeper than S = 13 meters with this lowering process, for example to S = 15 meters, then the pressure sensor 11 measures this depth and converts the pressure into an electronic quantity, which is electronically added at the addition point 21 to that at the setpoint potentiometer 10 set value corresponding to S = 13 meters is compared and determines a difference of delta S = -2 meters. The control electronics 8 recognizes on the basis of the sign that the other magnet 12 of the electropneumatic valve 9 'must now be actuated and pneumatically releases the connection from the compressed air bottle 2 to the life jacket 3 with the valve 9', so that the volume of the life jacket 3 becomes larger and therefore the body with life jacket 3 rises to S = 13 meters. The value now measured and electrically converted by the pressure sensor 11 results in a difference of delta S = 0 meters at the addition point 21, as a result of which the control electronics 8 no longer actuate the pneumatic valve 9 ', the pneumatic connection between compressed air bottle 2 and life jacket 3 is closed again.

Diesem Positionsregelkreis ist durch die Schaltung bzw. das Programm in der Regelelektronik 8 ein Geschwindigkeitsregelkreis überlagert, in dem in der Regelelektronik 8 die Zeit gemessen wird und die Höhendifferenz gemessen mit dem Druckaufnehmer 11 mit der Zeit mathematisch zu der Steig- und Sinkgeschwindigkeit verrechnet wird, indem die Sinkgeschwindigkeit sich ergibt aus V = delta S/delta T

Figure imgb0005
Figure imgb0006
. Dieser Wert wird mit einem in der Regelelektronik 8 vorgegebenen Wert verglichen und für den Fall, daß der Wert z.B. beim Absinken größer ist als der vorgegebene Wert, steuert die Regelelektronik 8 das elektropneumatische Ventil 9 so an, daß Luft von der Druckluftflasche 2 in die Rettungsweste 3 geführt wird und aus diesem Grund die Sinkgeschwindigkeit kleiner wird, bis der vorgegebene Wert erreicht ist und die Regelelektronik keinen Magneten 12 bzw. 13 mehr ansteuert.A speed control loop is superimposed on this position control loop by the circuit or the program in the control electronics 8, in which the time is measured in the control electronics 8 and the height difference measured with the pressure sensor 11 is mathematically offset with the time to the rate of climb and descent by the sink rate results from V = delta S / delta T
Figure imgb0005
Figure imgb0006
. This value is compared with a value specified in the control electronics 8 and in the event that the value is greater than the predetermined value, for example when the value drops, the control electronics 8 controls the electropneumatic valve 9 so that air from the compressed air bottle 2 into the life jacket 3 is performed and for this reason the rate of descent becomes lower until the specified value is reached and the control electronics no longer control magnets 12 or 13.

Wird der vorgegebene Wert der Steiggeschwindigkeit hingegen überschritten, so wird Luft aus der Weste 3 abgelassen, um auf den Sollwert der Steiggeschwindigkeit zu gelangen.If, on the other hand, the predetermined value of the rate of climb is exceeded, air is released from the vest 3 in order to reach the target value of the rate of climb.

Claims (23)

  1. Method for operating a counterbalancing device for a diver (1), in which the desired water depth is set on a control element (10) and a pressure sensor (11) measures the instantaneous water depth, characterized in that for the purpose of automatically diving, surfacing or floating at a prescribed or preselectable water depth the measured values are made available to an electronic control unit (8) which determines the necessary diving depth as well as the rates of descent and ascent and, on the basis of the values determined, the electronic control unit (8) controls at least one valve (9, 9') in such a way that air is filled into or emptied out of at least one life jacket (3) provided in the region of the body of the diver (1) until a rate of descent or ascent is set in the permissible range, and upon attainment of the desired water depth this value of the rate is adjusted to v = 0.
  2. Method according to Claim 1, characterized in that the rate of descent or ascent is variably set in the permissible range.
  3. Method according to Claims 1 and 2, characterized in that the electronic unit (8) controls the descent or ascent as long as a switch (16) or (17) is operated by the diver (1), subsequently determines and stores the associated water depth and then keeps the diver (1) constantly at the said depth.
  4. Method according to Claims 1 to 3, characterized in that a rate control loop is superimposed on the depth or pressure position control loop.
  5. Method according to Claims 1 to 4, characterized in that the superimposed rate control loop also remains active at the water depth achieved.
  6. Method according to Claims 1 to 5, characterized in that the desired value for the rate control loop has its magnitudes set on the electronic control unit (8).
  7. Method according to Claims 1 to 6, characterized in that if the system deviation does not decrease in the event of an activated electronic control unit (8), the diver (1) is warned and the electronic control unit (8) is automatically switched off.
  8. Method according to Claims 1 to 7, characterized in that the desired value, the system deviation, the rate of descent or ascent, the actual value and the respective operating state are continuously displayed on a display (15).
  9. Method according to Claims 1 to 8, characterized in that the position of the valve or valves (9, 9') is monitored by limit switches.
  10. Method according to Claims 1 to 9, characterized in that cable breaks, failure of the pressure sensor or sensors (11) and the capacity of the power supply device (20) are monitored, the warning for the diver (1) or switching off of the electronic control unit (8) being carried out automatically.
  11. Method according to Claims 1 to 10, characterized in that the change in the set maximum water depth can be locked by a timing circuit.
  12. Method according to Claims 1 to 11, characterized in that, before each dive, the electronic control unit (8) carries out a self test in which all the functions are checked and the result is displayed on the display (15).
  13. Method according to Claims 1 to 12, characterized in that, in the case of overshooting of permissible diving time, or threats of damage to health, or of an insufficient quantity of air for continuing the dive, the electronic control unit (8) automatically initiates the surfacing operation.
  14. Device for a diver (1) automatically to dive, surface or float at a prescribed or preselectable water depth, the diver (1) being supplied with breathing air and wearing at least one life jacket (3) which can be operated via at least one valve (9, 9') in a manner for air to be filled in or let out, characterized by at least one electronic control unit (8) for controlling the valve (9, 9'), which is connected to at least one pressure sensor (11).
  15. Device according to Claim 14, characterized in that at least the electronic control unit (8) is arranged in the region of the life jacket (3).
  16. Device according to Claims 14 and 15, characterized in that the electronic control unit (8), the pressure sensor (11) and at least one valve (9, 9') are provided in the region of the life jacket (3).
  17. Device according to Claims 14 to 16, characterized in that the electronic control unit (8) is constructed on the basis of a microprocessor.
  18. Device according to Claims 14 to 16, characterized in that the electronic control unit (8) is constructed on an analog basis.
  19. Device according to Claims 14 to 18, characterized in that the valve or valves (9, 9') is or are constructed to function discontinuously or continuously.
  20. Device according to Claims 14 to 19, characterized in that the valve or valves (9, 9') is or are constructed as electropneumatic-pressure valves.
  21. Device according to Claims 14 to 19, characterized in that the valve or valves (9, 9') is or are constructed as electropneumatic directional control valves.
  22. Device according to Claims 14 to 21, characterized by monitoring of the position of the valve or valves (9, 9') by means of limit switches.
  23. Use of a counterbalancing device consisting of an electronic control unit (8), at least one valve (9, 9'), at least one pressure sensor (11), a desired-value transmitter (10) as well as a life jacket (3), which can be operated in a way which fills it with air or lets air out, for a scuba diver automatically to dive or surface in the permissible rate range as well as to float at a prescribed or preselectable water depth.
EP92903032A 1991-01-30 1992-01-25 Counterbalancingdevice for divers and method for operating same Expired - Lifetime EP0569398B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4102622 1991-01-30
DE4102622 1991-01-30
DE4200090A DE4200090A1 (en) 1991-01-30 1992-01-04 TARING DEVICE FOR DIVERS
DE4200090 1992-01-04
PCT/EP1992/000164 WO1992013756A1 (en) 1991-01-30 1992-01-25 Counterbalancing device for divers

Publications (2)

Publication Number Publication Date
EP0569398A1 EP0569398A1 (en) 1993-11-18
EP0569398B1 true EP0569398B1 (en) 1994-12-28

Family

ID=25900592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92903032A Expired - Lifetime EP0569398B1 (en) 1991-01-30 1992-01-25 Counterbalancingdevice for divers and method for operating same

Country Status (8)

Country Link
US (1) US5482405A (en)
EP (1) EP0569398B1 (en)
AT (1) ATE116233T1 (en)
DE (2) DE4200090A1 (en)
DK (1) DK0569398T3 (en)
ES (1) ES2069415T3 (en)
GR (1) GR3015548T3 (en)
WO (1) WO1992013756A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005306A1 (en) * 1993-08-19 1995-02-23 Tolksdorf, Detlef Process and device for letting out air or gas from air or life jackets for divers
WO1995016604A1 (en) * 1993-12-07 1995-06-22 Tolksdorf, Detlef Diving device, especially for scuba divers
US5636943A (en) * 1995-10-30 1997-06-10 Mcdermott International, Inc. Hydrostatic equalizer
FR2741853B1 (en) * 1995-12-04 1998-02-20 Bouzehouane Karim AUTOMATIC PORTABLE SECURITY APPARATUS
US5746543A (en) * 1996-08-20 1998-05-05 Leonard; Kenneth J. Volume control module for use in diving
DE19639394C2 (en) * 1996-09-25 2002-05-29 Redmer Sonia Safety device for divers
IL123012A (en) * 1998-01-21 2001-08-08 N D E Diving Equipment Ltd Combined digital depth control and rate of ascent control device for scuba diving
IT1304358B1 (en) * 1998-03-27 2001-03-15 Htm Sport Spa EQUILIBRATOR BODY EQUIPPED.
AU3067700A (en) * 1998-12-10 2000-06-26 Zoran Maksan Device for safer diving
US6321177B1 (en) * 1999-01-12 2001-11-20 Dacor Corporation Programmable dive computer
FR2798115B1 (en) * 1999-09-08 2001-11-16 Aurelien Icard BUOY
IT1314513B1 (en) * 2000-03-24 2002-12-18 Htm Sport Spa WATERPROOF WETSUIT WITH VARIABLE STRUCTURE.
DE10108090A1 (en) * 2001-02-19 2002-09-12 Gft Ges Fuer Tauchtechnik Mbh Diving vest, to set the weight of the diver, has an air chamber to be inflated/deflated by a control through the setting unit for the diver to submerge, ascend or float at a required level
US6772705B2 (en) 2001-09-28 2004-08-10 Kenneth J. Leonard Variable buoyancy apparatus for controlling the movement of an object in water
WO2004007277A1 (en) 2002-07-11 2004-01-22 GfT Gesellschaft für Tauchtechnik mbH & Co. KG Method and device for compensating the buoyancy of a diver
US7328669B2 (en) * 2004-10-18 2008-02-12 Adams Phillip M Buoyancy-based, underwater propulsion system and method
DE202006000950U1 (en) * 2006-01-23 2007-06-06 Mickler, Claudia Safety automatic tare machine for divers
SG175471A1 (en) * 2010-04-26 2011-11-28 Xg Vault Pte Ltd Underwater activated life jacket inflation system
US10518848B2 (en) 2012-03-28 2019-12-31 Marine Depth Control Engineering, Llc Smart buoyancy compensation devices
WO2013144711A1 (en) 2012-03-28 2013-10-03 Pandora Underwater Equipment Sa A safe automatic buoyancy control device
US9816642B2 (en) 2012-11-09 2017-11-14 Praxair Technology, Inc. Method and apparatus for controlling gas flow from cylinders
US9273799B2 (en) 2012-11-09 2016-03-01 Praxair Technology, Inc. Method and apparatus for controlling gas flow from cylinders
US10151405B1 (en) 2012-11-09 2018-12-11 Praxair Technology, Inc. Valve integrated pressure regulator with shroud and digital display for gas cylinders
MY185956A (en) * 2014-10-16 2021-06-14 Teijin Ltd Protective equipment comprising alarm system
US9694884B2 (en) * 2015-02-19 2017-07-04 Dolphin Fluidics S.R.L. Buoyancy compensator device and related overpressure or relief valve
FR3133366A1 (en) * 2022-03-09 2023-09-15 Aymeric CASTELLANET Diver stabilization system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487647A (en) * 1967-09-18 1970-01-06 William F Brecht Jr Buoyancy control for scuba diving
FR1557300A (en) * 1968-03-11 1969-02-14
IN152808B (en) * 1980-06-02 1984-04-14 Siemens Ag
GB2126534B (en) * 1982-09-07 1986-03-19 Buoyco Underwater buoyancy apparatus venting control
JPS62157890A (en) * 1985-12-31 1987-07-13 Tabata:Kk Buoyancy adjusting jacket for diving
WO1988005670A1 (en) * 1987-02-02 1988-08-11 Abdella Mark G Automatic buoyancy compensanting apparatus

Also Published As

Publication number Publication date
GR3015548T3 (en) 1995-06-30
DK0569398T3 (en) 1995-05-29
ATE116233T1 (en) 1995-01-15
WO1992013756A1 (en) 1992-08-20
DE59201099D1 (en) 1995-02-09
EP0569398A1 (en) 1993-11-18
DE4200090A1 (en) 1992-08-13
US5482405A (en) 1996-01-09
ES2069415T3 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
EP0569398B1 (en) Counterbalancingdevice for divers and method for operating same
DE60205033T2 (en) CONTROL METHOD AND DEVICE FOR DILUTION TO A RESPIRATOR
DE60212537T2 (en) Electrically controlled hydraulic system for emergency lowering of a boom
DE69409024T2 (en) Breathing apparatus
DE2433060C2 (en) A method of pouring predetermined quantities of molten metal and apparatus for carrying out this method
DE69801638T2 (en) Dive buoyancy compensator for divers
DE4125407C3 (en) Buoyancy device for divers and method for controlling the amount of air in a buoyancy body with variable volume for a diver
DE2046016A1 (en) Control device
DE3300457C2 (en)
EP0223127A2 (en) Life-saving device for divers
DE19639394C2 (en) Safety device for divers
DE2105733A1 (en) : Removal process of a fluidizable solid from a pressure vessel and device for carrying out the process
DE3410788A1 (en) FLUID CONTROLLED LIFTING EQUIPMENT
EP0041194A1 (en) Apparatus to automatically limit the upward speed during the ascent of a diver
DE69126118T2 (en) Inflatable bladder system
DE202006000950U1 (en) Safety automatic tare machine for divers
DE69811792T2 (en) Protection device against acceleration
DE2608546A1 (en) RECYCLING DEVICE, IN PARTICULAR FOR UNDERWATER WORK
US20020127062A1 (en) Combined digital depth control and rate of ascent control device for scubadiving
WO1999037534A2 (en) Depth and ascent control for scuba diving
DE10108090A1 (en) Diving vest, to set the weight of the diver, has an air chamber to be inflated/deflated by a control through the setting unit for the diver to submerge, ascend or float at a required level
DE291441C (en)
WO1981003158A1 (en) Safety device,particularly for divers
DE4118666C2 (en) Method for controlling the breathing gas supply to divers and device for carrying out the method
DE60314891T2 (en) DRIVE COMPENSATOR, ESPECIALLY FOR DIVERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19940221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REF Corresponds to:

Ref document number: 116233

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59201099

Country of ref document: DE

Date of ref document: 19950209

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2069415

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950404

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3015548

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: GFT GESELLSCHAFT FUER TAUCHTECHNIK MBH & CO. KG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MICHAEL TOLKSDORF;THOMAS TOLKSDORF TRANSFER- GFT G

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000131

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060727

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060728

Year of fee payment: 16

Ref country code: GR

Payment date: 20060728

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060801

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070126

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

BERE Be: lapsed

Owner name: *GFT G.- FUR TAUCHTECHNIK M.B.H. & CO. K.G.

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070126

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20060725

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060724

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070126

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101231

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110318

Year of fee payment: 20

Ref country code: IT

Payment date: 20110126

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59201099

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59201099

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120124